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Abstract. Let ω be a weight on Z, and assume that the translation operator
S : (un)n∈Z → (un−1)n∈Z is bounded on `2ω(Z), and that the spectrum of
S equals the unit circle. A closed subspace G of `2ω(Z) is said to be left-
invariant (respectively translation invariant, respectively right-invariant) if
S−1(G) ⊂ G (respectively S(G) = G, respectively S(G) ⊂ G) and G is said
to be analytic if G contains a nonzero sequence (un)n∈Z such that un = 0
for n < 0. We show that if the weight ω(n) grows sufficiently fast as n →
−∞, then all analytic left-invariant subspaces of `2ω(Z) are generated by their
intersection with `2ω(Z+) := {(un)n∈Z ∈ `2ω(Z)} : un = 0 for n < 0). Various
concrete examples of weights ω for which this situation occurs are obtained
by using sharp estimates of Matsaev-Mogulskii about the rate of growth of
quotients of analytic functions in the disc.

We also discuss the existence of right-invariant subspaces of `2ω(Z+)
having a specific division property needed to obtain analytic translation in-
variant subspaces of `2ω(Z).

Keywords: Invariant subspaces, weighted shifts, quotients of analytic func-
tions.
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1. INTRODUCTION

Let ω be a weight on Z, i.e. a map from Z into (0,∞). Assume that

0 < inf
n∈Z

ω(n+ 1)
ω(n)

6 sup
n∈Z

ω(n+ 1)
ω(n)

< +∞,

and that

lim
|n|→∞

ω̃(n)1/n = 1 where ω̃(n) = sup
p∈Z

ω(n+ p)
ω(p)

.
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Let

`ω := `2ω(Z) :=
{
u = (un)n∈Z : ‖u‖ω :=

[ ∑
n∈Z

|u|2ω2(n)
]1/2

< +∞
}
.

Then the shift operator S : (un)n∈Z 7→ (un−1)n∈Z is bounded on `ω, and its
spectrum Spec(S) equals the unit circle T. We will say that a closed subspace G of
`ω is translation invariant (respectively right-invariant, respectively left-invariant)
if S(G) = G (respectively S(G) ⊂ G, respectively S−1(G) ⊂ G), and we will say
that a left-invariant subspace G is analytic if G ∩ `+ω 6= {0}, where `+ω = {u =
(un)n∈Z ∈ `ω : un = 0(n < 0)}. Let τ = ω|Z+, and denote by Hτ := H2

τ (D) the
usual weighted Hardy space{

f ∈ H(D) : ‖f‖τ :=
[ ∞∑

n=0

|f̂(n)|2 · ω2(n)
]1/2

< +∞
}
.

Here we denote by H(D) the space of functions holomorphic on the open unit
disc D, and for f ∈ H(D) we denote by f̂(n) the nth Taylor coefficient of f at the
origin. We can identify `+ω to `2τ (Z+) in the obvious way, and the Fourier transform
f → (f̂(n))n>0 is an isometry from Hτ onto `+ω . Denote by

∨
u the “inverse Fourier

transform”, so that

∨
u(z) =

∞∑
n=0

un · zn for z ∈ D, u ∈ `+ω .

Let G be an analytic left-invariant subspace of `ω, and set F = G ∩ `+ω . Then
∨

F enjoys the “division property”: if f ∈
∨

F , and if f(λ) = 0, with λ ∈ D, then
fλ : ξ → f(ξ)−f(λ)

ξ−λ is also an element of
∨

F . Section 2 is devoted to an elementary
discussion of subspaces of Hτ having the division property. If M has the division
property, then M also has the division property. Nontrivial closed subspaces of
Hτ having the division property are characterized by the fact that Z(M) = ∅ and
dim(M	(M ∩zM)) = 1. (Here we denote by Z(M) = {λ ∈ D : f(λ) = 0, f ∈M}
the zero-set of M in D, and by zf the function ξ → ξ · f(ξ) for f ∈ Hτ .) In
this case there exists a bounded operator UM on M⊥ satisfying the condition
UM · P · zf = P · f , (f ∈ Hτ ), where we denote by P the orthogonal projection
from Hτ onto M⊥. When z ·M ⊂ M these conditions are equivalent to the fact
that Spec(TM ) ⊂ T, where we denote by TM the “compression” to M⊥ of the
usual unilateral shift T : f → z · f on Hτ .

A subspace F of `+ω is said to have the division property iff
∨

F has the division
property. In Section 3 we show that, if ω(−n) grows sufficiently fast as n → ∞,
the map G→ G∩ `+ω provides a bijection between the set of analytic left-invariant
subspaces of `ω and the set of closed subspaces of `+ω which have the division
property. Let F be a nontrivial closed subspace of `+ω having the division property
and set ωF (n) = ‖Un

F̌
· P · 1‖τ for n > 1, with the same notation as above. The

results of Section 3 are based on Theorem 3.5: if
∞∑

n=1

ω2
F (n)

ω2(−n)
< +∞, then F =

( ∨
n60

Sn · F
)
∩ `+ω and `+ω +

( ∨
n60

Sn · F
)

= `ω.
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In other terms, the natural map from `+ω /F into `ω/
∨

n60

Sn ·F is then a bijection,

and the compression of S−1 to
( ∨

n60

Sn · F
)⊥

is similar to UF̌ (see Remark 3.7).

The proof of Theorem 3.5, which is elementary and constructive, is based on
the use of two nonorthogonal projections associated to F . A weaker condition,
necessary and sufficient to have

∨
n60

Sn · F $ `ω, is given in Proposition 3.8.

When ω(−n) grows sufficiently fast as n→∞, the hypothesis of Theorem 3.5
are satisfied for all nontrivial closed subspaces of `+ω having the division property.
In this case L =

∨
n60

Sn · (L∩`+ω ) for every analytic left-invariant subspace L of `ω.

In Section 4 we use estimates about the rate of growth of quotients of analytic
functions due to Matsaev-Mogulskii ([32]) to give various concrete examples of
weights ω to which the results of Section 3 can be applied, see Theorem 4.5. For
example the results of Section 3 apply to ω if it is log-convex,∑

n=1

logω−1(n)
n3/2

< +∞, lim inf
n→∞

logω(−n)√
n

= +∞,

or if ω is log-convex,
(

log ω−1(n)
nα

)
n>1

is eventually increasing for every α ∈ (0, 1),

and lim inf
n→∞

log ω(−n)
log ω−1(n) > 1.

In the last section of the paper we discuss the existence of z-invariant sub-
spaces of a weighted Hardy space Hτ having the division property. In the case of
the usual Hardy space H2, these subspaces are the subspaces U ·H2 where U is a
singular inner function. (The Hitt-Sarason theory ([28], [36]) of subspaces of H2

“weakly invariant for the backward shift” gives a complete description of the lat-
tice of closed subspaces of H2 which have the division property, see Section 2.) A
similar description of z-invariant subspaces having the division property, involving
Korenblum’s “Bergman-inner” functions ([29]), holds for the usual Bergman space
B2. Also it follows from a recent result of Borichev ([11]) that, if lim inf

n→∞
τ(n) = 0,

then Hτ possesses a nontrivial z-invariant subspace M such that Z(M) = ∅, but
all the subspaces considered by Borichev satisfy dim(M 	 zM) > 2 and so these
subspaces do not have the division property, and the general case remains open.
We describe some partial results. The “abstract Keldysh method” developed by
Nikolski in [34] is applied to construct explicit examples of functions without zeroes
in D which are not z-cyclic in Hτα

, where τα(n) = e−nα

for n > 0, 1/2 < α < 1,
and of course the subspaces Mf :=

∨
n>0

zn ·f have then the division property. It fol-

lows also from a recent work of Atzmon ([4], [5]), based on sharp results about the
growth of entire functions of zero exponential type, that Hτ possesses nontrivial
z-invariant subspaces M , having the division property, for which Spec(TM ) = {1},
when τ is log-convex and when

sup
[τ(n+ 1) · τ(n− 1)

τ(n)2
]1/n

< +∞.

A new method to produce non z-cyclic functions in Hτ without zeroes in D was
introduced by Hedenmalm and the second author in [26].
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This paper completes the first part of a program concerning analytic trans-
lation invariant subspaces of `ω. In a forthcoming paper, the authors will show
that if ω(−n) grows “sufficiently fast and regularly” as n → ∞ then all nonzero
translation invariant subspaces of `ω are analytic (and for all nonzero left-invariant
subspaces F of `ω there exists an integer k > 0, which depends on F , such that
Sk · F is analytic). For example if ω(n) = 1 for n > 0, and if ω(n) = e

|n|
1+log |n|

for n < 0, then all nontrivial translation invariant subspaces of `ω have the form∨
n∈Z

Sn · Û where U is a singular inner function. A summary of these results, which

are based on the theory of asymptotically holomorphic functions ([10], [13] and
[38]) appeared in [23].

Since these results do not involve any regularity conditions on τ = ω|Z+

other than those of Section 3, we thus see that an example of a weight τ on Z+ for
which Hτ does not possess any nontrivial z-invariant subspace having the division
property would give an example of a weight ω on Z for which `ω does not have
any nontrivial invariant subspace. This fact was the motivation for the detailed
description given in Section 5.

We refer to the works of Nikolski ([35]) and Shields ([37]) for general prop-
erties of weighted shifts. Apostol ([2]) constructed translation invariant subspaces
of `ω for weights ω having “irregular” behaviour at infinity. In fact, he reduced
the question of existence of nontrivial invariant subspaces of `ω to the case where
lim

|n|→∞
ω(n)1/n = 1 and where the spectral radius of S equals 1. Domar ([21])

constructed recently nontrivial invariant subspaces of `ω for the weights ω such
that ω(n) · ω(−n) = 1, n > 0 and

∞∑
n=1

| logω(n+ 1) + logω(n− 1)− 2 logω(n)| < +∞.

His methods, based on results about entire functions related to the Beurling-
Malliavin theorem ([9]), are very different from the methods discussed here, and
the translation invariant subspaces constructed in [21] are not analytic. We refer to
Atzmon’s paper ([4]) for a description of the state of the art concerning existence
of translation-invariant subspaces of `ω.

2. WEIGHTED HARDY SPACES AND THE DIVISION PROPERTY

We denote by S+ the set of weights τ : Z+ → (0,∞) such that

0 < inf
n>0

τ(n+ 1)
τ(n)

6 sup
n>0

τ(n+ 1)
τ(n)

< +∞,

and such that if we set for n > 0

(2.1) τ(n) = sup
p>0

τ(p)
τ(n+ p)

, τ̃(n) = sup
p>0

τ(n+ p)
τ(p)

we have

(2.2) lim
n→∞

τ(n)1/n = lim
n→∞

τ̃(n)1/n = 1.
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Throughout this section we will denote by τ an element of S+. Since τ(0)
τ(n) 6

τ(n) 6 τ(0)τ̃(n) we obtain

(2.3) lim
n→∞

τ(n)1/n = 1.

For f ∈ H(D), denote by f̂(n) the nth Taylor coefficient of f at the origin. Set

(2.4) Hτ = H2
τ (D) :=

{
f ∈ H(D) : ‖f‖τ :=

[ ∞∑
n=0

|f̂(n)|2τ2(n)
]1/2

< +∞
}
.

Also for f ∈ H(D), λ ∈ D, set

(2.5) fλ(ζ) =
f(ζ)− f(λ)

ζ − λ
, ζ ∈ D \ {λ} and fλ(λ) = f ′(λ).

The usual shift T and the backward shift R are given by the formulae

(2.6) T (f)(λ) = λ · f(λ), (λ ∈ D) and Rf = f0, (f ∈ Hτ ).

Clearly, ‖Tn‖ = τ̃(n) and ‖Rn‖ = τ(n), n > 0. In particular 1 − λR is invertible
for λ ∈ D. Denote by z the identity map on D.

An immediate verification shows that

(1− λR)
( n−1∑

i=0

λn−1−izi
)

= zn−1 = R · zn n > 1.

Hence (T−λ)(1−λR)−1·Rzn = zn−λn, n > 0. We obtain (T−λ)(1−λR)−1·R·f =
f − f(λ) and so fλ ∈ Hτ for f ∈ Hτ , λ ∈ D and we have

(2.7) fλ = R(1− λR)−1 · f, f ∈ Hτ .

A closed subspace M of Hτ will be said to be z-invariant if M ∈ LatT ,
and we will write z · A instead of T (A) for A ⊂ Hτ . We will also often write
f−f(λ)

z−λ instead of fλ. For f ∈ H(D) set Z(f) = {λ ∈ D : f(λ) = 0} and for
A ⊂ H(D) set Z(A) =

⋂
f∈A

Z(f). If M is a linear subspace of Hτ we will denote

by πM : f → f +M the canonical surjection from Hτ onto Hτ/M . If zM ⊂ M ,
the map TM : Hτ/M → Hτ/M is defined by the formula

(2.8) TM ◦ πM = πM ◦ T.

Let M be a linear subspace of Hτ , and let λ ∈ D. We have

(2.9) the map πM ◦ (T − λ) : Hτ → Hτ/M is onto iff λ /∈ Z(M).

To see this, consider λ ∈ D \ Z(M). There exists ϕ ∈M such that ϕ(λ) = 1. Let
f ∈ Hτ . Then λ ∈ Z(f − f(λ)ϕ), and

πM (f) = πM (f − f(λ)ϕ) = [πM ◦ (T − λ)][(f − f(λ)ϕ)λ]

so that πM ◦(T −λ) is onto. Conversely, if πM ◦(T −λ) is onto, there exists g ∈ Hτ

such that 1− (z − λ)g ∈M , and so λ /∈ Z(M).
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Lemma 2.1. Let M 6= {0} be a linear subspace of Hτ , and let λ ∈ D. Then
the following conditions are equivalent:

(i) fλ ∈M for every f ∈M such that f(λ) = 0;
(ii) There exists a map UM (λ) : Hτ/M → Hτ/M such that

UM (λ) ◦ πM ◦ (T − λ) = πM ;

(iii) λ /∈ Z(M), and dim[M/M ∩ (z − λ)M ] = 1.
If these conditions are satisfied, the map UM (λ) satisfying (ii) is unique and

linear. If, further, zM ⊂M then the above conditions are equivalent to
(iv) λ /∈ σ(TM ),

and in this case UM (λ) = (TM − λ)−1.

Proof. Set π = πM . If (i) holds then λ /∈ Z(M). Let ϕ ∈ M such that
ϕ(λ) = 1, and let f ∈M . Then f − f(λ)ϕ ∈ (z − λ)M ∩M , ϕ /∈ (z − λ)M and so
λ satisfies (iii).

If (iii) holds, consider again ϕ ∈ M such that ϕ(λ) = 1. If f ∈ M there
exists γ ∈ C such that f − γϕ ∈M ∩ (z − λ)M . Then γ = f(λ).

If f(λ) = 0 then f ∈ M ∩ (z − λ)M and so fλ ∈ M . Hence (i) and (iii) are
equivalent.

Assume again that (i) holds. Set, for f ∈ Hτ

(2.10) UM (λ)[π(f)] = π[(f − f(λ)ϕ)λ] where ϕ ∈M satisfies ϕ(λ) = 1.

Let ψ ∈ M and let g = f + ψ. Then ψ − ψ(λ)ϕ ∈ M , λ ∈ Z(ψ − ψ(λ)ϕ) and so
(ψ − ψ(λ)ϕ)λ)λ ∈ M . Hence [g − g(λ)ϕ]λ ∈ (f − f(λ) · ϕ)λ + M and UM (λ) is
well-defined. Clearly, UM (λ) ◦ π ◦ (T − λ) = π and (ii) holds.

Now assume that (ii) holds. Then UM (λ)(0) = [UM (λ) ◦ π ◦ (T − λ)](0) =
π(0) = 0. Now if f ∈M , and if f(λ) = 0, then π(fλ) = UM (λ)[π(f)] = UM (λ)(0) =
0, and fλ ∈M so that (i) is satisfied.

Now if V ◦ π ◦ (T − λ) = π then λ satisfies (ii) and so λ /∈ Z(M). It
follows from (2.9) that π ◦ (T − λ) is onto, and so V = UM (λ). It follows from
(2.10) that UM (λ) is linear. Assume that zM ⊂ M . If λ /∈ σ(TM ) then (TM −
λ)−1 ◦ π ◦ (T − λ) = (TM − λ)−1 ◦ (TM − λ) ◦ π = π and (ii) is satisfied, with
UM (λ) = (TM − λ)−1. Conversely if the equivalent conditions (i), (ii), (iii) are
satisfied then UM (λ)◦(TM−λ)◦π = π and so TM−λ is one-to-one. Also λ /∈ Z(M)
and so, by (2.9), (TM − λ) ◦ π = π ◦ (T − λ) is onto. Hence TM − λ is onto, and
λ /∈ σ(TM ).

The following lemma is an immediate consequence of (iv) when zM ⊂M .

Lemma 2.2. Let M 6= {0} be a linear subspace of Hτ , and denote by Ω(M)
the set of elements of D satisfying the equivalent conditions (i), (ii), (iii) of Lem-
ma 2.1 with respect to M . If λ ∈ Ω(M) then

Ω(M) \ {λ} =
{
µ ∈ D \ {λ} :

1
µ− λ

/∈ σ(UM (λ))
}
,

and we have

UM (µ) = UM (λ) ◦ [1− (µ− λ)UM (λ)]−1, λ ∈ Ω(M), µ ∈ Ω(M).

Proof. If µ ∈ D \Ω(M) there exists f ∈M such that f(µ) = 0 and fµ /∈M .
Set again π = πM . Then ([1 − (µ − λ)UM (λ)] ◦ π)((z − λ) · fµ)) = π[(z − λ)fµ −
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(µ− λ)fµ] = π(f) = 0. Since λ ∈ Ω(M), (z − λ)fµ /∈M and 1− (µ− λ)UM (λ) is
not one-to-one. Hence 1

µ−λ ∈ σ(UM (λ)).
Now assume that µ ∈ Ω(M). Then [1 − (µ − λ)UM (λ)] ◦ π ◦ (T − λ) =

π ◦ [(T − λ)]− (µ− λ)π = π ◦ (T − µ). Since µ /∈ Z(M), it follows then from (2.9)
that 1− (µ− λ)UM (λ) is onto. Also UM (µ) ◦ [1− (µ− λ)UM (λ)] ◦ π ◦ (T − λ) =
UM (µ) ◦ π ◦ (T − µ) = π. Hence UM (µ) ◦ [1 − (µ − λ)UM (λ)] = UM (λ), and
ker[1 − (µ − λ)UM (λ)] ⊂ kerUM (λ). Hence 1 − (µ − λ)UM (λ) is one-to-one, and

1
µ−λ /∈ σ(UM (λ)) if µ 6= λ. Also, UM (µ) = UM (λ) ◦ [1− (µ− λ)UM (λ]−1.

The following corollary is a standard result when M is z-invariant.

Corollary 2.3. Let M 6= {0} be a closed linear subspace of Hτ . Then
either Ω(M) = ∅ or Ω(M) = D \ Z(M).

Proof. It follows from (2.10) that UM (λ) is bounded on Hτ/M if λ ∈ Ω(M),
and it follows then from Lemma 2.2 that Ω(M) is an open subset of D \ Z(M).
Now assume that Ω(M) 6= ∅, and let λ ∈ Ω(M)∩ (D\Z(M)). There exists ϕ ∈M
such that ϕ(λ) = 1, and there exists a sequence (λn)n>1 of elements of Ω(M)
such that |λ − λn| −→

n→∞
0. We can assume that ϕ(λn) 6= 0 for n > 1. Let f ∈ M

such that f(λ) = 0, and set fn = f − ϕ(λn)−1 · f(λn) · ϕ. Then (fn)λn
∈ M .

It follows from (2.7) that the map (ξ, g) → gξ is continuous from D × Hτ into
Hτ . Hence fλ = lim

n→∞
(fn)λn

∈ M , and λ ∈ Ω(M). Since D \ Z(M) is connected,

ΩM = D \ Z(M).

Definition 2.4. A linear subspace M of Hτ has the division property if
fλ ∈M for every f ∈M and every λ ∈ Z(f).

We will denote by Dτ the set of closed subspaces of Hτ having the division
property.

Clearly, if (Mi)i∈I is a family of linear subspaces of Hτ having the division
property, then

⋂
i∈I

Mi has the division property. Also every M ∈ LatR has the

division property. Notice that if M has the division property then f ·M ∩Hτ has
the division property for every f ∈ H(D) such that Z(f) = ∅.

We also have

(2.11) if M has the division property, then M has the division property.

To see this, consider f ∈ M and λ ∈ Z(f). There exists ϕ ∈ M such that
ϕ(λ) = 1. Let (fn)n>1 be a sequence of elements of M such that ‖f −fn‖τ −→

n→∞
0,

and set gn = fn − fn(λ) · ϕ, so that ‖f − gn‖τ −→
n→∞

0. It follows then from (2.7)

that fλ = lim
n→∞

(gn)λ ∈M , which proves (2.11).

If M is a closed linear subspace of Hτ , the map π(f) → PM⊥ · f , where
PM⊥ denotes the orthogonal projection of Hτ onto M⊥, defines an isometry from
Hτ/M onto M⊥. If M ∈ Dτ we can thus consider UM (λ) as a linear operator
acting on M⊥, which is characterized by the formula

(2.12) UM (λ) · PM⊥ · (T − λ) = PM⊥.
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Also if M is z-invariant, identifying as above Hτ/M and M⊥ we can consider TM

as a linear operator acting on M⊥, and we obtain
(2.13) TM = (T ∗|M⊥)∗.
We have the following characterization of elements of Dτ .

Proposition 2.5. Let M 6= {0} be a closed linear subspace of Hτ . The
following conditions are equivalent:

(i) M has the division property;
(ii) Z(M) = ∅, and dim(M 	 (M ∩ zM)) = 1;
(iii) For every λ ∈ D, there exists a map

UM (λ) : M⊥ →M⊥

such that
UM (λ) · PM⊥ · (T − λ) = PM⊥ .

If these conditions are satisfied, then the map UM (λ) defined by (iii) is unique,
UM (λ) is a bounded linear operator,

σ(UM (0)) ⊂ D
and

UM (λ) = UM (0) · [1− λUM (0)]−1

for λ ∈ D.
If M is z-invariant, conditions (i), (ii), (iii) are equivalent to:
(iv) σ(T ∗|M⊥) ⊂ T,

and UM (λ) = (TM − λ)−1(λ ∈ D).

Proof. The proposition follows immediately from Lemma 2.1, Lemma 2.2,
Corollary 2.3 and formulae (2.12) and (2.13).

The lattice Dτ is always very rich. For example Cf ∈ Dτ for every f ∈ Hτ

such that Z(f) = ∅. Also if M ∈ LatR, and if the map f → gf is continuous from
M into Hτ for some g ∈ H(D) such that Z(g) is empty, then [gM ]− ∈ Dτ . This
construction provides all closed subspaces of the Hardy space H2 = H2(D) having
the division property. In fact, it follows from the work of Hitt and Sarason ([28]
and [36]; see also [41]) that these subspaces of H2 have the form

(2.14) M = U · F ·N⊥

where U is a singular inner function, N is z-invariant (so that N = {0}, N = H2

or N = V H2 where V is an inner function) and where F is an outer function
satisfying
(2.15) ‖Ff‖2 = ‖f‖2, f ∈ N⊥.

Clearly, the nontrivial z-invariant subspaces of H2 having the division property
are the subspaces of the form U ·H2, where U is a singular inner function. Also
if τ ∈ S+, and if f ∈ Hτ is not z-cyclic and if Z(f) = ∅, then

∨
n>0

zn · f has the

division property since the space of polynomial functions has the division property.
We do not know a precise description of the lattice Dτ when τ is not the constant
weight. We do not even know whether there always exist nontrivial z-invariant
subspaces of Hτ having the division property. This question will be discussed at
the end of the paper.

The following notions will play an important role in the next sections.
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Definition 2.6. Let M 6= {0} be a closed subspace of Hτ which has the
division property. We set

τM (n) = ‖Un
M (0) · PM⊥ · 1‖τ , n > 1,

and
τ[M ](n) = ‖Un

M (0)‖, n > 1.

We now wish to obtain some information about the growth of the sequence
(τM (n))n>0 when M ∈ Dτ \ {0}. Set, for 0 6 r < 1

K1,τ (r) =
∞∑

n=0

τ(n+ 1) · rn(2.16)

K2,τ (r) =
( ∞∑

n=0

τ−2(n) · r2n
)1/2

.(2.17)

For p > 1, denote by Ap,τ the set of functions ϕ ∈ H(D) which can be written as
a quotient ϕ = f/g, where f, g ∈ H(D) satisfy the following conditions

(2.18) |g(0)| > 1
p
, |f(z)| 6 K1,τ (|z|), |g(z)| 6 K2,τ (|z|), z ∈ D.

Now set, for p > 1, 0 6 r < 1

(2.19) L(p)
τ (r) = sup{|ϕ(z)| : ϕ ∈ Ap,τ , |z| = r}

and, for n > 0,

(2.20) τ (p)(n) = inf
0<r<1

r−n · L(p)
τ (r).

Proposition 2.7. Let M 6= {0} be a closed linear subspace of Hτ . If M
has the division property, then there exists p > 1 such that

τM (n+ 1) 6 τ (p)(n), n > 0.

Proof. Let ϕ ∈ M such that ϕ(0) 6= 0, ‖ϕ‖τ = 1. There exists p > 1 such
that |ϕ(0)| > 1

p . Using (2.12), we obtain for λ ∈ D that ϕ(λ) · UM (λ) · PM⊥ · 1 =
UM (λ) ·PM⊥ [ϕ(λ) · 1−ϕ] = −UM (λ) ·PM⊥ · [(z−λ) ·ϕλ] = −PM⊥ ·ϕλ. It follows
from (2.7) and (2.16) that |PM⊥ · ϕλ‖τ 6 ‖ϕλ‖τ 6 K1,τ (|λ|). Also

|ϕ(λ)| 6
[ ∞∑

n=0

|ϕ̂(n)|2τ2(n)
]1/2

·
[ ∞∑

n=0

|λ|2nτ−2(n)
]1/2

6 K2,τ (|λ|).

Let g ∈ M⊥ such that ‖g‖τ = 1. The analytic function λ → 〈UM (λ) · PM⊥ · 1, g〉
belongs to Ap,τ , and we obtain

(2.21) ‖UM (λ) · PM⊥ · 1‖τ 6 L(p)
τ (|λ|), λ ∈ D.

Since UM (λ) = UM (0)[1− λUM (0)]−1 =
∞∑

n=0
λn · Un+1

M (0), the result follows from

the vector-valued version of Cauchy’s inequalities.
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Remark 2.8. (i) Let M ∈ Dτ \ {0}. We have, for n > 0, f ∈ Hτ ,

Un
M (0) · PM⊥ · f =

∞∑
p=0

f̂(p) · Un
M (0) · PM⊥ · zp

=
n−1∑
p=0

f̂(p) · Un−p
M (0) · PM⊥ · 1 +

∞∑
p=n

f̂(p) · PM⊥ · zp−n

=
n−1∑
p=0

f̂(p) · Un−p
M (0) · PM⊥ · 1 + PM⊥ ·Rn · f,

where R is the backward shift introduced in 2.6. Since ‖Rn‖ = τ(n+1), we obtain

(2.22) ‖Un
M (0)‖ 6 τ(n+ 1) +

( n−1∑
p=0

τ2
M (n− p)
τ2(p)

)1/2

and so Proposition 2.7 can be applied to obtain estimates on the growth of the
sequence

(τ[M ](n))n>0 = (‖Un
M (0)‖n>0).

(ii) Let M ∈ Dτ \{0}, ϕ ∈M \{0}, λ ∈ D. As in the proof of Proposition 2.7,
we see that we have

(2.23) ϕ(λ) · UM (0) · [1− λUM (0)]−1 · PM⊥ · 1 = −PM⊥ · ϕλ.

Hence the vector-valued analytic function θM : λ→ −P
M⊥ ·ϕλ

ϕ(λ) does not depend on
the choice of ϕ ∈M \ {0} and we have

(2.24) Un+1
M (0) · PM⊥ · 1 =

1
n!
θ
(n)
M (0), n > 0.

(iii) We have τM (n) = 0 for every n > 1, or, equivalently, τM (1) = 0, if and
only if M ∈ LatR. To see this, assume that M is R-invariant, and let ϕ ∈M such
that ϕ(0) = 1. Then

τM (n) = ‖Un
M (0) · PM⊥ · (1− ϕ)‖τ = ‖Un

M (0) · PM⊥ · zRϕ‖τ

= ‖Un−1
M (0) · PM⊥ ·Rϕ‖τ = 0 for n > 1.

Conversely, if τM (1) = 0, let f ∈ Hτ . Then

UM (0) · PM⊥ · f = f̂(0) · UM (0) · PM⊥ · 1 + PM⊥ ·Rf
and we have

(2.25) UM (0) · PM⊥ = PM⊥ ·R.

This shows that M is R-invariant. Also UM (0) = (R∗|M⊥)∗ is the compression of
R to M⊥.

(iv) For p > 1 denote by Pp,τ the set of functions ψ ∈ H(D) which can be
written as a quotient ψ = g/h where g, h ∈ H(D) satisfy the following properties

(2.26) |h(0)| > 1
p
, |h(λ)| 6 K2,τ (|λ|), |g(λ)| 6 2K1,τ ·K2,τ (|λ|), λ ∈ D.
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Let
L[p]

τ (r) = sup{|ψ(z)| : ψ ∈ Pp,τ , |z| = r}, 0 6 r < 1(2.27)

τ [p](n) = inf
0<r<1

r−n · L[p]
τ (r), n > 0.(2.28)

We have, for some p > 1

(2.29) τ[M ](n+ 1) 6 τ [p](n), n > 0.

To see this, consider ϕ ∈M such that |ϕ(0)| 6= 0, ‖ϕ‖τ = 1 and let f ∈M⊥ such
that ‖f‖τ = 1.

We have for λ ∈ D
|ϕ(λ)| · ‖UM (λ) · f‖τ = ‖UM (λ) · PM⊥ · [ϕ(λ) · f − f(λ) · ϕ]‖τ

= ‖PM⊥ · [ϕ(λ) · f − f(λ) · ϕ]λ‖τ

6 K1,τ (|λ|)[|f(λ)|+ |ϕ(λ)|] 6 2K1,τ (|λ|) ·K2,τ (|λ|).
Hence

|ϕ(λ)| · ‖UM (λ)‖τ 6 2K1,τ (|λ|) ·K2,τ (|λ|).

If p · |ϕ(0)| 6 1, |UM (λ)‖ 6 L
[p]
τ (|λ|), λ ∈ D.

Inequality (2.29) follows then from Cauchy’s inequalities.

We will give in Section 4 some estimates on the weights (τ (p)(n))n>1 and
(τ [p](n))n>1 (defined in (2.20), respectively (2.28)) in concrete cases, using known
results concerning the growth of quotients of analytic functions.

3. ANALYTIC LEFT-INVARIANT SUBSPACES

OF WEIGHTED HILBERT SPACES SEQUENCES

We will denote by S the class of weights ω : Z → (0,∞) satisfying the two following
conditions

0 < inf
p∈Z

ω(n+ p)
ω(p)

6 sup
p∈Z

ω(n+ p)
ω(p)

< +∞(3.1)

ω+ ∈ S+, where ω+ = ω|Z+ .(3.2)

Throughout this section we will denote by ω an element of S. Let

(3.3) `ω = `2ω(Z) :=
{
u = (un)n∈Z : ‖u‖ω :=

[ ∑
n∈Z

|un|2 · ω2(n)
]1/2

< +∞
}
.

The usual bilateral shift on `ω is the bounded invertible operator defined by the
formula
(3.4) S · u = (un−1)n∈Z, u = (un)n∈Z ∈ `ω.

Let
`+ω = {(un)n∈Z ∈ `ω : un = 0, n < 0},(3.5)
`−ω = {(un)n∈Z ∈ `ω : un = 0, n > 0},(3.6)
S+ = S|`+ω ,(3.7)
ep = (δp,n)n∈Z(3.8)



276 J. Esterle and A. Volberg

where we denote by δp,n the Kronecker symbol.
Identifying `+ω to

`2ω+
(Z) :=

{
u = (un)n>0 : ‖u‖ω+ :=

[ ∞∑
n=0

|un|2ω2(n)
]1/2

< +∞
}

in the obvious way, we see that the Fourier transform F : f → (f̂(n))n>0 is an
isometry from the weighted Hardy space Hω+ onto `+ω , which defines a unitary
equivalence between the shift T given by (2.6) and S+.

For u ∈ `+ω set

(3.9)
∨
u = F−1(u)

and for λ ∈ D, define uλ ∈ `+ω by the formula
(3.10) uλ = F [ [F−1(u)]λ]
so that
(3.11) (S − λ) · uλ = u− ∨

u(λ)e0.
Definition 3.1. Let F be a linear subspace of `+ω . We will say that F has

the division property if uλ ∈ F for every u ∈ F and every λ ∈ D such that
∨
u(λ) = 0.

Clearly, F has the division property iff
∨

F := F−1(F ) has the division prop-
erty in Hω+ in the sense of Definition 2.4.

If F is a closed subspace of `+ω , denote by P+
F⊥ the orthogonal projection of

`+ω onto `+ω ∩F⊥. It follows immediately from Proposition 2.5 that nonzero closed
subspaces of `+ω having the division property are characterized by the following
equivalent conditions

(3.12) dim[F 	 (F ∩ S · F )] = 1, and Z(
∨

F ) = ∅.

For every λ ∈ D, there exists then a map VF (λ) : F⊥ ∩ `+ω → F⊥ ∩ `+ω satisfying
(3.13) VF (λ) · P+

F⊥ · (S+ − λ) = P+
F⊥ .

The map VF (λ) defined by (3.13) is then unique, linear and bounded, and
we have
(3.14) VF (λ) = VF (0) · [1− λVF (0)]−1, λ ∈ D.
If F has the division property, set ωF (n) = (ω+)∨

F
(n) for n > 1 (see Definition 2.6).

We obtain
(3.15) ωF (n) = ‖V n

F (0) · P+
F⊥ · e0‖ω, n > 1.

Let L be a closed subspace of `ω. We will say that L is right-invariant (respec-
tively left-invariant, respectively translation invariant) if S · L ⊂ L (respectively
S−1 · L ⊂ L, respectively S · L = L).

If L is left-invariant, we define the compression S−1
L of S−1 to L⊥ by the

formula
(3.16) S−1

L · PL⊥ = PL⊥ · S−1.

Notice that in this situation we have also
(3.17) S−1

L = ((S−1)∗|L⊥)∗.
The following easy result was the motivation to introduce the division prop-

erty.
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Proposition 3.2. Let ω ∈ S, and assume that

lim
n→−∞

[
sup
p>0

ω(n+ p)
ω(p)

]1/n

= 1.

Then L+ := L∩ `+ω has the division property for every left-invariant subspace L of
`ω. Also if L+ 6= {0} then

|v−n| · ω2(−n) 6 ‖v‖ω · ωL+(n), n > 1

for every v ∈ L⊥.

Proof. Let v ∈ L+ and λ ∈ D such that
∨
v(λ) = 0. Since

‖Sn|`+ω ‖ = sup
p>0

ω(n+ p)
ω(p)

for n ∈ Z,

the series
∞∑

n=0
λn · S−n−1 · v is convergent, and w =

∞∑
n=0

λn · S−n−1 · v ∈ L. Hence

(S − λ) · w = v = v − ∨
v(λ) · e0 = (S − λ) · vλ, and so vλ = w ∈ L ∩ `+ω = L+.

Now set P = PL⊥ and denote by P+ the orthogonal projection of `+ω onto
`+ω 	L+, so that P ·P+ · v = P · v for v ∈ `+ω . Denote by P̃ the restriction of P to
`+ω 	L+, set V = VL+(0) and let u ∈ L+ such that

∨
u(0) = 1. Let v ∈ `+ω . We have

P · V · P+ · v = P · V · P+ · S · S−1 · [v − ∨
v(0) · u] = P · P+ · S−1 · [v − ∨

v(0) · u]

= P · S−1 · [v − ∨
v(0) · u] = P · S−1 · v

= S−1
L · P · v = S−1

L · P · P+ · v.

Hence P̃ · V = S−1
L · P̃ and we obtain

(3.18) S−n
L · P̃ = P̃ · V n

L+(0), n > 0.

Now let v ∈ L⊥. We have, for n > 1

|v−n| · ω2(−n) = |〈e−n, v〉| = |〈e−n, P · v〉| = |〈P · e−n, v〉|
= |〈S−n

L · P · P+ · e0, v〉| = |〈P · V n · P+ · e0, v〉|
6 ‖P‖ · ‖v‖ω · ‖V n(0) · P+ · e0‖ω = ‖v‖ω · ωL+(n).

Notice that since L∩ `+ω = L+, P̃ is one-to-one. Also for n > 1 we have, with
the notation above, P · e−n = S−n

L · P · e0 = P · V n
L+(0) · P+ · e0 ∈ P · `+ω and so

P̃ · [`+ω 	 L+] = P · `+ω is dense in L⊥, so that `+ω + L is dense in `ω. If, further,
`+ω + L = `ω, then P̃ is also onto and we obtain

(3.19) ‖S−n
L ‖ 6 ‖P̃‖ · ‖P̃−1‖ · ‖V n

L+(0)‖, n > 0.

Notice also that if we only assume that

0 < inf
p∈Z

ω(p+ 1)
ω(p)

6 sup
p∈Z

ω(p+ 1)
ω(p)

< +∞,
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then Proposition 3.2 remains true in a weaker sense: in this general situation L+

has the property that S−1 · u ∈ L+ for every u ∈ L+ such that u0 =
∨
u(0) = 0

(such subspaces are called by Sarason-Hitt “weakly invariant for the backward
shift”). The map VL+(0) can be defined in the same way and the inequality of
Proposition 3.2 holds in this general situation if L+ 6= {0}.

Of course, we may have L ∩ `+ω = {0} if L is a left-invariant subspace of `ω
(consider the case where L = `−ω ), and even Sk · L ∩ `+ω = {0} for every k > 0.
Also we may have

∨
n60

Sn · F = `ω if F is a closed subspace of `+ω which has

the division property. For example if ω(n) = 1 for n ∈ Z this is the case for all
nontrivial translation invariant subspaces L of `ω = `2 and for all subspaces F of
(`2)+ ' H2(D) of the form F =

∨
n>0

Sn ·Û where U is a non constant singular inner

function, by Wiener’s classical characterization of translation invariant subspaces
of `2 ([40] or [27], Chapter 1).

The following result, which is the main result of the paper, gives a sufficient
condition on F and ω which guarantees that

∨
n60

Sn ·F is a proper subspace of `ω

if F is a nontrivial closed subspace of `+ω having the division property.

Theorem 3.3. Let ω ∈ S, and let F 6= {0} be a closed subspace of `+ω
which has the division property. If

∞∑
n=1

ω2
F (n)

ω2(−n) < +∞, then
( ∨

n60

Sn · F
)
∩ `+ω =

F, and `ω = `+ω +
( ∨

n60

Sn · F
)
.

Proof. Set G =
∨

n60

Sn · F , V = VF (0), P+ = P+
F⊥ where we denote as

above by P+
F⊥ the orthogonal projection of `+ω onto F⊥ ∩ `+ω . Also denote by Q+

(respectively Q−) the orthogonal projection of `ω onto `+ω (respectively `−ω ) and
set

(3.20) v+ = Q+ · v, v− = Q− · v, v ∈ `ω.

Set

K =
[ ∞∑

n=1

ω2
F (n)

ω2(−n)

]1/2

and let v ∈ `−ω .
We have∑

n<0

‖vn · V −n · P+ · e0‖ω 6
[ ∑

n<0

|vn|2ω2(n)
]1/2[ ∞∑

n=1

ω2
F (n)

ω2(−n)

]1/2

= K · ‖v‖ω.

Now set

(3.21) ∆ · v =
∑
n<0

vn · V −n · P+ · e0, v ∈ `−ω .

We first consider the (not necessarily orthogonal) projection Q− − ∆ · Q−

and we want to show that its range is contained in G.
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Let u ∈ F be such that u0 =
∨
u(0) = 1, and set ϕ =

∨
u, M =

∨

L. Since

Hω+ = C · ϕ + z · Hω+ , we see by an immediate induction that there exists a
sequence (ap)p>0 of complex numbers, with a0 = 1, and a sequence (ψp)p>1 of
elements of Hω+ satisfying

(3.22) 1 =
( p−1∑

k=0

ak · zk
)
· ϕ+ zp · ψp, p > 1.

Set wp = ψ̂p, so that wp ∈ `+ω . We obtain

(3.23) e0 =
( p−1∑

k=0

akS
k
)
· u+ Sp · wp, p > 1.

It follows from (3.13) that V p · P+ · Sp ·wp = P+ ·wp and that V p · P+ · Sk · u =
V p−k · P+ · u = 0, for 0 6 k 6 p− 1. We obtain
(3.24) ∆ · e−p = V p · P+ · e0 = P+ · wp, p > 1.
Also

e−p = S−p · e0 = wp +
( p−1∑

k=0

ak · Sk−p
)
· u

= P+wp + (wp − P+ · wp) +
( p−1∑

k=0

ak · Sk−p
)
· u.

Since wp − P+wp ∈ F ⊂ G, we see that e−p −∆e−p ∈ G for p > 1. By continuity
we obtain
(3.25) (Q− −∆ ·Q−) · `ω ⊂ G.

Hence v = (v− −∆ · v−) + (v+ + ∆ · v−) ∈ G+ `+ω for every v ∈ `ω, which proves
the second assertion of the theorem.

To prove the first assertion we consider the projection 1 − Q− + ∆ · Q− =
Q+ + ∆ ·Q− and we will show that it maps G into F .

Consider u as above, and for p > 1 suppose that (Q+ +∆ ·Q−) ·S−k ·u ∈ F ,
1 6 k 6 p− 1. Then, by (3.23) and (3.24),

(Q+ + ∆Q−)S−pu = (Q+ + ∆Q−)
(
S−pe0 − wp −

∑
16k6p−1

akS
k−pu

)
∈ ∆e−p − wp + F = P+wp − wp + F = F.

It follows by induction that for every u ∈ F with u0 = 1 we have
(3.26) (Q+ + ∆ ·Q−) · S−k · u ∈ F, k > 1.

Let k > 0. Since every element of S−k · F \ F is equal to S−p · u for some
p > 0, u ∈ F with u0 6= 0, relation (3.26) gives us (Q+ + ∆Q−)(S−k · F \ F ) ⊂ F .
Finally, (Q+ + ∆Q−)F = Q+ · F = F and we obtain
(3.27) (∆ ·Q− +Q+) ·G ⊂ F.

Now let v ∈
( ∨

n60

Sn · F
)
∩ `+ω = G ∩ `+ω . Then Q− · v = 0, (∆ ·Q− +Q+) · v = v

and so v ∈ F . Hence
( ∨

n>0

Sn · F
)
∩ `+ω = F .
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Definition 3.4. Let ω ∈ S. A left-invariant subspace L of `ω is said to be
analytic if L+ = L ∩ `+ω 6= {0}.

We now deduce from Proposition 2.7, Proposition 3.2 and Theorem 3.3 the
following result:

Corollary 3.5. Let ω ∈ S, and assume that
∞∑

n=1

[
ω

(p)
+ (n)
ω(−n)

]2

< +∞ for every p > 1.

Then F =
( ∨

n60

Sn · F
)
∩ `+ω and `ω = `+ω +

∨
n60

Sn · F for every nonzero closed

subspace F of `+ω having the division property. If, further

lim
n→−∞

[
sup
p>0

ω(n+ p)
ω(p)

]1/n

= 1,

then L =
∨

n60

Sn · (L ∩ `+ω ) for every analytic left-invariant subspace L of `ω.

Proof. The first assertion is immediate. Now assume that

lim
n→−∞

[
sup
p>0

ω(n+ p)
ω(p)

]1/n

= 1,

and let L be an analytic left-invariant subspace of `ω. Then L+ = L ∩ `+ω has the
division property. Let G =

∨
n60

Sn · L+. Then G ⊂ L, and `ω = G + `+ω . Let

u ∈ L. Then u = v + w, where v ∈ G, w ∈ `+ω . Hence w ∈ L ∩ `+ω = L+ ⊂ G, and
so L = G.

Notice that, of course,
∨

n60

Sn ·F1 =
∨

n6−k

Sn ·F2 if F2 = Sk ·F1. Conversely,

we have the following result:

Corollary 3.6. Let ω ∈ S, and assume that
∞∑

n=1

[
ω

(p)
+ (n)
ω(−n)

]2

< +∞ for every p > 1.

Let F1 and F2 be two closed subspaces of `+ω having the division property and let
k > 0. Then

∨
n60

Sn ·F1 =
∨

n6−k

Sn ·F2 if and only if F1 and F2 satisfy one of the

two following equivalent conditions:
(i) F2 = Span{Sp · F1}06p6k;
(ii) F1 = {u ∈ `+ω : Sk · u ∈ F2}.

Proof. If (ii) holds, let u ∈ Sp ·F1 with 0 6 p 6 k, and let v = S−p ·u. Then
Sk ·v ∈ F2, and so u = Sp−k ·Sk ·v ∈ F2, since F2 has the division property. Hence
Span{Sp ·F1}06p6k ⊂ F2, and, in particular, F1 ⊂ F2. Conversely, let v ∈ F2, and
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let u ∈ F1 such that u0 = 1. We see by induction that there exist b0, . . . , bk−1 ∈ C
and w ∈ F2 satisfying

(3.28) v =
k−1∑
p=0

bp · Sp · u+ Sk · w.

Then Sk · w ∈ F2, so that w ∈ F1, and F2 ⊂ Span{Sp · F1}06p6k.
Now assume that (i) holds. Then Sk · u ∈ F2 for every u ∈ F1. Conversely,

if u ∈ `+ω , and if Sk · u ∈ F2, then there exist u0, . . . , uk ∈ F1 such that Sk · u =
u0 + Su1 + · · · + Sk · uk. Hence u0 ∈ (S · `+ω ) ∩ F1 = S · F1, and Sk−1 · u ∈
Span{Sp · F1}06p6k−1.

By an immediate induction we see that u ∈ F1, and so (i) and (ii) are
equivalent.

Now assume that
∞∑

n=1

[
ω

(p)
+ (n)
ω(−n)

]2

< +∞, p > 1.

If
∨

n60

Sn·F1 =
∨

n6−k

Sn·F2, let u ∈ F1. Then Sk ·u ∈
( ∨

n60

Sn·F2

)
∩`+ω = F2.

Conversely, if u ∈ `+ω , and if Sk ·u ∈ F2, then u ∈
( ∨

n60

Sn ·F1

)
∩ `+ω = F1. Hence

(ii) holds.
Conversely, (i) and (ii) imply that

∨
n6−k

Sn · F2 =
∨

n60

Sn · F1.

We shall gives examples of weights satisfying the conditions of Corollary 3.5
in the next section. We now give a few comments concerning Theorem 3.3.

Remark 3.7. (i) The conclusion of Theorem 3.3 holds, without any restric-
tion on the sequence (ω(−n))n>1, when F is invariant for the backward shift
R̂ : u → S−1 · (u − ∨

u(0) · e0) (in this situation we have ωF (n) = 0 for n > 1; see
Remark 2.8). But in fact the result is trivial in this case. An immediate induc-
tion shows that e−n ∈

∨
p60

Sp · F for n > 1, and so
∨

p60

Sn · F = F ⊕ `−ω . Hence( ∨
n60

Sn · F
)
∩ `+ω = F and

( ∨
n60

Sn · F
)

+ `+ω = `ω. Notice also that in this

situation we have
( ∨

n60

Sn · F
)⊥

= F⊥ ∩ (`−ω )⊥ = F⊥ ∩ `+ω .

(ii) Now consider a closed subspace F 6= {0} of `+ω having the division prop-
erty, and set again G =

∨
n60

Sn · F . Denote by P the orthogonal projection of `ω

onto G⊥ and denote by P+ the orthogonal projection of `+ω onto F⊥ ∩ `+ω . One
way to interpret the conclusion of Theorem 3.3 consists in saying that the natural
map from `+ω /F into `ω/G is a bijection or, equivalently, that P̃ = P |`+ω ∩ F⊥ is a
bijection from `+ω ∩ F⊥ onto G⊥. Now define the compression S−1

G of S−1 to G⊥

by (3.16). Using (3.18), we obtain

(3.29) S−1
G = P̃ · VF (0) · P̃−1.
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In other words, S−1
G , which acts on G⊥, is similar to VF (0), which acts on

F⊥∩ `+ω , and, heuristically, all the information concerning S−1
G is already given by

VF (0).
(iii) The notation being as above, assume that the conditions of Theorem 3.3

are satisfied, and set ρ = Q+|G⊥ so that ρ(G⊥) ⊂ F⊥ ∩ `+ω . Since `ω = `+ω +G, ρ
is one-to-one. Now let ∆ : `−ω → `+ω ∩F⊥ be the map defined by (3.21). By (3.27)
we have(1 + ∆∗) · (`+ω ∩ F⊥) = (Q+ + ∆ · Q−)∗(`+ω ∩ F⊥) ⊂ G⊥ and, obviously,
ρ ·(1+∆∗) is the identity map on `+ω ∩F . Hence ρ is a bijection, and ρ−1 = 1+∆∗.

The map ρ−1 : `+ω ∩ F⊥ → G⊥ can be described in a concrete way. Let
v ∈ `+ω ∩ F⊥, and set w = ρ−1 · v. Then wn = vn for n > 0. Also, for n < 0, we
have

wn · ω2(n) = 〈en, w〉 = 〈en, v + ∆∗ · v〉 = 〈∆ · en, v〉 = 〈V −n
F (0) · P+

F⊥ · e0, v〉.

Using (2.24), we obtain for every u ∈ F \ {0}

(3.30)
∞∑

n=0

λnw−n−1ω
2(−n− 1) = − 1

∨
u(λ)

〈P+ · uλ, v〉, λ ∈ D.

Hence w−n−1 ·ω2(−n−1) is for n > 0 the nth Taylor coefficient at the origin
of the analytic function λ→ − 1

∨
u(λ)

〈P+ · uλ, v〉.

Notice that the map ρ−1 defined above and the map P̃ = P |F⊥ ∩ `+ω coincide
if and only if F is R̂-invariant. To see this assume that ρ−1 = P̃ .

Then for every v ∈ `+ω ∩ F⊥ we have P · v = v+ ∆∗ · v, and so P ·∆∗ · v = 0
and Q− · P · v = ∆∗ · v ∈ G. Since P̃ : `+ω ∩ F⊥ → G⊥ is onto, this means that
Q− · G⊥ ⊂ G. Hence ‖Q− · w‖2

ω = 〈Q− · w,w〉 = 0 for every w ∈ G⊥, and so
G⊥ ⊂ `+ω and `−ω ⊂ G. In this case

R̂ · u = S−1 · (u− ∨
u(0) · e0) = S−1 · u− ∨

u(0)e−1 ∈ G ∩ `+ω = F

for every u ∈ F , and so F is R̂-invariant.
Conversely, if F is R̂-invariant, then ∆ = 0 (see Remark 2.8). Hence ∆∗ = 0

and ρ−1 = P̃ is the identity map on `+ω ∩ F⊥ = G⊥.

The results of this section concern a “bijective” correspondence between F
and

∨
n60

Sn · F , where F is a closed subspace of `+ω having the division property.

In order to obtain positive results concerning existence of translation invariant
subspaces, we just need to know when

∨
n60

Sn · F is a proper subspace of `ω. In

order to state such a condition, it is natural to introduce the “dual weight” of
ω ∈ S, defined by

(3.31) ω∗(n) = ω(−n− 1)−1, n ∈ Z.

We can identify `ω∗ to the dual of `ω by using the formula

(3.32) (u, v) =
∑
n∈Z

un · v−n−1, u = (un)n∈Z ∈ `ω, v = (vn)n∈Z ∈ `ω∗ .
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For u ∈ `ω, v ∈ `ω∗ , define the sequence u ∗ v by the usual convolution formulae
on Z. We obtain
(3.33) (u ∗ v)n = (S−n−1u, v), n ∈ Z, u ∈ `ω, v ∈ `ω∗ .
We thus see that (Sn · u, v) = 0 for n < 0 iff (u ∗ v)n = 0 for n > 0, and that
(Sn · u, v) = 0 for n ∈ Z iff u ∗ v = 0. Now let ω ∈ S. Set, for w ∈ `ω
(3.34) w∗ = (〈e−n−1, w〉)n∈Z = (w−n−1 · ω2(−n− 1))n∈Z.

The map w → w∗ is clearly an isometry from `ω onto `ω∗ , and 〈v, w〉 = (v, w∗) for
v ∈ `ω, w ∈ `ω. Now let w ∈ `+ω . Then w∗ ∈ `−ω∗ . For u ∈ `+ω , λ ∈ D we have

〈uλ, w〉 =
∞∑

n=1

un

( n−1∑
k=0

λk〈en−1−k, w〉
)

=
∞∑

n=1

un

( n−1∑
k=0

λkw∗k−n

)
=

∞∑
k=0

λk
( ∞∑

n=k+1

un · w∗k−n

)
.

We obtain

(3.35) 〈uλ, w〉 =
∞∑

k=0

λk(u ∗ w∗)k, λ ∈ D, u ∈ `+ω , w ∈ `+ω .

Recall that if F 6= {0} is a closed subspace of `+ω having the division property,
and if w ∈ `+ω 	 F , then the function λ → − 〈uλ,w〉

∨
u(λ)

extends analytically to D for

u ∈ F \ {0} and does not depend on the choice of u.

Proposition 3.8. Let ω ∈ S, and let F 6= {0} be a closed subspace of `+ω
having the division property. Then the following conditions are equivalent:

(i)
∨

n60

Sn · F is a proper subspace of `ω;

(ii) there exists w ∈ `+ω 	F such that the function λ→ 〈uλ,w〉
∨
u(λ)

, λ ∈ D belongs

to Hω∗+
for u ∈ F \ {0}.

Proof. Denote again by Q+ (respectively Q−) the orthogonal projection of
`ω onto `+ω (respectively `−ω ). Assume that G =

∨
n60

Sn ·F is a proper subspace of

`ω. Then G does not contain `+ω , and so there exists v ∈ G⊥ such that Q+(v) 6= 0.
Let w = Q+(v), so that w ∈ `+ω 	F , and let u ∈ F \ {0}. Let s = v∗−w∗, so that
s ∈ `+ω∗ . Since (u ∗ v∗)n = 0 for n > 0, we have for λ ∈ D, by (3.35)

〈uλ, w〉 = −
∞∑

n=0

λn(u ∗ s)n = − ∨
u(λ) ·

( ∞∑
n=0

λn · sn

)
.

Since w 6= 0, (ii) is satisfied.
Now assume that (ii) is satisfied for some nonzero w ∈ `+ω	F . Let u ∈ F \{0}

and denote by ϕ the function λ → − 〈uλ,w〉
∨
u(λ)

. Let s = −ϕ̂. Then s ∈ `+ω∗ , and so

w∗ − s ∈ `ω∗ . By (3.35), we have, for λ ∈ D
∞∑

n=0

λn(u ∗ w∗)n = 〈uλ, w〉 = − ∨
u(λ) · ϕ(λ) =

∞∑
n=0

λn(u ∗ s)n.



284 J. Esterle and A. Volberg

Hence s− w∗⊥Sn · u for n < 0. Since s ∈ `+ω∗ , (u, s) = 0.
Also (u,w∗) = 〈u,w〉 = 0, and so (v, s−w∗) = 0 for every v ∈

∨
n60

Sn ·F .

We conclude this section with an example. Assume that ω(n) = 1 for n > 0,
let U be a singular inner function and set F = ̂U ·H2, where H2 = H2(D) is the
usual Hardy space. Let u = Û , w = R̂ · U where R = S∗ is the backward shift on
H2.

For λ ∈ D we have

〈uλ, w〉 =
1
2π

2π∫
0

eit · U(eit) · U(eit)− U(λ)
eit − λ

dt = 1− U(0) · U(λ).

Hence 〈uλ,w〉
∨
u(λ)

= U−1(λ) − U(0) and we see that
∨

n∈Z
Sn · Û is a proper subspace

of `ω if U−1 ∈ Hω+
∗
. This observation was used by the first author in [22] to

construct nontrivial translation invariant subspaces of `ω when ω is nonincreasing
and satisfies ω(n) = 1, for n > 0, ω(n) −→

n→−∞
∞.

4. EXAMPLES

In this section we shall give in concrete cases some upper bounds for the weights
(τ [p](n))n>1 and (τ (p)(n))n>1 introduced in Section 2 for τ ∈ S+. This will provide
various examples of weights ω ∈ S satisfying the hypothesis of Corollary 3.5.

A standard way, which goes back to the last century, to obtain information
about the growth of the quotient of two functions analytic in the disc, when this
quotient is also analytic in the disc, consists in applying Jensen’s formula (see for
example [3], Lemma 5). This method gives, for τ ∈ S+, p > 1

logL(p)
τ (r) 6 logK1,τ (ρ) + 2

ρ+ r

ρ− r
logK2,τ (ρ) +

ρ+ r

ρ− r
log p, 0 6 r < ρ < 1,(4.1)

logL[p]
τ (r) 6 logK1,τ (ρ) +

3ρ+ r

ρ− r
logK2,τ (ρ) +

ρ+ r

ρ− r
log p, 0 6 r < ρ < 1.(4.2)

Following the works of Cartwright ([16]) and Linden ([30] and [31]) concern-
ing the growth of inverses or quotients of functions satisfying estimates of the type
log |f(z)| = O

(
1

(1−|z| )
α
)
, more sophisticated methods were developed in the sev-

enties. We refer to Nikolskii ([34]) and Hayman-Korenblum ([24]) for estimates
of inverses of analytic functions in the disc. Concerning analytic functions of the
form ϕ = f/g, where g is allowed to have zeroes, the best result known to the
authors is due to Matsaev-Mogulskii ([32]) (see also [33]).

Theorem 1 in [32] concerns functions ψ analytic on the half-plane.
For ε > 0 set

(4.3) C(ε) =
54
π
ε−3(1 + ε)

(
1 +

2ε
3

)2(
1 +

44
5

e(26π+3/2)(2+ε−1)
)
.

By considering the function ψ(z) = f1(e
−z)

f2(e−z) , Re z > 0 we obtain, after a change of
variables in the integral, the following version of Theorem 1 of [32] for quotients
of functions analytic in the open unit disc.



Analytic left-invariant subspaces of weighted Hilbert spaces of sequences 285

Theorem 4.1. (Matsaev-Mogulskii) Let M be a positive, continuous, in-
creasing function on [0, 1) and let f1, f2 ∈ H(D) satisfying the following conditions:

(i) f2(0) = 1;
(ii) log |fi(λ)| 6 M(|λ|), with λ ∈ D, i = 1, 2.

If f1/f2 is analytic on D, then, for every ε > 0, we have

(iii) log |f1(λ)/f2(λ)| 6 C(ε)
log 1/|λ|

[ |λ| 1
1+ε∫
0

√
M(t)
log 1/t

dt
t

]2

,

where C(ε) is given by (4.3).

In concrete situations, the integral in the right hand side of (iii) may be
the divergent at 0, so it is more convenient for applications to use the following
asymptotic estimate:

Corollary 4.2. Let M be a positive, continuous, increasing function on
[0, 1) and let ϕ ∈ H(D). Assume that there exist f1, f2 ∈ H(D), with f2(0) 6=
0, f2 · ϕ = f1, satisfying the following condition:

(i) lim
|λ|→1−

log |fi(λ)| −M(|λ|) < +∞.

If
1∫
0

√
M(t)
1−t dt < +∞, then we have

(ii) log |ϕ(λ)| = O
(

1
1−|λ|

)
, |λ| → 1−.

If
1∫
0

√
M(t)
1−t dt = +∞, then we have for every ε > 0

(iii) lim
|λ|→1−

(1− |λ|) log |ϕ(λ)| ·
[ |λ|1/(1+ε)∫

0

√
M(t)
1−t dt

]−2

6 C(ε),

where C(ε) is given by (4.3).

Proof. This variant of Theorem 4.1 is certainly well-known, but we give the
details for the sake of completeness. Without loss of generality, assume that M
is unbounded, that |f1(0)| 6 1, |f2(0)| = 1 and that for some b > 0, log |fi(λ)| 6
M(|λ|) + b. Then, for some positive a, |fi(λ)| 6 1 + a|λ|, log |fi(λ)| 6 a|λ|,
|λ| 6 1/2, i = 1, 2. We can then construct a positive continuous function N
increasing on [0, 1) such that N(r) = ar on a neighborhood of 0, N(r) = M(r)+ b
for r0 6 r < 1 and such that log |fi(λ)| 6 N(|λ|), λ ∈ D, i = 1, 2.

Let ε > 0. Using Theorem 4.1, we obtain, for r1 ∈ [r0, 1) and |λ| ∈ [r1, 1)

(4.4)

log |f1(λ)/f2(λ)|

6 α(r1)
C(ε)

1− |λ|
·
[ r1∫

0

√
N(t)

log 1/t
dt
t

+ β(r1)

|λ|1/(1+ε)∫
0

√
M(t)
1− t

dt
]2

where

α(r1) = sup
r16r<1

1− r

log 1/r
, β(r1) = sup

r16r<1

[
1
r

√
1− r

log 1/r
·

√
M(r) + b

M(r)

]
.
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Since
lim

r1→1−
α(r1) = lim

r1→1−
β(r1) = 1,

the corollary follows immediately from (4.4).

Let τ ∈ S+. We have

(4.5) K2,τ (r) 6 τ(0)−1 · τ̃(1) ·K1,τ (r), 0 < r < 1.

The following result follows easily from Corollary 4.2.

Proposition 4.3. Let τ ∈ S+, and assume that log τ(n)=O(nα) as n→∞.
(i) If α < 1/2, then log τ [p](n) = O(

√
n), p > 1.

(ii) If α = 1/2, then log τ [p](n) = O(
√
n · log(n+ 1)), p > 1.

(iii) If 1/2 < α < 1, then log τ [p](n) = O(nα), p > 1.

Proof. The notation being as in Remark 2.8, let p > 1, let ϕ ∈ Pp,τ and let
f1, f2 ∈ H(D) satisfying (2.26), with ϕ = f1/f2. We have

(4.6) lim
|λ|→1−

log |fi(λ)| − 2 logK1,τ (|λ|) < +∞ i = 1, 2.

Now assume that log τ(n) = O(nα) with 0 < α < 1. There exists a > 0 such that
(n+ 1)2 · τ(n+ 1) 6 ea(n+1)α

for n > 0.
Let

M(r) = sup
n>0

ea(n+1)α

· rn.

It is a well-known fact that

logM(r) = O
( 1

(1− r)
α

1−α

)
(see for example [39]).

Since K1,τ (r) 6 π2

6 ·M(r), it follows from (4.6) and Corollary 4.2 that for
every ε > 0 we have

(4.7) lim
r→1−

(1− r) · logL[p]
τ (r) ·

[ r1/(1+ε)∫
0

dt
(1− t)1/(2(1−α))

]−2

< +∞, p > 1.

We obtain

logL[p]
τ (r) = O

( 1
1− r

)
for α <

1
2
,

logL[p]
τ (r) = O

( log2(1− r)
1− r

)
for α =

1
2
,

and

logL[p]
τ (r) = O

( 1
(1− r)

α
1−α

)
for

1
2
< α < 1.

Now for, n > 1, set rn = 1− 1√
n

for α < 1/2, rn = 1− log(n+1)√
n

for α = 1/2,

rn = 1− 1
n1−α for 1/2 < α < 1. It follows from (2.28) that τ [p](n) 6 r−n

n ·L[p]
τ (rn)

for n > 1, p > 1, and the result follows.
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Recall that a sequence (un)n>p of positive real numbers is said to be log-
convex if the sequence (un+1/un)n>p is nondecreasing. We will say that τ ∈ S+

is eventually log-convex if the sequence (τ(n))n>p is log-convex for some p > 0.
In this situation, by modifying if necessary the set {τ(0), . . . , τ(p − 1)}, we can
always assume that τ is log-convex.

Assume that τ ∈ S+ is log-convex. Clearly, τ(n + 1) 6 τ(n) for n > 0, and
we have
(4.8) τ(n) = τ(0) · τ−1(n), n > 0.
Let
(4.9) ∆τ (r) = sup

n>0

(n+ 1)2 · τ−1(n) · rn, 0 6 r < 1.

Since τ(n+ 1) 6 τ(1) · τ(n) for n > 0, we have

(4.10) K1,τ (r) 6
π2

6
· τ(0) · τ(1) ·∆τ (r), 0 6 r < 1.

Also, since the weight n 7→ τ(n)
(n+1)2 is log-convex, we have, by standard properties

of the Legendre transform

(4.11) (n+ 1)2 · τ−1(n) = inf
0<r<1

∆τ (r) · r−n, n > 0.

We will say that a sequence (un)n>1 is eventually increasing if there exists p > 1
such that un+1 > un for n > p. We now deduce from Corollary 4.2 the following
result:

Proposition 4.4. Let τ ∈ S+, and assume that τ is eventually log-convex.

(i) If
∞∑

n=1

log τ−1(n)
n3/2 < +∞, then log τ [p](n) = O(

√
n), p > 1.

(ii) If s > 1, and if the sequence
(

log τ−1(n)
nα

)
n>1

is eventually increasing for

some α > 1+2s−1
√

2C(s−1)

2+2s−1
√

2C(s−1)
, where C(s−1) is given by (4.3), then lim

n→∞
log τ [p](n)
log τ−1(n) 6

s, p > 1.
(iii) If the sequence

(
log τ−1(n)

nα

)
n>1

is eventually increasing for every α < 1,

then log τ [p](n)
log τ−1(n) −→n→∞

1, p > 1.

Proof. We can assume without loss of generality that τ is log-convex. We
have

(4.12) K1,τ (r) ·K2,τ (r) 6
π4

36
· τ(0) · τ(1)2 · τ̃(1) ·∆2

τ (r), 0 6 r < 1.

Assume that
∞∑

n=1

log τ−1(n)
n3/2 < +∞, so that

∞∑
n=1

log[(n+1)2·τ−1(n)]
n3/2 < +∞. Since

log ∆τ is convex on [0, 1), it follows from a classical result ([34], Section 2.6, Lem-
ma 2) that

1∫
0

√
log ∆τ (t)

1− t
dt < +∞.
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Using (4.12), and applying Corollary 4.2 as in the proof of Proposition 4.3, we
obtain (i).

Assume that
1∫

0

√
log ∆τ (t)

1− t
dt = +∞.

Applying again Corollary 4.2 as in the proof of Proposition 4.3, we obtain, for
every ε > 0

(4.13) lim
r→1−

(1− r) · logL[p]
τ (r) ·

[ r
1

1+ε∫
0

√
log ∆τ (t)

1− t
dt

]−2

6 2C(ε).

Now assume that the sequence
(

log τ−1(n)
nα

)
n>1

is eventually increasing, with

α > 1/2. A routine verification shows hat the sequence
(

log[(n+1)2τ−1(n)]
nβ

)
n>1

is

eventually increasing for 0 < β < α. Since the sequence
(

τ(n)
(n+1)2

)
n>0

is log-convex

it is a standard fact (see for example [39]) that there exists then r0 ∈ [0, 1) such
that the function r → (1−r)

β
1−β · log ∆τ (r) is increasing on [r0, 1). If β ∈ (1/2, α),

we obtain, for r ∈ [r0, 1)[ r∫
r0

√
log ∆τ (t)

1− t
dt

]2

6 (1− r)
β

1−β · log ∆r(r) ·
[ r∫
r0

√
1

(1− t)
1

1−β

dt
]2

6
4(1− β)2

(2β − 1)2
· (1− r)

β
1−β · log ∆r(r) · (1− r)

1−2β
1−β .

We obtain

(4.14)
1

1− r

[ r∫
r0

√
log ∆τ (t)

1− t
dt

]2

6
4(1− β)2

(2β − 1)2
· log ∆τ (r), r0 6 r < 1.

Fix s > 1. Applying (4.13) with ε = s− 1, we obtain

(4.15) lim
r→1−

(1− rs) · logL[p]
τ (rs) ·

[ r∫
r0

√
log ∆τ (t)

1− t
dt

]−2

6 2 · C(s− 1).

Since 1−rs

1−r −→
r→1−

s, we obtain, using (4.14)

(4.16) lim
r→1−

s−1 · logL[p]
τ (rs)

log ∆τ (r)
6

8(1− β)2

(2β − 1)2
s−2 · C(s− 1).

Now assume that α >
1+2s−1

√
2C(s−1)

2+2s−1
√

2C(s−1)
. There exists β ∈ (1/2, α) such that

β >
1+2s−1

√
2C(s−1)

2+2s−1
√

2C(s−1)
. Using the fact that the function t → 1−t

2t−1 is decreasing on
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(1/2, 1), we obtain

(4.17) lim
r→1−

s−1 · logL[p]
τ (rs)

log ∆τ (r)
< 1.

Fix p > 1. We have, for n > 0, by (2.28)

s−1 · log τ [p](n) = inf
0<r<1

[s−1 · logL[p]
τ (r)− n log r1/s]

= inf
0<r<1

[s−1 · logL[p]
τ (rs)− n log r].

Hence there exists np > 1 such that for n > np we have

s−1 · log τ [p](n) 6 inf
0<r<1

[log ∆τ (r)− n log r].

Using (4.11), this gives

(4.18) s−1 · log τ [p](n) 6 2 log(n+ 1) + log τ−1(n), n > np.

Since log(n+1)
log τ−1(n) −→n→∞

0, this gives (ii), and (iii) follows immediately from (ii).

Notice that the estimates of (ii) hold for the weights τ (p) under the slightly
weaker condition

α >
1 + 2s−1 ·

√
C(s− 1)

2 + 2s−1 ·
√
C(s− 1)

.

We conclude this section by a few examples.

Theorem 4.5. Let ω ∈ S. Assume that ω satifies one of the following
conditions:

(i) logω+(n) = O(nα), with α < 1/2, and lim
n→∞

log ω(−n)√
n

= +∞;

(ii) logω+(n) = O(
√
n), and lim

n→∞
log ω(−n)√
n·log(n+1)

= +∞;

(iii) logω+(n) = O(nα), with 1/2 < α < 1, and lim log ω(−n)
nα = +∞;

(iv) ω+ is eventually log-convex,
∞∑

n=1

log ω−1(n)
n3/2 < +∞, and lim

n→∞
log ω(−n)√

n
=

+∞;
(v) ω+ is eventually log-convex, lim

n→∞
log ω(−n)
log ω−1(n) > s, with s > 1 and(

log ω−1(n)
nα

)
n>1

is eventually increasing for some

α >
1 + 2s−1

√
2C(s− 1)

2 + 2s−1
√

2C(s− 1)
;

(vi) ω+ is eventually log-convex,

lim inf
n→∞

logω(−n)
logω−1(n)

> 1, and
( logω−1(n)

nα

)
n>1

is eventually increasing for every α < 1.
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Then

F =
( ∨

n60

Sn · F
)
∩ `+ω , and `ω = `+ω +

∨
n60

Sn · F

for every closed subspace F 6= {0} of `+ω having the division property.
If, further,

lim
n→−∞

[
sup
p>0

ω(n+ p)
ω(p)

]1/n

= 1,

then every nonzero analytic left invariant susbpace L of `ω has the form L =∨
n60

Sn · L+, where L+ = L ∩ `+ω has the division property. Also, log ‖S−n
L ‖ =

O(
√
n) if ω satifies (i) or (iv); log ‖S−n

L ‖ = O(
√
n · log(n + 1)) if ω satisfies (ii);

log ‖S−n
L ‖ = O(nα) if ω satisfies (iii); lim

n→∞
log ‖S−n

L
‖

log ω−1(n) 6 s if ω satisfies (v); and

lim
n→∞

log ‖S−n
L

‖
log ω−1(n) 6 1 if ω satisfies (vi).

Proof. The theorem follows immediately from Proposition 4.3, Proposition 4.4,
Corollary 3.5, Remark 2.8 (iv) and Remark 3.7 (ii).

Notice that condition (vi) of Theorem 4.5 is satisfied by the weights ω of the
form

ω(n) = e
−an

(log n+1)c , ω(−n) = e
b|n|

log(|n|+1)c , n > 0

where b > a > 0, c > 0.

5. ON THE EXISTENCE OF z-INVARIANT SUBSPACES

HAVING THE DIVISION PROPERTY

In order to construct analytic nontrivial translation invariant susbpaces of `ω, we
need to be able to find nontrivial z-invariant subspaces of the weighted Hardy space
Hω+ which have the division property. The existence of such subspaces of Hτ is
not known for arbitrary τ ∈ S+. In the case of the Hardy space H2 = H2(D),
these subspaces are the subspaces U · H2 where U is a singular inner function.
When τ(n) = (n+ 1)−1/2, for n > 0, the space Hτ is the usual Bergman space

B2 = B2(D) =
{
f ∈ H(D) :

∫∫
D

|f(x+ iy)|2 dxdy < +∞
}
.

Korenblum ([29]) proposed a notion of outer and inner functions suitable
for B2. It turns out that Korenblum’s “Bergman-outer” functions are exactly the
z-cyclic elements of B2 ([29] and [1]). Korenblum’s “Bergman inner” functions are
characterized by the conditions ‖U‖B2 = 1, 〈U, zn · U〉 = 0 for n > 1. We will say
that a Bergman-inner function U is singular if U has no zeroes in D.

Using the Aleman-Richter-Sundberg theorem ([1]) we can characterize non-
trivial z-invariant susbpaces of B2 having the division property.
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Proposition 5.1. The nontrivial z-invariant susbpaces of B2 having the
division property are the subspaces of the form

M =
∨

n>0

zn · U

where U is a nonconstant singular Bergman-inner function.

Proof. It is easy to check, and well-known, that a nonconstant Bergman-
inner function U is not z-cyclic. If U is singular, Z(U) = ∅ and it follows from
Proposition 2.5 that

∨
n>0

zn · U is a nontrivial z-invariant susbpace of B2 which

has the division property.
Now assume that M is a nontrivial z-invariant subspace of B2 having the

division property, and let U ∈ M be the Hedenmalm extremal function for M
([25]). This means that ‖U‖B2 = 1 and that Re f(0) 6 ReU(0) for every f ∈ M
such that ‖f‖B2 = 1. Then U ⊥ z ·M (see [25]), and so 〈U, zn · U〉 = 0, n > 1, so
that U is Bergman-inner.

It follows from the Aleman-Richter-Sundberg theorem ([1]) that M =∨
n>0

zn(M	zM). Since dim(M	zM) = 1, M	zM = CU , and so M =
∨

n>0

zn ·U.

Since Z(M) = ∅, Z(U) = ∅, and U is a Bergman-inner singular function having
the division property.

There is another situation where the lattice of z-invariant subspaces ofHτ (D)
can be described. Assume that τ ∈ S+ is increasing, and that (nα · τ−1(n))n>1 is
eventually log-convex for every α > 0.

In this situation Hτ (D) is a Banach algebra of functions which are smooth
on the closed disc. Carleson ([16]) showed that if, further,

∞∑
n=1

log τ(n)
n3/2

= +∞,

then the zero set {z ∈ D : f(z) = 0} is finite for every nonzero f ∈ Hτ (D), and
Domar ([20]) showed that all z-invariant subspaces (here all ideals) of Hτ (D) are
determined by their zero set, taking (finite) multiplicities into account. If ω ∈ S,
and if ω+ satisfies the above conditions, we obtain analytic translation invariant
subspaces of `ω if

∞∑
n=1

ω−2(−n) < +∞,

and every z-invariant subspace having the division property generates a nontrivial
translation invariant subspace of `ω if np·ω(−n) −→

n→∞
0 for every p > 1. But there is

nothing surprising here. In the first situation `ω is continuously contained in C(T)
and these analytic translation invariant subspaces have the form {f ∈ `ω : f |S = 0}
where S is a finite subset of T. In the second case `ω is continuously contained in
C∞(T) and these analytic translation invariant subspaces have the form⋂

16i6k

{f ∈ `ω : f (n)|Si = 0, n 6 di}

where S1, . . . , Sk are finite subsets of π and where 0 6 d1 < d2 · · · < dk < +∞.
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We now discuss the case where τ ∈ S+ is log-convex. The simplest way
to construct z-invariant subspaces of Hτ having the division property consists in
considering spaces of the form

∨
n>0

zn · f where f ∈ Hτ is not z-cyclic and has no

zeroes in D.
The question of z-cyclicity (which he called weak invertibility) has been ex-

tensively studied by Nikolskii in [34], Chapter 2, for various Banach spaces of
analytic functions in the disc. It follows from a theorem of Beurling ([8]) that if
τ(n) = O(1/nα) for some α > 0, τ2(k) 6 τ(n) for n 6 2k and if

(5.1)
∞∑

n=1

log τ−1(n)
n3/2

< +∞,

then the inner function exp
(

z+1
z−1

)
is not z-cyclic in Hτ (D).

Conversely, it follows from [34], Chapter 2, Section 2.6, Theorem 2, that all
singular inner functions are z-cyclic in Hτ (D) if log τ(n) is convex with respect to
log n and if τ does not satisfy the “one-sided quasianalytic condition” (5.1).

We now describe the three methods known to the authors to produce z-
invariant subspaces having the division property when τ is a log-convex weight
satisfying (5.1). The first one, developed by Nikolskii in [34], Chapter 2, Section 2.8
is called the “abstract Keldysh method”. It is based on the following lemma, which
we formulate in the context of weighted Hardy spaces.

Lemma 5.2. ([34], Chapter 2, Section 2.8, Lemma 2) Let τ ∈ S+, and let
γ be a closed Jordan curve which is symmetric with respect to the real axis, such
that γ ⊂ D, γ ∩ T = {1}. Let f ∈ Hτ (D) and assume that there exists an outer
function G on Int γ such that:

(i) K2,τ (|ξ|) · |f−1(ξ)| 6 |G(ξ)|, ξ ∈ γ;
(ii) |f(x)| = o(|G−1(x)|), (x→ 1−).
Then f is not z-cyclic in Hτ (D).

We refer to [34] for a proof. Here by an outer function on Int γ we mean
a function G such that G ◦ θ is outer in D, where θ : D → Int γ is a conformal
mapping. Also

K2,τ (r) =
[ ∞∑

n=0

τ−2(n)r2n
]1/2

= ‖gξ‖τ ,

where

gξ(λ) =
∞∑

n=0

τ−2(n)ξnλn for λ ∈ D, |ξ| = r

is the function defined in (2.17). Hence K2,τ (|ξ|) is the norm of the functional
f → f(ξ) = 〈f, gξ〉 on Hτ (D).

It is possible to deduce from [34], Chapter 2, Section 2.8, Theorem 3, that
there exists log-convex weights τ ∈ S+ decreasing arbitrarily fast at infinity for
which Hτ (D) contains non z-cyclic functions without zeroes in D, but the weights
for which this construction works are not explicit.

For x > 0, denote as usual by [x] the nonnegative integer such that [x] 6
x < [x] + 1. Using the same tools as in the proof of [34], Section 2.8, Theorem 2,
we obtain the following concrete result:
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Theorem 5.3. Let α ∈ (1/2, 1) and set

τα(n) = e−nα

for n > 0, and pα =
[ α

1− α

]
.

There exist a0, . . . , apα ∈ R, with a0 < 0, such that the functions

ϕc : λ→ exp
[ pα∑

k=0

ak

(1− λ)
α

1−α−k
− 1

(1− λ)c

]
are not z-cyclic elements of Hτα

(D) for 0 < c < 1.

Proof. Let τα(x) = e−xα

for x > 0 and set

(5.2) Mα(r) = sup
n>0

τ−1
α (n) · rn, Nα(r) = sup

x>0

τ−1
α (x) · rx.

A routine verification shows that if |θ(x)| 6 1 for x > 0, then

lim
x→∞

τ−1
α (x+ θ(x))
τ−1
α (x)

= 1.

We obtain

(5.3) logMα(r) = logNα(r) + o(1), r → 1−.

The function x → x log r + xα attains its maximum value on [0,∞) for x =(
1
α log 1

r

) 1
α−1 . We obtain

(5.4) logNα(r) =
(
α

α
1−α − α

1
1−α

) (
log

1
r

) α
α−1

.

Using an asymptotic expansion of (log 1
r )

α
1−α as r → 1−, we see that there exist

b0, . . . bpα
with b0 = α

α
1−α − α

1
1−α > 0 such that we have

(5.5) logMα(r) =
pα∑

k=0

bk

(1− r)
α

1−α−k
+ o

( 1
(1− r)

α
1−α−pα

)
, r → 1−.

We now apply [34], Chapter 2, Section 2.8, Lemma 2.
Since b0 > 0, there exists a0, . . . , apα

, a0 < 0 such that if we set

p(λ) =
pα∑

k=0

ak

(1− λ)
α

1−α−k
(5.6)

L(r) = max
|λ|=r

Re p(λ), 0 6 r < 1,(5.7)

then the maximum in (5.7) is attained on a curve γ satisfying the conditions of
Lemma 5.2, and we have

lim
|λ|→1−

λ∈γ

| arg(1− λ)| = π(1− α)(5.8)

L(r) = logMα(r) + O(1), r → 1−.(5.9)
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Now set ∆(r) = sup
x>0

(x+1)·τ−1
α (x)·rx. The function x→ x log r+xα+log(x+

1) attains its maximum at xr, where xr satisfies the equation αxα−1
r + 1

1+xr
=

− log r. Hence lim
r→1−

xr ·
(

α
1−r

) 1
α−1 = 1.

We obtain

∆(r) ·M−1
α (r) = O

( 1

(1− r)
1

1−α

)
as r → 1−.

Since K2,τα
(r) 6 π√

6
·∆(r) for 0 6 r < 1, this gives

(5.10) K2,τα
(r) ·M−1

α (r) = O
( 1

(1− r)
1

1−α

)
, r → 1−.

Fix c ∈ (0, 1), and set

(5.11) f(λ) = ep(λ)− 1
(1−λ)c , λ ∈ D.

We have |f ′(λ)| = o(eL(|λ|)), |λ| → 1−. Hence, by (5.9), |f ′(λ)| = o(Mα(|λ|).
By standard properties of the Legendre transform, τ−1

α (n) = inf
0<r<1

Mα(r) · r−n.

It follows then from Cauchy’s inequalities that lim
n→∞

n|f̂(n+1)|τα(n) < +∞,

and so f ∈ Hτα
(D).

Let F (λ) = e
2

(1−λ)c for λ ∈ D. The function F is outer on D, since 0 < c < 1.
This implies as well-known that F |Int γ is outer on Int γ.

It follows from (5.10) that we have

log |K2,τα
(|λ|)|− log |f(λ)| = logMα(|λ|)−Re p(λ)+Re

1
(1− λ)c

+o
(

log
1

1− |λ|

)
as |λ| → 1−. Using (5.9), we obtain

(5.12) lim
|λ|→1
λ∈γ

K2,τα(|λ|)|f−1(λ)| · |F−1(λ)| = 0.

Clearly, |f(x)| = o(F−1(x)) as x → 1−, and the theorem follows then from
Lemma 5.2.

Notice that since the function λ → e
λ+1
λ−1 is outer on the angle {ξ ∈ C :

| arg(1 − ξ)| < βπ} for every β < 1/2, we can show using similar arguments that
the function

f : λ→ (1− λ)
1

1−α · exp
( pα∑

k=0

ak

(1− λ)
α

1−α−k

)
· exp

λ+ 1
λ− 1

is an element of Hτα
(D) which is not z-cyclic. We leave the details to the reader.

Very recently, Atzmon ([3], [4]) obtained important new results concerning
existence of translation invariant subspaces of `ω. In order to describe his results
we need to introduce some notation. Let ϕ be a nonnegative, piecewise smooth,
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concave function on [0,∞) such that ϕ(t) = O(t) as t → 0+ and ϕ(t) = o(t) as
t→∞. Set

(5.13) J(ϕ) =

∞∫
1

ϕ(t)
t3/2

dt.

Now define ϕ∗c(x) for x > 0 by the formulae

ϕ∗c(x) = c
√
x if J(ϕ) < +∞, c > 0;(5.14)

ϕ∗c(x) =
x3/2

π

∞∫
0

ϕ(t)
t3/2(x+ t)

dt if J(ϕ) = +∞, c ∈ R.(5.15)

Denote by H0(C) the space of entire functions of exponential type and — ϕ∗c
being defined by (5.14) or (5.15) — set

(5.16)
Bϕ(c) =

{
f ∈ H0(C) : ‖f‖ϕ :=

[ ∞∫
0

|f(t)|2 · e2ϕ(t) · dt
]1/2

< +∞

and |f(−t)| = O(eϕ∗c(t)) as t→∞
}
.

It follows from [3], [4] that the spaces Bϕ(c) are infinite dimensional Hilbert
spaces with respect to the norm ‖ · ‖ϕ, and that convergence in these spaces implies
uniform convergence on compact subsets of C.

Also, if f ∈ Bϕ(c) and s ∈ R then fs : z → f(z + s) belongs to Bϕ(c). Now
assume that ϕ satisfies the following condition

(5.17) |ϕ(x+ 2) + ϕ(x)− 2ϕ(x+ 1)| = O(x−1)(x→∞).

Then there exists a > 0, b > 0 such that we have for f ∈ Bϕ(c)

(5.18) a
[ ∞∑

n=0

|f̂(n)|2e2ϕ(n)
]1/2

6 ‖f‖ϕ 6 b
[ ∞∑

n=0

|f(n)|2 · e2ϕ(n)
]1/2

.

Also, if (5.17) is satisfied then the spaces Bϕ(c) are stable under differenti-
ation, and the differentiation operator D : f → f ′ is bounded and quasinilpotent
on Bϕ(c).

Let ω ∈ S+ such that ω(0) = 1. Assume that ω−1|Z+ is log-convex. Let ϕ be
the function continuous on [0,∞) and affine on each interval [n, n+1] which satisfies
ϕ(n) = logω(n) for n > 0. The notation being as above, set ω∗c (n) = eϕ∗c(n) for
n > 1. Atzmon ([3], Theorem 4.2) showed that `ω possesses nontrivial translation
invariant subspaces if ω satisfies the two following conditions

(5.19) sup
n>1

[ω(n− 1) · ω(n+ 1)
ω2(n)

]−n

< +∞,

(5.20) lim inf
n→∞

logω−1(−n)
logw∗c (n)

> 1 for some c.
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Here c > 0 if J(ϕ) < +∞, and c ∈ R if J(ϕ) = +∞. The translation invariant
subspaces constructed by Atzmon have the form {(g(n))n∈Z : g ∈ Bϕ(c)}. We
refer to [3] and [4] for various examples of weights satisfying these conditions.

Using this construction, Atzmon showed that if τ ∈ S+ is log-convex and
satisfies:

(5.21) sup
n>0

[τ(n+ 1) · τ(n− 1)
τ(n)2

]n

< +∞

then Hτ contains a proper z-invariant subspace M such that Z(M) = ∅.
Let M be a z-invariant subspace of Hτ . Define TM : M⊥ →M⊥ by the fol-

lowing formula analogous to (2.8), where we denote by P the orthogonal projection
of Hτ onto M⊥

(5.22) TM · P = P · T.

Then TM = (T ∗|M⊥)∗, according to (2.13), and M has the division property iff
σ(TM ) ⊂ T. In fact, Atzmon’s construction gives a result much stronger that the
existence of zero-free z-nvariant subspaces.

Theorem 5.4. Let τ ∈ S+ be log-convex. If τ satifies (5.21), then Hτ

contains proper z-invariant subspaces M having the division property such that
σ(TM ) = {1}.

Proof. More general results will be proved in [5], but we give the details for
the sake of completeness. We can assume that τ(0) = 1. Let ϕ be a function con-
tinuous on [0,∞) and affine on each interval [n, n+1] such that ϕ(n) = log τ−1(n)
for n > 0. Then ϕ is log-concave on [0,∞), and we can apply to ϕ Atzmon’s
construction. Since τ satisfies (5.19), ϕ satisfies (5.17).

We can identify H∗
τ to `τ−1 := `2τ−1(Z+), the duality being implemented by

the formula

(5.23) (f, v) =
∞∑

n=0

f̂(n) · vn, f ∈ Hτ , v = (vn)n>0 ∈ `τ−1 .

Now set Nc = {(g(n))n>0 : g ∈ Bϕ(c)}, and set Mc = {f ∈ Hτ : (f, v) =
0, v ∈ Nc}. It follows from (5.18) that Nc is a closed subspace of `τ−1 .

Now define the backward shift R on `τ−1 by the formula

(5.24) R · (vn)n>0 = (vn+1)n>0, (vn)n>0 ∈ `τ−1 .

We have

(5.25) (zf, v) = (f,Rv), f ∈ Hτ , v ∈ `τ−1 .

For g ∈ Bϕ(c), s ∈ R, set Vs · g = gs, where gs(z) = g(z + s), z ∈ C. Then
Vs · g ∈ Bϕ(c) for g ∈ Bϕ(c), s ∈ R. In particular R(Nc) ⊂ Nc, and so, by (5.25),
Mc is z-invariant.

The differentiation operator D : g → g′ is quasinilpotent on Bϕ(c). We have,
for g ∈ Bϕ(c), z ∈ C

(eD · g)(z) =
∞∑

n=0

g(n)(z)
n!

= g(z + 1).
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Hence eD = V1, and σ(V1) = {1}. Let θ : g → g|Z+ be the restriction map
from Bϕ(c) onto Nc. Then θ is bijective and continuous, and Rc := R|Nc satisfies
Rc = θ ◦ V1 ◦ θ−1. Hence σ(Rc) = σ(V1) = {1}.

Now denote by M⊥
c the orthogonal of Mc in Hτ , taken in the usual Hilbert

space sense.
For h ∈ Hτ set ρ(h) = (τ2(n) · ĥ(n))n>0. Then ρ : Hτ → `τ−1 is unitary, and

we have, for f ∈ Hτ and h ∈ Hτ .

(5.26) 〈f, h〉 = (f, ρ(h)).

Denote again by T : f 7→ z · f the usual shift on Hτ . Let f, h ∈ Hτ .
Using (5.24), we obtain (f, (ρ ◦ T ∗)(h)) = 〈f, T ∗ · h〉 = 〈z · f, h〉 = (z · f, ρ(h)) =
(f, (R ◦ ρ)(h)). Hence ρ ◦ T ∗ = R ◦ ρ. Clearly, ρ(M⊥

c ) = Nc. Let ρc = ρ|M⊥
c .

Then ρc : M⊥
c → Nc is unitary. Since ρc ◦ (T ∗|M⊥

c ) = Rc ◦ ρc, T ∗|M⊥
c is unitarily

equivalent to Rc. Hence σ(T ∗|M⊥
c ) = σ(Rc) = {1}. Since TMc = (T ∗|M⊥

c )∗,
σ(TMc) = {1}, which concludes the proof of the theorem.

Notice that, by slightly modifying the notation of the proof of Theorem 5.4,
we can identify (Hτ )∗ to Hτ−1 by using the formula

(5.27) (f, g) =
∞∑

n=0

f̂(n) · ĝ(n), f ∈ Hτ , g ∈ Hτ−1 .

Assume that M is a z-invariant subspace of Hτ which has the division prop-
erty, and let M⊥ be the orthogonal of M in Hτ−1 with respect to formula (5.27).
Denote by R the backward shift on Hτ−1 , and set RM = R|M⊥. We see as above
that RM is unitarily equivalent to T ∗M .

For g ∈ Hτ−1 we have

(1, (1− λR)−1 · g) = ((1− λT )−1 · 1, g) =
∞∑

n=0

λn · ĝ(n) = g(λ), λ ∈ D.

For g ∈M⊥ we obtain

(5.28) g(λ) = (1, (1− λRM )−1 · g), λ ∈ D.

Formula (5.28) defines an analytic extension of every g ∈M⊥ to C∞\σ(TM ), where
we denote by C∞ the Riemann sphere. The link between g and its extension to
C∞\D given by (5.28) is unclear when σ(TM ) = T. When σ(TM ) = {1}, of course,
g extends analytically to C∞ \ {1}.

Assume again that σ(TM ) = {1}. We can then define logRM = log(1 +
(RM − 1)) by the usual series, and logRM is a quasinilpotent operator. Set for
z ∈ C

Rz
M = ez log RM ,(5.29)

G(z) = (1, Rz
M · g).(5.30)

Clearly, G is an entire function of zero exponential type, and G(n) =
(Tn · 1, g) = ĝ(n) for n ∈ Z+. This well-known argument gives a way to asso-
ciate to each z-invariant subspace M of Hτ such that σ(TM ) = {1} a Hilbert
space M̃ of entire functions of zero exponential type, and it is easy to see that the
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differentiation operator is a bounded, quasinilpotent operator on M̃ . This theory,
due to Atzmon, will be developed in [5].

We did not investigate the spectrum of TM where M =
∨

n>0

zn · ϕc is the

singly generated z-invariant subspace having the division property constructed in
Theorem 5.3. In the “abstract Keldysh method” the behavior of some functions
f ∈ Hτ near 1 is the only ingredient of the construction, and there are good
reasons to think that Nikolskii’s method and Atzmon’s method play a dual role:
Atzmon constructs closed subspaces of Hτ−1 invariant for the backward shift, and
their orthogonal complements give z-invariant subspaces of Hτ having the divison
property, while Nikolskii constructs directly functions in Hτ without zeroes in D
which are not z-cyclic in Hτ .

The comparison between these two methods clearly deserves more investiga-
tions.

Another method was introduced recently by Borichev and Hedenmalm ([12])
to construct functions without zeroes in the Bergman space B2 which are not z-
cyclic. Answering negatively a question of Korenblum, they constructed a function
f ∈ B2 which is not z-cyclic and has no zeroes in D, such that 1/f ∈ B2. This
method was developed by Hedenmalm and the second author ([26]) to produce
functions without zeroes in D which are not z-cyclic in the Banach space

E1 =
{
f ∈ H(D) : sup

z∈D
|f(z)|e−

1
1−|z| < +∞

}
.

This construction, which can certainly be adapted to weighted Hardy spaces,
is rather different from the Keldysh method: the points where |f | attains “extremal
rates of increase” and “extremal rates of decrease” accumulate on the whole circle.
This direction seems promising to construct z-invariant subspaces M of Hτ having
the division property for which the sequence (τM (n))n>1 introduced in Definition
2.7 grows as slowly as possible (notice that in the case of the Hardy space H2 the
fastest rate of growth for τM (n) is given by the spaces Mc = ec z+1

z−1 ·H2, c > 0).
If (τ(n))n>0 is decreasing, the shift T on Hτ (D) belongs to the class A of

Brown-Chevreau-Pearcy (and T ∈ Aℵ0 if τ(n) −→
n→∞

0, see [6], [7], [15], [18] and

[19]). In the second case the lattice of z-invariant subspaces of Hτ is very rich:
given any bounded operator V on the separable Hilbert space such that ‖V ‖ < 1,
there exists two z-invariant subspaces M and N of Hτ with N ⊂M , such that V
is unitarily equivalent to the compression to M 	 N of the shift T on Hτ . This
method also shows that given any inner function U , there exists f, g ∈ Hτ such
that 〈f, g〉 = 1 and 〈zn · U · f, g〉 = 0 for n > 0, so that the spaces

∨
n>0

zn · f and∨
n>0

zn · U · f are distinct, but have the same zero set if U is singular. It was not

possible so far to perform this construction in order to obtain a function f without
zeroes in D.

We conclude the paper by mentioning an interesting result of Borichev ([11]).
Applied to the weighted Hardy spaces Hτ , τ ∈ S+, his construction, based

on lacunary series, shows that if lim inf
n→∞

τ(n) = 0 then for every p, 2 6 p 6 ∞
there exists a z-invariant subspace Mp of Hτ such that Z(Mp) = ∅ and such
that dim(Mp 	 zMp) = p. Unfortunately, we need dim(M 	 zM) = 1 to have
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the division property, and it follows from the discussion in Section 2 that for the
spaces Mp constructed by Borichev we have σ(TMp

) = D, where TMp
is defined by

(2.13) (while σ(TM ) ⊂ T if M is a z-invariant subspace of Hτ having the division
property).

Note added in proof. After this paper was submitted Borichev, Hedenmalm and
the second author developped in “Large Bergman spaces: invertibility, cyclicity, and
subspaces of arbitrary index” a new method to produce noncyclic elements without ze-
roes in the open unit disc for a very large class of weighted Bergman spaces. They
obtain in particular in this preprint nontrivial analytic translation invariant subspaces
for some quasianalytic weights with odd logarithm, which are completely different from
the translation invariant subspaces constructed by Domar in [21]. The question of ex-
istence of nontrivial translation invariant subspaces having the division property in ar-
bitrary weighted Bergman spaces (or equivalently, in weighted Hardy spaces associated
to arbitrary log-convex weights) remains open. In a very different direction A. Atzmon
constructed non trivial translation invariant subspaces of lω for all even weights on Z
(see “On the existence of translation invariant subspaces of symmetric self-adjoint se-
quence paces on Z”, to appear in J. Funct. Analysis). His short and elegant proof is
indirectly related to some recent developments of the method of Lomonossov (see “An
extension of Lomonosov’s techniques to non-compact operators”, Trans. Amer. Math.
Soc. 348(1996), 975–995, by A. Simonic).

Acknowledgements. The authors wish to thank A. Atzmon and N.K. Nikolskii for
fruitful discussions during the preparation of this paper, and A. Borichev and the referee
for their pertinent comments, which helped to improve the final version and shorten
several proofs.
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19. B. Chevreau, Sur les contractions à calcul fonctionnel isométrique. II, J. Operator
Theory 20(1988), 269–293.

20. Y. Domar, On spectral synthesis in commutative Banach algebras using ideals of
finite codimension, Lecture Notes in Math., vol. 336, Springer Verlag, New
York 1973, pp. 63–78.

21. Y. Domar, Entire functions of order 6 1, with bounds on both axes, Ann. Acad. Sci.
Fenn. Ser. A I Math. 22(1997), 339–348.

22. J. Esterle, Singular inner functions and invariant subspaces for dissymetric weighted
shifts, J. Funct. Anal. 144(1997), 64–104.

23. J. Esterle, A. Volberg, Sous-espaces invariants par translation bilatérales de
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