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Abstract. For p > 0 and α > 0, let Ap
α(Bn) be the weighted Bergman

space of the unit ball Bn in Cn, and denote the Hardy space by Hp(Bn).
Suppose that ϕ : Bn → Bn is holomorphic. We show that if the composition
operator Cϕ defined by Cϕ(f) = f ◦ ϕ is bounded on Ap

α(Bn) and satisfies

lim
|z|→1−

“ 1− |z|2

1− |ϕ(z)|2
”α+2

‖ϕ′(z)‖2 = 0,

then Cϕ is compact on Ap
β(Bn) for all β > α. Along the way we prove

some comparison results on boundedness and compactness of composition
operators on Hp(Bn) and Ap

α(Bn), as well as a Carleson measure-type theo-
rem involving these spaces and more general weighted holomorphic Sobolev
spaces.
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1. INTRODUCTION

Let n ∈ N. Given a set Ω, a linear space of functions X defined on Ω, and a map
ϕ : Ω → Ω, we define the linear operator Cϕ on X by Cϕ(f) = f ◦ϕ for all f ∈ X.
Cϕ is called the composition operator induced by the symbol ϕ.

The purpose of this paper is to give sufficient conditions for compactness
of composition operators on weighted Bergman spaces of the unit ball in several
complex variables. Much effort in the study of composition operators on analytic
function spaces such as these has been devoted to relating boundedness, com-
pactness, and other properties of Cϕ to function-theoretic properties of ϕ. For
example, it has been known for some time now [11] that if α > −1, p > 0, and
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ϕ : D → D is holomorphic on the unit disk D ⊂ C, then Cϕ is compact on the
weighted Bergman space Apα(D) iff

(1.1) lim
|z|→1−

1− |z|2

1− |ϕ(z)|2
= 0.

It follows from the Julia-Caratheodory Theorem ([16], p. 57) that the above equa-
tion can be restated as non-existence of a finite angular derivative for ϕ on the
boundary of D ([20], Chapter 10). The proof of the necessity of equation (1.1)
for compactness is essentially due to J. Shapiro and P. Taylor [17], and analogous
necessary conditions hold on a large class of function spaces and domains in Cn
(cf. [7], p. 171–172) and [6]). The sufficiency of equation (1.1) for compactness in
the one-variable case was originally proven by B. MacCluer and J. Shapiro in [11].
In the same paper, MacCluer and Shapiro constructed counterexamples essentially
showing that equation (1.1) is not sufficient for compactness of Cϕ on the Hardy
space Hp(D). These authors also gave explicit holomorphic maps ϕ : Bn → Bn
that induce bounded but non-compact operators on Apα(Bn) for each α > −1 and
n > 1, with no finite angular derivative at any point of the boundary of Bn. How-
ever, as is the case for D, the Julia-Caratheodory Theorem for Bn ([7], p. 105)
can be used to show that non-existence of a finite angular derivative for ϕ at all
points on the surface of Bn is equivalent to equation (1.1) above.

If the image of ϕ has compact closure in Bn, it is not difficult to show that
Cϕ is compact on a wide variety of spaces, including Hp(Bn) and Apα(Bn). We are
therefore primarily concerned with self-maps ϕ that have unit supremum norm.
In the case of the unit disk D in C, Shapiro and Taylor in [17] proved that if Cϕ
is compact on the Hardy space Hp(D), then ϕ has no finite angular derivative at
any point of the boundary of the unit disk; that is, equation (1.1) above holds.
MacCluer and Shapiro extended this result to the unit ball in [11]. They also
showed that equation (1.1) does not imply compactness of Cϕ on Hp(D), unlike
the situation for Apα(D).

It turns out that equation (1.1) does imply compactness of Cϕ on Hp(Bn) for
n > 1 if one places additional hypotheses on ϕ, such as univalence of ϕ along with
boundedness of the so-called dilation ratio ‖ϕ′(z)‖2/|Jϕ(z)|2, where ‖ϕ′(z)‖ is the
operator norm of the Frechét derivative ϕ′(z) and Jϕ is the Jacobian determinant
of ϕ′ ([7], p. 171).

MacCluer in [10] gave measure-theoretic characterizations of the holomorphic
maps ϕ that induce compact (and bounded) composition operators on Hp(Bn),
and analogous results involving Carleson-measure conditions also hold on the
spaces Apα(Bn), α > −1 (cf. [7], p. 161–164). In this paper, however, we give
a purely function-theoretic condition on ϕ (Theorem 1.1) so that Cϕ will be com-
pact on Apα(Bn) for α > 0. The condition that we give is a generalization of one
given previously by K. Madigan and A. Matheson in [12], wherein it is shown that
such a condition is equivalent to compactness of Cϕ on B0(D), the little Bloch
space of D.

Our proof of Theorem 1.1 uses a Carleson measure-type result, Theorem 2.11,
and the comparison result of Theorem 3.3. These results are perhaps of inde-
pendent interest. Theorem 2.11 states that if µ is an α-Carleson measure ([7],
Chapter 2) then functions in given weighted holomorphic Sobolev spaces satisfy a
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certain integral inequality with respect to µ. This result is a variation of the mul-
tivariable Carleson measure theorem of J. Cima and W. Wogen, [4]. Theorem 3.3
is a comparison result for boundedness and compactness of composition opera-
tors. The theorem states that the bounded composition operators on Hp(Bn),
the bounded composition operators on Apα(Bn), and the compact composition op-
erators on Apα(Bn) are increasing sets in the parameter α ∈ [−1,∞), where we
associate Hp(Bn) with α = −1.

Fixing a positive integer n, we denote the unit ball of Cn by Bn, which inherits
the norm | · | induced by the standard inner product on Cn ([14], Chapter 1). Let
O(Bn) denote the space of complex-valued, holomorphic functions on Bn. In this
paper ϕ will always be a holomorphic map ([14], Chapter 1) from Bn to itself. Let
dv(z) denote Lebesgue volume measure on Bn. Let p > 0 and α > −1. f ∈ O(Bn)
is said to be in the weighted Bergman space Apα(Bn) iff

‖f‖Ap
α(Bn) :=

{ ∫
Bn

|f(z)|p(1− |z|2)α dv(z)
}1/p

<∞.

Let dσ represent normalized surface area measure on Bn ([14], Chapter 1). f ∈
O(Bn) is said to be a member of the Hardy space Hp(Bn) iff

‖f‖Hp(Bn) :=
(

sup
0<r<1

∫
∂Bn

|f(rξ)|p dσ(ξ)
)1/p

<∞.

It is a well-known fact that ‖ · ‖Hp(Bn) and ‖ · ‖Ap
α(Bn) are norms only for p > 1

(cf. [15], Chapter 7). It is also known that the spaces Ap(Bn) and Hp(Bn) are
Banach spaces with the above norms, and that these spaces are complete, non-
locally convex topological vector spaces for 0 < p < 1 ([7], Chapter 2). A2

α(Bn) and
H2(Bn) are Hilbert spaces (see [7], Chapter 2) with inner products respectively
given by

〈f, g〉A2
α(Bn) =

∫
Bn

f(z)g(z)(1− |z|2)α dv(z),

and

〈f, g〉H2(Bn) = lim
r→1−

∫
Bn

f(rξ)g(rξ) dσ(ξ).

For γ ∈ (0, 1] we define the analytic Lipschitz space ([7], Chapter 4) Liphγ(D) to
be the Banach space of functions f ∈ O(D) satisfying

sup
z,w∈∂D

|f(z)− f(w)|
|z − w|γ

<∞.

C will be used to represent positive constants whose values may change from line
to line.

The goal of this paper is to prove the following theorem:
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Theorem 1.1. (Main Result) Let p > 0 and α > 0. Suppose that
ϕ : Bn → Bn is a holomorphic map such that Cϕ is bounded on Apα(Bn) and

(1.2) lim
|z|→1−

( 1− |z|2

1− |ϕ(z)|2
)α+2

‖ϕ′(z)‖2 = 0.

Then Cϕ is compact on Apβ(Bn) for all β > α.

The organization of this paper is as follows: In Section 2, we list some nota-
tion and preliminary facts, culminating in the statement and proof of our Carleson
measure-type theorem relating α-Carleson measures and weighted holomorphic
Sobolev spaces. In Section 3 we prove the comparison theorems on boundedness
and compactness of composition operators. Our main result for compactness of
composition operators, Theorem 1.1, is proved in Section 4. We conclude with a
discussion of examples and open problems in Section 5.

2. NOTATION AND PRELIMINARY FACTS

We will call two positive variable quantities x and y comparable (and write x ∼ y)
iff their ratio is bounded above and below by positive constants. We define a finite,
positive, Borel regular measure vϕ on Bn by

vϕ(E) = v[ϕ−1(E)],

where dv is Lebesgue volume measure on Bn ([7], p. 164). We use the notation ϕ∗
for the radial limit of the mapping ϕ ([7], p. 161). We define another finite, positive,
and Borel regular measure µϕ on Bn by µϕ(E) = σ[{ϕ∗}−1(E)∩∂Bn]. We denote
the Lebesgue measure of a set E by |E|, and for α > −1 we define the weighted
measure dνα(z) = (1− |z|2)α dv(z) on Bn, as in [4]. dνα induces on Bn another
finite, positive, Borel regular measure, dµαϕ, defined by µαϕ(E) = να[ϕ−1(E)] ([7],
p. 164). Now suppose that 0 < p <∞ and that α > −1. A finite, positive, Borel
regular measure µ on Bn is called an α-Carleson measure if and only if there exists
a constant K ∈ (0,∞) such that for all ξ ∈ ∂Bn, h ∈ (0, 1),

µ[S(ξ, h)] 6 Khn+α+1.

For s ∈ Z+, q > 0, and 0 < p 6 ∞, we define the weighted spaces Apq,s and
the weighted holomorphic Sobolev spaces Wp

q,s as in [2]. We define the partial
differential operators Dj = ∂/∂zj , j = 1, 2, . . . , n, as in Chapter 1 of [14].

Let ξ ∈ Cn, |ξ| = 1, and h > 0. We define the Carleson sets S(ξ, h) and
S(ξ, h) ([7], p. 42), by

S(ξ, h) = {z ∈ Bn : |1− 〈z, ξ〉| < h} and S(ξ, h) = {z ∈ Bn : |1− 〈z, ξ〉| < h}.
Note that for h > 2 and ξ ∈ ∂Bn, S(ξ, h) = Bn. Combining this statement with
the fact that if α > −1 and h ∈ (0, 2], then να[S(ξ, h)] ∼ hn+α+1 as h and ξ vary
[11], it is obvious that for any fixed M > 2,

(2.1) να[S(ξ, h)] ∼ hn+α+1

as h ∈ [0,M ] and ξ ∈ ∂Bn vary. Define d : Bn × Bn :→ R by d(z, w) = |1 −
〈z, w〉|1/2.
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Following [14], pages 11, 23, 25ff, for each a ∈ Bn, a 6= 0, define ϕa to be the
involutive automorphism (called a Moebius transformation) of Bn that takes 0 to
a, with explicit form given in page 2 of [14]. Let ρ denote the pseudohyperbolic
metric on Bn, and for 0 < r < 1 and a ∈ Bn, define the pseudohyperbolic ball
E(a, r) and the set S(a) as in [9]. We define the Carleson maximal operator M by

(Mf)(z) = sup
h>1−|z|

1
να[S(π(z), h)]

∫
S(π(z),h)

|f(w)|dνα(w),

for all locally να-integrable functions f : Bn → C, where π(z) = z/|z| ∀z 6= 0 in
Bn. For any f : Bn → C, Mf is called the Carleson maximal function of f . We
then define an uncentered Carleson maximal operator M̃ by

M̃f(z) = sup
{(ξ,h)∈∂Bn×(0,∞):z∈S(ξ,h)}

1
να[S(ξ, h)]

∫
S(ξ,h)

|f(w)|dνα(w)

= sup
{(ξ,h)∈∂Bn×(0,2):z∈S(ξ,h)}

1
να[S(ξ, h)]

∫
S(ξ,h)

|f(w)|dνα(w),

where f : Bn → C is locally να-integrable. In this case we call M̃f the uncentered
Carleson maximal function of f .

The following proposition will be referred to frequently:

Proposition 2.1. If α > −1, then the norms on A2
α(Bn) and W2

α+3,1 are
equivalent, and the spaces are the same. That is,

(2.2) A2
α(Bn) = W2

α+3,1.

Proof. This result can be proven by combining the relations A2
α+1,0 = A2

α+3,1

([2], p. 35) and A2
α+3,1 = W2

α+3,1 ([2], p. 44).

The results that we have used here from [2] also hold more generally on
smoothly bounded, strictly pseudoconvex domains in Stein manifolds [1], thus
giving substantial support for our belief that analogues of the results in the present
paper can be proven for those domains. The question of whether or not these
results hold for bounded symmetric domains is also natural and interesting.

The following well-known result, which characterizes the compact compo-
sition operators on Apα(Bn), is well-known. The interested reader is referred to
[11], where it is stated that this result holds on the so-called Dirichlet spaces, and
therefore for the weighted Bergman spaces as well (by Example 3.5.9 of [7]). For
many function spaces other than Apα(Bn), in one and several variables, the result
can be proven by modifying the proof given for D in page 128 of [7] (also, see [6]).

Theorem 2.2. Let ϕ : Bn → Bn be holomorphic, and suppose that 0 < p <
∞ and α > −1. Then Cϕ is compact on Apα(Bn) iff for each bounded sequence
{fk}k∈N in Apα(Bn) converging to 0 uniformly on compacta in Bn, it follows that
Cϕ(fk) → 0 in Apα(Bn)-metric.

An application of the triangle inequality and the reverse triangle inequality
shows that if h > 0, z ∈ C, |1 − z| < h, and 1 6 r 6 1/|z|, then |1 − rz| < 2h.
Using this fact, we now prove the following lemma:
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Lemma 2.3. If ξ ∈ ∂Bn, z ∈ Bn, 0 < h < 1, and |1− 〈z, ξ〉| < h, then∣∣∣1− 〈 z

|z|
, ξ

〉∣∣∣ < 2h.

Proof. If ξ = e1 := (1, 0, 0, . . . , 0) then the remark preceding the statement
of the lemma with r = 1/|z| clearly implies that |1−〈z/|z|, e1〉| = ‖1−z1/|z‖ < 2h.
To extend this result to arbitrary ξ ∈ ∂Bn, one can clearly choose a unitary map
U : Cn → Cn that sends ξ to e1. It follows that

|1− 〈z, ξ〉| = |1− 〈Uz,Uξ〉| = |1− 〈Uz, e1〉| < h,

since U preserves inner products. Hence,∣∣∣1− 〈 z

|z|
, ξ

〉∣∣∣ =
∣∣∣1− 〈 Uz

|Uz|
, e1

〉∣∣∣.
Since |1− 〈Uz, e1〉| < h we must have that the quantity above is less than 2h, by
the preliminary result that we proved for ξ = e1.

We will now show that the sets S(ξ, h) are “homogeneous” by modifying
arguments in pages 8 and 37 of [18].

Lemma 2.4. Let α > −1. Then there exist constants c1 and c2 such that for
all h > 0 and ξ, η ∈ ∂Bn the following properties:

(i) if S(ξ, h) ∩ S(η, h) 6= ∅, then S(ξ, h) ⊂ S(η, c1h);
(ii) να[S(ξ, c1h)] 6 c2να[S(ξ, h)].

The conditions (i) and (ii) above are called the engulfing and the doubling
properties, respectively. Families of subsets B(x, r) of Euclidean space satisfying
properties such as these are called spaces of homogeneous type ([18], Chapter 1).

Proof. (ii) is an immediate consequence of relation (2.1). To prove (i), we will
show that c1 = 9. Suppose that z ∈ S(ξ, h). By hypothesis, ∃w ∈ S(ξ, h)∩S(η, h).
We claim that |1− 〈z, η〉| < 9h. It is known that d satisfies the triangle inequality
in Bn ([14], p. 66). We have that d(z, ξ) < h1/2, so that |1− 〈z, η〉|1/2 = d(z, η) 6
d(z, ξ) + d(ξ, η) 6 d(z, ξ) + d(ξ, w) + d(w, η) < h1/2 + h1/2 + h1/2 = 3h1/2. Our
claim and the desired set inclusion follow.

We will also need the following consequence of Lemmas 2.4 and 2.3:

Lemma 2.5. If ξ ∈ ∂Bn, h > 0, and z ∈ S(ξ, h), then

S(ξ, h) ⊂ S(π(z), 18h).

Proof. First, if h > 1/9, then the proof is trivial. Therefore, assume that
0 < h < 1/9. We first show that under the above hypotheses,

S(π(z), 2h) ∩ S(ξ, 2h) 6= ∅.

By assumption, d(z, ξ) < h1/2, and it follows from Lemma 2.3 that d(π(z), ξ) <
(2h)1/2. Therefore, there exists an ε ∈ (0, [2h]1/2) such that

(2.3) d
( z

|z|
, ξ

)
= (2h)1/2 − ε.
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It follows that ε and its square must be less than 1, so that 1−ε2
|z| < 1

|z| . We now
choose r ∈ ([1 − ε2]/|z|, 1/|z|). It is easy to see that 0 < 1 − r|z| < ε2. Putting
w = rz, we obtain that

d(w, π(z)) = |1− 〈w, π(z)〉|1/2 =
∣∣∣1− 〈

rz,
z

|z|

〉∣∣∣1/2 = |1− r|z‖1/2 < ε < (2h)1/2.

Squaring, one obtains w ∈ S(π(z), 2h). In particular from the line above,

(2.4) d(w, π(z)) < ε.

We will now show that w ∈ S(ξ, 2h). By the triangle inequality for d ([14], p. 66),
we have that d(w, ξ) 6 d(w, π(z)) + d(π(z), ξ), which by relations (2.4) and (2.3)
is less than ε + (2h)1/2 − ε = (2h)1/2. Therefore, w ∈ S(ξ, 2h), as we claimed.
Since w ∈ S(π(z), 2h) we have that S(ξ, 2h) ∩ S(π(z), 2h) 6= ∅. By the engulfing
property,

S(ξ, 2h) ⊂ S(π(z), 18h),
and the statement of the lemma immediately follows.

The proof of the following lemma involves modifications of the argument
given for an analogous result in page 13 of [18]. This lemma justifies the final step
in the proof of Theorem 2.11.

Lemma 2.6. We have that

M̃f(z) ∼Mf(z)

as z ∈ Bn and the locally integrable functions f : Bn → C vary.

Proof. It is clear from the definitions that Mf(z) 6 M̃f(z) for all locally
integrable functions f on Bn and z ∈ Bn. Therefore, it suffices to find a C > 0
such that

M̃f(z) 6 CMf(z)
for all such z and f . From relation (2.1), it is clear that

M̃f(z) 6 C sup
{(ξ,h)∈∂Bn×(0,2):z∈S(ξ,h)}

1
να[S(π(z), 18h)]

∫
S(ξ,h)

|f(w)|dνα(w)

6 C sup
{(ξ,h)∈∂Bn×(0,∞):z∈S(ξ,h)}

1
να[S(π(z), 18h)]

∫
S(ξ,h)

|f(w)|dνα(w)

6 C sup
{(ξ,h)∈∂Bn×(0,∞):z∈S(ξ,h)}

1
να[S(π(z), 18h)]

∫
S(π(z),18h)

|f(w)|dνα(w),

by Lemma 2.5. Now z ∈ S(ξ, h) implies that 1− |z| < h. By reducing restrictions
on the supremum we obtain that the above quantity is surely

6 C sup
h>1−|z|

1
να[S(π(z), 18h)]

∫
S(π(z),18h)

|f(w)|dνα(w)

6 C sup
18h>1−|z|

1
να[S(π(z), 18h)]

∫
S(π(z),18h)

|f(w)|dνα(w) = CMf(z).
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Using the engulfing property and duplicating the proof of an analogous Vitali-
type covering lemma proven in Chapter 1 of [18] (with the sets S(ξ, h) playing the
role of the balls B(x, r) there), it is not difficult to verify the following Vitali-
type covering lemma, which will be used to show in Lemma 2.8 that the Carleson
maximal operator M is type (2, 2) from L2(Bn, dνα) to L2(Bn, dµ) when µ is an
α-Carleson measure. See page 179 of [19] for the definition of weak-type and type
(i.e., strong type).

Lemma 2.7. There is a positive constant c1 such that if E ⊂ Bn is a mea-
surable set that is the union of a finite collection of Carleson sets {S(ξj , hj)}kj=1,
then one can choose a disjoint subcollection {S(ξ′j , h

′
j)}mj=1 such that

E ⊂
m⋃
j=1

S(ξ′j , c1h
′
j).

We are now ready to prove that when µ is an α-Carleson measure, the Car-
leson maximal operator M behaves nicely as an operator from L2(dv) to L2( dµα).
We have modified similar ideas used in pages 13–14 of [18] and [4].

Lemma 2.8. Suppose that µ is an α-Carleson measure, where α > −1. Then
the Carleson maximal operator M is “type (2, 2)”; that is, M is a bounded sublinear
operator from L2(Bn, dνα) to L2(Bn, dµ).

Proof. Lemma 2.7 shows that the subadditive map M is a weak type (1, 1)
operator from L1(Bn, dνα) to L1(Bn, dµ). It is obvious that M is type (∞,∞)
from L∞(Bn, dνα) to L∞(Bn, dµ), and that M is subadditive. We then appeal
to the Marcinkiewicz interpolation theorem ([19], p. 184) which shows that M is
bounded from L2(Bn, dνα) to L2(Bn, dµ). Therefore, if we show that the operator
M is weak type (1, 1) from L2(Bn, dνα) to L2(Bn, dµ), then the proof of the lemma
will be complete.

For each γ > 0, let

Eγ = {z ∈ Bn : M̃f(z) > γ},

and let E be any compact subset of Eγ . By definition of Eγ , for each z ∈ E, there
are ξ ∈ ∂Bn and h > 1− |z| such that z ∈ S(ξ, h) and

(2.5) να[S(ξ, h)] <
1
γ

∫
S(ξ,h)

|f(w)|dνα(w).

Now the sets S(ξ, h) are obviously open by continuity of the function |1 − 〈ξ, ·〉|
for each ξ ∈ ∂Bn. Since each z is in some S(ξ, h), then by compactness of E we
can select a finite collection of sets S(ξ, h) covering E. By Lemma 2.7, there is a
disjoint subcollection S(ξ1, h1), . . . , S(ξm, hm) of this cover such that

E ⊂
m⋃
j=1

S(ξj , c1hj).
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We then obtain by properties of the measure µ that

µE 6
m∑
j=1

µ[S(ξj , c1hj)] 6 C
m∑
j=1

(c1hj)n+1+α

6 C
m∑
j=1

(hj)n+1+α 6 C
m∑
j=1

να[S(ξj , hj)].

The second inequality above is due to the assumption that µ is an α-Carleson
measure, and the final inequality follows from relation (2.1). Since the S(ξj , hj)’s
are disjoint and satisfy inequality (2.5), we have that

(2.6)

µE 6 C
m∑
j=1

1
γ

∫
S(ξj ,hj)

|f(w)|dνα(w)

6
C

γ

∫
m⋃

j=1

S(ξj ,hj)

|f(w)|dνα(w) 6
C

γ

∫
Bn

|f(w)|dνα(w).

We can write Eγ =
∞⋃
k=1

Ek, where (Ek)∞k=1 is an increasing sequence of compact

sets. Using this decomposition and inequality (2.6), along with the fact that µ is
a Borel regular measure, we obtain that

µEγ 6
C

γ

∫
Bn

|f(w)|dνα(w).

It follows that

µ{z ∈ Bn : M̃f(z) > γ} 6
C

γ

∫
Bn

|f(w)|dνα(w).

By Lemma 2.6, one obtains

µ{z ∈ Bn : Mf(z) > γ} 6
C

γ

∫
Bn

|f(w)|dνα(w).

Next, we outline a proof of the fact that the sets S(ξ, h) can be used to
approximate the sets E(a, r), so that one obtains a submean value property over
Carleson sets in the proof of Theorem 2.11 from a submean value property over
pseudohyperbolic balls (Proposition 2.10 below).

Our outline is as follows: following pages 321–322 of [9], let r ∈ (0, 1) and
α > −1 be fixed. Then να[S(b)] ∼ (1 − |b|)n+1+α as b varies through Bn, and
να[E(z, r)] ∼ να[S(z)] as z varies in Bn. Combining these two facts, it is not
difficult to see that να[E(a, r)] ∼ (1 − |a|2)n+1+α as a ∈ Bn varies. For each
z ∈ Bn there is a b(z) =: b ∈ Bn such that 1 − |b| ∼ 1 − |z| and E(z, r) ⊂ S(b),
and if ξ ∈ ∂Bn, h ∈ (0, 1), and b = (1 − h)ξ, then S(ξ, h) ⊂ S(b) ⊂ S(ξ, 2h).
All of these facts, together with relation (2.1) can be combined to show that the
following proposition holds:
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Proposition 2.9. Let α > −1 and r ∈ (0, 1) be fixed. For each z ∈ Bn,
there is a Carleson set S(ξ, 2h) with

E(z, r) ⊂ S(ξ, 2h).

Furthermore,
να[E(z, r)] ∼ να[S(ξ, 2h)]

as z varies in Bn.

For r > 0 fixed, it is known that 1 − |w|2 ∼ 1 − |z|2 as w ∈ E(z, r) and
z ∈ Bn vary ([9], p. 232). Using this fact, the submean value property for squares
of moduli of holomorphic functions, the fact that ϕa[E(a, r)] = B(0, r) ([14], p. 26
and 29), a change of variables via the map ϕa, the relation |1−〈w, z〉| ∼ 1−|z|2 for
z ∈ Bn and w ∈ E(z, r) ([9], p. 324), and a well-known formula for the Jacobian
determinant of ϕ′a(z) in Bn ([14], p. 28), one can obtain the following result, which
appears in a more general weighted form in [9] (however, the statement r > 1 there
should be changed to r ∈ (0, 1)):

Lemma 2.10. Let α > −1. For each fixed 0 < r < 1 there is a constant
Cr > 0 such that for all f ∈ O(Bn) and a ∈ Bn,

|∇f(a)|2 6
Cr

να[E(a, r)]

∫
E(a,r)

|∇f(z)|2 dνα(z).

The fact that we are not assuming univalence of ϕ in Theorem 1.1 makes
it necessary for us to use Carleson measure conditions to estimate integrals with
respect to vϕ. Therefore, the following Carleson-measure type theorem is crucial
in the proof of Theorem 1.1. This theorem is the main result of this section.

Theorem 2.11. For α > −1, suppose that µ is an α-Carleson measure.
Then given β > 0 there is a C > 0 such that for all f ∈ W2

α+β+1,1, we have

(2.7)
∫
Bn

|∇f(z)|2(1− |z|2)β dµ(z) 6 C

∫
Bn

|∇f(z)|2(1− |z|2)β dνα(z).

Proof. We first show that there is a constant C > 0 such that for all f ∈
W 2
α+β+1,1,

(2.8) |∇f(z)|(1− |z|2)β/2 6 CM [|∇f |(·)(1− | · |2)β/2](z).
We proceed as follows. By Lemma 2.10 with r any fixed positive number smaller
than say, 1/2, there is a positive constant C such that for all f ∈ O(Bn) and
z ∈ Bn,

|∇f(z)| 6 C

να[E(z, r)]

∫
E(z,r)

|∇f(w)|dνα(w).

Therefore, there is a positive constant C such that for all f ∈ O(Bn) and z ∈ Bn,

|∇f(z)|(1− |z|2)β/2 6
C

να[E(z, r)]

∫
E(z,r)

|∇f(w)|(1− |z|2)β/2 dνα(w).
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Since 1 − |z|2 ∼ 1 − |w|2 as z ∈ Bn and w ∈ E(z, r) vary ([9], p. 322) it follows
that there is a positive constant C such that for all f ∈ O(Bn), z ∈ Bn,

(2.9) |∇f(z)|(1− |z|2)β/2 6
C

να[E(z, r)]

∫
E(z,r)

|∇f(w)|(1− |w|2)β/2 dνα(w).

It follows from Proposition 2.9 that the right-hand side of inequality (2.9) is

6
C ′

να[S(ξ, 2h)]

∫
E(z,r)

|∇f(w)|(1− |w|2)β/2 dνα(w)

6
C

να[S(ξ, 2h)]

∫
S(ξ,2h)

|∇f(w)|(1− |w|2)β/2 dνα(w)

6 C sup
{(ξ,2h)∈∂Bn×(0,∞):z∈S(ξ,2h)}

1
να[S(ξ, 2h)]

∫
S(ξ,2h)

|∇f(w)|(1− |w|2)β/2 dνα(w)

= CM̃ [|∇f |(·)(1− | · |2)β/2](z) 6 C ′M [|∇f |(·)(1− | · |2)β/2](z).
The last inequality above follows from Lemma 2.6. Therefore, the pointwise esti-
mate (2.8) holds. It follows from inequality (2.8) that∫

Bn

|∇f(z)|2(1− |z|2)β dµ(z) 6 C ′
∫
Bn

(M [|∇f |(·)(1− | · |2)β/2](z))2 dµ(z)

6 C

∫
Bn

|∇f(z)|2(1− |z|2)β dνα(z).

The final inequality above follows from Lemma 2.8.

3. A COMPARISON THEOREM FOR Hp(Bn) AND Ap
α(Bn)

In this section we show that for holomorphic maps ϕ : Bn → Bn, boundedness
of Cϕ on Hp(Bn) implies boundedness of Cϕ on Apα(Bn) for all α > −1 and that
boundedness of Cϕ on Apα(Bn) for some α > −1 implies boundedness of Cϕ on
Apβ(Bn) for all β > α. Both of these facts hold with “boundedness” replaced by
“compactness”. We begin with a few preliminary facts for the Hardy spaces.

Lemma 3.1. For each a ∈ Bn, Cϕa is bounded on Hp(Bn) for p > 1.

Proof. Recall that Hp(Bn) is a Moebius-invariant function space ([14],
p. 84–85). It is easy to show (in fact, a more general result holds — see [7],
Chapter 1, Example 1.1.1) that Cϕa defines a closed linear operator on the set of
all f ∈ H2(Bn) such that f ◦ ϕ ∈ H2(Bn). An application of the Closed Graph
theorem completes the proof.

We also provide the details of the proof of the following lemma, whose proof
closely follows the line of reasoning used in pages 161ff of [7] to prove the same
result for a single composition operator.
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Lemma 3.2. Let p > 0. Suppose {ϕβ : β ∈ I} is an indexed family of
holomorphic self-maps of Bn such that:

(i) Cϕβ
is bounded on Hp(Bn) for each β ∈ I; and

(ii) the operator norms ‖Cϕβ
‖ are bounded uniformly in β.

Then there exists a constant C > 0 such that for all β ∈ I, ξ ∈ ∂Bn, h ∈ (0, 1),

µϕβ
[S(ξ, h)] 6 Chn.

Proof. Boundedness of Cϕβ
onHp(Bn) for p > 0 is equivalent to boundedness

on H2(Bn) ([7], p. 161–162). Fix ξ ∈ ∂Bn and h ∈ (0, 1). Consider the family of
test functions fw defined by

fw(z) = (1− 〈z, w〉)−2n,

where w = (1− h)ξ ([7], p. 162). It can be shown ([7], p. 162) that

(3.1) ‖fw ◦ ϕβ‖2 =
∫
∂Bn

|(fw ◦ ϕ∗β)(η)|2 dσ(η) =
∫
Bn

|fw(z)|2 dµϕβ
(z),

by the fact that (fw ◦ ϕβ)∗(ξ) = (f∗w ◦ ϕ∗β)(ξ) for almost every ξ ∈ ∂Bn (since fw
clearly extends continuously to Bn and the Cϕβ

’s are bounded (see [7], Chapter 3).
By assumption, there exists a constant C > 0 such that for all β ∈ I, h ∈ (0, 1),
and ξ ∈ ∂Bn,

(3.2)
∫
∂Bn

|(f∗w ◦ ϕ∗β)(η)|2 dσ(η) 6 C

∫
∂Bn

|f∗w(η)|2 dσ(η).

From relation (3.1) and inequality (3.2), we have that∫
S(ξ,h)

|fw(z)|2 dµϕβ
(z) 6

∫
Bn

|fw(z)|2 dµϕβ
(z)(3.3)

=
∫
∂Bn

|(fw ◦ ϕ∗β)(η)|2 dσ(η)

6 C

∫
∂Bn

|f∗w(η)|2 dσ(η).(3.4)

It can be shown ([7], Example 3.5.2, p. 172) that for all z ∈ S(ξ, h), ξ ∈ ∂Bn, and
h ∈ (0, 1) satisfying w = (1− h)ξ,

(3.5) |fw(z)|2 > (2h)−4n.

It is also not difficult to show ([14], p. 18) that

(3.6) ‖fw‖2
H2(Bn) ∼ h−3n.

Collapsing inequalities (3.3) and (3.4) gives rise to the inequality∫
S(ξ,h)

|fw(z)|2 dµϕβ
(z) 6 C‖fw‖2

H2(Bn).
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Applying inequality (3.5) to the left side of this inequality and equation (3.6) to
the right side, one obtains∫

S(ξ,h)

(2h)−4n dµϕβ
(z) 6 C ′h−3n.

The above inequality can be rewritten as

(3.7) µϕβ
[S(ξ, h)] 6 C2nhn.

The author is grateful to B. MacCluer for pointing out that the proof of the
boundedness portion of part (i) of the following theorem can be obtained by an
identical argument that she and Carl Cowen previously used in [8] to prove that for
the special case of linear fractional maps ϕ of Bn, boundedness of Cϕ on Hp(Bn)
implies boundedness on Apα(Bn) for each α > −1 . Part (ii) of Theorem 3.3 will
be needed in the proof of Theorem 1.1.

Theorem 3.3. Suppose that p > 0, and let ϕ : Bn → Bn be holomorphic.
(i) If Cϕ is bounded (respectively, compact) on Hp(Bn), then it is also

bounded (respectively, compact) on Apα(Bn) for all α > −1.
(ii) If Cϕ is bounded (compact) on Apα(Bn) for some α > −1, then it is

bounded (compact) on Apβ(Bn) for all β > α.

Proof. Part (i): For this part, we prove the boundedness portion only. Since
Cϕ is compact on Hp(Bn) for some p ∈ (0,∞) if and only if Cϕ is compact on
Hp(Bn) for all p ∈ (0,∞) ([7], p. 162), we can let p = 2. Secondly, suppose for the
moment that we have proved the result for maps ϕ that fix the origin. If ϕ(0) =
a ∈ Bn, then ψ := ϕa ∈ Aut(Bn) maps a to 0. Clearly, Cϕ = CψCϕψ−1 . The
first factor is bounded on H2(Bn) by Lemma 3.1. Since ϕψ−1(0) = ϕ(a) = 0, the
second factor Cϕψ−1 = Cψ−1Cϕ is also bounded by Lemma 3.1 and the preliminary
result for maps fixing the origin. The statement of the theorem follows. Therefore,
it remains only to consider maps ϕ sending 0 to 0.

Next, we claim that for r ∈ (0, 1), the operators Cϕr
are bounded on H2(Bn)

and satisfy the uniform bound ‖Cϕr‖ 6 ‖Cϕ‖. First, note that Cϕr = CψrCϕ,
where ψr is the map sending z ∈ Bn to rz. Therefore, the claimed statement
will follow if we can prove that the composition operators Cψr are bounded with
operator norm less than or equal to 1. (Actually, these operators will then have
norm equal to 1 since the constant functions are in the Hardy space.) Letting
r ∈ (0, 1) and f ∈ H2(Bn), we have

‖Cψr
f‖2

H2(Bn) = sup
s∈(0,1)

∫
∂Bn

|f(rsξ)|2 dσ(ξ) = sup
t∈(0,r)

∫
∂Bn

|f(tξ)|2 dσ(ξ)

6 sup
t∈(0,1)

∫
∂Bn

|f(tξ)|2 dσ(ξ) = ‖f‖2
H2(Bn).

Therefore, Cψr is bounded and ‖ψr‖ 6 1 (hence, = 1), as claimed.
Letting I = (0, 1) and writing β = r in Lemma 3.2, we obtain that there is

a constant C > 0 such that for all ξ ∈ ∂Bn, h ∈ (0, 1), and r ∈ (0, 1),

(3.8) µϕr
[S(ξ, h)] 6 Chn.
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Since ϕ(0) = 0, it follows from Schwarz’ Lemma in Bn ([7], p. 96) that

(3.9) 1− |z| 6 1− |ϕ(z)|.

If we let z ∈ ϕ−1[S(ξ, h)], then it is easy to see that 1− |ϕ(z)| < h. Therefore, if
|z| = r, inequality (3.9) implies that r > 1−h. We use this inequality to calculate
µαϕ[S(ξ, h)] by transformation to polar coordinates ([14], p. 13). We write

µαϕ[S(ξ, h)] 6 µαϕ[S(ξ, h)] =
∫

ϕ−1[S(ξ,h)]

(1− |z|2)α dv(z)(3.10)

= 2n

1∫
1−h

∫
∂Bn∩ϕ−1[S(ξ,h)]

(1− r2)αr2n−1 dσ(η) dr

= 2n

1∫
1−h

(1− r2)αr2n−1

∫
∂Bn

χϕ−1[S(ξ,h)](rη) dσ(η) dr.(3.11)

ϕ∗r , the radial limit function associated to ϕ, satisfies ϕ∗r(η) = ϕr(η) for η ∈ ∂Bn.
Combining this fact with the fact that χϕ−1[S(ξ,h)](rη) = 1 iff ϕ(rη) = ϕr(η) =
ϕ∗r(η) ∈ S(ξ, h), it is not difficult to see that the inner integral in quantity (3.11)
can be written as∫

(ϕ∗r)−1[S(ξ,h)]

dσ(η) 6 σ{(ϕ∗r)−1[S(ξ, h)]} = µϕr
[S(ξ, h)] 6 Chn

by Lemma 3.2. Therefore, quantity (3.11) is

= 2nChn
1∫

1−h

(1− r2)αr2n−1 dr 6 Chn
1∫

1−h

(1− r)α dr = Chα+n+1.

Therefore, µαϕ[S(ξ, h)] 6 Chα+n+1, and the constant C is independent of ξ and h.
Since µαϕ is an α-Carleson measure, we conclude that Cϕ is bounded on all of the
spaces Apα(Bn) ([7], p. 164).

Part (ii): By Lemma 3.1, the automorphisms ϕa induce bounded composition
operators on any Apα(Bn). Therefore, as in part (i), we can assume that ϕ(0) = 0.
It is well-known ([7], p. 164) that boundedness of Cϕ on Apα(Bn) is equivalent to
the condition that there exists a positive constant C such that for all ξ ∈ ∂Bn and
h > 0,

µαϕ[S(ξ, h)] 6 Chα+N+1.

Therefore, by the converse direction of this result, it suffices to show that the
condition above implies that there is a positive constant C ′ such that for all ξ ∈
∂Bn and h > 0,

µβϕ[S(ξ, h)] 6 C ′hα+N+1.
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The simple argument that we will use appears in [11], where an analogous result
for the Dirichlet space of D is proven. By definition, we have that

(3.12) µβϕ[S(ξ, h)] =
∫

ϕ−1[S(ξ,h)]

(1− |z|2)β dv(z).

Now if z ∈ ϕ−1[S(ξ, h)], then |1 − 〈ϕ(z), ξ〉| < h. It follows that 1 − |ϕ(z)| < h,
and, since ϕ(0) = 0, Schwarz’ Lemma in Bn ([7], p. 96) implies that 1 − |z| < h.
We then rewrite the right side of equation (3.12) as∫
ϕ−1[S(ξ,h)]

(1− |z|2)α(1− |z|2)β−α dv(z) 6 2β−αhβ−α
∫

ϕ−1[S(ξ,h)]

(1− |z|2)α dv(z)

6 2β−α
∫

ϕ−1[S(ξ,h)]

(1− |z|2)α dv(z) = 2β−αµαϕ[S(ξ, h)] 6 2β−αChα+n+1.

Note in particular that

(3.13) µβϕ[S(ξ, h)] 6 2β−αµαϕ[S(ξ, h)].

Letting C ′ = 2β−αC completes the proof of the boundedness portion of part (ii).
We now prove the compactness portion. Since Cϕ is compact on Apα(Bn),

it follows that Cϕ is bounded on Apα(Bn). Since β > α, we have that inequality
(3.13) holds. It follows from compactness of Cϕ that the right side of inequality
(3.13) tends to 0 uniformly in ξ as h tends to 0 ([7], p. 164), so that the left side
must tend to 0 similarly.

We are now prepared to prove our main result.

4. PROOF OF THEOREM 1.1

Proof. Since compactness of Cϕ on Apα(Bn) is independent of p > 0 ([7],
p. 164), it suffices to prove the result for p = 2. Let {fk}k∈N be a norm-bounded
sequence in A2

α(Bn) such that fk → 0 uniformly on compacta in Bn. By Theo-
rem 2.2, it suffices to show that ‖Cϕfk‖A2

α(Bn) → 0 as k →∞. By equation (2.2),
there is a constant C > 0 such that for all k > 1,

‖Cϕfk‖2
A2

α(Bn) 6 C‖Cϕfk‖2
W2

α+3,1
= C

n∑
i=1

∫
Bn

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)α+2 dv(z).

By hypothesis, we can choose δ ∈ (0, 1) such that ∀z satisfying δ < |z| < 1,

(4.1)
( 1− |z|2

1− |ϕ(z)|2
)α+2

‖ϕ′(z)‖2 < ε.
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If Bδ := {z ∈ Cn : |z| < δ}, then
n∑
i=1

∫
Bn

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)α+2 dv(z)

=
n∑
i=1

∫
Bδ

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)α+2 dv(z)

+
n∑
i=1

∫
δ<|z|<1

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)2 dνα(z).

The first sum in the right side of the above equation can be made arbitrarily small
by noting that

n∑
i=1

∫
Bδ

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)α+2 dv(z) 6

n∑
i=1

∫
Bδ

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2 dv(z).

The right side above tends to zero as k →∞ because fk → 0 uniformly on compact
subsets of Bn, implying in turn that fk ◦ϕ, and the partial derivatives ∂

∂zi
(fk ◦ϕ)

converge to 0 uniformly on compact subsets ([14], p. 5). Therefore, it remains to
show that the quantity

(4.1)
n∑
i=1

∫
δ<|z|<1

∣∣∣ ∂
∂zi

(fk ◦ ϕ)(z)
∣∣∣2(1− |z|2)2 dνα(z)

can be made arbitrarily small.
Let ‖ϕ′(z)‖2 denote the Hilbert-Schmidt norm of the linear transformation

ϕ′(z). Using the chain rule, the triangle inequality, the fact that |Diϕj |2 6
‖ϕ′(z)‖2

2 for all i, j, and the fact that the Hilbert-Schmidt norm of ϕ′(z) is equiv-
alent to its operator norm, we obtain that quantity (4.2)

=
∫

δ<|z|<1

n∑
i=1

|Di(fk ◦ ϕ)(z)|2(1− |z|2)2 dνα(z)

6
∫

δ<|z|<1

n∑
i=1

∣∣∣∣ n∑
j=1

[Djfk][ϕ(z)](Diϕj)(z)
∣∣∣∣2(1− |z|2)2 dνα(z)

6 n

∫
δ<|z|<1

∣∣∣∣ n∑
j=1

[Djfk][ϕ(z)]
∣∣∣∣2‖ϕ′(z)‖2

2(1− |z|2)2 dνα(z)

6 C

∫
δ<|z|<1

∣∣∣∣ n∑
j=1

[Djfk][ϕ(z)]
∣∣∣∣2‖ϕ′(z)‖2(1− |z|2)2 dνα(z).

From (4.1) and a measure-theoretic change of variables (proven by considering
simple functions and applying an appropriate convergence theorem), it follows
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that the above quantity is

6 nε

∫
δ<|z|<1

∣∣∣∣ n∑
j=1

[Djfk][ϕ(z)]
∣∣∣∣2(1− |ϕ(z)|2)2 dνα(z)

= nε

∫
ϕ(δ<|z|<1)

∣∣∣∣ n∑
j=1

[Djfk][w]
∣∣∣∣2(1− |w|2)2 dµαϕ(w)

6 nε

∫
Bn

∣∣∣∣ n∑
j=1

[Djfk][w]
∣∣∣∣2(1− |w|2)2 dµαϕ(w).

Since Cϕ is bounded on A2
α(Bn), µαϕ is an α-Carleson measure ([7], p. 164). There-

fore, Theorem 2.11 with µ = µαϕ and β = 2 implies that there is a constant C ′ > 0
(which we relabel C as usual) such that the above quantity is

6 Cε

∫
Bn

∣∣∣∣ n∑
j=1

[Djfk][w]
∣∣∣∣2(1− |w|2)2 dνα(w)

= Cε‖fk‖W2
α+3,1

6 Cε‖fk‖2
A2

α(Bn).

The final inequality above follows from Proposition 2.1. We note once again that
{fk : k ∈ N} is norm bounded, independent of k. Therefore, Cϕ is compact on
Apα(Bn). Next, let β > α. By Theorem 3.3, Cϕ is also bounded and compact on
Apβ(Bn) for all β > α, so that Theorem 1.1 is completely proven.

5. EXAMPLES AND QUESTIONS FOR FURTHER INVESTIGATION

It is natural to consider whether or not the following extension of Theorem 1.1
holds: if α = −1 (respectively, −1 < α < 0), (1.2) holds, and Cϕ is bounded
on Hp(Bn) (respectively, bounded on Apα), then Cϕ is compact on Hp(Bn) (re-
spectively, compact on Apα(Bn)) and also on Apβ(Bn) for all β > −1 (respectively,
β > α). Indeed it can be shown with results and techniques identical to those in
this paper that this result holds; however, we now show for n = 1 (Proposition 5.1)
that any map ϕ under these conditions must have image with sup norm less than
one, so that in this case ϕ automatically induces a compact composition operator.
The proof of the proposition uses ideas from Chapter 4 of [7]:

Proposition 5.1. Let α ∈ [−1, 0), and suppose that ϕ : D → D is holo-
morphic and satisfies

(5.1) lim
|z|→1−

{( 1− |z|2

1− |ϕ(z)|2
)α+2

|ϕ′(z)|2
}

= 0.

Then ‖ϕ‖∞ < 1.

Proof. Letting γ = (α+ 2)/2, we obtain

(5.2) lim
|z|→1−

{( 1− |z|2

1− |ϕ(z)|2
)γ
|ϕ′(z)|

}
= 0.
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We first claim that Cϕ is compact on Liph1−γ(D). Suppose that (fk)k∈N is a
bounded sequence in Liph1−γ(D) such that fk → 0 uniformly on compacta. Since
Liph1−γ(D) is a functional Banach space ([7], Chapter 4), it suffices to show that
‖fk ◦ ϕ‖Liph1−γ(D) → 0. Let ε > 0. By equation (5.2), there exists an r ∈ (0, 1)
such that for z ∈ D such that |z| > r,

(5.3)
( 1− |z|2

1− |ϕ(z)|2
)γ
|ϕ′(z)| < ε.

Since Liph1−γ(D) is a functional Banach space, its point evaluation functionals are
continuous. Combining this fact with ([7], Theorem 4.1, p. 176) (Note: there is a
typographical error here — ∂Bn should be replaced by ∂D, although an analogue
does hold for Bn, [5]), we have that there is a C > 0 such that for all n ∈ N,

‖fk ◦ ϕ‖1−γ 6 C sup
z∈D

{|(fk ◦ ϕ)′(z)|(1− |z|2)γ}

6 C
(

sup
|z|6r

{|f ′k[ϕ(z)]| |ϕ′(z)|(1− |z|2)γ}+ sup
|z|>r

{|f ′k[ϕ(z)]| |ϕ′(z)|(1− |z|2)γ}
)
.

Clearly, the above quantity is

6 C
(
M sup

|z|6r
{|f ′k[ϕ(z)]|}+ sup

|z|>r

{
|f ′k[ϕ(z)]| |ϕ′(z)|

( 1− |z|2

1− |ϕ(z)|2
)γ

(1− |ϕ(z)|γ
})
.

The quantity above is

6 C
(
M sup

|z|6r
{|f ′k[ϕ(z)]|}+ ε sup

|z|>r
{|f ′k[ϕ(z)]|(1− |ϕ(z)|γ}

)
6 C

(
M sup

|z|6r
{|f ′k[ϕ(z)]|}+ C ′ε‖fk‖1−γ

)
6 C

(
M sup

|z|6r
{|f ′k[ϕ(z)]|}+ C ′′ε

)
,

since (fk) is bounded by hypothesis. The left summand above can be made ar-
bitrarily small by uniform convergence of (fk) on compacta. Since ε was cho-
sen arbitrarily, our claim of compactness of Cϕ on Liph1−γ(D) holds. Since
Liph1−γ(D) is an automorphism-invariant, boundary regular, small space, it fol-
lows that ‖ϕ‖∞ < 1 ([7], p. 177).

Although the above proposition shows that allowing α to be in [−1, 0) even
for n = 1 in Theorem 1.1 yields ‖ϕ‖∞ < 1, Proposition 5.3 below shows that α = 0
is a critical value in the sense that for α > 0, there are self-maps ϕ of B2 with unit
modulus that satisfy the hypotheses of Theorem 1.1. Our example for B2 will be
constructed from the following single-variable existence result:

Proposition 5.2. For α > 0, there exist holomorphic maps ψ : D → D
with ‖ψ‖∞ = 1 satisfying

(5.4) lim
|z|→1−

(
1− |z|2

1− |ψ(z)|2

)α+2

|ψ′(z)|2 = 0.

Proof. A region G ⊂ D is said to have a generalized cusp ([13], p. 256) at
ξ ∈ ∂D iff

d(w, ∂G) = o(|ξ − w|)
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as w → ξ in G. This cusp is called nontangential iff it is contained in a non-
tangential approach region at ξ defined by

Γ(ξ,M) = {z ∈ D : |z − ξ| < M(1− |z|)},
where M > 1. These regions are shaped like petals, with a cusp at ξ and boundary
curves making an angle (at ξ) whose measure is less than π and is related to the
value of M ([7], p. 50–51, 60). For example, Γ(1, 2) is a petal-shaped region in D
whose cusp at 1 makes an angle of π/2, symmetric about the real axis.

Let G be the region bounded by the graphs of the equations x = 0.75,
y = 0.5(x−1)2, and the real axis. It is easy to see that this region lies completely in
Γ(1, 2). As w tends to 1 in G, it is also easy to see that d(w,G) 6 0.5(Rew−1)2 6
C|1 − w|2. Therefore, d(w,G)/|1 − w| → 0 as w tends to 1, and G has a non-
tangential, generalized cusp at 1. Obviously, G touches the unit circle only at 1.

By the Riemann Mapping Theorem, there is a univalent ([13], p. 4) map ψ
of D onto G. By results of K. Madigan and A. Matheson ([12]), any univalent
map ψ of D onto a region G ⊂ D that has a non-tangential, generalized cusp at 1
and touches the unit circle at no other point must induce a compact composition
operator on B0, and, for any analytic ψ : ∆ →, Cψ is compact on B0 iff

(5.5) lim
|z|→1−

1− |z|2

1− |ψ(z)|2
ψ′(z) = 0.

It follows that the Riemann map ψ constructed above has sup norm 1 and satisfies
equation (5.4) for α = 0. However, as we will now show, ψ actually satisfies
equation (1.2) for all α > 0. By Theorem 1.1, Cψ must be compact on A2(D).
Therefore, equation (1.1) holds (see [20], p. 218)). Squaring both sides of equation
(5.5) and multiplying the fractional quantity in the resulting equation by the αth
power of the fractional quantity in equation (1.1), we obtain equation (5.4).

We can now prove the following existence result for n = 2:

Proposition 5.3. For all p > 0 and α > 0, there exist holomorphic maps
ϕ : B2 → B2 such that ‖ϕ‖∞ < 1, Cϕ is bounded on Apα(B2), and

(5.6) lim
|z|→1−

( 1− |z|2

1− |ϕ(z)|2
)α+2

|∇ϕi(z)|2 = 0, i = 1, 2.

That is, there are maps ϕ with unit modulus in more than one variable that satisfy
the hypotheses of Theorem 1.1.

Proof. Let ψ be any map as guaranteed by Proposition 5.2, and define the
clearly holomorphic map ϕ : B2 → B2 by

ϕ(z) = (ψ(z1), 0).

Clearly, ‖ϕ‖∞ = 1, since ‖ψ‖∞ = 1. Since the ith coordinate of ϕ depends only
on zi for i = 1, 2, Cϕ is bounded on H2(B2) ([3], Proposition 1). Theorem 3.3 (i)
then shows that Cϕ is bounded on Apα(B2) for all α ∈ (−1,∞). Equation (5.6)
trivially holds for i = 2.

To complete the proof of the proposition, it remains to show that

lim
|z|→1−

( 1− |z|2

1− |ϕ(z)|2
)α+2

|∇ϕ1(z)|2 = 0.
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The above equation holds iff for each point (ξ1, ξ2) ∈ ∂B2 and all sequences
(z(j), w(j)) ∈ B2 that converge to (ξ1, ξ2),

(5.7) lim
j→∞

( 1− |(z(j), w(j))|2

1− |ϕ(z(j), w(j))|2
)α+2

|∇ϕ1(z(j), w(j))|2 = 0.

Let (z(j), w(j))j∈N in B2 and (ξ1, ξ2) ∈ ∂B2 be as described above. The left side
of equation (5.7) is

(5.8) 6 lim
j→∞

( 1− |z(j)|2

1− |ψ(z(j))|2
)α+2

|ψ′(z(j))|2.

First, suppose that |ξ1| = 1. We then have that |z(j)| → 1− as j → ∞ and
equation (5.4) therefore applies. It follows that quantity (5.8) is zero. If |ξ1| < 1,
then 1 − |ψ(z(j))| converges to a positive quantity. In addition, |ψ′(z(j))| → M
for some non-negative real number M as j → ∞, since ψ′ is continuous in D.
Therefore, quantity (5.8) is 0.

There are compact composition operators on A2
α(Bn) that do not satisfy the

hypotheses given in Theorem 1.1. Consider the map ϕ(z) = 1− ([1− z]/2)1/2, on
D. The image of ϕ is contained in a suitable non-tangential approach region (a
lens) at 1 and touching the boundary at no other point but 1, so it has no finite
angular derivative at any point of ∂D. Therefore, Cϕ is compact on A2

α(D) for
α > −1 (see [16], p. 27). However, using the sequence {k/(k + 1)}k∈N, it is easy
to show that the limit in Theorem 1.1 is non-zero.

Can the results of this paper be extended to other domains? Are there
relationships between the hypotheses of Theorem 1.1 and the condition that ϕ(Bn)
is contained in a Koranyi approach region ([10])? Is it possible to remove the
hypothesis that Cϕ is bounded from Theorem 1.1?
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