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Abstract. For symmetric operators S, we consider differential Schatten
algebras Cp,q

S of compact operators A from Cp with SA − AS belonging to
Cq. These algebras are analogues of the Sobolev W 1

p,q spaces. We study
their approximation property: whether every operator is approximated by
finite rank operators, and the existence of approximate identities. For non-
selfadjoint S, we show that Cp,q

S have no bounded approximate identities and
the product of any two operators is approximated by finite rank operators.
For selfadjoint S, Cp,q

S have approximate identities consisting of finite rank
operators and hence, have the approximation property. These identities are
bounded only if p = ∞. The existence of a bounded identity for C∞,1

S is
equivalent to 1-semidiagonality of S.
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1. INTRODUCTION AND PRELIMINARIES

Extensive development of non-commutative differential geometry requires elabo-
rating of the theory of differential Banach ∗-algebras, that is, dense ∗-subalgebras
of C∗-algebras whose properties in many respects are analogous to the proper-
ties of algebras of differentiable functions. In this paper we study the class of
the differential Schatten ∗-algebra Cp,q

S , p, q ∈ [1,∞], associated with symmetric
operators S. These algebras consist of operators X from Cp with the derivative
δS(X) = i(SX−XS) belonging to Cq. In the same way as the Schatten ideals Cp

are non-commutative analogous of Lp-spaces, the differential Schatten ∗-algebra
Cp,q

S are the analogous of the Sobolev W 1
p,q-spaces. We investigate the structure
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and various properties of these algebras; in particular, the approximation property
and the existence of approximate identities.

Blackadar and Cuntz ([1]) and the authors ([9]) introduced and studied var-
ious classes of differential Banach ∗-algebras; the most interesting class consists of
D-subalgebras of C∗-algebras (A, ‖ · ‖), that is, dense ∗-subalgebras A of A which,
in turn, are Banach ∗-algebras with respect to another norm ‖ · ‖1 and the norms
‖ · ‖ and ‖ · ‖1 on A satisfy the inequality:

(1.1) ‖xy‖1 6 D(‖x‖ ‖y‖1 + ‖x‖1 ‖y‖), for x, y ∈ A,

for some D > 0. This class contains, for example, the algebras of differentiable
functions, symmetrically normed ideals of C(H) ([5]) and the domains D(δ) of
closed unbounded ∗-derivations δ of C∗-algebras with the norm ‖ · ‖1 defined by
the formula ‖x‖1 = ‖x‖+ ‖δ(x)‖, for x ∈ D(δ). In all these cases D = 1; the case
when D > 1 corresponds, roughly speaking, to the higher derivations.

In [11] and [12] the authors studied some D-subalgebras of the algebra of all
compact operators. This paper is a continuation of this study and investigates
various properties of differential Schatten ∗-algebras.

Any closed symmetric operator S on a Hilbert space H implements closed
∗-derivations of various operator C∗-algebras on H; the largest one, δS , whose
domain we denote by AS is defined as follows:

(1.2)

AS = {A ∈ B(H) : AD(S) ⊆ D(S), A∗D(S) ⊆ D(S),

(SA−AS)|D(S) extends to a bounded operator}
and

δS(A) = i Closure(SA−AS), for A ∈ AS .

The algebra AS is a unital Banach ∗-algebra with respect to the norm

‖A‖S = ‖A‖+ ‖δS(A)‖

and contains the domains of all derivations implemented by S.
By C(H) we denote the algebra of all compact operators on H. For A∈C(H),

let {si(A)}∞i=1 be all eigenvalues of the positive compact operator (A∗A)1/2. For
any 0 < p < ∞, set

|A|p =
( ∞∑

i=1

si(A)p

)1/p

.

The Schatten class Cp = Cp(H) consists of all compact operators A for which
|A|p < ∞. In particular, C1 consists of all trace class operators on H. Set

C∞ = C(H), with |A|∞ = ‖A‖, for A ∈ C(H),
and

Cb = B(H), with |A|b = ‖A‖, for A ∈ B(H),

and assume that ∞ < b. For p > 1, (Cp, | · |p) is a Banach ∗-algebra.
Let S be a closed symmetric operator on H. For p, q ∈ [1,∞],

Cp,q
S = {A ∈ Cp ∩ AS : δS(A) = i Closure(SA−AS) ∈ Cq}
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are dense ∗-subalgebras of C(H) and are the domains of the largest closed ∗-
derivations from Cp into Cq implemented by S. When endowed with the norms

|A|p,q = |A|p + |δS(A)|q, for A ∈ Cp,q
S ,

they become Banach ∗-algebras which we call the differential Schatten ∗-algebras.
By Fp,q

S we denote the closure with respect to | · |p,q of the set of all finite rank
operators in Cp,q

S .
The Schatten ideals Cp are non-commutative analogous of Lp-spaces. Similar

to the classical Sobolev’s construction, for any derivation δ from Cp into Cq, one
can consider the algebra W δ

p,q which consists of operators X from Cp with δ(X)
belonging to Cq. In Section 2 we show that if A is a D-subalgebra of an operator
C∗-algebra A on H and if C(H) ⊆ A then any closed derivation δ from A into Cp,
1 6 p, is implemented by a symmetric operator S : δ = δS |D(δ). Hence any closed
derivation δ from Cp into Cq, 1 6 p, q, is implemented by a symmetric operator S,
so that W δ

p,q = Cp,q
S .

The algebras Cp,q
S constitute a wide class of symmetric Banach ∗-algebras

with a rich and interesting structure. The natural problems which arise for these
algebras — the structure of their ideals and representations and the existence of
an approximate identity — are closely linked with important problems of Op-
erator Theory. In particular, the theory developed in this paper relies heavily
on Voiculescu’s theory of quasidiagonalization modulo operator ideals and on the
analogue of Weyl-von Neumann theorem for Schatten ideals.

In Section 3 we show that the algebras Fp,q
S and Cp,q

S are D-subalgebras of
C(H) and find necessary and sufficient conditions for the algebras Cp,q

S and Cp′,q′

S
to coincide in the case when S is selfadjoint.

Sections 4 and 5 focus on the investigation of two problems concerning the
algebras Cp,q

S . The first one is the approximation property: whether every oper-
ator in Cp,q

S is approximated by finite rank operators. In other words, whether
Cp,q

S = Fp,q
S . The second one is the existence of a bounded or unbounded approx-

imate identity. The existence of an approximate identity consisting of finite rank
operators implies, clearly, a positive answer to the first problem.

As can be easily predicted, the algebras Cp,q
S fall into two categories. The first

category consists of the algebras corresponding to symmetric but non-selfadjoint
operators S. In Proposition 5.8 we prove that these algebras have no bounded
approximate identities. However, it is unknown whether they have unbounded
approximate identities or the approximation property. Section 4 is devoted to
establishing the fact that any product of two operators from Cp,q

S is approximated
by finite rank operators, that is, (Cp,q

S )2 ⊆ Fp,q
S .

The second category — easier to work with — consists of the differential
Schatten algebras Cp,q

S corresponding to selfadjoint operators S. In Theorem 5.4
we show that in this case the algebras Cp,q

S have approximate identities consisting
of finite rank operators and, hence, have the approximation property. Moreover,
the approximate identity is bounded only if p = ∞. For q 6= 1 and p = ∞, a
bounded approximate identity always exists.

The case when (p, q) = (∞, 1) is more subtle. If S is a bounded selfad-
joint operator of finite multiplicity, the algebra C∞,1

S has a bounded approximate
identity. If S has infinite multiplicity or is unbounded, we prove in Theorem 5.9
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that the existence of a bounded approximate identity in C∞,1
S is equivalent to

1-semidiagonality of S in terms of [15]. Voiculescu ([16]) found an excellent char-
acterization of this condition: the integral of the spectral multiplicity of the abso-
lutely continuous part of S converges (see Theorem 5.6).

In Section 6 we apply the results of Section 5 to describe the dual and
the second dual spaces of the differential Schatten algebras. We show that, for
1 < p, q < ∞ and any symmetric S, the algebras Fp,q

S and Cp,q
S are reflexive. If S

is bounded, C∞,∞
S = C(H) and Cb,b

S = AS = B(H), so that Cb,b
S is isometrically

isomorphic to the second dual of C∞,∞
S . In [12] this result was extended to un-

bounded selfadjoint operators S. Making use of the approximation property of the
algebras Cp,∞

S and C∞,q
S for selfadjoint S, we establish the full analogy with the

bounded case: the algebras Cp,b
S (respectively Cb,q

S ) are isometrically isomorphic
to the second duals of the algebras Cp,∞

S (respectively C∞,q
S ). These results will

be used in the subsequent paper on positive functionals and representations of the
algebras Cp,q

S on the Pontryagin Πκ-spaces.

2. DERIVATIONS OF ALGEBRAS Cp

Let (A, ‖ · ‖A) be a normed ∗-algebra and (B, ‖ · ‖B) be a Banach A-bimodule
with involution ∗ such that ‖B∗‖B = ‖B‖B, for B ∈ B. A map δ from a dense
∗-subalgebra D(δ) of A (called the domain of δ) into B is a ∗-derivation if

(2.1) δ(AB) = Aδ(B) + δ(A)B and δ(A∗) = δ(A)∗, for A,B ∈ A.

A derivation δ is closable if An → 0 and δ(An) → B implies B = 0 and closed if
An → A and δ(An) → B implies A ∈ D(δ) and δ(A) = B.

It was proved in [2] that if A is a C∗-subalgebra of B(H) containing the
ideal C(H) then any closable ∗-derivation δ of A into B(H) is implemented by a
densely defined symmetric operator S on H, that is,

(2.2) AD(S) ⊆ D(S) and δ(A)|D(S) = i(SA−AS)|D(S), for A ∈ D(δ).

Theorem 2.1 extends this result to D-subalgebras of B(H).
Let A be a ∗-subalgebra of B(H) and a Banach ∗-algebra with respect to

a norm ‖ · ‖A. By A we denote the uniform closure of A in B(H). Let B be a
symmetric linear manifold in B(H), that is, B ∈ B implies B∗ ∈ B and assume
that B has a norm ‖ · ‖B such that (B, ‖ · ‖B) is a Banach space,

(2.3) ‖B∗‖B = ‖B‖B and ‖B‖ 6 ‖B‖B, for B ∈ B.

The algebra A has two norms ‖ · ‖ and ‖ · ‖A. Suppose that (B, ‖ · ‖B) is a
(A, ‖ · ‖)-bimodule, that is,

(2.4) ‖AB‖B 6 ‖A‖ ‖B‖B and ‖BA‖B 6 ‖B‖B ‖A‖, if A ∈ A and B ∈ B.

Theorem 2.1. Let δ be a closed ∗-derivation from (A, ‖·‖A) into (B, ‖·‖B)
and let formulae (2.3) and (2.4) hold. If A is a D-subalgebra of the C∗-algebra
A and C(H) ⊆ A then δ is a closable derivation from (A, ‖ · ‖) into B(H) and is
implemented by a symmetric operator.



Differential Schatten ∗-algebras 307

Proof. Set ‖A‖δ = ‖A‖A + ‖δ(A)‖B, for A ∈ D(δ). Since δ is closed,
(D(δ), ‖ · ‖δ) is a Banach space and

‖A∗‖δ = ‖A∗‖A + ‖δ(A∗)‖B = ‖A‖A + ‖δ(A)∗‖B = ‖A‖A + ‖δ(A)‖B = ‖A‖δ.

It follows from (2.1) and (2.4) that for A,B ∈ D(δ),

(2.5)
‖AB‖δ = ‖AB‖A + ‖δ(AB)‖B 6 ‖A‖A ‖B‖A + ‖Aδ(B)‖B + ‖δ(A)B‖B

6 ‖A‖A ‖B‖A + ‖A‖ ‖δ(B)‖B + ‖δ(A)‖B ‖B‖.

Taking into account (2.3), we obtain that ‖AB‖δ 6 ‖A‖δ ‖B‖δ, so (D(δ), ‖ · ‖δ) is
a Banach ∗-algebra.

It is well known (see [3], Section 1.3.7) that ‖A‖ 6 ‖A‖A, for A ∈ A. Since
D(δ) is dense in A with respect to ‖ · ‖A, it is also dense in A with respect to the
norm ‖·‖. The algebra D(δ) has three norms ‖·‖, ‖·‖A and ‖·‖δ. Since (A, ‖·‖A)
is a D-subalgebra of A, there is D > 0 such that

‖AB‖A 6 D(‖A‖ ‖B‖A + ‖A‖A ‖B‖), for A,B ∈ D(δ).

It follows from (2.5) that

‖AB‖δ 6 ‖A‖ ‖B‖δ + ‖A‖A ‖B‖A + ‖A‖δ ‖B‖

and we conclude that D(δ) is a differential algebra of order 2. (Differential algebras
of order p ∈ N were introduced in [1] and studied in [1] and [9].)

Adding if necessary the identity 1l to A and setting δ(1l) = 0, we may assume
that 1l ∈ D(δ). Since C(H) ⊆ A, it follows from Lemma 6 and Theorem 13 of [9]
that C(H) ∩D(δ) is dense in C(H).

Let A∗ = A ∈ C(H) ∩ D(δ), let 0 6= λ ∈ Sp(A) and Hλ be the finite-
dimensional subspace of all eigenvectors of A corresponding to λ. Choose a neigh-
bourhood U of λ such that U∩Sp(A) = λ and let f(t) be an infinitely differentiable
function on R vanishing outside U and f(λ) = 1. Then f(A) is the projection
on Hλ and, by Theorem 12 of [9], it belongs to D(δ).

Since C(H)∩D(δ) is dense in C(H),Hλ is a cyclic set for A: linear combina-
tions of vectors Ax, A ∈ A, x ∈ Hλ, are dense in H. Making use of Corollary 27.18
of [10], we obtain that there exists a densely defined symmetric operator S which
implements δ.

To show that δ is closable with respect to the norm ‖ · ‖ on A and B, we
assume that operators An from D(δ) converge to 0 and δ(An) converge to B with
respect to ‖ · ‖. Then for any x ∈ D(S), it follows from (2.2) that

Bx = lim δ(An)x = lim i(SAn −AnS)x = i lim SAnx− i lim AnSx = i limSAnx.

Since Anx → 0 and S is closable, Bx = 0. Thus B = 0 and δ is closable in ‖ · ‖.
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For p, q ∈ (0,∞), let Cp and Cq be the Schatten classes of operators. It is
well known (see [4] and [5]) that,

(2.6) Cp ⊆ Cq and |A|p > |A|q > ‖A‖, if p 6 q and A ∈ Cp.

For any A ∈ Cp, the operator A∗ belongs to Cp and

(2.7) |A∗|p = |A|p.

Let A ∈ Cp, B ∈ Cq and 1
p + 1

q = 1
r . Then AB ∈ Cr. If r > 1 then

(2.8) |AB|1 6 |AB|r 6 |A|p |B|q.

In particular, if A ∈ Cp and B ∈ Cb = B(H) then AB, BA ∈ Cp and

(2.9) |AB|p 6 |A|p ‖B‖ 6 |A|p |B|p and |BA|p 6 |A|p ‖B‖ 6 |A|p |B|p.

For p > 1, (Cp, | · |p) is a Banach ∗-algebra.

Corollary 2.2. Let A be a C∗-subalgebra of B(H) containing C(H) and
let (A, ‖ · ‖A) be a D-subalgebra of A. Any closed ∗-derivation from (A, ‖ · ‖A)
into (Cp, | · |p), for p > 1, is a closable derivation from (A, ‖ · ‖) into B(H) and
is implemented by a symmetric operator.

Proof. We obtain from (2.6) and (2.9) that formulae (2.3) and (2.4), linking
the norms ‖ · ‖ and | · |p, hold. Hence, the result follows from Theorem 2.1.

The algebras Cp are dense in C(H) and it follows from (2.9) and (1.1) that
(Cp, | · |p) are D-subalgebras of (C(H), ‖ · ‖).

Corollary 2.3. Any closed ∗-derivation from (Cp, | · |p) into (Cq, | · |q), for
p, q > 1, is a closable derivation from (C(H), ‖ · ‖) into B(H) and is implemented
by a symmetric operator T such that either T is selfadjoint or the deficiency
indices of T are (0,∞) or (∞, 0) or (∞,∞).

Proof. By Corollary 2.2, any closed ∗-derivation δ from Cp into Cq, p, q > 1,
is a closable derivation from C(H) into B(H) and is implemented by a sym-
metric operator S, that is, (2.2) holds for all A ∈ D(δ). It follows from Theo-
rem 3.11 (iii) (b) of [8] that there exists a symmetric extension T of S implement-
ing δ with the deficiency indices which satisfy the conditions of the corollary.

Remark 2.4. The results of Corollaries 2.2 and 2.3 hold if the algebras Cp

are replaced by any symmetrically normable ideal of C(H) (see [5]).
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3. DIFFERENTIAL ALGEBRAS Cp,q
S

Set T = [1,∞]∪ {b} and let S be a closed densely defined symmetric operator on
H. For p, q ∈ T , set

(3.1)
Cp,q

S = {A ∈ Cp ∩ AS : δS(A) = i Closure(SA−AS) ∈ Cq} and

|A|p,q = |A|p + |δS(A)|q, for A ∈ Cp,q
S .

Since Cp, Cq and AS (see (1.2)) are ∗-algebras and since δS is a closed ∗-derivation
on B(H) with domain AS , it follows from (2.6) that the restriction of δS to Cp,q

S
is a closed ∗-derivation from Cp into Cq. It also follows from (2.6) and (2.9) that
formulae (2.3) and (2.4) hold for all norms | · |p. Hence, from this and from the
discussion at the beginning of the proof of Theorem 2.1, we obtain the following
result.

Proposition 3.1. For any p, q ∈ T , (Cp,q
S , | · |p,q) is a Banach ∗-algebra and

the domain of the largest ∗-derivation from Cp into Cq implemented by S.

It is easy to see that (Cb,b
S , | · |b,b) = (AS , ‖ · ‖S),

Cp,q
S ⊆ Cr,t

S and |A|p,q > |A|r,t, if p 6 r, q 6 t and A ∈ Cp,q
S ;

|A|∞,∞ = |A|∞,b = |A|b,∞ = |A|b,b = ‖A‖S , for A ∈ C∞,∞
S .

For x, y ∈ H, the rank one operator x⊗ y on H is defined by the formula

(3.2) (x⊗ y)z = (z, x)y.

It is easy to check that

(3.3)
‖x⊗ y‖ = ‖x‖ ‖y‖, (x⊗ y)∗ = y ⊗ x, (x⊗ y)(u⊗ v) = (v, x)(u⊗ y),

R(x⊗ y) = x⊗Ry, and (x⊗ y)R extends to (R∗x)⊗ y,

if R is a densely defined operator, y ∈ D(R) and x ∈ D(R∗).
Let {ej}∞j=1 be a basis in H and x, y ∈ H. Then

(3.4) Tr(x⊗ y) =
∞∑

j=1

((x⊗ y)ej , ej) =
∞∑

j=1

(ej , x)(y, ej) = (y, x).

The operator A = x⊗ y belongs to Cp, for all p > 0. By (3.3), A∗A = ‖y‖2(x⊗x)
and (A∗A)1/2 = ‖y‖

‖x‖ (x⊗ x) has only one non-zero eigenvalue λ = ‖x‖ ‖y‖. Hence

(3.5) |x⊗ y|p = λ = ‖x‖ ‖y‖ = ‖x⊗ y‖.

Let S be a closed symmetric operator. It follows from Lemma 3.1 of [11]
that any finite rank operator in AS has the form

(3.6) A =
n∑

i=1

xi ⊗ yi where xi, yi ∈ D(S).

By ΦS we denote the set of all finite rank operators in AS . We obtain from (3.3)
that, for any A ∈ ΦS , the operator δS(A) also has a finite rank. Hence

ΦS ⊆ Cp,q
S ⊆ Cp, for any p, q ∈ T.
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For x, y ∈ H and z, u ∈ D(S), the operator A = x ⊗ y − z ⊗ u has rank less or
equal to two. Hence (A∗A)1/2 has not more than two non-zero eigenvalues and
they are less than ‖(A∗A)1/2‖ = ‖A‖. Therefore |A|p 6 2‖A‖ and, by (3.3),

‖A‖ = ‖x⊗y−z⊗u‖ 6 ‖x⊗y−x⊗u‖+‖x⊗u−z⊗u‖ = ‖x‖ ‖y−u‖+‖x−z‖ ‖u‖.
Since D(S) is dense in H, we have that ΦS is dense in the set of all finite rank
operators with respect to all norms | · |p, 0 < p 6 ∞. It is well known that finite
rank operators are dense in the algebra C(H) and in all algebras Cp, 1 6 p < ∞
(see [4], Lemma XI.9.11). This yields the following result.

Lemma 3.2. For any p ∈ T \ {b} and q ∈ T , the algebras ΦS and Cp,q
S are

dense in the algebra (Cp, | · |p).

We denote by Fp,q
S the closure of ΦS with respect to the norm | · |p,q. Clearly,

Fp,q
S are closed ∗-subalgebras of Cp,q

S ,

Fp,q
S ⊆ Fr,t

S , if p 6 r and q 6 t,

F∞,q
S = Fb,q

S , Fp,∞
S = Fp,b

S and F∞,∞
S = F∞,b

S = Fb,∞
S = Fb,b

S .

Proposition 3.3. (i) The algebras Fp,q
S and Cp,q

S , p, q ∈ T , are semisimple.
The algebras Fp,q

S have no closed two-sided ideals and Fp,q
S ⊆ I for any closed two-

sided non-trivial ideal I of Cp,q
S .

(ii) Let B be a bounded selfadjoint operator and R = S + B. If p 6 q then
Fp,q

S = Fp,q
R and Cp,q

S = Cp,q
R .

Proof. Let I be a closed two-sided ideal of (Fp,q
S , | · |p,q). Let A ∈ I and

x ∈ D(S) be such that A∗x 6= 0. For any y ∈ D(S), x ⊗ y ∈ ΦS ⊆ Fp,q
S . Hence,

by (3.3), (A∗x) ⊗ y = (x ⊗ y)A ∈ I. Since A ∈ AS , we have that A∗x ∈ D(S).
Therefore, for any z ∈ D(S), the operator z⊗A∗x belongs to ΦS . Hence, by (3.3),

((A∗x)⊗ y)(z ⊗ (A∗x)) = ‖A∗x‖2(z ⊗ y) ∈ I.

Thus ΦS ⊆ I, so Fp,q
S ⊆ I.

Similarly, Fp,q
S ⊆ I if I is a closed two-sided ideal of (Cp,q

S , | · |p,q).
If R is the radical of Cp,q

S or Fp,q
S and R 6= 0 then Fp,q

S ⊆ R. For x ∈ D(S)
and ‖x‖ = 1, x ⊗ x ∈ Fp,q

S and (x ⊗ x)n = x ⊗ x. Hence x ⊗ x /∈ R. This
contradiction shows that Cp,q

S and Fp,q
S are semisimple. Part (i) is proved.

Since B is bounded, D(R) = D(S). If A ∈ AS then

(3.7) δR(A)|D(R) = δS(A)|D(S) + i(BA−AB)|D(S)

is a bounded operator. Hence AS = AR.
Let A ∈ Cp,q

S . Then A ∈ Cp ∩ AS = Cp ∩ AR and δS(A) ∈ Cq. Since, by
(2.9), BA−AB ∈ Cp ⊆ Cq, it follows from (3.7) that δR(A) ∈ Cq. Thus A ∈ Cp,q

R ,
so Cp,q

S ⊆ Cp,q
R . Similarly, Cp,q

R ⊆ Cp,q
S , so that Cp,q

R = Cp,q
S .

It follows from (2.9), (3.1) and (3.7) that the norms | · |p,q generated by S
and R are equivalent. Since Fp,q

R and Fp,q
S are the closures of ΦS in these norms,

they coincide.

By Aq
S we denote the uniform closures of the algebras Cb,q

S . Since ΦS ⊆ Cb,q
S

and since ΦS is dense in C(H), Aq
S are C∗-algebras containing C(H).



Differential Schatten ∗-algebras 311

Proposition 3.4. The algebras (Cp,q
S , | · |p,q), p 6= b, and (Fp,q

S , | · |p,q)
are D-subalebras of C(H) with constant D = 1. The algebras (Cb,q

S , | · |b,q) are
D-subalgebras of Aq

S.

Proof. For any A,B ∈ Cp,q
S it follows from (2.9) and (3.1) that

|AB|p,q = |AB|p + |δS(AB)|q 6 ‖A‖ |B|p + |AδS(B)|q + |δS(A)B|q
6 ‖A‖ |B|p + ‖A‖ |δS(B)|q + |δS(A)|q ‖B‖ 6 ‖A‖ |B|p,q + |A|p,q ‖B‖.

Thus (Cb,q
S , | · |b,q) are D-subalgebras of Aq

S . Since ΦS ⊆ Fp,q
S ⊆ Cp,q

S ⊆ C(H), for
p 6= b, and since ΦS is dense in C(H), it follows that (Cp,q

S , | · |p,q), p 6= b, and
(Fp,q

S , | · |p,q) are D-subalgebras of C(H).

If S is bounded, the operator δS(A) = i(SA − AS) belongs to Cp for any
A ∈ Cp, so that Cp,q

S = Cp,p
S , for all q > p. If S is unbounded then all algebras

Cp,q
S are distinct. To establish this we need the following lemma.

Lemma 3.5. Let S be a selfadjoint operator on H.
(i) For any p ∈ T , there exists A ∈ Cp ∩ AS such that δS(A) ∈ C1 and

A /∈ Cp−ε for any ε > 0.
(ii) If S is unbounded then, for any p ∈ T , there exists B ∈ C1 ∩ AS such

that δS(B) ∈ Cp and δS(B) /∈ Cp−ε for any ε > 0.

Proof. There is a decomposition H =
∞⊕

n=−∞
H(n) such that all H(n) reduce

S and S|H(n) = λn1lH(n) + Tn, where ‖Tn‖ 6 1 and 0 ∈ Sp(Tn). Therefore, in
every H(n) we can choose xn such that ‖xn‖ = 1 and ‖Tnxn‖ 6 n−2.

Let p < ∞. Set A =
∞∑

n=−∞
αn(xn⊗xn), where αn = (|n| ln2 |n|)−1/p. Clearly,

A belongs to Cp and does not belong to Cp−ε for any ε > 0.

If y =
∞∑

n=−∞
yn ∈ D(S), where yn ∈ H(n), then

∞∑
n=−∞

‖λnyn + Tnyn‖2 < ∞.

Hence
∞∑

n=−∞
|λn|2 ‖yn‖2 < ∞. We have that Ay =

∞∑
n=−∞

αn(yn, xn)xn and

‖SAy‖2 =
∞∑

n=−∞
α2

n|(yn, xn)|2 ‖λnxn + Tnxn‖2 6
∞∑

n=−∞
α2

n‖yn‖2(|λn|2 + 1) < ∞,

so that AD(S) ⊆ D(S). It follows from (3.3) and (3.5) that

|δS(A)|1 = |SA−AS|1 =
∞∑

n=−∞
αn|xn ⊗ Tnxn − Tnxn ⊗ xn|1

6
∞∑

n=−∞
αn 2‖xn‖ ‖Tnxn‖ 6 2

∞∑
n=−∞

αnn−2 < ∞.

Therefore A ∈ Cp ∩ AS and δS(A) ∈ C1.
If p = ∞, set αn = (ln |n|)−1. Then A ∈ C∞ but it does not belong to

any Cq, q < ∞. Similar to the case p < ∞, we obtain that δS(A) ∈ C1 and
A ∈ C∞ ∩ AS .
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If p = b, set A = 1lH . Part (i) is proved.
Let S be unbounded. Then we can assume that |λn| > n, in the decomposi-

tion of S. Choose {nk}∞k=1 such that λnk+1 − λnk
> 2k. Let p < ∞. Set

B =
∞∑

k=1

βk(xnk
⊗ xnk+1), where βk = (λnk+1 − λnk

)−1(k ln2 k)−1/p.

Then sk(B) = βk 6 2−k, so that B ∈ C1. As above, it is easy to check that
BD(S) ⊆ D(S), so B ∈ C1 ∩ AS . We also have that

δS(B) = i(SB −BS)

=i
∞∑

k=1

βk(xnk
⊗ (λnk+1xnk+1+Tnk+1xnk+1))−i

∞∑
k=1

βk((λnk
xnk

+Tnk
xnk

)⊗ xnk+1)

=i
∞∑

k=1

βk(λnk+1−λnk
)xnk

⊗ xnk+1 +i
∞∑

k=1

βk(xnk
⊗ Tnk+1xnk+1−Tnk

xnk
⊗ xnk+1)

=i
∞∑

k=1

(k ln2 k)−1/p(xnk
⊗ xnk+1)+i

∞∑
k=1

βk(xnk
⊗ Tnk+1xnk+1−Tnk

xnk
⊗ xnk+1).

The second term belongs to C1. The first term belongs to Cp and does not belong
to Cp−ε for any ε > 0.

If p = ∞, set βk = (λnk+1 − λnk
)−1(ln k)−1. Then B ∈ C1 ∩ AS and

δS(B) belongs to C∞ but does not belong to any Cq, q < ∞. If p = b, set
βk = (λnk+1 − λnk

)−1. Then B ∈ C1 ∩ AS and δS(B) is a bounded but not
compact operator.

The next theorem describes the cases when Cp,q
S = Ch,t

S for selfadjoint S.

Theorem 3.6. Let S be a selfadjoint operator on H.
(i) If S is unbounded and (p, q) 6= (h, t) then Cp,q

S 6= Ch,t
S .

(ii) Let S be bounded . Then Cp,q
S = Ch,t

S if and only if p = h and there exist
λ ∈ R and r > 1 such that S − λ1lH ∈ Cr and 1

p + 1
r > max( 1

q , 1
t ). In this case

Cp,q
S = Ch,t

S = Cp.

Proof. Part (i) follows from Lemma 3.5.
Let S be bounded and S = λ1lH + T , where T ∈ Cr, r ∈ [1,∞] ∪ {b}. We

obtain from (2.9) that, for any A in Cp, δS(A) = i(SA−AS) belongs to Cs where
1
s = 1

p + 1
r . Hence Cp,s

S = Cp. If s 6 q and s 6 t then Cp,q
S = Cp,t

S = Cp,s
S = Cp.

Conversely, let Cp,q
S = Ch,t

S . It follows from Lemma 3.5 (i) that p = h. Since
S is bounded, we have that Cp,q

S = Cp,p
S = Cp, for all q > p. Therefore, we only

have to consider the case when q 6 p and t 6 p. Suppose that t < q 6 p.
It was shown in [7] that if SA−AS ∈ Ct, for all A ∈ Cp, then S = λ1lH + T

where λ ∈ R, T ∈ Cr and 1
p + 1

r = 1
t . Therefore, to finish the proof it suffices to

show that Cp,q
S = Cp,t

S = Cp.
Since S is bounded, Cq = Cq,q

S ⊆ Cp,q
S . Set

u = sup{y : Cy ⊆ Cp,q
S }.
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Then q 6 u 6 p. We shall show now that u = p. Let d be such that 1
q + 1

d = 1
t .

Choose y such that q 6 y 6 u and 1
y −

1
2d 6 1

u . Then Cy ⊆ Cp,q
S = Cp,t

S , so that
SA−AS ∈ Ct for all A ∈ Cy. It follows from the mentioned above result obtained
in [7] that in this case S = λ1lH + T where T ∈ Cr and 1

y + 1
r = 1

t .
Let z be such that 1

z + 1
d = 1

y . Then z > y and it follows from (2.9) that for
all A ∈ Cz, SA−AS = TA−AT ∈ Cx, where 1

z + 1
r = 1

x . We have that

1
x

=
1
z

+
1
r

=
1
y
− 1

d
+

1
r

=
1
t
− 1

d
=

1
q

and
1
z

=
1
y
− 1

d
<

1
y
− 1

2d
6

1
u

.

Hence u < z and x = q, so that SA−AS ∈ Cq, for all A ∈ Cz. If u < p, we have
a contradiction. Thus u = p and p < z, so that Cp = Cp,q

S = Cp,t
S .

Although, as we have seen above, the algebras Cp,q
S and Ch,t

S do not coincide
if p 6= h, in some cases they may only differ by “diagonal parts”.

By Zp
S we denote the subalgebra of all operators in Cp commuting with S:

Zp
S = Cp ∩ S′.

Since the commutant S′ is a weakly closed ∗-subalgebra of B(H), Zp
S is a closed

∗-subalgebra of Cp. If q 6 p then Cq,q
S + Zp

S ⊆ Cp,q
S . We consider below necessary

and sufficient conditions on the selfadjoint operator S under which

Cp,q
S = Cq,q

S + Zp
S , for all q 6 p,

but first we need some results about Schur multipliers.
Let {ei}∞i=−∞ be an orthogonal basis in a Hilbert space H. Every T ∈ B(H)

has a matrix representation T = (tij) where tij = (Tej , ei). A matrix M = (mij)
is called a Schur multiplier, if M ◦ T = (mijtij) is a matrix representation of a
bounded operator for any T ∈ B(H). In this case the map T → M ◦ T of B(H)
into itself is bounded; it will also be denoted by M and its norm by ‖M‖.

A matrix M is a Schur Cp-multiplier, 1 6 p 6 ∞, if M ◦ T ∈ Cp for any
T ∈ Cp. The map T → M ◦ T of Cp into itself is bounded; by ‖M‖p we denote
its norm. For example, since T = (tij) ∈ C2 if and only if

∑
i,j

|tij |2 < ∞, it follows

that M = (mij) is a Schur C2-multiplier if and only if max
i,j

|mij | < ∞. In this
case

(3.8) ‖M‖2 = max |mij |.
For any matrix M set

‖M‖l∞(l2) = sup
j

( ∑
i

|mij |2
)1/2

.

If ‖M‖l∞(l2) < ∞ then (see [13]) M is a Schur multiplier on B(H) as well as a
Schur Cp-multiplier for any 1 6 p 6 ∞ and

(3.9) ‖M‖p 6 ‖M‖ 6 ‖M‖l∞(l2).
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Let H =
∞⊕

i=−∞
Hi be the orthogonal sum of Hilbert spaces Hi. Every operator T

in B(H) has a block-matrix representation (Tij) where Tij are bounded operators
from Hj into Hi. For M = (mij) set

M̃ × T = (mijTij), for T ∈ B(H).

If M̃ × T ∈ B(H) for any T ∈ B(H), we denote by ‖M̃‖ the norm of the map
T → M̃ × T . If M̃ × T ∈ Cp for any T ∈ Cp, we denote by ‖M̃‖p the norm of the
map T → M̃ × T .

Proposition 3.7. Let H =
∞⊕

i=−∞
Hi and M = mij. If ‖M‖l∞(l2) < ∞

then, for any 1 6 p 6 ∞, M̃ × Cp ⊆ Cp and ‖M̃‖p 6 ‖M̃‖ = ‖M‖ 6 ‖M‖l∞(l2).

Proof. It was shown in [12] that if M is a Schur multiplier on B(H) then
M̃ × B(H) ⊆ B(H) and ‖M̃‖ = ‖M‖. If ‖M‖l∞(l2) < ∞, we obtain from (3.9)
that M is a Schur multiplier on B(H), so that M̃ ×B(H) ⊆ B(H).

It is well known (see, for example, [13]) that any Schur multiplier is also a
Schur C∞-multiplier and the norms coincide. Therefore M̃ × C(H) ⊆ C(H) and
‖M̃‖∞ = ‖M̃‖. Making use of complex interpolation (see [6], Theorem 3.5.2), one
can derive that M̃ × Cp ⊆ Cp, for any 1 6 p < ∞, and ‖M̃‖p 6 ‖M̃‖.

We say that a selfadjoint operator S has uniformly discrete spectrum if

d = inf{|λ− µ| : λ, µ ∈ Sp(S), λ 6= µ} > 0.

Theorem 3.8. If S has uniformly discrete spectrum then

(3.10) Cp,q
S = Cq,q

S + Zp
S ,

for all q < p. Conversely, if (3.10) holds for some q < p then S has uniformly
discrete spectrum.

Proof. Suppose that S has uniformly discrete spectrum. Then Sp(S) = {sn}
where sn are eigenvalues of S. Let Hn be the corresponding eigenspaces. We can
renumber them, if necessary, in such a way that sn+1 − sn > d, so that

|sn − sk| > |n− k|d.

Let Pn be the projections on the subspaces Hn. For any A ∈ Cp,q
S , the operator

A0 =
∑
n

PnAPn is bounded and commutes with S, the operator A′ = A − A0

belongs to AS and B = δS(A) = δS(A′). With respect to the decomposition H =⊕
n

Hn the operators A and B have the block-matrix representation A = (Ank),

B = (Bnk). Since B|D(S) = i(SA−AS)|D(S), we have

(3.11) Bnn = 0 and Bnk = i(sn − sk)Ank.

Consider the matrix M = mnk where mnk = −i(sn − sk)−1 and mnn = 0. Then

‖M‖l∞(l2) = sup
k

( ∑
n

|mnk|2
)1/2

6 d−1

( ∑
n 6=k

|n− k|−2

)1/2

< ∞.
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We obtain from (3.11) that A′ = M̃ × B = (mnkBnk). It follows from Propo-
sition 3.7 that M̃ × Cq ⊆ Cq. Since B ∈ Cq, we have that A′ ∈ Cq. Hence
A0 = A − A′ belongs to Cp and commutes with S, so that A0 ∈ Zp

S . Thus
Cp,q

S = Cq,q
S + Zp

S .
Let now (3.10) hold for some q < p. Suppose that K = H 	

⊕
n

Hn 6= {0}.

Then K reduces S and the restriction SK of S to K is selfadjoint and has no
eigenvalues. If a compact operator commutes with SK , its adjoint also commutes
with SK , so there is a selfadjoint compact operator A 6= 0 commuting with SK .
Hence, every eigenspace of A is invariant under SK and, since all of them are
finite-dimensional, SK has eigenvalues. This contradiction shows that there is no
compact operator commuting with SK , that is, Zp

SK
= {0} for 1 6 p 6 ∞.

By Lemma 3.5 (i), there exists an operator B on K such that B ∈ Cp,q
SK

and
B /∈ Cp−ε(K), for any ε > 0. Let Q be the projection on K. It commutes with S.
We can consider B as an operator on H. Then B ∈ Cp,q

S and QB = BQ = B.
Since (3.10) holds, B = A + C, where A ∈ Cq,q

S and C ∈ Zp
S . We have that

B = QBQ = QAQ + QCQ. Since Q commutes with S, QCQ ∈ Zp
SK

. By the
above argument, QCQ = 0, so B = QAQ. Since A ∈ Cq, B also belongs to Cq.
This contradiction shows that K = {0}, so H =

⊕
n

Hn.

Assume now that d = 0. We can choose pairs (nj , kj), 2 6 j < ∞, such that
nj > kj , all numbers n1, k1, n2, k2, . . . are distinct and |snj

− skj
| 6 2−j . Consider

an operator A = (Ank) such that Ank = 0 if (n, k) does not coincide with any of
the pairs (nj , kj) and Anjkj is a rank one operator with ‖Anjkj‖ = j−1/p ln−2/p(j).
Due to the choice of the pairs (nj , kj), the operator R = A∗A = Rnk is block-
diagonal such that the only non-zero elements are

Rkjkj = (Anjkj )
∗Anjkj and ‖Rkjkj‖ = ‖Anjkj‖2 = j−2/p ln−4/p(j).

It follows from (3.3) and (3.5) that all Rkjkj
are rank one positive operators with

eigenvalues µj = ‖Rkjkj
‖. Hence the eigenvalues of the operator R1/2 are λj =

(µj)1/2 = ‖Rkjkj‖1/2. Therefore

|A|p =
( ∑

j

λp
j

)1/p

=
( ∑

j

[j−1/p ln−2/p(j)]p
)1/p

=
( ∑

j

j−1 ln−2(j)
)1/p

< ∞,

so that A ∈ Cp ∩ AS and A /∈ Cp−ε, for any ε > 0.
Let D = (Dnk) ∈ Zp

S . Then D is block-diagonal and D+ A ∈ Cp ∩AS . One
can check that, due to the choice of the pairs (nj , kj), among the eigenvalues of
the operator (D + A)∗(D + A) there are distinct eigenvalues λmj

such that

λmj
> ‖(Dkjkj

)∗Dkjkj
+ (Anjkj

)∗Akjnj
‖ > ‖(Anjkj

)∗Akjnj
‖ = j−2/p ln−4/p(j).

Therefore, the eigenvalues (λmj )
1/2 of [(D + A)∗(D + A)]1/2 are not smaller than

j−1/p ln−2/p(j). From this it follows that D + A /∈ Cp−ε for any ε > 0.
We obtain from (3.11) that Bnk = 0 if (n, k) does not coincide with any of

the pairs (nj , kj) and Bnjkj
is a rank one operator with

‖Bnjkj
‖ = |snj

− skj
| ‖Anjkj

‖ 6 2−jj−1/p ln−2/p(j).
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It is easy to see that B ∈ C1 and, therefore, it belongs to any Cq, 1 6 q 6 p. From
this we conclude that A ∈ Cp,q

S and A /∈ Cq,q
S + Zp

S , so Cp,q
S 6= Cq,q

S + Zp
S . Thus,

we have shown that Cp,q
S = Cq,q

S + Zp
S , for some q < p, implies that the spectrum

of S is uniformly discrete.

4. APPROXIMATION PROPERTY OF ALGEBRAS Cp,q
S

An operator algebra A containing finite rank operators is said to possess the ap-
proximation property if any operator in A is approximated by finite rank operators.
For the algebras Cp,q

S this means that Cp,q
S = Fp,q

S . By Proposition 3.3, Cp,q
S has

approximation property if and only if it is simple.
The subalgebras F∞,∞

S , C∞,∞
S and C∞,b

S of AS were studied in [11] and
[12]. It was shown that if S is selfadjoint, the algebra C∞,∞

S has approximation
property. In Corollary 5.5 we extend this result and prove that all algebras Cp,q

S ,
p, q ∈ T \ {b}, have approximation property.

For non-selfadjoint S, we do not know whether the algebras Cp,q
S have ap-

proximation property. However, making use of the results about the structure of
D-algebras established in [11], we show in this section that the closures of (Cp,q

S )2

with respect to | · |p,q have this property, that is, they coincide with Fp,q
S . Thus,

the approximation problem is equivalent to the problem of the density of (Cp,q
S )2

in Cp,q
S . We start with the following lemma.

Lemma 4.1. Let 1
p + 1

x = 1
r , 1

p + 1
y = 1

s , 1
q + 1

x = 1
t and a = max(s, t). Then

ΦS ⊆ Fp,q
S Cx,y

S ⊆ Fr,a
S .

Proof. We obtain easily from (3.3) that (ΦS)2 = ΦS . Since all algebras Fp,q
S

and Cp,q
S , p, q ∈ T , contain ΦS , we obtain that ΦS ⊆ Fp,q

S Cx,y
S .

Let X ∈ Fp,q
S and Y ∈ Cx,y

S . Let {Xn}∞n=1 be elements of ΦS converging to
X in | · |p,q, that is, |X −Xn|p + |δS(X −Xn)|q → 0, as n →∞. Since Y preserves
D(S), we have that XnY ∈ ΦS . Then, by (2.6) and (2.8),

|XY −XnY |r,a = |(X−Xn)Y |r + |δS((X−Xn)Y )|a
6 |X−Xn|p |Y |x + |δS(X−Xn)Y |a + |(X−Xn)δS(Y )|a
6 |X−Xn|p |Y |x + |δS(X−Xn)Y |t + |(X−Xn)δS(Y )|s
6 |X−Xn|p |Y |x + |δS(X−Xn)|q |Y |x + |X−Xn|p |δS(Y )|y → 0

so that XY ∈ Fr,a
S .

Definition 4.2. Let i be an injective bounded linear map from a normed
space (X, ‖ · ‖X) into a normed space (Y, ‖ · ‖Y). A sequence {xn} in X is called
(∼)-converging to x ∈ X with respect to i if

‖i(x)− i(xn)‖Y → 0 and sup
n
‖xn‖X < ∞.

A subset M in X is (∼)-closed if it contains all (∼)-limits of its elements.
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Let ϕ be a closed linear map from a normed space (Y, ‖ · ‖Y) into a normed
space (Z, ‖ · ‖Z). The domain X of ϕ is a Banach space with respect to the norm
‖x‖X = ‖x‖Y + ‖ϕ(x)‖Z. By i we denote the identity map of X into Y.

Let Z∗ be the dual space of Z. By Ωϕ we denote the set of all F ∈ Z∗ such
that the functional Fϕ on X : Fϕ(x) = F (ϕ(x)), is bounded with respect to ‖ · ‖Y.
The following lemma was proved in [11] for subspaces but the proof easily extends
to closed convex subsets.

Lemma 4.3. If Ωϕ is norm dense in Z∗ then any closed convex subset in
(X, ‖ · ‖X) is (∼)-closed with respect to i.

For any p ∈ [1,∞], let p′ be the conjugate exponent of p

(4.1)
1
p

+
1
p′

= 1, if 1 < p 6 ∞, and p′ = b if p = 1.

We denote by jp,q the identity maps of Cp,q
S into Cp.

Lemma 4.4. For p 6= b and q > 1, any closed convex subset in (Cp,q
S , | · |p,q)

is (∼)-closed with respect to jp,q.

Proof. Replacing Y by Cp, Z by Cq and ϕ by δS in Lemma 3.7, we obtain
that in order to prove our lemma it suffices to show that the set Ωδ is norm dense
in the dual space (Cq)∗.

Since 1 < q, q′ ∈ [1,∞) and the algebra (Cq′ , |·|q′) is isometrically isomorphic
to (Cq)∗: any bounded linear functional on Cq has the form FT (A) = Tr(AT )
where T ∈ Cq′ . It follows from (3.4) that, for any T = x ⊗ y, x, y ∈ D(S), the
functional (FT )δ:

(FT )δ(A) = FT (δS(A)) = Tr(δS(A)T ) = iTr(x⊗ ((SA−AS)y))

= i(Ay, S∗x)− i(ASy, x)

extends to a bounded functional on Cp. Thus FT ∈ Ωδ. By Lemma 3.2, the set
of all linear combinations of such operators T is norm dense in Cq′ , so that Ωδ is
norm dense in (Cq)∗.

We denote by ip,q the identity maps of Cp,q
S into C∞ = C(H).

Lemma 4.5. If 1 < p 6 ∞ and 1 < q, then any closed convex subset in
(Cp,q

S , | · |p,q) is (∼)-closed with respect to ip,q.

Proof. If p = ∞ then i∞,q = j∞,q, so the result follows from Lemma 3.8.
Let 1 < p < ∞ and M be a closed convex subset in (Cp,q

S , |·|p,q). Let Xn from
M(∼)-converge to X with respect to ip,q : ‖X − Xn‖ → 0 and sup

n
|Xn|p,q 6 K;

we have to show that X ∈ M .
Clearly, |Xn|p 6 K for all n. Since Cp is isomorphic to the dual space of Cp′ ,

where 1
p + 1

p′ = 1, the ball of Cp of radius K is compact in the weak σ(Cp, Cp′)
topology on Cp. Hence the sequence {Xn}∞n=1 has a cluster point Y .
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Since 1 < p, Cp′ is isomorphic to the dual space of Cp and it follows from
Hahn-Banach Theorem that, for any m, Y belongs to the closed, in | · |p, convex
set generated by Xn,m 6 n. Hence, there are positive α

(m)
m , . . . , α

(m)
κ(m) such that

α(m)
m + · · ·+ α

(m)
κ(m) = 1 and |Y − Ym|p 6

1
m

,

where Ym = α
(m)
m Xm + · · · + α

(m)
κ(m)Xκ(m). Then Ym ∈ M , |Y − Ym|p → 0, as

m →∞, and

sup
m
|Ym|p,q = sup

m

(
α(m)

m |Xm|p,q + · · ·+ α
(m)
κ(m)|Xκ(m)|p,q

)
6 K.

Thus Ym (∼)-converge to Y with respect to jp,q. By Lemma 4.4, M is (∼)-closed
with respect to jp,q. Hence Y ∈ M .

We also have that

‖X − Y ‖ 6 ‖X − Ym‖+ ‖Ym − Y ‖

6 α(m)
m ‖X −Xm‖+ · · ·+ α

(m)
κ(m)‖X −Xκ(m)‖+ |Ym − Y |p → 0

as m →∞. Hence X = Y , so X ∈ M and M is (∼)-closed with respect to ip,q.

Lemma 4.6. Let A,B belong to C∞,1
S and let them be (∼)-limits of operators

from ΦS with respect to i∞,1. Then AB ∈ F∞,1
S .

Proof. Let An from ΦS(∼)-converge to A with respect to i∞,1:

‖A−An‖ → 0 and sup
n
|δS(An)|1 < ∞.

Then sup
n
|δS(An)|2 6 sup

n
|δS(An)|1 < ∞. Since C2 is a Hilbert space, the unit

ball of C2 is weakly compact. Hence the set {δS(An)}∞n=1 has a weak cluster
point Z ∈ C2. By Hahn-Banach Theorem, for any m,Z belongs to the closed in
| · |2 convex set spanned by δS(An),m 6 n. Hence there exist convex finite linear
combinations A′

m of the operators {An}n>m such that δS(A′
m) converge to δS(A)

in | · |2. Then

‖A−A′
m‖ → 0 and ‖Z − δS(A′

m)‖ 6 |Z − δS(A′
m)|2 → 0,

as m →∞, where A′
m ∈ ΦS . Since δS is closed, Z = δS(A). Therefore, replacing

An by A′
m if necessary, we may assume that

(4.2) ‖A−An‖ → 0, |δS(A)− δS(An)|2 → 0 and sup
n
|δS(An)|1 6 ∞.

The unit ball of C1 is σ(C1, C∞)-compact. Since sup
n
|δS(An)|1 < ∞, the set

{δS(An)}∞n=1 has a cluster point Y ∈ C1 in the σ(C1, C∞) topology. Since δS(A) ∈
C1, we obtain from (2.8) and (4.2) that, for any T ∈ C2,∣∣Tr

(
(Y − δS(A))T

)∣∣ 6
∣∣Tr

(
(Y − δS(An))T

)∣∣ +
∣∣Tr

(
(δS(An)− δS(A))T

)∣∣
6

∣∣Tr
(
(Y − δS(An))T

)∣∣ +
∣∣(δS(An)− δS(A))T

∣∣
1

6
∣∣Tr

(
(Y − δS(An))T

)∣∣ + |δS(An)− δS(A)|2 |T |2 → 0,
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as n → ∞. Therefore, Tr((Y − δS(A))T ) = 0. Since C2 is dense in (C∞, | · |∞),
Tr((Y − δS(A))T ) = 0 for all T ∈ C∞. Hence Y = δS(A).

Let now B ∈ C∞,1
S be the (∼)-limit with respect to i∞,1 of a sequence of

operators Bn from ΦS . As above, δS(B) is a cluster point of {δS(Bn)} in the
σ(C1, C∞) topology. We will show now that δS(AB) is a cluster point of the set
{δS(AnBn)}∞n=1 in the σ(C1, B(H)) topology on C1. Indeed,
δS(AB)− δS(AnBn) = AδS(B) + δS(A)B −AnδS(Bn)− δS(An)Bn = Un + Vn,

where Un = AδS(B) − AnδS(Bn) and Vn = δS(A)B − δS(An)Bn. By (2.9), for
R ∈ B(H),

|Tr(UnR)| 6 |Tr(A(δS(B)− δS(Bn))R)|+ |Tr((A−An)δS(Bn)R)|
6 |Tr((δS(B)− δS(Bn))RA)|+ |(A−An)δS(Bn)R|1
6 |Tr((δS(B)− δS(Bn))RA)|+ ‖A−An‖ |δS(Bn)|1 ‖R‖

and, similarly,
|Tr(VnR)| 6 |Tr((δS(A)− δS(An))BR)|+ ‖B −Bn‖ |δS(An)|1 ‖R‖.

It follows from (4.2) that ‖A−An‖ → 0 and ‖B −Bn‖ → 0, as n →∞, and
sup

n
|δS(An)|1 < ∞ and sup

n
|δS(Bn)|1 < ∞.

Since A and B are compact, RA and BR belong to C(H). Since δS(A) and δS(B)
are cluster points of {δS(An)}∞n=1 and {δS(Bn)}∞n=1, respectively, in the σ(C1, C∞)
topology on C1, we obtain that δS(AB) is a cluster point of {δS(AnBn)}∞n=1 in
the σ(C1, B(H)) topology on C1.

By the Hahn-Banach Theorem, for any m, δS(AB) belongs to the closed, in
| · |1, convex set spanned by δS(AnBn), m 6 n. Hence, there are positive numbers
α

(m)
m , . . . , α

(m)
κ(m) such that α

(m)
m + · · ·+α

(m)
κ(m) = 1 and |δS(AB)− δS(Zm)|1 → 0, as

m →∞, where Zm = α
(m)
m AmBm + · · ·+ α

(m)
κ(m)Aκ(m)Bκ(m). Then Zm ∈ ΦS and

‖AB − Zm‖ 6 α(m)
m ‖AB −AmBm‖+ · · ·+ α

(m)
κ(m)‖AB −Aκ(m)Bκ(m)‖

6 sup
m6n

‖AB −AnBn‖6 sup
m6n

‖A‖ ‖B−Bn‖+ sup
m6n

‖A−An‖ ‖Bn‖ → 0

as m →∞. Hence, Zm converge to AB in | · |∞,1, so that AB ∈ F∞,1
S .

By Ξ we denote the set of all functions in C∞(R) that vanish in a neigh-
bourhood of 0. To prove the main theorem of this section we need the following
results obtained in Theorems 2.2, 2.5, 2.8 and Corollary 2.9 (iii) of [11].

Theorem 4.7. ([11]) Let (A, ‖·‖1) be a D-subalgebra of a C∗-algebra (A, ‖·‖).
(i) Let M be a subspace of A such that ϕ(x) ∈ M for any x = x∗ ∈ A and

ϕ ∈ Ξ. If M is (∼)-closed in A with respect to the injection of A into A, then
A2 ⊆ M .

(ii) A2 = An for n > 2.
(iii) Let A+ be the set of all positive elements in A. For any A ∈ A+, there

exist ϕn ∈ Ξ such that ϕn(A) (∼)-converge to A with respect to the injection of A
into A : ‖A− ϕn(A)‖ → 0 and sup

n
‖ϕn(A)‖1 < ∞.

We are now ready to prove the main theorem of this section.
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Theorem 4.8. For p 6= b, the closure of (Cp,q
S )2 with respect to | · |p,q

coincides with Fp,q
S .

Proof. Case 1. Let 1 < p and 1 < q. The algebra Fp,q is closed in (Cp,q,
| · |p,q). Hence, by Lemma 4.5, it is (∼)-closed in (Cp,q, | · |p,q) with respect to the
map ip,q of Cp,q in C(H).

Let A = A∗ ∈ Cp,q
S and ϕ ∈ Ξ. Since, by Proposition 3.4, (Cp,q

S , | · |p,q) is a
D-subalgebra of C(H) and ϕ ∈ C∞(R), it follows from Proposition 6.4 of [1] (see
also Theorem 12 of [9]) that ϕ(A) ∈ Cp,q

S . Since p 6= b, A is compact. Hence ϕ(A)
is a finite rank operator and thus, it belongs to Fp,q

S . Applying Lemma 4.1 and
Theorem 4.7 (i), we obtain that ΦS ⊆ (Cp,q

S )2 ⊆ Fp,q
S , which completes the proof.

Case 2. Let p = 1 and 1 < q. Then C1,q
S ⊆ C2,q

S . It follows from Case 1 that
(C1,q

S )2 ⊆ (C2,q
S )2 ⊆ F2,q

S . Hence, by Lemma 4.1, (C1,q
S )3 ⊆ F2,q

S C1,q
S ⊆ F1,q

S , so
the closure of (C1,q

S )3 in | · |1,q coincides with F1,q
S . By Theorem 4.7 (ii),

(C1,q
S )2 = (C1,q

S )3 = F1,q
S .

Case 3. Let p < ∞ and q = 1. Choose r > 1 such that 1
p + 1

r > 1. Then
Cp,1 ⊆ Cp,r. It follows from Case 1 that (Cp,1

S )2 ⊆ (Cp,r
S )2 ⊆ Fp,r

S . Hence, by
Lemma 4.1, (Cp,1

S )3 ⊆ Fp,r
S Cp,1

S ⊆ Fp,1
S , so the closure of (Cp,1

S )3 in | · |p,1 coincides
with Fp,1

S . Using, as in Case 2, Theorem 4.7 (ii), we have that

(Cp,1
S )2 = (Cp,1

S )3 = Fp,1
S .

Case 4. Let p = ∞ and q = 1. We have C∞,1
S ⊆ C∞,2

S . It follows from
Case 1 that (C∞,1

S )2 ⊆ (C∞,2
S )2 ⊆ F∞,2

S . Hence (C∞,1
S )2 ⊆ F∞,2

S ∩ C∞,1
S .

If A is a positive operator in C∞,1
S , it follows from Theorem 4.7 (iii) that there

are ϕn in Ξ such that A is a (∼)-limit of ϕn(A) with respect to i∞,1, that means,
‖A − ϕn(A)‖ → 0 and sup

n
‖ϕn(A)‖1 < ∞. Since A is compact, the operators

ϕn(A) belong to ΦS . Thus, A is a (∼)-limit, with respect to i∞,1, of operators
from ΦS .

Let A,B ∈ C∞,1
S . Then A2, B2, (A+B)2 and (A+iB)(A+iB)∗ are positive

operators in (C∞,1
S )2 and

AB =
1
2
(
(A + B)2 −A2 −B2 + i(A + iB)(A + iB)∗ − iA2 − iB2

)
.

Hence, every operator in (C∞,1
S )2 is a linear combination of positive operators

from (C∞,1
S )2 and, by the above argument, is a (∼)-limit, with respect to i∞,1, of

operators from ΦS . Applying now Lemma 4.6, we obtain that (C∞,1
S )4 ⊆ F∞,1

S .

Therefore, it follows from Theorem 4.7 (ii) that (C∞,1
S ) = (C∞,1

S )4 = F∞,1
S .

Corollary 4.9. Let r 6 p, t 6 q, p 6= b and q 6= 1. Then the closures of
(Cr,t

S )2 and Cr,t
S Cp,q

S with respect to | · |p,q coincide with Fp,q
S .

Proof. Since ΦS ⊆ Cr,t
S ⊆ Cp,q

S , it follows from Theorem 4.8 that

ΦS = (ΦS)2 ⊆ (Cr,t
S )2 ⊆ Cr,t

S Cp,q
S ⊆ (Cp,q

S )2 ⊆ Fp,q
S .

Taking the closure with respect to | · |p,q, we obtain the result.
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5. APPROXIMATE IDENTITIES AND THE APPROXIMATION PROPERTY

OF THE ALGEBRAS Cp,q
S FOR SELFADJOINT S

In this section we study mainly the case when S is a selfadjoint operator; this
case is easier to deal with, since we can now employ the Spectral Theorem. The
section is primarily devoted to the establishing of the existence of approximate
identities in the algebras Cp,q

S , for selfadjoint S. Since these identities consist of
finite rank operators, this provides an affirmative answer to the approximation
problem. We also show that, for non-selfadjoint S, the algebras Cp,q

S have no
bounded approximate identities and that, for selfadjoint S, they have bounded
approximate identities only if p = ∞.

First we observe that the algebras Cp, 1 6 p 6 ∞, have two-sided approxi-
mate identities which are bounded if and only if p = ∞. Indeed, by Theorem III.6.3
of [5], any sequence {En}∞n=1 of operators from Cp strongly converging to 1lH is a
two-sided approximate identity. If p = ∞ and all En are projections, the identity
is bounded. Let p 6= ∞ and suppose that there exists a bounded approximate
identity {En}∞n=1 in Cp : sup

n
{|En|p} = C < ∞. Let Q be an m-dimensional

projection. Then |Q|p = m1/p and, by (2.9),

(5.1) |QEn|p 6 ‖Q‖ |En|p = |En|p 6 C, for all n.

On the other hand,
∣∣ |Q|p − |QEn|p

∣∣ 6 |Q − QEn|p → 0 as n → ∞, so that
|QEn|p → m1/p. Comparing this with (5.1), we obtain a contradiction which
shows that the algebras Cp, 1 6 p < ∞, have no bounded approximate identity.

A closed subspace L of H reduces an operator S if D(S) = DL(S)⊕DL⊥(S)
where

DL(S) = D(S) ∩ L, DL⊥(S) = D(S) ∩ L⊥,

and if SDL(S) ⊆ L and SDL⊥(S) ⊆ L⊥. We start by establishing the existence
of approximate identities in the algebras Cp,q

S in the following simplest cases.

Proposition 5.1. Let S be a selfadjoint operator on H.

(i) If H =
∞⊕

j=1

H(j), where all subspaces H(j) reduce S and S|H(j) =

sj1lH(j), then, for p, q ∈ T \ {b}, the algebra Cp,q
S has a countable two-sided ap-

proximate identity which consists of finite-dimensional projections converging to
1lH in the strong operator topology. If p = ∞, the approximate identity is bounded.

(ii) If 1 6 p 6 q 6 ∞, the algebra Cp,q
S has a countable two-sided approxi-

mate identity which consists of finite-dimensional projections converging to 1lH in
the strong operator topology. If p = ∞, the approximate identity is bounded.

Proof. In every H(j) choose an increasing sequence of finite-dimensional pro-
jections Qn

j converging to 1lH(j) in the strong operator topology as n → ∞. The

finite-dimensional projections Qn =
n⊕

j=−n

Qn
j belong to ΦS , converge to 1lH in

the strong operator topology and commute with S. Therefore δS(Qn) = 0 and
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δS(QnA) = QnδS(A) for A ∈ Cp,q
S . Since {Qn}∞n=1 is a two-sided approximate

identity in Cr for any r 6 ∞ (see Theorem III.6.3 of [5]), it follows that

|A−QnA|p,q = |A−QnA|p + |δS(A−QnA)|q
= |A−QnA|p + |δS(A)−QnδS(A)|q → 0, as n →∞.

Similarly, |A−QnA|p,q → 0 so {Qn} is a two-sided approximate identity in Cp,q
S .

If p = ∞ then |Qn|∞,q = |Qn|∞ + |δS(Qn)|q = ‖Qn‖ = 1, so that {Qn}∞n=1

is a bounded approximate identity in C∞,q
S . Part (i) is proved.

Let ES(λ) be the spectral measure of S. For every n ∈ Z, set

PS(n) = ES(n + 1)− ES(n) and [S] =
∞∑
−∞

nPS(n).

The operator [S] is selfadjoint and Sp([S]) ⊆ Z. By (i), the algebra Cp,q
[S] has a two-

sided approximate identity {Qn} which consists of finite-dimensional projections
strongly converging to 1lH . Since the operator S − [S] is bounded and p 6 q, it
follows from Proposition 3.3 (ii) that Cp,q

S = Cp,q
[S] and the norms are equivalent.

Hence {Qn}∞n=1 is a two-sided approximate identity in Cp,q
S .

To prove the existence of an approximate identity in the general case, we need
the following extension of the result due to Voiculescu ([17]) about the existence
of quasicentral approximate units relative to Cq.

Proposition 5.2. Let H be a subspace of a Hilbert space H and S be a
bounded selfadjoint operator on H of finite multiplicity. Let q ∈ (1,∞] and let
X1, . . . , Xk ∈ C(H). There exist positive finite rank operators Bm on H strongly
converging to 1lH such that ‖Bm‖ = 1, sup |δS(Bm)|1 < ∞ and

|δS(Bm)|q +
k∑

i=1

|δS(Bm)Xi|1 <
1
m

.

Proof. Let S have multiplicity N < ∞. Then there exist x1, . . . , xN ∈ H
such that the linear span of Skxi, 1 6 i 6 N and 0 6 k < ∞, is dense in H. Let Hn

be the subspaces spanned by Skxi, 1 6 i 6 N and 0 6 k 6 n. The projections Pn

on Hn strongly converge to 1lH , Pn−1 6 Pn and, for all n > 1, PnSPn−1 = SPn−1.
Hence Pn−1SPn = Pn−1S. Using this and setting An = SPn − PnS, we obtain
that

AnPn−1 = 0 and AnPn+1 = An.

Taking into account that A∗
n = −An, we have Pn−1An = 0 and Pn+1An = An, so

An = (Pn+1 − Pn−1)An = An(Pn+1 − Pn−1).

Thus An act on the r-dimensional subspaces Hn+1	Hn−1, r 6 2N , and, therefore,
there exists K > 0 such that |An|1 6 K‖An‖ 6 2K‖S‖, for all n.
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Let Q be the projection on H. By Theorem III.6.3 of [5], {Pn}∞n=1 is a two-
sided approximate identity in C(H). For any X ∈ C(H), QXQ ∈ C(H). Since
An = QAnQ, it follows from (2.9) that

(5.2)

|Tr(AnX)| = |Tr(QAnQX)| = |Tr(AnQXQ)| 6 |AnQXQ|1
= |An(Pn+1 − Pn−1)QXQ|1 6 |An|1‖(Pn+1 − Pn−1)QXQ‖
62K‖S‖

(
‖Pn+1QXQ−QXQ‖+‖QXQ−Pn−1QXQ‖

)
→ 0, as n→∞.

The dual space of C1(H) is isomorphic to B(H) and the dual space of Cq(H) is
isomorphic to Cq′(H) where 1

q + 1
q′ = 1. Hence, the dual space of the direct sum

C1
(k)

·
+ Cq = C1

·
+ · · ·

·
+ C1︸ ︷︷ ︸

k

·
+ Cq

is isomorphic to the direct sum of k copies of B(H) and one copy of Cq′(H): any

bounded linear functional on C1
(k)

·
+ Cq has the form

(5.3) FT1,...,Tk,T (R1

·
+ · · ·

·
+ Rk

·
+ R) = Tr(R1T1) + · · ·+ Tr(RkTk) + Tr(RT ),

for R1, . . . , Rk ∈ C1(H) and R ∈ Cq(H), where T1, . . . , Tk ∈ B(H) and T ∈ Cq′(H).
If X1, . . . , Xk ∈ C(H), all XiTi belong to C(H). Therefore, by (5.2) and

(5.3),

FT1,...Tk,T (AnX1

·
+ · · ·

·
+ AnXk

·
+ An)

= Tr(AnX1T1) + · · ·+ Tr(AnXkTk) + Tr(AnT ) → 0,

as n →∞, hence Yn =AnX1

·
+ · · ·

·
+AnXk

·
+An weakly converge to 0 in C1

(k)

·
+Cq.

By the Hahn-Banach Theorem, 0 belongs to the closed convex set generated by
{Yn}n>m, for any m. Hence, there are positive numbers α

(m)
m , . . . , α

(m)
ω(m) such that

α
(m)
m + · · ·+ α

(m)
ω(m) = 1 and the norm of α

(m)
m Ym + · · ·+ α

(m)
ω(m)Yω(m) in C1

(k)

·
+ Cq

is less than 1
m . Therefore,∣∣α(m)

m Am + · · ·+ α
(m)
ω(m)Aω(m)

∣∣
q
+

k∑
i=1

∣∣(α(m)
m Am + · · ·+ α

(m)
ω(m)Aω(m)

)
Xi

∣∣
1

<
1
m

.

Set Bm = α
(m)
m Pm + · · ·+ α

(m)
ω(m)Pω(m). Then

δS(Bm) = i(SBm −BmS) = i
(
α(m)

m Am + · · ·+ α
(m)
ω(m)Aω(m)

)
,

so that

|δS(Bm)|q +
k∑

i=1

|δS(Bm)Xi|1 <
1
m

.

Since the projections Pn increase, Bm = Pm+
ω(m)−1∑

i=m

β
(m)
j (Pi+1−Pi) where β

(m)
j =

ω(m)∑
j=i+1

α
(m)
j 6 1. Hence

(5.4) Pm 6 Bm 6 Pω(m),
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so the finite rank operators Bm strongly converge to 1lH and ‖Bm‖ = 1. We also
have that

sup |δS(Bm)|1 6 sup
(
α(m)

m |Am|1 + · · ·+ α
(m)
ω(m)|Aω(m)|1

)
6 2K‖S‖.

Suppose that H =
n⊕

i=1

Hi and A =
n⊕

i=1

Ai, where the operators Ai belong to

the class Cp(Hi) for some p. Then A ∈ Cp(H) and

(5.5) (|A|p)p =
n∑

i=1

(|Ai|p)p.

Corollary 5.3. Let S be a selfadjoint operator on H. If q ∈ (1,∞] then
there exist positive finite rank operators Bm strongly converging to 1lH such that
‖Bm‖ = 1, BmD(S) ⊆ D(S) and |δS(Bm)|q → 0.

Proof. There is a decomposition H =
∞⊕

i=1

H(i) such that all H(i) reduce S

and Si = S|H(i) are bounded operators with finite multiplicity.
By Proposition 5.2, for any i, there are positive finite rank operators {Bi

m}∞m=1

on H(i), strongly converging to 1lH(i), as m →∞, such that ‖Bi
m‖ = 1, Bi

m 6 1lH(i)

and |δSi(B
i
m)|q 6 2−(i+m). The finite rank operators Bm =

m⊕
i=1

Bi
m strongly

converge to 1lH , BmD(S) ⊆ D(S), ‖Bm‖ = 1 and 0 6 Bm 6 1lH . Since

δS(Bm) =
m⊕

i=1

δSi
(Bi

m), it follows from (5.5) that

|δS(Bm)|q 6

( m∑
i=1

(|δSi(B
i
m)|q)q

)1/q

6

( m∑
i=1

2−q(i+m)

)1/q

6 2−m.

Making use of Proposition 5.2 and Corollary 5.3, we will prove now that, if
S is selfadjoint then all algebras Cp,q

S have approximate identities.

Theorem 5.4. Let S be selfadjoint. For 1 6 p, q 6 ∞, the algebra Cp,q
S has

a two-sided approximate identity {Bλ}λ∈Λ which consists of positive, finite rank
operators such that ‖Bλ‖ = 1. If (p, q) 6= (∞, 1), the approximative identity can
be chosen countable.

Proof. Step 1. Let q 6= 1 and let {Bm}∞m=1 be the set of finite rank operators
constructed in Corollary 5.3. Since they strongly converge to 1lH , it follows from
Theorem III.6.3 of [5] that {Bm}∞m=1 is a two-sided approximate identity in Cp

and Cq. We obtain from Corollary 5.3 that, for any X ∈ Cp,q
S ,

(5.6)
|X −BmX|p,q = |X −BmX|p + |δS(X −BmX)|q

6 |X −BmX|p + |δS(X)−BmδS(X)|q + |δS(Bm)X|q → 0

as m → ∞, since |δS(Bm)X|q 6 |δS(Bm)|q‖X‖. Similarly, |X − XBm|p,q → 0.
Hence {Bm}∞m=1 is a two-sided approximate identity for Cp,q

S .
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Step 2. Let q = 1. The case p = 1 was proved in Proposition 5.1. Let
1 < p < ∞ and 1

p + 1
p′ = 1. Then p′ ∈ (1,∞). By Corollary 5.3, there exist positive

finite rank operators {Bm}∞m=1 strongly converging to 1lH such that ‖Bm‖ = 1,
Bm 6 1lH , BmD(S) ⊆ D(S) and |δS(Bm)|p′ → 0. For X ∈ Cp,1

S , we obtain from
(2.8) that

|δS(Bm)X|1 6 |δS(Bm)|p′ |X|p → 0, as m →∞.

Combining this with (5.6) yields that {Bm}∞m=1 is a two-sided approximate identity
for Cp,1

S .

Step 3. Let (p, q) = (∞, 1). There is a decomposition H =
∞⊕

i=1

H(i) such that

all H(i) reduce S and the operators S|H(i) are bounded with finite multiplicity.

The projections Qk on Hk =
k⊕

i=1

H(i) commute with S and Sk = QkS are bounded

selfadjoint operators of finite multiplicity. Since Qk strongly converge to 1lH ,
it follows from Theorem III.6.3 of [5] that {Qk}∞k=1 is a two-sided approximate
identity in all Cp, p ∈ [1,∞].

Fix ε > 0 and let X1, . . . , Xn ∈ C∞,1
S . Choose k such that for all i = 1, . . . , n,

|Xi −QkXiQk|∞ < ε, |Xi −XiQk|∞ < ε,

|δS(Xi)−QkδS(Xi)Qk|1 < ε and |δS(Xi)− δS(Xi)Qk|1 < ε.

Since the operator Sk = QkS is bounded with finite multiplicity, it follows from
Proposition 5.2 that there exist positive finite rank operators Bm on Hk strongly
converging to 1lHk

such that Bm 6 1lHk
, ‖Bm‖ = 1 and |δSk

(Bm)Xi|1 < 1
m , for

i = 1, . . . , n. We have

|Xi −BmXi|∞,1 = |Xi −BmXi|∞ + |δS(Xi −BmXi)|1.

Since Bm = QkBm = BmQk,

|Xi −BmXi|∞
= |Xi −QkXiQk|∞ + |QkXiQk −BmQkXiQk|∞ + |BmQkXiQk −BmXi|∞
6 ε + |QkXiQk −BmQkXiQk|∞ + ‖Bm‖ |XiQk −Xi|∞
6 2ε + |QkXiQk −BmQkXiQk|∞.

Similarly,

|δS(Xi)−BmδS(Xi)|1 6 2ε + |QkδS(Xi)Qk −BmQkδS(Xi)Qk|1.

Since δS(Bm) = δSk
(Bm), we obtain, therefore, that

|δS(Xi −BmXi)|1 6 |δS(Xi)−BmδS(Xi)|1 + |δSk
(Bm)Xi|1

6 2ε + |QkδS(Xi)Qk −BmQkδS(Xi)Qk|1 +
1
m

.

Thus

|Xi −BmXi|∞,1

6 4ε + |QkXiQk −BmQkXiQk|∞ + |QkδS(Xi)Qk −BmQkδS(Xi)Qk|1 +
1
m

.
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Since Bm strongly converge to 1lHk
, by Theorem III.6.3 of [5], {Bm}∞m=1 is a two-

sided approximate identity in C∞(Hk) and C1(Hk). Since QkXiQk ∈ C∞(Hk),
QkδS(Xi)Qk ∈ C1(Hk), we can find Bm such that |Xi −BmXi|∞,1 6 5ε.

Let Λ be the set of all finite subsets of C∞,1
S . By the above argument, for any

λ ∈ Λ, there exists a positive finite rank operator Bλ on H such that Bλ 6 1lH ,
‖Bλ‖ = 1 and |X − BλX|∞,1 6 1

n , for any X ∈ λ, where n is the number of
elements in λ. Since |X −XBλ|∞,1 = |X∗ − BλX∗|∞,1, we obtain that {Bλ}λ∈Λ

is a two-sided approximate identity for C∞,1
S .

Corollary 5.5. If S is a selfadjoint operator on H then Cp,q
S = Fp,q

S for
1 6 p, q 6 ∞.

Proof. By Theorem 5.4, the algebras Cp,q
S have two-sided approximate iden-

tities {Bλ}λ∈Λ which consist of finite rank operators. For A ∈ Cp,q
S , BλA are finite

rank operators. Since |A−BλA|p,q → 0, we have that Cp,q
S = Fp,q

S .

Let 1 6 p 6 ∞. We call an operator S on H p-semidiagonal if there exists
a sequence of positive finite rank operators {Qn}∞n=1 which preserve the domain
D(S), strongly converge to 1lH and

(5.7) sup
n
|SQn −QnS|p < ∞.

Clearly, if S is p-semidiagonal, it is q-semidiagonal for p 6 q.

Theorem 5.6. (i) Any selfadjoint operator S is p-semidiagonal for p > 1.
Moreover, there are {Qn}∞n=1 such that lim |SQn −QnS|p = 0.

(ii) A selfadjoint operator S is 1-semidiagonal if and only if

(5.8)
∫
R

kS(t) dt < ∞,

where kS(t) is the spectral multiplicity of the absolutely continuous part of S. In
particular, S is 1-semidiagonal if it is bounded and has finite multiplicity.

(iii) Closed non-selfadjoint symmetric operators are not p-semidiagonal for
any 1 6 p 6 ∞.

Proof. Part (i) follows from Corollary 5.3.
If S is a bounded selfadjoint operator with finite multiplicity, it follows from

Proposition 5.2 that S is 1-semidiagonal.
Let S be selfadjoint and 1-semidiagonal and let {Qn}∞n=1 be positive finite

rank operators which preserve the domain D(S), strongly converge to 1lH and
sup

n
|SQn −QnS|p = C < ∞. Let S be bounded. It follows from Proposition 1.5

of [17] and Remark 2.3 of [17] that there exists a universal constant α such that

(5.9)

‖S‖∫
−‖S‖

kS(t) dt 6 αC.
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Let S be unbounded. For any 0 < λ < ∞, let Pλ = PS [−λ, λ] be the spectral
projection of S. Then Sλ = PλS is a bounded selfadjoint operator on Hλ = PλH,
finite rank operators PλQnPλ strongly converge to Pλ, as n →∞, and

|SλPλQnPλ−PλQnPλSλ|1 = |Pλ(SQn−QnS)Pλ|1 6 ‖Pλ‖ |SQn−QnS|1 ‖Pλ‖ 6 C.

Hence Sλ is 1-semidiagonal and, by (5.9),

λ∫
−λ

kS(t) dt =

λ∫
−λ

kSλ
(t) dt 6 αC.

Therefore
∞∫

−∞

kS(t) dt = αC < ∞.

Conversely, let (5.8) hold. Set

αm =

m+1∫
m

kS(t) dt, Pm = PS [m,m + 1], Sm = PmS and Hm = PmH.

Since αm < ∞, it follows from Remark 2.3 of [17] and the definition on page 5 in
[17] that there exists an increasing sequence {Rn(m)}∞n=1 of positive finite rank
contractions on Hm strongly converging to Pm, as n →∞, such that

lim
n
|SmRn(m)−Rn(m)Sm|1 =

αm

π
, for all m.

For every m, we choose a subsequence Ar(m) = Rnr
(m) such that

|SmAr(m)−Ar(m)Sm|1 6
αm

π
+

1
2r(|m|+1)

.

Set Qn =
n⊕

m=−n
An(m). Since ‖Qn‖ = sup

m
‖An(m)‖ 6 1, Qn are positive finite

rank contractions preserving D(S). For x ∈ Hm, Qnx = An(m)x → x, as n →∞.
Since linear combinations of elements from all Hm, −∞ < m < ∞, are dense in
H and since the sequence {Qn} is bounded, it follows that Qn strongly converge
to 1lH . Moreover,

|SQn −QnS|1 =
∣∣∣∣ n∑

m=−n

⊕(SmAn(m)−An(m)Sm)
∣∣∣∣
1

6
n∑

m=−n

(αm

π
+

1
2n(|m|+1)

)

6
1
π

n∫
−n

kS(t) dt + 22−n 6
1
π

∞∫
−∞

kS(t) dt + 4.

Hence S is 1-semidiagonal. Part (ii) is proved.
Part (iii) follows from the lemma below.
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Lemma 5.7. Let S be a closed non-selfadjoint symmetric operator on H
and {An}∞n=1 be a sequence of operators in AS (see (1.2)) weakly converging to
1lH . If AnD(S∗) ⊆ D(S), for all n, then ‖SAn − AnS‖ → ∞, as n → ∞. In
particular, if An are finite rank operators in AS weakly converging to 1lH then
‖SAn −AnS‖ → ∞.

Proof. By (1.2), the operators SAn−AnS extend to bounded operators Rn.
For x ∈ D(S) and y ∈ D(S∗),

(Sx, A∗
ny) = (AnSx, y) = (SAnx, y)− (Rnx, y) = (x,A∗

nS∗y)− (x,R∗
ny),

so that A∗
ny ∈ D(S∗) and R∗

n|D(S∗) = A∗
nS∗ − S∗A∗

n. Hence R∗
n|D(S) = A∗

nS −
SA∗

n.
Making use of this, we obtain that

(Sx, Any) = (A∗
nSx, y) = (SA∗

nx, y) + (R∗
nx, y) = (x,AnS∗y) + (x,Rny),

so that Any ∈ D(S∗) and Rn|D(S∗) = S∗An −AnS∗.
Since An weakly converge to 1lH , we have that, for x, y ∈ D(S),

(Rnx, y) = (SAnx, y)−(AnSx, y) = (Anx, Sy)−(AnSx, y) → (x, Sy)−(Sx, y) = 0,

as n →∞. If sup
n
‖Rn‖ = sup

n
‖SAn−AnS‖ < ∞, it follows from the above formula

that (Rnu, z) → 0, as n →∞, for all u, z ∈ H, so Rn weakly converge to 0.
Let x ∈ D(S∗). Since AnD(S∗) ⊆ D(S), we have that, for any z ∈ H,

(SAnx, z) = (S∗Anx, z) = (AnS∗x, z) + (Rnx, z) → (S∗x, z),
as n → ∞. Hence Anx ⊕ SAnx weakly converges to x ⊕ S∗x in H ⊕H. Since S
is closed, the subspace L = {u ⊕ Su : u ∈ D(S)} is closed in H ⊕H and, hence,
weakly closed. Since all Anx belong to D(S), we have that Anx ⊕ SAnx ∈ L.
Therefore x ⊕ S∗x ∈ L, so that x ∈ D(S) and Sx = S∗x. Thus, S is selfadjoint
and this contradicts the assumption of the lemma.

If, in particular, all An are finite rank operators in AS then AnD(S) ⊆ D(S)
implies that AnH ⊆ D(S). Hence ‖SAn −AnS‖ → ∞.

The problem of the existence of bounded approximate identities in the alge-
bras Cp,q

S and Fp,q
S can be now solved in full generality.

Proposition 5.8. If S is a non-selfadjoint operator, the algebras Cp,q
S and

Fp,q
S , 1 6 p, q 6 ∞, have no bounded approximate identities.

Proof. Suppose that {En} is a bounded approximate identity in Fp,q
S . Then

there exist Qn ∈ ΦS such that |En − Qn|p,q 6 1
n . Clearly, {Qn} is a bounded

approximate identity in Fp,q
S , so ‖δS(Qn)‖ 6 |Qn|p,q 6 C < ∞.

On the other hand, by (3.5), for any x, y ∈ D(S),
‖x‖ ‖Qny−y‖ = |x⊗(Qny−y)|p = |Qn(x⊗y)−x⊗y|p 6 |Qn(x⊗y)−x⊗y|p,q → 0,

as n → ∞. Hence ‖Qny − y‖ → 0, as n → ∞. Since ‖Qn‖ 6 |Qn|p,q < ∞, it
follows easily that ‖Qnz − z‖ → 0, as n → ∞, for any z ∈ H, so Qn strongly
converge to 1lH . Therefore, by Lemma 5.7, ‖δS(Qn)‖ = ‖SQn − QnS‖ → ∞, as
n →∞. This contradiction proves the proposition for the algebras Fp,q

S .
Assume now that {En} is a bounded approximate identity in Cp,q

S . By The-
orem 4.8, all E2

n belong to Fp,q
S and, for any A ∈ Fp,q

S ,
|A−E2

nA|p,q 6 |A−EnA|p,q+|EnA−E2
nA|p,q 6 |A−EnA|p,q+|En|p,q |A−EnA|p,q.

Hence, {E2
n} is a bounded approximate identity in Fp,q

S and this contradicts the
discussion at the beginning of the proof.
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Theorem 5.9. Let S be a selfadjoint operator on H and let kS(t) be the
spectral multiplicity of the absolutely continuous part of S.

(i) If p 6= ∞, then the algebra Cp,q
S has no bounded approximate identities.

(ii) If q 6= 1, then the algebra C∞,q
S has a bounded approximate identity.

(iii) The algebra C∞,1
S has a bounded approximate identity if and only if

(5.10)

∞∫
−∞

kS(t) dt < ∞.

Proof. Let p < ∞ and {En}∞n=1 be a bounded approximate identity in Cp,q
S .

Then |En|p 6 |En|p,q 6 K, for some K > 1, and, for any A ∈ Cp,q
S ,

|A− EnA|p 6 |A− EnA|p,q → 0, as n →∞.

Let B ∈ Cp and ε > 0. Since the algebra Cp,q
S is dense in Cp, choose A ∈ Cp,q

S
and nε such that |B −A|p 6 ε

3K and |A− EnA|p 6 ε
3 for n > nε. By (2.9),

|B−EnB|p 6 |B−A|p + |A−EnA|p + |EnA−EnB|p 6
2ε

3
+ |En|p |A−B|p 6 ε,

so {En}∞n=1 is a bounded approximate identity in Cp. This contradiction shows
that Cp,q

S has no bounded approximate identity if p < ∞. Part (i) is proved.
If q 6= 1, it follows from Corollary 5.3 and Theorem 5.4 that there is an

approximate identity {Bn}∞n=1 in C∞,q
S which consists of finite rank operators

such that ‖Bn‖ = 1 and |δS(Bn)|q → 0, as n →∞. The idenity is bounded, since

|Bn|∞,q = ‖Bn‖+ |δS(Bn)|q = 1 + |δS(Bn)|q → 1 as n →∞.

Assume that {En} is a bounded approximate identity in C∞,1
S . As in Proposi-

tion 5.8, we obtain that there exists a bounded approximate identity {Qn} in
C∞,1

S which consists of finite rank operators strongly converging to 1lH . Since
|SQn − QnS|1 = |δS(Qn)|1 6 |Qn|∞,1 6 C, the operator S is 1-semidiagonal. It
follows from Theorem 5.6 (ii) that (5.10) holds.

Conversely, let (5.10) hold. Set Pm = PS [m,m + 1], Sm = PmS and Hm =
PmH. It follows from the proof of Theorem 5.6 (ii) that, for every m, there exists
an increasing sequence {Rn(m)}∞n=1 of positive finite rank contractions on Hm

strongly convering to Pm, as n →∞, such that the operators Qn =
n⊕

m=−n
Rn(m)

are positive finite rank contractions, preserving D(S) and strongly converging to
1lH , and, for all n,

|δS(Qn)|1 = |SQn −QnS|1 6
1
π

∞∫
−∞

ks(t) dt + 4.

Hence sup
n
|Qn|∞,1 6 sup

n
‖Qn‖+ sup

n
|δS(Qn)|1 < ∞.

If y ∈ Hk then SkRn(k)y → Sky = Sy, as n → ∞, since Sk is bounded.
Hence

δS(Qn)y = i(SQny −QnSy) = i(SkRn(k)y −QnSy) → i(Sy − Sy) = 0,



330 Edward Kissin and Victor S. Shulman

as n → ∞. Since linear combinations of elements from Hk, −∞ < k < ∞, are
dense in H and since sup

n
‖δS(Qn)‖ 6 sup

n
|δS(Qn)|1 < ∞, the operators δS(Qn)

strongly converge to 0.
The sequence {Qn}∞n=1 is bounded in | · |∞,1 and, for A ∈ C∞,1

S ,
|A−QnA|∞,1 = ‖A−QnA‖+ |δS(A−QnA)|1

6 ‖A−QnA‖+ |δS(A)−QnδS(A)|1 + |δS(Qn)A|1.
Since {Qn}∞n=1 strongly converges to 1lH , it is an approximate identity in C(H)
and in C1. Hence, to prove that {Qn}∞n=1 is a bounded approximate identity in
C∞,1

S , it suffices to show that |δS(Qn)A|1 → 0, as n →∞.
By Theorem 5.5, C∞,1

S = F∞,1
S , so ΦS is dense in C∞,1

S . Since sup
n
|δS(Qn)|1 <

∞, it follows from (2.9) that, in order to prove that |δS(Qn)A|1 → 0 for A ∈ C∞,1
S ,

it only suffices to show this for all A ∈ ΦS . Since (see (3.6)) ΦS is the linear span
of rank one operators x ⊗ y, for x, y ∈ D(S), it is only sufficient to show that
|δS(Qn)(x⊗ y)|1 → 0, as n →∞, for x, y ∈ D(S). Making use of (3.5) and taking
into account that δS(Qn) strongly converge to 0, we obtain that

|δS(Qn)(x⊗ y)|1 = |x⊗ δS(Qn)y|1 = ‖x‖ ‖δS(Qn)y‖ → 0, as n →∞.

6. DUAL AND SECOND DUAL SPACES OF THE ALGEBRAS Cp,q
S

Let p′ be the conjugate exponent of p, 1 6 p 6 ∞ (see (4.1)). The dual space of
the algebra Cp is isometrically isomorphic to Cp′ : for any T ∈ Cp′ ,

FT (A) = Tr(AT ), A ∈ Cp,

is a bounded linear functional on Cp and ‖FT ‖ = |T |p′ (see [5]). Therefore,
the algebras Cp, 1 < p < ∞, are reflexive and the second dual of the algebra
C∞ = C(H) is isometrically isomorphic to the algebra Cb = B(H).

In [12] it was shown that if S is a unbounded selfadjoint operator then
the second dual of the algebra C∞,∞

S is isometrically isomorphic to the algebra
Cb,b

S = AS . In this section we show that, for any symmetric S, the algebras Cp,q
S ,

1 < p, q < ∞, are reflexive, and that for selfadjoint S, the second duals of the
algebras Cp,∞

S and C∞,p
S , 1 < p < ∞, are isometrically isomorphic to the algebras

Cp′,b
S and Cb,p′

S respectively.
Let X, Y be Banach spaces. Their direct sum X ⊕Y will be considered with

two equivalent norms:
‖x⊕y‖ = ‖x‖X +‖y‖Y and ‖x⊕y‖∼ = max(‖x‖X , ‖y‖Y ), for x ∈ X and y ∈ Y.

For clarity, we will write in the second case X⊕̃Y instead of X ⊕ Y .
If X∗ and Y ∗ are their dual spaces then

(X ⊕ Y )∗ = X∗⊕̃Y ∗ and (X⊕̃Y )∗ = X∗ ⊕ Y ∗.

Clearly, if X and Y are reflexive, X ⊕ Y is also reflexive.
Let Z be a linear subspace of X. The annihilator

Z⊥ = {F ∈ X∗ : F (z) = 0, for all z ∈ Z}
of Z in X∗ is a closed subspace of X∗ and from the general theory of Banach
spaces (see [4], II.4.18 and [14], III, Problem 30) we have the following lemma.
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Lemma 6.1. The dual space Z∗ of a closed subspace Z of X is isometri-
cally isomorphic to the quotient space X∗/Z⊥ and the second dual Z∗∗ of Z is
isometrically isomorphic to Z⊥⊥ where

Z⊥⊥ = {θ ∈ X∗∗ : θ(F ) = 0, for all F ∈ Z⊥}.

Let 1 6 p, q 6 ∞ and p′ and q′ be their conjugate exponents (see (4.1)).
From the above discussion it follows that the space Cp′⊕̃Cq′ can be identified
with the dual space of the Banach space Cp ⊕ Cq by the formula:
(6.1) FR⊕T (A⊕B) = Tr(AR) + Tr(BT ), for A⊕B ∈ Cp ⊕ Cq,

and ‖FR⊕T ‖ = ‖R⊕ T‖p̃′,q′ . This yields

Lemma 6.2. (i) If 1 < p, q < ∞, then the space Cp ⊕ Cq is reflexive.
(ii) If 1 < q < ∞, then the second dual space of C∞ ⊕ Cq is isometrically

isomorphic to Cb ⊕ Cq.
(iii) The second dual space of C∞ ⊕ C∞ is isometrically isomorphic to

Cb ⊕ Cb.

Let p, q ∈ T and S be a symmetric operator on H. The linear manifolds

F̂p,q
S = {A⊕ δS(A) : A ∈ Fp,q

S } and Ĉp,q
S = {A⊕ δS(A) : A ∈ Cp,q

S }
in Cp ⊕Cq are, clearly, isometrically isomorphic to the algebras (Fp,q

S , | · |p,q) and
(Cp,q

S , | · |p,q), respectively. Hence they are closed subspaces of Cp ⊕ Cq.

Proposition 6.3. For 1 < p, q < ∞, the algebras (Fp,q
S , | · |p,q) and

(Cp,q
S , | · |p,q) are reflexive.

Proof. It is well known that any closed subspace of a reflexive space is also
reflexive. Since F̂p,q

S and Ĉp,q
S are closed subspaces of the reflexive space Cp ⊕Cq,

we obtain that F̂p,q
S and Ĉp,q

S are reflexive. Since (Fp,q
S , | · |p,q) and (Cp,q

S , | · |p,q)
are, respectively, isometrically isomorphic to (F̂p,q

S ‖ · ‖p,q) and (Ĉp,q
S ‖ · ‖p,q), they

are reflexive.

For p, q ∈ T , set

Tp,q
S = {T ∈ Cp : TD(S) ⊆ D(S∗), T ∗D(S) ⊆ D(S∗) and i(S∗T − TS)|D(S)

extends to a bounded operator TS from the class Cq}.
It follows that Cp,q

S ⊆ Tp,q
S . If S is selfadjoint, TS = δS(T ) for any T ∈ Tp,q

S ,
so Tp,q

S = Cp,q
S . Clearly, Tp,q

S is a linear subspace in Cp.
For T ∈ Tp,q

S and z, u ∈ D(S),

((TS)∗z, u) = (z, TSu) = (z, i(S∗T − TS)u) = (i(S∗T ∗ − T ∗S)z, u),
so that
(6.2) (TS)∗|D(S) = i(S∗T ∗ − T ∗S)|D(S) = (T ∗)S |D(S).
From this and from (2.7) it follows that (T ∗)S = (TS)∗ ∈ Cq. Hence T ∗ ∈ Tp,q

S .
By T̃p,q

S we denote the following linear manifold in Cq⊕̃Cp:

T̃p,q
S =

{
TS ⊕ T : T ∈ Tp,q

S

}
.

Lemma 6.4. For any p, q ∈ T , T̃p,q
S is a closed subspace in Cq⊕̃Cp.
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Proof. Let Tn ∈ Tp,q
S and suppose that Tn → T in Cp and (Tn)S → R in Cq.

By (2.6), Tn converge to T and (Tn)S converge to R with respect to the norm ‖ · ‖
in B(H). Let x, y ∈ D(S). Since S∗Tn|D(S) = TnS|D(S)− i(Tn)S |D(S), we have
that

(Tx, Sy) = lim(Tnx, Sy) = lim(S∗Tnx, y) = lim(TnSx, y)− i lim((Tn)Sx, y)

= (TSx, y)− i(Rx, y).

Therefore Tx ∈ D(S∗) and S∗Tx = TSx − iRx. Thus, TD(S) ⊆ D(S∗) and
R = TS .

It follows from (6.2) that (Tn)∗ ∈ Tp,q
S and ((Tn)S)∗ = ((Tn)∗)S . Hence, we

obtain from (2.7) that (Tn)∗ → T ∗ in Cp and ((Tn)∗)S → R∗ in Cq. Repeating
the above argument, we obtain that T ∗D(S) ⊆ D(S∗), so that T ∈ Tp,q

S . Thus,
T̃p,q

S is a closed subspace in Cq⊕̃Cp.

Let x, y ∈ D(S∗) and T = x⊗ y. By (3.2) and (3.3), for z ∈ H,

(6.3)
Tz = (z, x)y ∈ D(S∗), T ∗z = (y ⊗ x)z = (z, y)x ∈ D(S∗), and

TS = i[S∗T − TS] = i[x⊗ S∗y − (S∗x)⊗ y],

so T ∈ Tp,q
S for any p > 0 and q > 0.

Let 1 6 p, q 6 ∞ and let p′ and q′ be their conjugate exponents. Since
Ĉp,q

S ⊆ Cp ⊕ Cq, the annihilator (Ĉp,q
S )⊥ is a closed subspace of Cp′⊕̃Cq′ .

Proposition 6.5. For 1 6 p, q 6 ∞, (F̂p,q
S )⊥ = T̃q′,p′

S .

Proof. Let TS ⊕ T ∈ T̃q′,p′

S and A = x ⊗ y, for x, y ∈ D(S). By (3.3) and
(6.2),

(6.4)

δS(A) = i[S(x⊗ y)− (x⊗ y)S] = i[x⊗ Sy − (Sx)⊗ y],

δS(A)T = i(x⊗ Sy)T − i((Sx)⊗ y)T = i(T ∗x)⊗ Sy − i(T ∗Sx)⊗ y,

ATS = (x⊗ y)TS = ((TS)∗x)⊗ y = i((T ∗S − S∗T ∗)x)⊗ y.

It follows from (3.4), (6.1) and (6.4) that

FTS⊕T (A⊕ δS(A)) = Tr(ATS) + Tr(δS(A)T )

= i(y, (T ∗S − S∗T ∗)x) + i(Sy, T ∗x)− i(y, T ∗Sx) = 0.

Hence FTS⊕T (A⊕AS) = 0 for any A ∈ ΦS .
Since ΦS is dense in Fp,q

S and (Fp,q
S , | · |p,q) is isometrically isomorphic to

(F̂p,q
S , ‖ · ‖p,q), the operators A ⊕ δS(A), where A ∈ ΦS , are dense in F̂p,q

S . Since
TS ⊕ T ∈ Cp′⊕̃Cq′ , FTS⊕T is a continuous functional on Cp ⊕ Cq. Therefore,
FTS⊕T (A⊕ δS(A)) = 0, for A ∈ Fp,q

S . Thus FTS⊕T ∈ (F̂p,q
S )⊥, so T̃q′,p′

S ⊆ (F̂p,q
S )⊥.

Conversely, let R ⊕ T ∈ (F̂p,q
S )⊥ ⊆ Cp′⊕̃Cq′ and A = x ⊗ y ∈ ΦS , where

x, y ∈ D(S). From (3.3), (3.4), (6.1) and (6.4) it follows that

0 = FR⊕T (A⊕ δS(A)) = Tr(AR) + Tr(δS(A)T )

= Tr((R∗x)⊗ y) + Tr[i(T ∗x)⊗ Sy − i(T ∗Sx)⊗ y]

= (y, R∗x) + i(Sy, T ∗x)− i(y, T ∗Sx).
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Hence
(Sy, T ∗x) = (y, (T ∗S − iR∗)x), for x, y ∈ D(S).

Therefore T ∗x ∈ D(S∗) and S∗T ∗x = (T ∗S − iR∗)x. Thus T ∗D(S) ⊆ D(S∗) and
(Sx, Ty) = (T ∗Sx, y) = (S∗T ∗x, y) + i(R∗x, y) = (x, TSy)− (x, iRy).

From this it follows that Ty ∈ D(S∗) and S∗Ty = TSy − iRy. Hence
TD(S) ⊆ D(S∗) and R|D(S) = i[S∗T − TS] |D(S).

Hence T ∈ Tq′,p′

S and R = TS . Thus (F̂p,q
S )⊥ ⊆ T̃q′,p′

S , so (F̂p,q
S )⊥ = T̃q′,p′

S .

Since the Banach spaces (Fp,q
S , | · |p,q) and (F̂p,q

S , ‖ · ‖p,q) are isometrically
isomorphic, Lemma 6.1 and Proposition 6.5 yield

Corollary 6.6. Let 1 6 p, q 6 ∞ and p′ and q′ be their conjugate ex-
ponents. The dual space of the Banach ∗-algebra (Fp,q

S , | · |p,q) is isometrically
isomorphic to the quotient space (Cp′⊕̃Cq′)/T̃q′,p′

S .

By ϕ we denote the isomorphism of Cp ⊕ Cq on Cq ⊕ Cp:
ϕ(A⊕B) = B ⊕A, A ∈ Cp and B ∈ Cq.

If S is selfadjoint then Tp,q
S = Cp,q

S , so T̃p,q
S = ϕ(Ĉp,q

S ). Combining this with
Proposition 6.5 and Corollaries 5.5 and 6.6, we obtain the following result.

Corollary 6.7. Let S be a selfadjoint operator and 1 6 p, q 6 ∞. Then
(Ĉp,q

S )⊥ = ϕ(Ĉq′,p′

S ) and the dual space of the algebra (Cp,q
S , | · |p,q) is isometrically

isomorphic to the quotient space (Cp′⊕̃Cq′)/ϕ(Ĉq′,p′

S ).

In Proposition 6.3 it was shown that, for 1 < p, q < ∞, the algebras Cp,q
S

are reflexive for any symmetric operator S. Below we consider the case when S is
selfadjoint and either p = ∞ or q = ∞.

Theorem 6.8. Let S be a selfadjoint operator on H.
(i) If 1 < p < ∞ then (Ĉp,∞

S )⊥⊥ = Ĉp,b
S , so that the second dual space of

the algebra Cp,∞
S is isometrically isomorphic to Cp,b

S .
(ii) ([12]) (Ĉ∞,∞

S )⊥⊥ = Ĉb,b
S , so that the second dual space of the algebra

C∞,∞
S is isometrically isomorphic to Cb,b

S = AS.
(iii) Let 1 < q < ∞ then (Ĉ∞,q

S )⊥⊥ = Ĉb,q
S , so that the second dual space of

the algebra C∞,q
S is isometrically isomorphic to Cb,q

S .

Proof. First observe that ϕ(Ĉp,q
S )⊥ = ϕ((Ĉp,q

S )⊥). Since ∞′ = 1, it follows
from Corollary 6.7 that (Ĉp,∞

S )⊥ = ϕ(Ĉ1,p′

S ). If 1 < p < ∞ then 1 < p′ < ∞.
Since 1′ = b, we obtain from Corollary 6.7 that (Ĉ1,p′

S )⊥ = ϕ(Ĉp,b
S ). Hence

(Ĉp,∞
S )⊥⊥ = ϕ(Ĉ1,p′

S )⊥ = ϕ((Ĉ1,p′

S )⊥) = ϕ(ϕ(Ĉp,b
S )) = Ĉp,b

S

and it follows from Lemma 6.1 that the second dual space of (Ĉp,∞
S , ‖ · ‖p,∞) is

isometrically isomorphic to (Ĉp,b
S , ‖ · ‖p,b). Taking into account that Cp,∞

S is iso-
metrically isomorphic to (Ĉp,∞

S , ‖ · ‖p,∞) and that Cp,b
S is isometrically isomorphic

to (Ĉp,b
S , ‖ · ‖p,b), we obtain the proof of part (i). In the same way we prove parts

(ii) and (iii).
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Remark. In Example 3.4 of [12] a non-selfadjoint operator S was considered
such that the second dual space of C∞,∞

S is a proper subspace of Cb,b
S .
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