Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 46, Issue 2, Fall 2001  pp. 355-380.

Pentagon subspace lattices on Banach spaces

Authors:  A. Katavolos (1) , M.S. Lambrou (2), and W.E. Longstaff (3)
Author institution: (1) Department of Mathematics, University of Athens, Panepistimiopolis, 15784 Athens, Greece
(2) Department of Mathematics, University of Crete, 71409 Iraklion, Crete, Greece
(3) Dept. of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia


Summary:  If $K, L$ and $M$ are (closed) subspaces of a Banach space $X$ satisfying $K \cap M =$ (0), $K\vee L = X$ and $L \subset M$, then ${\cal P} = \left\{(0), K, L, M, X\right\}$ is a {\it pentagon subspace lattice on $X$}. If ${\cal P}_1$ and ${\cal P}_2$ are pentagons, every (algebraic) isomorphism $\varphi : \Alg{\cal P}_1 \rightarrow \Alg{\cal P}_2$ is quasi-spatial. The SOT-closure of the fin- ite rank subalgebra of $\Alg{\cal P}$ is $\{T \in \Alg{\cal P}: T (M) \subseteq L\}$. On separable Hilbert space $H$ every positive, injective, non-invertible operator $A$ and every non-zero subspace $M$ satisfying $M \cap\Ran(A) = (0)$ give rise to a pentagon ${\cal P}(A;M).$ $\Alg{\cal P}(A;M)$ and $\Alg{\cal P}(B;N)$ are spatially isomorphic if and onl y if $T$ $\Ran(A) = \Ran(B)$ and $T(M) = N$ for an invertible operator $T\in B(H)$. If ${\cal A}(A)$ is the set of operators leaving Ran$(A)$ invariant, every isomorphism $\varphi : {\cal A}(A) \rightarrow {\cal A}(B)$ is implemented by an invertible operator $T$ satisfying $T\Ran(A) = \Ran (B)$.

Keywords:  algebraic isomorphism, invariant operator range, gap-dimension


Contents    Full-Text PDF