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Abstract. We consider dual operator algebra properties of the range of a
representation from H∞(DN ) into the bounded linear operators on Hilbert
space. If the representation is of C00 type, properties (Aℵ0) and X0,1/M

coincide, where M is the bound of the representation. Specializing to the
representation induced by a pair of commuting contractions, we obtain an
improved result.
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Let H denote a separable infinite dimensional complex Hilbert space, and L(H)
the algebra of bounded linear operators on H. Recall that a dual algebra is a
unital subalgebra of L(H) closed in the weak*-topology. We study here represen-
tations of H∞(DN ), where DN is the polydisk, and a representation is a weak*-
weak*-continuous linear and multiplicative map. Our concern is chiefly with those
properties, arising in the study of dual algebras and the Scott Brown technique,
which the range of such a representation might have. We later specialize to the
case of the representation arising from a pair of commuting contraction operators.
A selection of related papers is to be found in the bibliography.

The organization of this paper is as follows. After reviewing some defini-
tions, we turn in Section 1 to the elementary study of the property in question.
In Section 2 we give conditions, based on dilations, when a representation with
property (Aℵ0) has a range with some property Xθ,γ (definitions reviewed below).
In Section 3 we specialize to the case of a pair of commuting contractions, and
prove a similar result.

It is well known that a dual algebra A is the Banach dual of a certain quotient
of the trace class operators; we denote this predual of A by QA. We denote the
elements (cosets) in QA by [L]A or simply [L] if no confusion will result. Given
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vectors x and y in H, we denote by x⊗y the usual rank one operator on H defined
by x ⊗ y(u) = (u, y)x for u ∈ H. The dual action of some element B of A on
[x ⊗ y] is 〈B, [x ⊗ y]〉 = (Bx, y)H. The elements [x ⊗ y]A have been particularly
important in the theory of dual algebras. Indeed, the Scott Brown technique rests
upon a certain procedure for solving an equation [L] = [x⊗ y], where [L] is given.
Generalized, this leads to some properties: we say that a dual algebra A (indeed,
any weak*-closed subspace of L(H)) has property (Am,n), some 1 6 m, n 6 ℵ0,
if, given any array {[Lij ]}06i<m, 06j<n ⊆ QA, there exist sequences of vectors
{xi}06i<m, {yj}06j<n in H such that [Lij ] = [xi ⊗ yj ] for all i and j. We usually
shorten (Am,m) to (Am).

The “classical” (Scott Brown) technique to solve equations relies on iterative
approximation. In this context it is useful to define the set Xθ, 0 6 θ < 1, to be
the set of [L]A for which there exist sequences {xn} and {yn} in the (closed) unit
ball of H satisfying

(a) lim sup ‖[L]− [xn ⊗ yn]‖A 6 θ, and
(b) ‖[xn ⊗ w]‖A + ‖[w ⊗ yn]‖A → 0, w ∈ H.
A dual algebra A has property Xθ,γ , 0 6 θ < γ 6 1, if aco(Xθ) contains B0,γ ,

where aco(·) denotes the closure of the absolutely convex hull, and where B0,γ is the
ball in QA of radius γ centered at the origin. (While this is the standard definition,
it was later observed, first by Azoff, that Xθ is always absolutely convex and closed
(see [8]), and therefore “aco(·)” may be omitted in the definition of Xθ,γ .)

Let DN denote the N -polydisk, T the unit circle, C the complex numbers,
and N the positive integers. Let Hp(DN ), 1 6 p 6 ∞, denote the usual Hardy
spaces of functions. It is well known that H∞(DN ) is (in a natural way) the
Banach dual of a certain quotient space, thus inheriting a weak*-topology. We
will consider representations Φ from H∞(DN ) into L(H); it is well known that
there is a map φ between the preduals such that φ∗ = Φ, and that good properties
of Φ are reflected in those of φ (for example, if Φ is a surjective isometry onto a
dual algebra A then φ is a surjective isometry between the appropriate preduals).
Finally, for T and T ′ in L(K) we write T ∼= T ′ to denote T is unitarily equivalent
to T ′.

1. REPRESENTATIONS

Definition 1.1. A representation Φ : H∞(DN ) → L(H) is a weak*-weak*-
continuous linear map satisfying in addition

Φ(uv) = Φ(u)Φ(v), u, v ∈ H∞(DN ).

A representation Φ is unital if Φ(1) = IH; it is contractive if it satisfies the further
condition

‖Φ(u)‖ 6 ‖u‖∞, u ∈ H∞(DN ).

We will generally abbreviate weak*-weak*-continuous to weak*-continuous.
Observe that (as in [4]) a representation is necessarily bounded since the image of
the unit ball is necessarily weak*-compact. Note also that some authors (e.g., [16])
use “representation” to denote what we call here “contractive representation”, and
others (e.g., [4]) assume that the map is unital. Finally, in [17] it is shown that if Φ
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is a contractive multiplicative linear map into L(H) which is absolutely continuous
(in a certain sense) then Φ is weak*-continuous.

Let us recall the following lemma from [7].

Lemma 1.2. Suppose X and Y are Banach spaces. Let Φ : X∗ → Y ∗ be a
weak*-continuous linear map. If Φ is one-to-one and Φ(X∗) is norm-closed, then
Φ(X∗) is weak*-closed and Φ : X∗ → Φ(X∗) is a weak*-homeomorphism.

The following definition is slightly generalized (by removing the assumption
that Φ is unital) from [4].

Definition 1.3. A weak∗-continuous representation Φ : H∞(DN ) → L(H)
is said to be (m,n)-elementary if for any weak*-continuous fij : H∞(DN ) → C,
1 6 i 6 m, 1 6 j 6 n, there exist xi and yj in H such that fij(u) = (Φ(u)xi, yj)
for all u ∈ H∞(DN ).

The next proposition captures some easy facts about (m,n)-elementary rep-
resentations. Recall that for each λ ∈ DN there is a continuous linear functional
Eλ on H∞(DN ) consisting of evaluation at λ:

Eλ(v) ∆= v(λ), v ∈ H∞(DN ).

Proposition 1.4. Suppose Φ : H∞(DN ) → L(H) is a (1, 1)-elementary
representation. Then

‖v‖ 6 ‖Φ(v)‖ 6 ‖Φ‖ ‖v‖, v ∈ H∞(DN );

that is, Φ is bounded below by 1. Further, if Φ is (1, 1)-elementary, then Φ is a
weak*-homeomorphism, where this notion means that Φ is a weak*-homeomorphism
onto Φ(H∞(DN )). In particular, if Φ is contractive and (1, 1)-elementary then Φ
is an isometry and a weak*-homeomorphism.

Proof. For the first assertion, suppose that there exists v ∈ H∞(DN ) satis-
fying ‖v‖ = 1 and ‖Φ(v)‖ < 1. Then there exists λ ∈ DN such that

|Eλ(v)| = |v(λ)| > ‖Φ(v)‖.
Clearly

|Eλ(vm)| = |vm(λ)| = |v(λ)|m, m ∈ N.
Since Φ is (1, 1)-elementary there exist vectors x and y in H satisfying

Eλ(f) = (Φ(f)x, y), f ∈ H∞(DN ),

so in particular
Eλ(vm) = (Φ(vm)x, y), m ∈ N.

But for each m ∈ N,

|v(λ)|m = |Eλ(vm)| = |(Φ(vm)x, y)| 6 ‖x‖ · ‖y‖ · ‖Φ(vm)‖ 6 ‖x‖ · ‖y‖ · ‖Φ(v)‖m.

Then
‖x‖ · ‖y‖ > |v(λ)|m/‖Φ(v)‖m, m ∈ N,

which yields a contradiction for m sufficiently large.
Since Φ is bounded by ‖Φ‖ and bounded below by 1, and the range of Φ is

norm-closed, the remaining part is immediate using Lemma 1.2.
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The property of being (m,n)-elementary for some m and n is clearly a prop-
erty of the representation; we define below a property which concerns only the
range of the representation.

Definition 1.5. A representation Φ of H∞(DN ) has property (Am,n), for
some 1 6 m,n 6 ℵ0, if Φ(H∞(DN ))− has property (Am,n), where the closure is
taken in the weak*-topology.

The following propositions verify the intuition that (m,n)-elementary, a
property on the representation, is stronger than, but related to, the property
(Am,n) on the range of the representation.

Proposition 1.6. For any m,n, 1 6 m,n 6 ℵ0, if a representation Φ :
H∞(DN ) → L(H) is (m,n)-elementary, then Φ has property (Am,n). If Φ is a
weak*-homeomorphism onto Φ(H∞(DN )), then the above two properties are equiv-
alent.

Proof. We only consider the case m = n = 1.
For the first assertion, let f : Φ(H∞(DN ))− → C be a weak*-continuous

linear functional (note that Φ(H∞(DN )) is weak*-closed by Proposition 1.4. Then
there exist x, y ∈ H such that

(1.1) (f ◦ Φ)(u) = (Φ(u)x, y), for all u ∈ H∞(DN ),

which implies that f = x⊗ y on Φ(H∞(DN )).
To prove the second claim, let g : H∞(DN ) → C be a weak*-continuous

functional. Then there exist x, y ∈ H such that

(1.2) g ◦ Φ−1(Φ(u)) = (Φ(u)x, y), for all u ∈ H∞(DN ),

which implies that g(u) = (Φ(u)x, y).

Recall (see, e.g., [2]) that if S is the unilateral shift of multiplicity one acting
on H2(D), and θ ∈ H∞(D) is an inner function, there is an operator S(θ) defined
on H(θ) = H2 	 θH2 by S(θ) = PH(θ)S|H(θ). Further, θ(S(θ)) = 0.

Proposition 1.7. Let θ be some inner function in H∞(D) not identically
one, and let ΦS(θ) be the usual Sz.-Nagy–Foiaş functional calculus ΦS(θ) : H∞(D) →
AS(θ). Then ΦS(θ) has property (A1,1) but is not (1, 1)-elementary.

Proof. It is known thatAS(θ) has property (A1,1) (see [2], Proposition III 1.21)
but observe that ΦS(θ) has θ in its kernel and so cannot be (1, 1)-elementary using
Proposition 1.4.

We turn next to the standard task of showing that, for representations, the
properties (Am,n) are distinct. Let T be a completely non-unitary contraction on
H. Let pi be the i-th coordinate function on H∞(DN ). Now let us define a map
ΦT , first on the pi, then on H∞(DN ), by

(1.3) ΦT (pn
i ) = Tn, i = 1, . . . , N, n = 0, 1, 2, . . . .

Extend Φ linearly and multiplicatively. Observe that for any polynomial p(z1, . . . ,
zN ) ∈ H∞(DN ), there exists a one-variable polynomial g(x) such that

(1.4) ‖ΦT (p)‖ = ‖p(T, . . . , T )‖ = ‖g(T )‖ 6 ‖g‖∞ 6 ‖p‖∞.
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For any u ∈ H∞(DN ), choose a sequence {pn} weak*-convergent to u, and define
a map (which we still call ΦT ) on H∞(DN ) by

(1.5) ΦT (u) = lim ΦT (pn).

By (1.5) it is easy to see that ΦT is “well-defined” and a contractive homomor-
phism. Hence by [14], Propositions 4.1 and 4.6, ΦT is weak*-continuous and a
contractive representation. Let u ∈ H∞(DN ) and choose a sequence {pn} of
polynomials weak*-convergent to u. Then Φ(pn) converges weak* to Φ(u), so
that Φ(u) ∈ AT . Hence ΦT (H∞(DN )) ⊂ AT and it is clear that ΦT (H∞(DN ))
is weak*-dense in AT . Thus if we assume that AT has property (Am,n), then
ΦT (H∞(DN ))− has property (Am,n). This yields the following proposition.

Proposition 1.8. Let T be a completely non-unitary contraction such that
AT has property (Am,n). Then ΦT as defined above is a weak*-continuous con-
tractive representation with property (Am,n).

The following theorem shows that properties (Am,n), 1 6 m,n 6 ℵ0, for
representations are in fact distinct. For an operator T , let T (n) denote the n-fold
ampliation of T .

Theorem 1.9. Suppose that (m,n) 6= (p, q). Then either:
(i) there exists a weak*-continuous representation with property (Am,n) but

not property (Ap,q) or
(ii) there exists a weak*-continuous representation with property (Ap,q) but

not property (Am,n).

Proof. Let S be the unilateral shift of multiplicity 1. Then it is obvious that
S(n) is completely non-unitary. It is well known that AS(n) has property (An,ℵ0)
but not property (An+1,1). Hence ΦS(n) , as defined above, has property (An,ℵ0)
but not property (An+1,1), by Proposition 1.6. Similarly, ΦS(n)∗ has property
(Aℵ0,n) but not property (A1,n+1). The result then follows using the argument in
[15], Theorem 6.1.

Remark that the above theorem serves as well to distinguish the various
properties (m,n)-elementary, since (in the case N = 1) ΦS(n) is isometric.

We turn next to consideration of these properties under similarities and com-
pressions of representations. A representation Φ : H∞(DN ) → L(H) is similar to
a representation Ψ : H∞(DN ) → L(K) if there is a similarity X : H → K such that
X−1Ψ(u)X = Φ(u) for all u ∈ H∞(DN ). If X is a surjective isometry, we abuse
language slightly and say Φ is unitarily equivalent to Ψ (essentially, we ignore the
distinction between the isometrically isomorphic Hilbert spaces K and H).

A subspace M of H is said to be Φ-invariant if Φ(u)M ⊂ M for all u ∈
H∞(DN ). Moreover, a subspace M is Φ-semi-invariant if there exist Φ-invariant
subspaces U and V with U ⊃ V such that M = U 	 V. We may consider the
representation ΦM = ΦU	V defined by

ΦM(u) = PMΦ(u)|M, u ∈ H∞(DN ).

We say that Ψ is a compression [respectively, compression up to similarity] of
Φ if there exists a Φ-semi-invariant subspace M for Φ such that Ψ is unitarily
equivalent [respectively, similar] to ΦM.
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Proposition 1.10. Suppose Ψ is a weak*-continuous representation which
is a compression of a weak*-continuous representation Φ. Then:

(i) if Ψ is bounded below, then Φ is bounded below, and hence a homeomor-
phism,

(ii) if Ψ is bounded below by 1 and Φ is contractive, then Φ is an isometry,
(iii) if Ψ has property (Am,n) and is bounded below, then Φ has property

(Am,n).

Proof. (i) Suppose that Ψ is bounded below by c; by the definition of com-
pression, we have

(1.6) ‖Φ(u)‖ > ‖Ψ(u)‖ > c‖u‖∞, for all u ∈ H∞(DN ).

(ii) Obvious.
(iii) For brevity we assume that m = n = 1. Suppose Φ is a representation

into L(H); without loss of generality we may assume that Ψ is a representation into
L(K) where the subspace K is semi-invariant for Φ, and that the mapX guaranteed
by the definition of compression is the injection of K into H. Let [L]B ∈ QB, where
B = Φ(H∞(DN )). Since φ is homeomorphism, where φ∗ = Φ, by Lemma 1.2 there
exists [L′] ∈ QA, where A = Ψ(H∞(DN )), such that φ−1 ◦ψ([L′]A) = [L]B. (Note
that A and B are weak*-closed.) By the assumption, there exist x and y in K such
that [L′]A = [x ⊗ y]A. Write H in the obvious decomposition H = H1 ⊕ K ⊕ H2

with respect to the semi-invariant subspace K. Let x̃ = 0⊕x⊕0 and ỹ = 0⊕y⊕0.
Then

〈Φ(u), [L]B〉 = 〈u, φ([L]B)〉 = 〈u, ψ([L′]A)〉 = 〈u, ψ([x⊗ y]A)〉 = 〈Ψ(u), [x⊗ y]A〉
= (Ψ(u)x, y)K = (Φ(u)x̃, ỹ)H = 〈Φ(u), [x̃⊗ ỹ]B〉.

Hence [L]B = [x̃⊗ ỹ]B.

A representation Φ : H∞(DN ) → L(H) has an (m,n)-cyclic set if there exist
sequences {ei}16i6m and {fj}16j6n in H such that

m∨
i=1

Φ(H∞(DN ))ei = H and
n∨

j=1

Φ(H∞(DN ))
∗
fj = H,

where “
∨

” denotes the closed linear span.

Proposition 1.11. Suppose that a representation Φ : H∞(DN ) → L(H) is
(m,n)-elementary. Assume that a representation Ψ : H∞(DN ) → L(K) is (m,n)-
cyclic and dimK <∞. Then Ψ is a similarity compression of Φ.

Proof. See [3], Theorem 4.12 or the proof of [10], Theorem 3.2.

Theorem 1.12. Suppose that a representation Φ is (m,m)-elementary. Let
{λi}m

i=1 ⊂ DN , 1 6 m 6 ∞. Then there exist Φ-invariant subspaces M and N
with M⊃ N such that Φ(u)M	N ∼= Diag{u(λ1), . . . , u(λm)} for all u ∈ H∞(DN ).

Proof. We consider only the case m finite; the modifications for m = ℵ0 are
not difficult. Denote the set of distinct λi by {λki

}l
i=1. Consider the representation

Ψ : H∞(DN ) → L(Cl) defined by

(1.7) Ψ(u)ei = u(λki
)ei, 1 6 i 6 l,
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where {ei}l
i=1 is the standard basis for Cl. Since the {λki

}l
i=1 are distinct, there

is some u0 ∈ H∞(DN ) such that the values u0(λki), 1 6 i 6 l, are also distinct.
Observe then that the representation Ψ has a cyclic vector.

Consider now the representation Ψ′ : H∞(DN ) → L(Cm·l) consisting of m
copies of Ψ:

Ψ′(u) = Ψ(u)⊕ · · · ⊕Ψ(u), u ∈ H∞(DN ).
Clearly Ψ′ has an (m,m)-cyclic set. Thus Ψ′ is a compression up to similarity
of Φ to some space M	N semi-invariant for Φ. Suppose S is the implementing
similarity. We may now imitate the proof of [14], Theorem 1.1 to extract inM	N ,
from the images under S of the basis vectors for Cm·l, vectors suitable to build a
diagonal compression of Φ.

2. PROPERTY Xθ,γ AND PROPERTIES (Am,n)

We need some definitions: a representation Φ is said to be of C0· type if Φ is
weak*-SOT continuous on bounded sets. A representation Φ is said to be of C·0
type if Φ∗(h) := Φ(h)∗ is of C0· type. Also, a representation Φ is of C00 type if it
is of both C0· and C·0 types.

We need as well some classes of contractions defined in [19]: a contraction T
in L(H) is in the class C0· if ‖Tnx‖ → 0 for all x ∈ H, and is in the class C·0 if T ∗
is in C0·. As well, T is in C1· if ‖Tnx‖ → 0 implies x = 0, and C·1 is again defined
by duality. The classes Cαβ , α and β each 0 or 1, are defined by Cαβ = Cα· ∩C·β .

Recall (cf. [14]) that E ⊂ DN is dominating for H∞(DN ) if

(2.1) ‖u‖∞ = sup
z∈E

|u(z)|, u ∈ H∞(DN ).

Let Φ : H∞(DN ) → L(H) be a representation. Let Ti denote Φ(pi), where pi is
the i-th coordinate function in H∞(DN ).

Various authors have considered conditions under which a contractive Φ has
(in our language) property (Aℵ0,ℵ0). Recall that as in [17] the joint left essential
spectrum σle(T1, . . . , TN ) of a tuple of contractions (T1, . . . , TN ) is the set of λ =
(λ1, . . . , λN ) in CN for which there exists an orthonormal sequence {xn} satisfying
the condition

lim
n→∞

‖(Ti − λi)xn‖ = 0, 1 6 i 6 N.

From [17] we have that if Φ is a representation such that Φ(pi) = Ti, 1 6
i 6 N , and σle(T1, . . . , TN )∩DN is dominating for H∞(DN ), then Φ(H∞(DN )) is
weak*-closed. The following is in the result [17], Theorem 4.16 and its proof.

Theorem 2.1. Suppose that a representation Φ : H∞(DN ) → L(H) is of
C0· type, is isometric, and

(2.2) σle(T1, . . . , TN ) ∩ DN

is dominating for H∞(DN ). Then Φ has property (Aℵ0,ℵ0).

In [4] there is another condition sufficient for a representation to have prop-
erty (Aℵ0,ℵ0). (See also Theorem 1.12 above for a result implying the converse of
this result.)
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Theorem 2.2. ([4], Theorem 4.1) Suppose {λj ∈ DN : j > 0} is dominating
for H∞(DN ). If Φ : H∞(DN ) → L(H) is defined by

(2.3) Φ(u)ej = u(λj)ej , for all u ∈ H∞(DN ), j > 0,

then Φ has property (Aℵ0,ℵ0). (In fact, Φ is (Aℵ0,ℵ0)-elementary.)

The next lemma is implicit in [17], Lemma 4.8 or see [4]; in fact, the [Cλ]
appearing is φ−1(Eλ), where φ is a map between preduals satisfying φ∗ = Φ, and
Eλ is as before Proposition 1.4.

Lemma 2.3. If Φ is a weak*-weak*-homeomorphism (in particular, if Φ is
an isometry) and λ ∈ DN , then there exists [Cλ] ∈ QA, where A = Φ(H∞(DN )),
such that

(2.4) 〈[Cλ]A,Φ(u)〉 = tr(Φ(u)Cλ) = u(λ), for all u ∈ H∞(DN ).

The following is the main theorem of this section. It should be compared to
[17], Theorem 5.2, which deals with the case of an n-tuple of commuting contrac-
tions, and also with [19], Theorem 2.14, in which is considered the representation
from H∞(D) associated with an absolutely continuous polynomially bounded op-
erator. See also the results in [12], [11], and related papers.

Theorem 2.4. Suppose that Φ : H∞(DN ) → L(H) is a representation
bounded below and of C00 type. Then Φ has property (A1) if and only if Φ has
property (Aℵ0).

We prove the theorem by a sequence of lemmas; from the definitions, it is
clear that we need only show that property (A1) yields property (Aℵ0) under our
additional assumptions. For brevity, we write A = Φ(H∞(DN )) and Ti = Φ(pi),
where pi is the i-th coordinate function in H∞(DN ).

Lemma 2.5. Suppose that Φ is a representation bounded below. If E is dom-
inating for H∞(DN ), then (1/‖Φ‖) ·B0,1 ⊆ aco{[Cλ] : λ ∈ E} in QA.

Proof. Since E is dominating for H∞(DN ), we have

(2.5) sup
λ∈E

|u(λ)| = ‖u‖∞, u ∈ H∞(DN ).

Then by Lemma 2.3 we have

(2.6) ‖Φ(u)‖ 6 ‖Φ‖ · ‖u‖∞ = ‖Φ‖ sup
λ∈E

∣∣〈Φ(u), [Cλ]〉
∣∣, u ∈ H∞(DN ).

By [9], Proposition 2.2, aco{[Cλ] : λ ∈ E} ⊃ (1/‖Φ‖) ·B0,1.

The following result needs only minor adaptations from [3], Proposition 6.5.
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Lemma 2.6. Let Φ be a representation bounded below and of C00 type. Then
for any sequence {xj}∞j=1 converging weakly to 0,

(2.7) ‖[xj ⊗ z]‖A → 0 and ‖[z ⊗ xj ]‖A → 0, z ∈ H.

Proof. Since Φ is of C00 type, by [17], Lemma 5.1 we have that if xj → 0
weakly, then ‖[z ⊗ xj ]‖ → 0, for all z ∈ H (cf. [14], Lemma 4.12; again, the
proof is essentially unchanged if the assumption there that Φ is an isometry is
replaced by Φ bounded below and above). The proof for the other limit follows
by considering Ψ : H∞(DN ) → L(H) defined by Ψ(u) = Φ(u)∗ and standard
techniques exchanging one predual for another (using, for example, that if B =
Ψ(H∞(DN )), then ‖[xj ⊗ z]‖A = ‖[z ⊗ xj ]‖B).

We now discuss the converse implication of Lemma 2.6 as follows.

Remark 2.7. Let Φ be a representation with the Ti absolutely continuous
on H. Assume that for any sequence {xj} converging weakly to 0,

‖[xj ⊗ z]‖A + ‖[z ⊗ xj ]‖A → 0, z ∈ H.

Then Ti ∈ C00 for all i, 1 6 i 6 N . (Indeed, suppose Ti /∈ C·0 for some i, i.e., there
exists z ∈ H such that ‖T ∗n

i z‖ 6→ 0. It is clear that Ti has no singular unitary part
(since Ti is absolutely continuous); observe also that Ti is polynomially bounded
since Φ is a representation. If we then consider the Mlak functional calculus (a
generalization of the Sz.-Nagy–Foiaş functional calculus (see [20] and [21], or [18])),
it is known that for any y ∈ H one has

(T ∗ni z, y)H = c−n(φT∗
i
([z ⊗ y]T∗

i
) → 0,

where cj is the j-th Fourier coefficient. Therefore T ∗ni z → 0 weakly. But then

‖T ∗
n

i z‖2 = (Tn
i T

∗n

i z, z) = 〈Tn
i , [T

∗n

i z ⊗ z]Ti
〉 6 ‖[T ∗

n

i z ⊗ z]‖Ti
6 ‖[T ∗

n

i z ⊗ z]‖A.

Then it is clear that the first limit in (2.7) need not hold, and we have the result by
contraposition. The proof for Ti ∈ C0· (i.e., T ∗i ∈ C·0) is similar.) Note that it is
not known whether Ti ∈ C00 for all i, 1 6 i 6 N , implies Φ is of C00 type, because
there is a mistake in the proof of [17], Lemma 5.1 (for example, M depends on ε
in [17], p. 412 as has been pointed out by Frédéric Jaeck).

The next lemma completes the proof of the theorem.

Lemma 2.8. Suppose Φ has property (A1), is bounded below, and is of C00

type. Then A has property X0,1/‖Φ‖, and thus property (Aℵ0).

Proof. Since DN is dominating for H∞(DN ), by Lemma 2.5 we have

(2.8) (1/‖Φ‖) ·B0,1 ⊂ aco{[Cλ] : λ ∈ DN}.

We will prove that {[Cλ] : λ ∈ DN} ⊂ X0(A). Since Ti ∈ C00, according to
Lemma 2.6, it is sufficient to show that for any λ ∈ DN there exists a sequence
{fj}∞j=1 ⊂ H, such that fj → 0 weakly and

[fj ⊗ fj ] = [Cλ], j = 1, 2, . . . .
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We consider first the case λ = 0; fix m ∈ N for the moment, fix ε such that
1 > ε > 0, and let Jm be the operator on Cm whose matrix (with respect to some
orthonormal basis) is

(2.9) Jm =



0 ε 0
0 ε

·
· ·
· ·

0 · ε
0

 .

We construct a representation Ψ as follows: define Ψ on H∞(DN ), first on the
pi, by

(2.10) Ψ(pn
i ) = Jn

m, i = 1, . . . , N, n = 0, 1, 2, . . . .

Extend the definition of Ψ linearly and multiplicatively. As before (see (1.5)), for
any polynomial p(z1, . . . , zN ) ∈ H∞(DN ), we have

(2.11) ‖Ψ(p)‖ = ‖p(Jm, . . . , Jm)‖ 6 ‖p‖∞.

We may extend Ψ to H∞(DN ) using limits of polynomials as usual, and Ψ is
“well-defined” and a contractive representation. Hence by [14], Propositions 4.1
and 4.6, Ψ is weak*-continuous.

Note also that Ψ is (1, 1)-cyclic. Since Φ has property (A1), by Proposi-
tion 1.11, there exists a Φ semi-invariant subspace M	N with dim(M	N ) = m
and a similarity S : M 	 N → Cm so that S−1Ψ(u)S = ΦM	N (u) for all
u ∈ H∞(DN ). Let

Lj =
N⋂

i=1

Ker(ΦM	N (zj
i )), j = 1, . . . ,m.

It is easy to show, using S and Ψ, that the subspaces L1,L2	L1, . . . ,Lm	Lm−1

are each of dimension one. Further, if the finite sequence {em
j }m

j=1 is chosen by
choosing a unit vector from each of these latter subspaces, one has

(2.12) [C0]A = [em
j ⊗ em

j ]A, j = 1, . . . ,m.

Observe that we may perform this construction for each m. Now applying the
usual method in the theory of dual algebras (see, for example, the proof of [3],
Theorem 6.6), we can extract from the finite families {e(m)

j }m
j=1, m = 1, 2, . . ., a

sequence {fj} so that fj → 0 weakly and [fj ⊗ fj ] = [C0] for all j = 1, . . . .
To extend the result to arbitrary λ ∈ DN , we use another standard device,

which is the introduction of the Möbius transform ϕµ : D → D defined by

ϕµ(z) = (z − µ)/(1− µz).

Let λ = (λ1, . . . , λN ) ∈ DN be fixed, and consider the map F : DN → DN

defined by

F (z1, . . . , zN ) = (ϕλ1(z1), . . . , ϕλN
(zN )), z = (z1, . . . , zN ) ∈ DN .
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Consider the representation Φλ given by

Φλ(u) = Φ(u ◦ F ), u ∈ H∞(DN ).

Note that Φ and Φλ have the same range, and thus Φλ has property (A1). A
computation shows that the sequence of vectors {fj}∞j=1 that we may construct
via the argument above, weakly convergent to zero and satisfying

[C0]Φλ(H∞(DN )) = [fj ⊗ fj ]Φλ(H∞(DN )), j = 1, . . . ,

satisfies also

[Cλ]Φ(H∞(DN )) = [fj ⊗ fj ]Φ(H∞(DN )), j = 1, . . . .

This is the requisite sequence of vectors, and since λ was arbitrary, we have the
lemma and thus the proof of the theorem.

We write w(T1, . . . , TN ) for the weak closed algebra generated by Ti, i =
1, . . . , N . The following may be compared to [17], Proposition 5.3.

Corollary 2.9. Suppose Φ is an isometric representation of C00 type. If Φ
has property (A1), then w(T1, . . . , TN ) is reflexive, where Ti = Φ(pi), i = 1, . . . , N.

Proof. Since Φ(H∞(DN )) has property X0,1, it is closed in the weak operator
topology and is reflexive using [3], Theorem 9.22.

From Propositions 1.4 and 1.6 we obtain immediately the following corollary.

Corollary 2.10. Suppose Φ is a (1, 1)-elementary representation of C00

type. Then w(T1, . . . , TN ) is reflexive, where Ti = Φ(pi), i = 1, . . . , N.

3. PAIRS OF COMMUTING CONTRACTIONS

We turn in this section to consideration of one of the important examples of a
representation from H∞(DN ) → L(H) with N 6= 1, namely that arising from the
functional calculus for a pair of commuting and absolutely continuous contractions.
(Recall that a contraction is absolutely continuous if its unitary part is absent
or has spectral measure absolutely continuous with respect to Lebesgue measure
on T.) The choice ofN = 2, that is, a pair of commuting contractions is occasioned,
of course, by the fact that such a pair has a (minimal) joint isometric or unitary
dilation and joint coisometric extension, not necessarily available for n-tuples of
commuting contractions (see [24]). From now on T will denote a pair (T1, T2) of
commuting contractions yielding an absolutely continuous representation. (This
is not known to be the same as each of the Ti absolutely continuous; see, for
example, [16], Lemma 2.2.) The effort to extend the Scott Brown technique from
a single contraction to pairs is only partially complete: our goal is to make a
modest contribution to the still open question of whether AT having property
(Aℵ0) implies AT has some property Xθ,γ .

We shall use the standard machinery of the functional calculus for a pair
of commuting contractions yielding an absolutely continuous representation and
matters of dilations and extensions without further comment; [22] is a source for
our approach (see also [25] and [6]). Various authors have studied pairs (even
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n-tuples) of commuting contractions under various hypotheses (often including
spectral conditions) which yield some property Xθ,γ with 0 6 θ < γ 6 1, and
therefore both property (Aℵ0) for, and reflexivity, of the relevant algebra (see, for
example, [17], [16], [15], [11], and [1]). In [23] the author considers explicitly the
question of when, for a pair of commuting contractions, property (Aℵ0) implies
property Xθ,γ , and announces the following result [23], Main Theorem:

Theorem 3.1. If T = (T1, T2) is a pair of commuting contractions yielding
an isometric absolutely continuous representation, T1 ∈ C0·, and T2 ∈ C·0, and
AT has property (Aℵ0), then AT has property X0,1.

(We remark that we are unable to obtain Lemmas 4.4 and 4.5 of that paper
in the generality stated; a citation is made to Lemma 3.3 of [16], but no substitute
is provided for the assumption of that lemma that a certain sequence {xn} satisfies
a condition of the form ‖(T2−λ)xn‖ → 0. However, the theorem may be recovered
by a more direct use of [16], Lemma 3.3.)

Let us assemble some definitions for our related result. If T = (T1, T2) is a
pair of commuting contractions they are said to doubly commute in case T1T

∗
2 =

T ∗2 T1. If (T1, T2) acts on H there is a joint coisometric extension (B∗1 , B
∗
2) of T ,

minimal in a standard sense. Note that two minimal joint coisometric extensions
of T need not be isomorphic. We call a pair T = (T1, T2) diagonally extendable if
there is a minimal joint coisometric extension (B∗1 , B

∗
2) acting on K containing H

such that, for j either 1 or 2, if K is decomposed as K = Sj⊕Rj , with S∗j
∆= B∗j |Sj

a backward shift and Rj
∆= B∗j |Rj a unitary operator, then each of Sj and Rj is

reducing for B∗k , k 6= j. We will call such a pair (B∗1 , B
∗
2) a (D.E.)-m.j.c.e. of T .

We will use from [22], Theorem 2.5 and [25], Lemma 1 the following proposition.

Proposition 3.2. With the notation as above, the pair (T1, T2) is diagonally
extendable under any of the following conditions:

(i) R1 has no part of uniform infinite multiplicity;
(ii) R2 has no part of uniform infinite multiplicity;
(iii) T1 and T2 doubly commute.

It is useful to generalize a certain “hereditary” condition on minimal isomet-
ric dilations studied in [13]. Let T = (T1, T2) acting on H be a pair of commuting
contractions with U = (U1, U2) a minimal joint isometric dilation acting on K.
Note that contrary to the one variable case, minimal joint unitary dilations of a
pair of contractions are not always isometrically similar. For each i, i = 1, 2, we
may decompose the space K as K = Ki

s⊕Ki
r, where Ui|Ki

s is a (forward) unilateral
shift of some multiplicity, and Ui|Ki

r is a unitary operator (of course, some of the
spaces may happen to be (0)). If M ⊆ H is a subspace invariant for T , we may
consider the pair of contractions (T̃1, T̃2) given by T̃i = Ti|M, i = 1, 2. Since
U = (U1, U2) is a joint isometric dilation of (T̃1, T̃2), there is some subspace K̃
of K, invariant for U , so that (U1, U2)|K̃ is a minimal joint isometric dilation of
(T̃1, T̃2).

Denote by Ũ = (Ũ1, Ũ2) the dilation obtained in this fashion, and call it the
canonical m.j.i.d. of (T̃1, T̃2) induced by U . Of course, K̃ may itself be decomposed
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into shift and unitary spaces, so let K̃ = K̃i
s ⊕ K̃i

r, where Ũi|K̃i
s is a (forward)

unilateral shift of some multiplicity, and Ũi|K̃i
r is a unitary operator.

We use this notation in the definition that follows. Observe also that the
definition requires a modification from the single variable case, again since minimal
dilations of a pair (T1, T2) need not be isometrically similar.

Definition 3.3. Let T = (T1, T2) acting on H be a pair of commuting
contractions with U = (U1, U2) acting on K a minimal joint isometric dilation.
We say that the pair (T1, T2) satisfies property (H) if there exists (U1, U2) acting
on K a minimal joint isometric dilation such that, for each (non-zero) subspace
M, K̃i

s ⊆ Ki
s, i = 1, 2; call such a U an (H)-m.j.i.d. of T .

Remark that it is easy to show that K̃i
r ⊆ Ki

r, i = 1, 2. Note also that there is
a weakened version of this property in which the containment is assumed only for
one value of i; we leave to the reader consideration of which of the results to follow
extend under this weaker hypothesis. Finally, this property could equally well
have been defined in terms of the minimal joint coisometric extension of (T ∗1 , T

∗
2 ).

We record the following result and omit the proof.

Proposition 3.4. Suppose T = (T1, T2) is a pair of commuting contractions
with U = (U1, U2) a minimal joint isometric dilation acting on K. If U is an
(H)-m.j.i.d. of T , and M is any non-zero subspace invariant for T , then the pair
(T1|M, T2|M) has property (H), and in fact the canonical m.j.i.d. of (T1|M, T2|M)
is an (H)-m.j.i.d. of (T1|M, T2|M). Also, if neither U1 nor U2 contains a bilateral
shift, then (T1, T2) has property (H) and any minimal joint isometric dilation of
T is an (H)-m.j.i.d. of T .

In the next lemma we consider simultaneously property (H) and that of being
diagonally extendable.

Lemma 3.5. Suppose T = (T1, T2) is a pair of commuting contractions with
property (H) yielding an absolutely continuous representation, and that U is an
(H)-m.j.i.d. of T such that U∗ is a (D.E.)-m.j.c.e. of the pair (T ∗1 , T

∗
2 ). Suppose M

is any subspace invariant for T . Then the pair ((T1|M)∗, (T2|M)∗) is diagonally
extendable. In fact, the canonical m.j.i.d. for (T1|M, T2|M) is an (H)-m.j.i.d. for
the pair and its adjoint is a (D.E.)-m.j.c.e. for the pair ((T1|M)∗, (T2|M)∗).

Proof. Denote the pair ((T1|M)∗, (T2|M)∗) by (T̃1

∗
, T̃2

∗
). With this nota-

tion, we must be concerned with a minimal joint coisometric extension of (T̃1

∗
, T̃2

∗
).

Any such extension is the adjoint of a minimal joint isometric dilation of (T̃1, T̃2).
Let (U1, U2) acting on K be as in the hypothesis. Since (T1, T2) is a joint dilation of
(T̃1, T̃2), we may produce the canonical m.j.i.d (Ũ1, Ũ2) of (T̃1, T̃2) as a restriction
of (U1, U2) to some jointly invariant subspace K̃.

Suppose we write K̃ = K̃1
s ⊕ K̃1

r , where Ũ1|K̃1
s is a (forward) unilateral shift

of some multiplicity, and Ũ1|K̃1
r is a unitary operator. We claim first that Ũ2 is

(also) diagonal with respect to this decomposition. Since U is an (H)-m.j.i.d. for
T , we have K̃1

s ⊆ K1
s , and always K̃1

r ⊆ K1
r . Writing Ũ1 = S̃1 ⊕ R̃1, and writing

the space K with respect to the decomposition

K = K̃1
s ⊕ (K1

s 	 K̃1
s )⊕ K̃1

r ⊕ (K1
r 	 K̃1

r ),
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we have

U1 =

 S̃1 ∗ 0 0
0 ∗ 0 0
0 0 R̃1 0
0 0 0 ∗

 .
Observe that U2 is diagonal with respect to the decomposition K = K1

s ⊕K1
r

(this follows easily from U∗ a (D.E.)-m.j.c.e. for (T ∗1 , T
∗
2 )). If use this to write U2

with respect to the decomposition above, and note Ũ2 is the restriction of U2 to
the invariant subspace K̃1

s ⊕ K̃1
r , we see that Ũ2 is indeed diagonal with respect to

this decomposition.
Of course (Ũ1

∗
, Ũ2

∗
) is a minimal joint coisometric extension of (T̃1

∗
, T̃2

∗
),

and upon using the diagonality deduced above, and taking adjoints, we have indeed
that Ũ2

∗
is diagonal when K̃ is written as a direct sum of the (backwards) shift

space of Ũ1

∗
and the unitary space of Ũ1

∗
. This is half of what is required to show

that (T̃1

∗
, T̃2

∗
) = ((T1|M)∗, (T2|M)∗) is diagonally extendable, and the proof with

indices reversed is entirely similar. The final observation is obtained by noting that
the canonical m.j.i.d. for (T̃1, T̃2) has been the one used throughout the proof.

The next lemma provides, in circumstances based on a dilation, some of the
“vanishing conditions” required to achieve property Xθ,γ .

Lemma 3.6. Suppose T = (T1, T2) is a pair of commuting contractions with
property (H) yielding an absolutely continuous representation, and that U is an
(H)-m.j.i.d. of T such that U∗ is a (D.E.)-m.j.c.e of the pair (T ∗1 , T

∗
2 ). Assume

further that there is some infinite dimensional subspace M, jointly semi-invariant
for (T1, T2), and scalars λ1 and λ2 in the disk D so that T1M = λ1IM and T2M =
λ2IM. Suppose {en} is an orthonormal basis for M. Then

‖[en ⊗ z]‖AT
→ 0, z ∈ H.

Proof. We consider only the case λ1 = λ2 = 0; the general case may be
obtained by a modification of the argument, or by a standard device with Möbius
transforms. We note for future use that the sequence {en} tends weakly to zero.
SinceM is semi-invariant, it is some differenceN	L, whereN and L are subspaces
invariant for T with L ⊆ N . From the action of AT on [en⊗z]AT

, it clearly suffices
to assume that z ∈ N . By the previous proposition, the pair (T1N , T2N ) satisfies
exactly the same assumptions as (T1, T2). Thus we may assume without loss of
generality that N = H, and that the vectors {en} are in the kernels of T ∗1 and T ∗2
(that is, the dilations of 0 · IM are to the orthogonal complement of an invariant
subspace, and not merely a general semi-invariant subspace).

Let (V ∗1 , V
∗
2 ) be a joint coisometric extension of (T ∗1 , T

∗
2 ) meeting the require-

ment for diagonal extendibility (for example, U∗, but at this stage any (D.E.)-
m.j.c.e. suffices). Observe that

‖[en ⊗ z]‖AT
= ‖[z ⊗ en]‖AT∗ = sup

h∈H∞(D2), ‖h‖61

|〈h(T ∗1 , T ∗2 )z, en〉|

= sup
h∈H∞(D2), ‖h‖61

|〈h(V ∗1 , V ∗2 )z, en〉|.



Representations of H∞(DN ) 247

Let V ∗1 = S∗1 ⊕ R∗1 act on K = K1
s ⊕ K1

r expressed as the shift and unitary
spaces as usual, and, using diagonal extendibility, suppose also that V ∗2 = A⊕ B
with respect to this decomposition. Observe that since en ∈ Ker(T ∗1 ), we have
en ∈ Ker(V ∗1 ), so en ∈ K1

s . These spaces are reducing for V ∗1 (and V ∗2 ) so we may
assume z ∈ K1

s as well. So

‖[en ⊗ z]‖AT
= sup

h∈H∞(D2), ‖h‖61

|〈h(S∗1 , A)z, en〉| = ‖[z ⊗ en]‖A(S∗
1

,A)
.

Note finally that since en ∈ Ker(T ∗2 ), en ∈ Ker(V ∗2 ), so en ∈ Ker(A). We may now
use Lemma 3.3 of [16] to deduce ‖[en ⊗ z]‖AT

→ 0.

By combining the lemma with its dual, we obtain the following.

Proposition 3.7. Suppose T = (T1, T2) is a pair of commuting contractions
acting on H yielding an isometric absolutely continuous representation.

Suppose (T1, T2) has an (H)-m.j.i.d. whose adjoint is a (D.E.)-m.j.c.e. for T ∗,
and that (T ∗1 , T

∗
2 ) satisfies the same hypothesis. Assume further that there is some

infinite dimensional subspace M, jointly semi-invariant for (T1, T2), and scalars
λ1 and λ2 in the disk D so that T1M = λ1IM and T2M = λ2IM. Suppose {en} is
an orthonormal basis for M. Then

‖[en ⊗ z]‖AT
+ ‖[z ⊗ en]‖AT

→ 0, z ∈ H.

We finally have the theorem.

Theorem 3.8. Suppose T = (T1, T2) is a pair of commuting contractions
acting on H yielding an isometric absolutely continuous representation. Suppose
(T1, T2) has an (H)-m.j.i.d. whose adjoint is a (D.E.)-m.j.c.e. for T ∗, and that
(T ∗1 , T

∗
2 ) satisfies the same hypothesis. Suppose finally that AT has property (Aℵ0).

Then AT has property X0,1.

Proof. (⇐) See [3], Theorem 3.7.
(⇒) It suffices, by standard arguments, to show that {[Cλ] : λ ∈ D2} ⊂

X0(AT ). It is also well known from the dilation theory of pairs (T1, T2) with
property (Aℵ0) that there is, for each λ = (λ1, λ2) ∈ D2, a subspace M semi-
invariant for T of the type considered in the previous proposition. It is well known
that for each e a unit vector in M, we have [Cλ] = [e⊗ e]. It is then easy to use
the previous proposition and the definition of X0(AT ) to finish.

We close with the following corollary which is easily obtained from Theo-
rem 3.8 and Propositions 3.2 and 3.4.

Corollary 3.9. Suppose T = (T1, T2) is a pair of commuting contractions
acting on H yielding an absolutely continuous representation, and AT has property
(Aℵ0). Suppose that none of the unitaries arising from the minimal isometric
dilation and minimal coisometric extension of T contains a bilateral shift. Suppose
finally that either at least one of the unitaries arising from the minimal isometric
dilation of T , and one from the minimal coisometric extension of T , has no part of
uniform multiplicity, or T1 and T2 doubly commute. Then AT has property X0,1.

Acknowledgements. The authors wish to thank Bucknell University for its Distin-
guished Visiting Professor program in mathematics. The second and the third authors



248 George R. Exner, Young Soo Jo and Il Bong Jung

were partially supported by KOSEF 94–0701–02–01–3, and University affiliated research
Institute, Korea Research Foundation, 1993.

REFERENCES

1. E. Albrecht, M. Ptak, Invariant subspaces for doubly commuting contractions
with rich Taylor spectrum, J. Operator Theory 40(1998), 373–384.

2. H. Bercovici, Operator theory and arithmetic in H∞, Math. Surveys Monographs,
vol. 26, Amer. Math. Soc., Providence, RI 1988.
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