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Abstract. We will study the structure of invariant subspaces of a compo-
sition operator. The consequences of the lattice of one composition operator
being contained in another will be discussed and some results concerning the
structure of an invariant subspace shared by two composition operators will
be given.
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1. INTRODUCTION

Let D be the unit disk in the complex plane and denote by Hol(D) the set of holo-
morphic functions on D. Define the Hardy Hilbert space H 2 of analytic functions
on D by

H 2 =
{
f ∈ Hol(D) : sup

r∈(0,1)

1
2π

2π∫
0

|f(reiθ)|2 dθ <∞
}
.

For λ ∈ D, denote by kλ the evaluation kernel at the point λ. Hence, 〈f, kλ〉 = f(λ)
for all f ∈ H 2. The evaluation kernels on H 2 have the explicit form:

kλ(z) =
1

1− λz
.

Let ϕ be an analytic self-map of the unit disk. We define the composition
operator induced by ϕ on H 2 by

Cϕf = f ◦ ϕ ∀f ∈ H 2.

Composition operators have been extensively studied in many papers (see [3]
and [16]). The composition operator Cϕ is a bounded operator on H 2 ([15], p. 123).
In fact, its norm satisfies the following estimates:
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Proposition If ϕ is an analytic self-map of the unit disk, then{
1

1− |ϕ(0)|

} 1
p

6 ‖Cϕ‖ 6

{
1 + |ϕ(0)|
1− |ϕ(0)|

} 1
p

on the Hardy space H p for 1 6 p <∞.

Given an analytic self-map of the unit disk, ϕ, denote by ϕ(n) the nth iterate
of ϕ under composition. A very important result in the study of the iteration of
analytic self-maps of the unit disk is the Denjoy-Wolff theorem ([4] and [21]) which
states the following:

Theorem (Denjoy-Wolff Theorem) Let ϕ be an analytic self-map of the unit
disk other then either an elliptic disk automorphism or the identity. Then ϕ has
a unique fixed point a ∈ D such that |ϕ′(a)| 6 1. Moreover, if ϕ is not an elliptic
disk automorphism, then ϕ(n) → a uniformly on compact subsets of D. Also if
a ∈ ∂D, then 0 < ϕ′(a) 6 1.

The Denjoy-Wolff theorem is used extensively in the study of composition
operators. For example, note that Denjoy-Wolff theorem together with Proposi-
tion 1.1 implies that Cϕ is power bounded whenever ϕ has the Denjoy-Wolff point
in D.

Little is known about the adjoints of composition operators. However, the
following simple property which characterizes their action on evaluation kernels is
very useful.

Proposition Let ϕ be an analytic self-map of the unit disk. Then C∗ϕkλ =
kϕ(λ) for all λ ∈ D.

C. Cowen ([2]) proved that any analytic self-map of the unit disk ϕ with
Denjoy-Wolff point a, with ϕ′(a) 6= 0 , can be modeled after a linear fractional
transformation Φ in the following way

Φ ◦ σ = σ ◦ ϕ

where σ : D → Ω is analytic, Φ is an automorphism of Ω, and Ω is either the
complex plane or a half-plane. Using this model, analytic self-maps of the unit
disk can be classified as one of the following types ([3], p. 71):

(1) Plane\Dilation: Ω = C, σ(a) = 0, Φ(z) = sz where 0 < s < 1.
(2) Plane\Translation: Ω = C, σ(a) = ∞, Φ(z) = z + 1.
(3) Half-plane\Dilation: Ω = {z : <z > 0}, σ(a) = 0, Φ(z) = sz where

0 < |s| < 1.
(4) Half-plane\Translation: Ω = {z : =z > 0}, σ(a) = ∞, Φ(z) = z ± 1.

The map ϕ is in the Plane\Dilation case if and only if ϕ has the Denjoy-Wolff
point in D. If ϕ has the Denjoy-Wolff point a ∈ ∂D and ϕ′(a) < 1, then ϕ is in
the Half-plane\Dilation case. Also, by using this model it can be shown that:
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Proposition (i) If ϕ has a fixed point a ∈ D, and Cϕ and Cψ have a non-
constant common eigenfunction, then Cϕ and Cψ commute.

(ii) Let ϕ be an analytic self-map of the unit disk not a disk automorphism,
with the Denjoy-Wolff point a ∈ D. If ϕ′(a) 6= 0, then Cϕf = λf has a non-zero
solution if and only if λ = ϕ′(a)j for some non-negative integer j. Moreover, f is
a non-zero solution of Cϕf = ϕ′(a)jf for some non-negative integer j if and only
if f(z) = cσ(z)j where σ is the map in the model and c is a constant ([3], p. 78).

(iii) If Cϕ is compact, then σ(Cϕ) = {ϕ′(a)n}∞n=1 ∪ {0, 1} ([16], p. 94).

Proof. We present a short proof of item (1) above. Let σ be the non-constant
common eigenvector of Cϕ and Cψ. Note that since σ is a non-constant eigenvector
of Cϕ, ϕ′(a) 6= 0. Let V be the fundamental domain for ϕ as in Theorem 2.5.3
from [3]. Then we have

σ ◦ ϕ ◦ ψ = λασ = σ ◦ ψ ◦ ϕ,

where α and λ are eigenvalues of Cϕ and Cψ respectively corresponding to σ.
Since σ is univalent on V , it follows that ϕ ◦ ψ = ψ ◦ ϕ on V . Now since σ is
non-constant, the result follows from the open mapping theorem.

Note that item (i) just proved is very similar to Exercise 2.4.2 from [3].
Suppose that ϕ has a non-zero Denjoy-Wolff point a ∈ D. Then ψ(z) =

ξ ◦ ϕ ◦ ξ−1(z) has 0 as a fixed point where ξ(z) is the disk automorphism given
by ξ(z) = a−z

1−az . Similarity of Cϕ to CξCϕC−1
ξ and the fact that similar operators

have isomorphic invariant subspace lattices, allows us to assume without loss of
generality that the interior fixed point of ϕ is zero when considering the lattice of
invariant subspaces of Cϕ.

When ϕ fixes zero, it can easily be shown that each subspace
∨
{zi}ni=0 is in-

variant under C∗ϕ. Thus, C∗ϕ has an upper-triangular matrix with respect to the ba-
sis {zn}∞n=0 with the diagonal elements {ϕ′(0)

n
}∞n=0. This implies {ϕ′(0)

n
}∞n=0 ⊆

σ0(C∗ϕ).
In this paper, we study the invariant subspaces of composition operators.

Invariant subspaces of composition operators can be quite complex. For example,
Czn for n > 2 is an isometry that is similar to 1 ⊕ S on C ⊕ zH 2, where S is a
unilateral shift of infinite multiplicity. Also, in [12] it was shown that a hyperbolic
composition operator is universal. An operator U is called universal if for every
operator T , some constant multiple of T is similar to the restriction of U to
one of its invariant subspaces. Another example of a universal operator is the
unilateral backward shift of infinite multiplicity ([17]). This allows for example
to formulate the invariant subspace problem in terms of invariant subspaces of
hyperbolic composition operators ([12]). Because of this close relationship between
the invariant subspaces of hyperbolic composition operators and the invariant
subspace problem, the invariant subspaces of invertible composition operators have
been studied in [9], [10] and [12]. In what follows, we study a broader range of
composition operators, namely those in Plane\Dilation case, Half-plane\Dilation
case and Half-plane\Translation case.

Throughout this paper, we work with composition operators acting on H 2

and we assume that all the symbol maps of composition operators are analytic
self-maps of the unit disk. The spectrum and the point spectrum of an operator
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T are denoted by σ(T ) and σ0(T ) respectively. Moreover, we denote the lattice of
all invariant subspaces of an operator A by LatA.

2. THE DENJOY-WOLFF POINT IN ∂D

We now discuss the consequences of the invariant subspaces of one composition
operator being invariant under another when the Denjoy-Wolff point is in ∂D.

Theorem Suppose that ϕ has a Denjoy-Wolff point on ∂D and that
∞∨
n=0

{kϕ(n)(zα)} ∈ LatC∗ψ for an uncountable collection of points {zα} satisfying
∞∑
n=0

(1− |ϕ(n)(zα)|) <∞. Then ψ = ϕ(m) for some m ∈ N ∪ {0}.

Proof. Since
∞∑
n=0

(1 − |ϕ(n)(zα)|) < ∞, the Blaschke product Bα with zeros

{ϕ(n)(zα)} converges. As is well-known and verified easily,
∞∨
n=0

{kϕ(n)(zα)} = (BαH 2)⊥ for any zα.

Since
∞∨
n=0

{kϕ(n)(zα)} ∈ LatC∗ψ , we obtain

kψ(zα) = C∗ψkzα ∈
∞∨
n=0

{kϕ(n)(zα)}.

Since
∞∨
n=0

{kϕ(n)(zα)} = (BαH 2)⊥ and Bα ∈ BαH 2, we have

Bα(ψ(zα)) = 〈Bα, kψ(zα)〉 = 0.

Since Bα is a Blaschke product, for each zα, we conclude that ψ(zα) =
ϕ(mα)(zα) for some mα ∈ N. Since {zα} is uncountable and N is countable, we
conclude that some m ∈ N must occur uncountably many times. So ψ(zβ) =
ϕ(m)(zβ) for an uncountable sub-collection {zβ} of {zα} and some fixed m ∈ N.
Since the collection {zβ} has a limit point in D and ϕ and ψ are analytic, it follows
that ψ = ϕ(m).

Corollary Let ϕ be in the Half-plane\Dilation or Half-plane\Translation
case. If LatCϕ ⊆ LatCψ, then ψ = ϕ(m) for some m ∈ N ∪ {0}.

Proof. If ϕ is in either of the above cases, then we have ([3], p. 80)
∞∑
n=0

(1− |ϕ(n)(z)|) <∞ ∀z ∈ D.

Moreover, the assumption LatCϕ ⊆ LatCψ implies that LatC∗ϕ ⊆ LatC∗ψ.

So for each z ∈ D, the subspace Mz ≡
∞∨
n=0

{kϕ(n)(z)} is invariant under C∗ψ. Hence

the result follows from Theorem 2.1.
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Corollary Let ϕ1 and ϕ2 be non-constant analytic self-maps of the unit
disk. Suppose that there exists an uncountable collection of points {zα} such that
∞∑
n=0

(1 − |ϕ(n)
j (zα)|) < ∞ for j = 1, 2. If

∞∨
n=0

{k
ϕ

(n)
1 (z)

} is invariant for C∗ϕ2
and

∞∨
n=0

{k
ϕ

(n)
2 (z)

} is invariant for C∗ϕ1
for each zα, then ϕ1 = ϕ2.

Proof. Since for each zα,
∞∑
n=0

(1−|ϕ(n)
1 (zα)|) <∞ and

∞∨
n=0

{k
ϕ

(n)
1 (zα)

} is invari-

ant under C∗ϕ2
, by Theorem 2.1 we conclude that ϕ2 = ϕ

(m)
1 for some m ∈ N∪{0}.

By a similar argument, we conclude that ϕ1 = ϕ
(n)
2 for some n ∈ N ∪ {0}. Hence,

ϕ1 = ϕ
(mn)
1 .

We now want to show m = n = 1. First note that since
∞∑
n=0

(1− |ϕ(n)
1 (zα)|) <∞,

the map ϕ1 must have the Denjoy-Wolff point a on ∂D. If not, suppose ϕ1(a) =
a ∈ D. Since {ϕ(n)

1 (z)} accumulates at a ∈ D, there exists r ∈ (0, 1) such that

r < 1− |ϕ(n)
1 (zα)| for all n > 0. This contradicts

∞∑
n=0

(1− |ϕ(n)
1 (zα)|) <∞.

If m or n is zero, then ϕ1 = z = ϕ2. This is impossible since the identity does
not satisfy the hypothesis of the corollary. Now to prove m = n = 1, assume by
way of contradiction that mn > 1. Since ∀z ∈ D we have that ϕ(mn)

1 (z) = ϕ1(z),
the sequence {ϕ(k)

1 (z)}∞k=0 does not converge to the fixed point of ϕ1 on ∂D which
contradicts the Denjoy-Wolff Theorem. Hence, m = n = 1 and so ϕ1 = ϕ2.

Remark In particular, this result implies: If ϕ and ψ are in the Half-
plane\Dilation case or in the Half-plane\Translation case (not necessarily both
in the same one), then ϕ = ψ if and only if LatCϕ = LatCψ.

Theorem 2.1 will help us to conclude that the invariant subspaces of an
invertible composition operator can be contained only in the lattice of a similar
type of invertible composition operator.

Proposition If LatCϕ ⊆ LatCψ, and ϕ is either a hyperbolic or parabolic
disk automorphism, then ψ is also an automorphism of the same kind.

Proof. If ϕ is a hyperbolic or parabolic disk automorphism, then for any

z ∈ D we have that
∞∑
n=0

(1 − |ϕ(n)(z)|) < ∞. This follows because the model for

a hyperbolic disk automorphism is the Half-plane\Dilation and the model for the
parabolic disk automorphism is the Half-plane\Translation ([2]). Since LatCϕ ⊆
LatCψ, by Theorem 2.1 we conclude that ψ = ϕ(m) for some m ∈ N∪{0}. Hence,
ψ will also be an automorphism. Moreover, ψ will have the same behavior under
iteration as ϕ does. Because hyperbolic and parabolic automorphisms can be
distinguished by their behavior under iteration, we conclude that ψ will be of the
same type as ϕ.
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Recall that if an operator A is in the weakly closed algebra generated by an
operator B, then LatB ⊆ LatA. Hence, the results above also indicate restrictions
on the composition operators that can occur in the weakly closed algebra generated
by composition operators whose symbol map is in the Half-plane\Dilation case or
in the Half-plane\Translation case. This restriction is the following.

Corollary Suppose ϕ is in the Half-plane\Dilation case or in the Half-
plane\Translation case. If Cψ is in the weakly closed algebra generated by Cϕ,
then Cψ is in the semi-group generated by Cϕ.

Proof. Since Cψ is in the weakly closed algebra generated by Cϕ, we have
LatCϕ ⊆ LatCψ. Hence, by Corollary 2.2 we conclude that ψ = ϕ(n) for some
n ∈ N ∪ {0}. So Cψ = Cnϕ is in the semi-group generated by Cϕ.

We now discuss the relationship of the Denjoy-Wolff points of the maps ϕ
and ψ to the common invariant subspaces for Cϕ and Cψ. We will see later on that
the existence of a common fixed point for ϕ and ψ in D will imply the existence
of a rich collection of common invariant subspaces for Cϕ and Cψ. The following
result will work in the opposite direction, by deducing the existence of equality
of the Denjoy-Wolff points for ϕ and ψ from assumptions about some common
invariant subspaces for Cϕ and Cψ.

Theorem (i) If ϕ has the Denjoy-Wolff point in D and LatCϕ ⊆ LatCψ
then ϕ and ψ have the same Denjoy-Wolff point.

(ii) If ϕ and ψ have the Denjoy-Wolff points on ∂D, and there exists a point
λ ∈ D such that

∞∑
n=0

(1− |ϕ(n)(λ)|) <∞ and
∞∨
n=0

{kϕ(n)(λ)} ∈ LatC∗ψ,

then ϕ and ψ have the same Denjoy-Wolff point on ∂D.

Proof. (i) First assume that ϕ has the Denjoy-Wolff point a ∈ D. Then by
Proposition 1.3 we have

C∗ϕka = kϕ(a) = ka.

Since LatCϕ ⊆ LatCψ, we get

C∗ψka = kψ(a) ∈
∨
{ka}.

This implies that kψ(a) = βka for some β ∈ C. Hence, β = 1 and ψ(a) = a.
(ii) Now suppose that ϕ and ψ have Denjoy-Wolff points a and b respectively

on ∂D. Since for λ ∈ D we have
∞∑
n=0

(1−|ϕ(n)(λ)|) <∞, we can form the Blaschke

product B with zeros {ϕ(n)(λ)}∞0 . It is well-known that
∞∨
n=0

{kϕ(n)(λ)} =
(
BH 2

)⊥
.

Since
∞∨
n=0

{kϕ(n)(λ)} ∈ LatC∗ψ, we have

Cm
∗

ψ kλ = kψ(m)(λ) ∈ (BH 2)⊥.
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Hence, B(ψ(m)(λ)) = 〈B, kψ(m)(λ)〉 = 0. Since the only zeros of B are
{ϕ(n)(λ)}∞0 , we conclude that ψ(m)(λ) = ϕ(im)(λ) for some im ∈ N.

Note that ψ(n)(λ) are all distinct. To see this, suppose that ψ(m)(λ) =
ψ(m′)(λ) for some distinct m and m′ in N. Without loss of generality, assume that
m′ < m. Then ψ(m−m′)(ψ(m′)(λ)) = ψ(m′)(λ). Thus ψ(m−m′) fixes ψ(m′)(λ) ∈ D.
This contradicts the Denjoy-Wolff Theorem since then the iterates {ψ(n)(λ)} do
not converge to b ∈ ∂D. Hence, the sequence {ψ(m)(λ)} are all distinct. A similar
argument shows that {ϕ(n)(λ)} are all distinct. By dropping to a subsequence if
necessary, we can assume that {im} are increasing. Hence, using the Denjoy-Wolff
Theorem, we obtain

a = lim
im→∞

ϕ(im)(λ) = lim
m→∞

ψ(m)(λ) = b.

Thus the result follows.

Theorem Let ϕ and ψ be analytic self-maps of the unit disk. Then CϕH 2 ⊆
CψH 2 if and only if Cϕ = CψCf where f is some analytic self-map of the unit
disk.

Proof. If Cϕ = CψCf where f is some analytic self-map of the unit disk,
then clearly CϕH 2 ⊆ CψH 2.

Conversely, if CϕH 2 ⊆ CψH 2, then Cϕ = CψA for some operator A. First,
assume that ψ is non-constant. Then 1 = Cϕ1 = Cψ(A1). By the open mapping
theorem, we get that A1 = 1 is a constant. Also, for any n ∈ N we have

ϕ = Cϕz = Az ◦ ψ and ϕn = Cϕz
n = Azn ◦ ψ.

Hence, (Az ◦ ψ)n = Azn ◦ ψ. Thus, the open mapping theorem yields that
Azn = (Az)n. Hence, A must be a composition operator ([11]).

If ψ is a constant, then Cψ is evaluation at a point. Hence, CϕH 2 ⊆ CψH 2

implies that Cϕ is also evaluation at a point. By taking f = ϕ, the result follows.

Denote by W(A) and Alg LatA, respectively, the weak operator topology
closure of the algebra generated by A and the identity and the collection of opera-
tors that leave invariant every subspace that is left invariant under A. In addition,
denote by {A}′ the set of all operators that commute with A. A subspace is called
hyper-invariant for an operator A if it is invariant under every operator that com-
mutes with A. Denote by Alg Lat ({A}′) the set of all operators that leave invariant
every subspace that is invariant under {A}′. An operator A is called reflexive if
Alg LatA = W(A).

Theorem Suppose ϕ has the Denjoy-Wolff point a ∈ ∂D. If ϕ′(a) < 1 and

z ∈ D, then the following hold for A = C∗ϕ
∣∣Mz, where Mz ≡

∞∨
n=0

{kϕ(n)(z)}:

(i) A is not compact;
(ii) {A}′ = W(A);
(iii) A has no point spectrum;
(iv) r(A) = ϕ′(a)−

1
2 ;

(v) A is reflexive.
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Proof. It is well-known ([3], p. 284) that A is similar to a weighted shift
operator with weights wn ≡ 1−|zn|2

1−|zn+1|2 ([3]) where zn ≡ ϕ(n)(z) (note that since
we are only considering a forward sequence, we do not need the assumption of
analyticity on the closed unit disk). The reader can find the facts about weighted
shifts used in this proposition in the article of A.L. Shields ([17], pp. 49–128). Since
limwn = ϕ′(a)−

1
2 6= 0, it follows that A is not compact and that r(A) = ϕ′(a)−

1
2 .

Since wn 6= 0 for all n ∈ N, A is injective and so its point spectrum is empty
and also any operator that commutes with A is the limit, in the strong operator
topology, of a sequence of polynomials in A. Hence, {A}′ = W(A). However,

∅ 6= {z : |z|, ϕ′(a)− 1
2 } ⊆ σ0(PCϕP ) ⊆ {z : |z| 6 ϕ′(a)−

1
2 }

where σ0(B) is the point spectrum of B. Since A is injective and its adjoint has
non-empty point spectrum, it follows that it is reflexive ([17], p. 104).

3. GENERALIZATION TO THE HARDY SPACE OF VECTOR VALUED FUNCTIONS

Let H be a Hilbert space. A function F taking values in H is said to be measurable
if 〈F (eiθ), h〉 is a measurable function for every h ∈ H. Then L2(H) is defined by
(page 52 from [7]):

L2(H) =
{
F measurable : ‖F‖2 ≡

(
1
2π

2π∫
0

‖F (eiθ)‖ 1
2 dθ

)2

<∞
}
.

Further reference concerning vector-valued functions can be found in [19],
p. 183. The Hardy space H 2(H) of functions taking values in H is defined to
be the subspace of L2(H) consisting of functions which have vanishing negative
Fourier coefficients ([7], p. 55).

Let {en} be a basis for H. Given λ ∈ D and n ∈ N consider the linear
functional Φn,λ on H 2(H) defined by

Φn,λ(F ) = 〈F (λ), en〉 ∀F ∈ H 2(H)

where we have identified functions in H 2(H) with their extension to the interior
of the disk.

Note that throughout this section we denote the inner product on H 2(H)
by ( · , · ) and the inner product on H by 〈 · , · 〉. Since H 2(H) is a Hilbert space,
there exist Kn,λ ∈ H 2(H) such that

Φn,λ(F ) = 〈F (λ), en〉 = (F,Kn,λ).

Lemma
∨

n∈N,λ∈D
{Kn,λ} = H 2(H).

Proof. Suppose that F ∈ H 2(H) is orthogonal to
∨

n∈N, λ∈D
{Kn,λ}. Then

0 = (F,Kn,λ) = 〈F (λ), en〉 ∀λ ∈ D, n ∈ N.
Hence, for any λ ∈ D, we have that F (λ) is orthogonal to every en. The

result now follows since {en} form a basis for H.
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Remark Consider the basis {zmen}∞m,n=0 for H 2(H). Then

(zmek,Kn,λ) = 〈λmek(λ), en〉 =
{

0 if n 6= k,
λm if n = k.

Lemma For any λ ∈ D and n ∈ N, we have Kn,λ = kλen, where kλ is the
evaluation kernel at λ in H 2.

Proof. Let λ ∈ D and n ∈ N. Then

Kn,λ =
∑
m,k

(Kn,λ, z
mek)zmek =

∑
m

λ
m
zmen (by Remark 3.2)

= en
∑
m

(λz)m = en
1

1− λz
= kλen.

Given an analytic self-map of the unit disk ϕ, the ampliation Ĉϕ acts on
H 2(H) by

ĈϕF = F ◦ ϕ ∀F ∈ H 2(H).

The action of Ĉ∗ϕ on evaluation kernels is described by the following.

Lemma Let ϕ be an analytic self-map of the unit disk. Then Ĉ∗ϕkλen =
kϕ(λ)en for all λ ∈ D and n ∈ N.

Proof. Let F ∈ H 2(H). Then for any λ ∈ D and n ∈ N we have that

(F, Ĉ∗ϕKn,λ) = (F ◦ ϕ,Kn,λ) = 〈F ◦ ϕ(λ), en〉 = (F,Kn,ϕ(λ)).

Since F ∈ H 2(H) was arbitrary, we conclude that Ĉ∗ϕKn,λ = Kn,ϕ(λ). So the
result follows from Lemma 3.4.

We now prove a theorem similar to Theorem 2.1 for the ampliation of com-
position operators on H 2(H).

Theorem Consider the space H 2(H). Suppose ϕ has the Denjoy-Wolff

point on ∂D and
∞∨
n=0

{kϕ(n)(zα)}em ⊆ Lat Ĉ∗ψ for an uncountable collection of points

{zα} and every m > 1. If
∞∑
n=0

(1 − |ϕ(n)(zα)|) < ∞ for all zα, then ψ = ϕ(m) for

some m ∈ N.

Proof. Since
∞∑
n=0

(1− |ϕ(n)(zα)|) <∞ for each zα, we can form the Blaschke

product Bα with zeros {ϕ(n)(zα)}. Denote ϕ(n)(zα) by zα,n and kϕ(n)(zα) by kα,n.
For each em, we have

(BαH 2)⊥em =
∞∨
n=0

{kα,n}em.
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Now since
∞∨
n=0

{kϕ(n)(zα)}em ⊆ Lat Ĉ∗ψ, we have that

kψ(zα)em = Ĉ∗ψkzαem ∈
∞∨
n=0

{kϕ(n)(zα)} = (BαH 2)⊥em.

So Bα(ψ(zα)) = (Bα, kψ(zα)) = 0. Hence, we have ψ(zα) = ϕ(nα)(zα) for
some nα ∈ N. Since {zα} is uncountable and N is countable, we conclude that
some n ∈ N must occur uncountably many times. Now an argument as in the
proof of Theorem 2.1 yields that ψ = ϕ(n) for some n ∈ N.

Using the above theorem, we can easily prove analogous results to Corol-
lary 2.2, Corollary 2.3, Proposition 2.5, and Corollary 2.6 for the ampliation of
composition operators on H 2(H). The following is a generalization of Theorem 2.8.

Theorem Let ϕ and ψ be analytic self-maps of the unit disk. Then ĈϕH 2(H) ⊆
ĈψH 2(H) if and only if ϕ = f ◦ ψ for some analytic self-map of the unit disk f .

Proof. Let {en} be a basis for H. If ϕ = f ◦ ψ where f is some analytic
self-map of the unit disk, then Ĉϕ = ĈψĈf . So the result follows.

Conversely, since {ei} is an orthonormal basis, ĈϕH 2en ⊆ H 2en for all n ∈ N.
Let n ∈ N be fixed. Since ĈϕH 2(H) ⊆ ĈψH 2(H), for any g ∈ H 2 we have

Ĉϕgen = g ◦ ϕen ∈ [ĈψH 2(H)] ∩H 2en.

So g◦ϕen = Ĉϕgen = (h◦ψ)en for some h ∈ H 2. Now it follows from Theorem 2.8
that ϕ = f ◦ ψ where f is some analytic self map of the unit disk.

4. THE DENJOY-WOLFF POINT IN D

We now turn our attention to invariant subspaces of composition operators whose
symbol map has the Denjoy-Wolff point in D. An easy example of such an operator
is Cαz where 0 < |α| < 1. This operator is compact and normal, and an application
of the spectral theorem implies that all invariant subpaces of Cαz are closed spans
of some powers of z. We will also study invariant subspaces common to several
composition operators whose symbol maps have Denjoy-Wolff points in D.

Definition A collection of operators is said to be simultaneously triangu-
larizable if there exists a maximal chain of subspaces each of which is invariant
under all operators in the collection.

Simultaneous triangularization is studied in detail in [14]. If the inducing
maps of a collection of composition operators have the same fixed point in D, then
that collection of composition operators has a rich collection of common invariant
subspaces.
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Proposition Let {ϕα}α∈I be a collection of analytic self-maps of the unit
disk that have a common fixed point in D. Then {Cϕα

}α∈I is simultaneously
triangularizable.

Proof. By performing a similarity we can assume that ϕα(0) = 0 for all
α ∈ I. Then each Cϕα

leaves invariant znH 2 for all n ∈ N. Since {znH 2}∞n=0 is a
maximal chain, the result follows from the definition.

We start by investigating 2-dimensional invariant subspaces of composition
operators.

Lemma Let f ∈ H 2 be a non-constant function. Suppose that ϕ(a) = a ∈ D
and let

∨
{1, f} ∈ LatCϕ. Then f − f(a) is an eigenvector of Cϕ.

Proof. Let g = f − f(a). Note that g is non-constant. Since M =
∨
{1, f} ∈

LatCϕ, we have that g ∈M and

Cϕg = α+ βg for some α, β ∈ C.

Since g(a) = 0, we have

g(ϕ(a)) = α+ βg(a), g(a) = α+ βg(a), α = 0.

So f − f(a) is an eigenfunction of Cϕ.

Note that if σ is an eigenvector of Cϕ, then
∨
{1, σ} ∈ LatCϕ. For example,

let ϕ(z) = z
4.5z+10 . Then σ(z) = 2z

z+2 and
∨
{1, σ} ∈ LatCϕ.

Theorem Suppose that
∨
{1, f} is a common 2-dimensional invariant sub-

space for Cϕ and Cψ and that ϕ and ψ have fixed points in D. Then Cϕ commutes
with Cψ if and only if ϕ and ψ have the same fixed point.

Proof. Since ϕ and ψ have fixed points in D, if they commute, then by an
iteration argument it easily follows that they have the same fixed point.

Now assume that ϕ and ψ have the same fixed point a ∈ D. It follows from
Lemma 4.3 that f − f(a) is a non-constant common eigenvector for Cϕ and Cψ.
Hence, Cϕ and Cψ commute by Proposition 1.4.

Theorem Suppose that
∨
{1, f} ∈ LatCϕ is 2-dimensional and that ϕ(0) =

0. If f is univalent, then ϕ(z) = zmh for some m ∈ N where h is a non-vanishing
analytic function.

Proof. We first prove the following:

Claim: Let ψ be an analytic self-map of the unit disk such thatM =
∨
{1, g}

is a 2-dimensional invariant subspace for Cψ for some g ∈ H 2. If ψ(0) = ψ(b) = 0
where b ∈ D is non-zero, then g(b) = g(0).

Let ĝ = g − g(0). Then by Lemma 4.3 we obtain that ĝ is an eigenvector of
Cψ. So we have

Cψ ĝ = βĝ.

Hence, evaluating at b we get

ĝ(ψ(b)) = ĝ(0) = βĝ(b).
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Since ĝ(0) = 0, we have that either ĝ(b) = 0 or β = 0. However, β cannot be
zero, since then Cψ ĝ = 0, a contradiction to Cψ being 1− 1. Hence, we must have
g(b)− g(0) = ĝ(b) = 0. This proves the claim.

Since ϕ ∈ H 2, we can write ϕ = Bh where B is a Blaschke product that
vanishes at all the zeros of ϕ, say {an}, and h is non-vanishing. Since

∨
{1, f} ∈

LatCϕ and ϕ(an) = 0 = ϕ(0), by the above claim it follows that f(an) = f(0).
Because f is univalent, we conclude that an = 0 for every n ∈ N. Hence, ϕ(z) =
zmh for some m ∈ N.

Corollary Let ϕ(0) = 0 and ϕ have zeros that accumulate at some point
a ∈ ∂D. Then there does not exist a 2-dimensional invariant subspace of the form∨
{1, f} for Cϕ where f is analytic at a.

Proof. Let {an} be the non-zero zeros of ϕ that accumulate at the point
a ∈ ∂D. By way of contradiction, suppose there exist such subspace

∨
{1, f} that

is invariant under Cϕ. Then since ϕ(an) = 0 = ϕ(0), by the claim in the proof of
Theorem 4.5 we have f(an) = f(0) for every n ∈ N. Since the set {an} accumulates
at a ∈ ∂D and f is analytic at a, it follows that f ≡ f(0) is a constant. However,
this contradicts the assumption that

∨
{1, f} is 2-dimensional.

Proposition Let ϕ be an analytic self-map of the unit disk with a fixed
point a ∈ D. If ϕ′(a) = 0, then Cϕ has no non-trivial finite dimensional invariant
subspace other than the constants.

Proof. Without loss of generality, assume that ϕ(0) = 0 and let M be a non-
trivial finite dimensional invariant subspace for Cϕ other than the constants. First,
we show that M must contain the constants. Since M is finite dimensional, Cϕ|M
has an eigenvector. Note that since ϕ(0) = 0, the point spectrum of Cϕ is contained
in {1} ∪ {ϕ′(0)n}∞n=1 and that the eigenvector corresponding to eigenvalue 1 is
the constant 1 ([3], p. 78). However, since ϕ′(0) = 0, Cϕ has no non-constant
eigenvector. Since the eigenvector corresponding to eigenvalue 1 is the constant 1,
the only eigenvector of Cϕ which is 1 is in M. Hence, constants are contained in
M. Now since ϕ(0) = 0, C is reducing for Cϕ, N = M∩C⊥ is a finite dimensional
invariant subspace for Cϕ. So, Cϕ|N has an eigenvalue other than 1. This yields
a contradiction since the point spectrum of Cϕ is {1}.

Suppose Cϕ is not normal and that ϕ has the Denjoy-Wolff point in D. It
would be interesting to find whether or not Cϕ has any finite dimensional invariant
subspaces that do not contain the constants or to show that all such subspaces
must have a basis consisting of eigenvectors of Cϕ.

In [12] there is an example of a 2-dimensional common invariant subspace for
elliptic and hyperbolic composition operators that does not contain the constants.

Theorem Suppose ϕ is not an elliptic disk automorphism. If ϕ(a) = a ∈ D
and a 2-dimensional invariant subspace M of C∗ϕ contains a kernel function kb,
then a = b or ϕ(b) = a.

Proof. Since ϕ(a) = a ∈ D, by Proposition 1.1 we have that Cϕ is power
bounded. The sequence {Cnϕkb}∞n=0 is a bounded sequence that converges uni-
formly on compact subsets to ka. Hence, ka ∈M. If b 6= a, then ka and kb form a
basis for M. It follows that kϕ(b) must be ka. Otherwise, the 2-dimensional sub-
space M would contain the three linearly independent vectors ka, kb, and kϕ(b).
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Note that there are examples of composition operators satisfying the con-
ditions of Theorem 4.8. For example, let ϕ(z) = z

5 (z3 + z2 + z + 1). Then∨
{k0, z} ∈ LatC∗ϕ is a 2-dimensional invariant subspace for C∗ϕ where C∗ϕz = 1

5z.
The following result implies that if every linear manifold invariant under C∗ϕ

is also invariant under C∗ψ, then ψ = ϕ(n) for some n ∈ N.

Theorem Let ϕ and ψ be analytic self-maps of the unit disk. Suppose that
the linear span of {kϕ(n)(zα)} is invariant under C∗ψ for each zα where {zα} ⊆ D
is an uncountable collection of points. Then ψ = ϕ(m) for some m ∈ N.

Proof. By assumption
kψ(zα) = C∗ψkzα

∈ span{kϕ(n)(zα)}.
So we have that

kψ(zα) =
N∑
i=1

γikϕ(ni)(zα).

Since an evaluation kernel cannot be written as a non-trivial linear combina-
tion of other evaluation kernels, we get that kψ(zα) = kϕ(jα)(zα) for some jα ∈ N.
Since {zα} ⊆ D is uncountable and N is countable, there exist m ∈ N such that
ψ(zβ) = ϕ(m)(zβ) for some fixed m ∈ N and an uncountable sub-collection of
points {zβ} ⊆ {zα}. Since ψ and ϕ are analytic we conclude that ψ = ϕ(m).

Theorem Let ϕ be an analytic self-map of unit disk with fixed point a ∈ D
that is not an elliptic disk automorphism. If M is an invariant subspace for Cϕ,
then either M contains the constants or every function in M vanishes at a ∈ D.

Proof. Suppose that M does not contain the constants. Let f ∈ M. Since
ϕ(a) = a ∈ D, it follows that Cϕ is power bounded by Proposition 1.1. So {Cnϕf}
is a bounded sequence. Moreover, since {Cnϕf} converges to f(a) uniformly on
compact subsets of D, we conclude that {Cnϕf} converges to f(a) weakly. Since
M is a subspace, we get that f(a) ∈M. Since M does not contain the constants,
we must have f(a) = 0. The result follows since f was arbitrary.

Corollary Let ϕ be an analytic self-map of the unit disk that is not an
elliptic disk automorphism. Assume ϕ(0) = 0 and ϕ = Bg where B is a Blaschke
product and g is a non-vanishing analytic function. If M is an invariant subspace
for Cϕ that does not contain the constants, then CϕM⊆ BH 2.

Proof. Since ϕ(0) = 0 and M does not include the constants, by Theo-
rem 4.10 we must have that f(0) = 0 for any f ∈ M. Let {ai} be the zeros of ϕ.
Then

(Cϕf)(ai) = f(ϕ(ai)) = f(0) = 0.
So for any f ∈M we have Cϕf ∈ BH 2.

Using Theorem 4.10 we can also conclude that if ϕ is not an elliptic disk

automorphism and ϕ(a) = a ∈ D, then for any outer function g, 1 ∈
∞∨
n=0

{Cnϕg}.

This happens because if not, then for any f ∈
∞∨
n=0

{Cnϕg} we would have f(a) = 0.

In particular, g(a) = 0 which is a contradiction to g being outer.
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Theorem Suppose that ϕ and ψ have fixed points a and b respectively in D
and that they are not elliptic disk automorphisms. Let M be a common invariant
subspace for Cϕ and Cψ not containing the constants. Then

M⊆ (z − γ(b))H 2 ∩ (z − γ(a))H 2,

where γ is any map in the semi-group generated by ϕ and ψ. In particular, if M
is non-zero, then {ϕ(i)(γ(a))}, {ϕ(i)(γ(b))}, {ψ(i)(γ(a))}, and {ψ(i)(γ(b))} must
be finite.

Proof. Since ϕ(a) = a and ψ(b) = b are in D and M does not contain the
constants, by Theorem 4.10 we conclude that {ka, kb} ⊆ M⊥. Let γ be any map
in the semi-group generated by ϕ and ψ. Since CϕCψ = Cψ◦ϕ for any pair of
composition operators and M⊥ is invariant under C∗ϕ and C∗ψ, it will be invariant
under C∗γ . Hence, Proposition 1.3 will yield that∨

{kγ(n)(b), kγ(n)(a)} ⊆ M⊥.

So for every function f ∈M and every n > 0 we have

f(γ(n)(b)) = 〈f, kγ(n)(b)〉 = 0,

f(γ(n)(a)) = 〈f, kγ(n)(a)〉 = 0.

Hence the result follows if we let n = 1.
We now prove that if M is non-zero, then {ψ(n)(γ(a))} is finite. By way of

contradiction, assume that {ψ(n)(γ(a))} is infinite. Let f ∈ M. By the Denjoy-
Wolff Theorem, {ψ(n)(γ(a))} accumulates at the point b. Since every function in
M vanishes at {ψ(n)(γ(a))} by the preceding argument, it follows that f vanishes
on a set with an accumulation point b ∈ D. So f must be zero. A similar argument
can be given for the other cases.

Note that if ϕ and ψ have fixed points in D, their composition may not
necessary have a fixed point in D. For instance, let ϕ(z) = −z−1/2

1+z/2 and ψ(z) = −z,
where both have fixed points in D. However, ϕ ◦ ψ(z) = z+1/2

1−z/2 does not have a
fixed point in D.

Corollary Suppose that Cϕ is compact and ψ has a fixed point in D and is
not an elliptic disk automorphism. If M is a common invariant subspace for Cϕ
and Cψ that does not contain the constants, then every function in M vanishes
at γ(β) where γ is any map in the semi-group generated by ϕ and ψ and β is the
Denjoy-Wolff point of any map in the semi-group generated by ϕ and ψ.

Proof. Let γ and β be as above and let σ be the map with fixed point β.
Note that for any pair of composition operators Cτ and Cξ we have CτCξ = Cξ◦τ .

Claim: β ∈ D.

If the map ϕ is needed to generate the map σ, then by the above observation
Cσ is compact and so σ has a fixed point β ∈ D. If the map ϕ is not used in
generating σ then σ = ψ(n) for some n ∈ N. Hence, σ has the same fixed point as
ψ in D. This proves the claim.
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We now consider two cases.

Case 1. The map ϕ is used to generate γ.

Then by the earlier observation, we have that Cγ is compact. Since M is
invariant under Cϕ and Cψ, it is invariant under Cγ and Cσ. Hence, by using
Theorem 4.10, it follows that kβ ∈M⊥. Since M⊥ is invariant under C∗γ we have
C∗γkβ = kγ(β) ∈M⊥. So every function in M vanishes at γ(β).

Case 2. The map ϕ is not used to generate γ.

Then γ = ψ(n) for some n ∈ N. Since M is invariant under Cψ and Cσ
and σ(β) = β ∈ D, by Theorem 4.10 we have that kβ ∈ M⊥. Hence, we have
C∗γkβ = kγ(β) ∈M⊥. So every function in M vanishes at γ(β).

Proposition Suppose that ϕ and ψ have fixed points in D and are not
elliptic disk automorphisms. Let M be a common invariant subspace for Cϕ and
Cψ that does not contain the constants. If M contains a function that vanishes at
most at one point, then ϕ and ψ have the same fixed point.

Proof. Let a and b be the Denjoy-Wolff points of ϕ and ψ in D respectively.
Let f ∈M be a function that vanishes at most at one point. Since ϕ and ψ have
fixed points in D and M does not contain the constants, Theorem 4.10 yields that
every function in M vanishes at a and b. So f(a) = 0 = f(b). The result follows
from the assumption on f .

If f is 1−1, then f satisfies the assumptions of the previous Proposition 4.14.
A condition weaker than f being 1− 1 is f being 1− 1 at a point.

Definition Let λ ∈ D. A function f is said to be 1 − 1 at λ if whenever
f(λ) = f(z) for some z ∈ D, then z = λ.

Theorem Let ϕ and ψ be analytic self-maps of the unit disk that are not
elliptic disk automorphisms with fixed points a and b, respectively, in D. Suppose
M is a common non-zero invariant subspace for Cϕ and Cψ that does not contain
the constants. If ϕ is 1− 1 at a, then a = b.

Proof. First assume that ϕ is 1 − 1 at a. Since M is a non-zero invariant
subspace for Cϕ and Cψ that does not contain the constants, by Theorem 4.12
it follows that {ϕ(m)(b)} is finite. So we have that ϕ(m)(b) = ϕ(n)(b) for some
distinct m,n ∈ N. Without loss of generality assume that m < n. So ϕ(m)(b) is
fixed by ϕ(n−m). Since ϕ(n−m) fixes a ∈ D and it cannot have two distinct fixed
points in D, it follows that ϕ(m)(b) = a = ϕ(a). Since ϕ is univalent at a, we get
ϕ(m−1)(b) = a. By repeated applications of this argument, we get that a = b.

Theorem Suppose that Cϕ and Cψ have a common invariant subspace M
that does not contain the constants. If ϕ, not an elliptic disk automorphism, has
the Denjoy-Wolff point a ∈ D and ψ has the Denjoy-Wolff point on ∂D, then
M⊆ BH 2 where B is the Blaschke product formed with zeros {ψ(n)(a)}.
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Proof. Since ϕ has the Denjoy-Wolff point a ∈ D and M does not contain
the constants, by Theorem 4.10 we conclude that ka ∈ M⊥. Since M⊥ ∈ LatC∗ψ
we have that

∞∨
n=0

{C∗
n

ψ ka} =
∞∨
n=0

{kψ(n)(a)} ⊆ M⊥.

Hence for any f ∈M we have

f(ψ(n)(a)) = 〈f, kψ(n)(a)〉 = 0.

This shows that f = Bg for some g ∈ H 2 where

B =
∞∏
n=0

ψ(n)(a)
|ψ(n)(a)|

ψ(n)(a)− z

1− ψ(n)(a)z
.

So we have that M⊆ BH 2.

Theorem Let ϕ and ψ be analytic self-maps of D. Suppose that LatCϕ ⊆
LatCψ and that ϕ(a) = a ∈ D. Then

{z : ϕ(z) = a } ⊆ {z : ψ(z) = a}.

In particular, if ϕ fixes zero, then ψ vanishes at all the zeros of ϕ.

Proof. Suppose that ϕ(λ) = a for some λ ∈ D. Since LatCϕ ⊆ LatCψ and
ϕ(a) = a ∈ D, Theorem 2.7 yields that ψ(a) = a. Moreover, by Proposition 1.3
we have that ∨

{ka, kλ} ∈ LatC∗ϕ ⊆ LatC∗ψ.

So we have
C∗ψkλ = kψ(λ) = αka + βkλ for some α, β ∈ C.

Since an evaluation kernel can not be written as a non-trivial linear combination
of other evaluation kernels, it follows that ψ(λ) = a or ψ(λ) = λ. If ψ(λ) = a then
we are done. If ψ(λ) = λ then λ = a since ψ can have only one fixed point in D.
Hence the result follows.

The inner-outer decomposition for functions in H 2, together with the above
theorem, implies that if ϕ(0) = 0 and LatCϕ ⊆ LatCψ, then the Blaschke product
that appears in ϕ as part of its inner-outer factorization also appears as a part of
the Blaschke product of decomposition of ψ.

Theorem Let ϕ and ψ be Blaschke products such that ϕ(0) = 0. If LatCϕ =
LatCψ, then ϕ = eiθψ for some real number θ.

Proof. If LatCϕ = LatCψ, then by Theorem 2.7 we have ψ(0) = 0 since
ϕ(0) = 0. Moreover, by Theorem 4.18, we have ϕ = ψg and ψ = ϕh for some
g, h ∈ H 2. Since ϕ and ψ are Blaschke products, g and h must also be Blaschke
products. Hence, ϕ = ψg = ϕhg. It follows that gh = 1. Since g and h are
Blaschke products, it follows that they must be constants. Hence, ϕ = eiθψ for
some real number θ.
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Proposition Let ϕ be a non-constant analytic self-map of the unit disk that
is not an elliptic disk automorphism. Then for all but countably many z ∈ D, the
collection {ϕ(n)(z)} is infinite.

Proof. Let a be the Denjoy-Wolff point of ϕ. If a ∈ ∂D, then ϕ(n)(z) 6= a
for any n ∈ N and any z ∈ D. So the result follows immediately.

Now assume that a ∈ D and that A = {zα} is an uncountable collection
of points each of which has finite orbit under ϕ. Then for each zα there exists
nα ∈ N such that ϕ(nα)(zα) = a. Since A is uncountable and N is countable, there
exists m ∈ N such that ϕ(m)(zβ) = a where {zβ} is an uncountable sub-collection
of {zα}. Since ϕ is analytic, we conclude that ϕ(m) ≡ a is a constant. By an
application of the open mapping theorem, we conclude that ϕ is a constant. This
yields a contradiction.

H. Heidler in [6] characterizes algebraic composition operators on a variety
of spaces. The following is an alternative way of showing the non-existence of non-
trivial algebraic composition operators on H 2, by using their invariant subspaces.
Note that if ϕ ≡ a is constant, then Cϕ is algebraic. For example, the polynomial
p(z) = z2 − z is satisfied by Ca.

Corollary Let ϕ be a non-constant analytic self-map of the unit disk that
is not an elliptic disk automorphism. Then Cϕ is not algebraic.

Proof. If Cϕ is algebraic, then so is C∗ϕ. Hence, all cyclic subspaces of C∗ϕ
are finite dimensional. However, for any z ∈ D

Mz ≡
∞∨
n=0

{Cn
∗

ϕ kz} =
∞∨
n=0

{kϕ(n)(z)} ∈ LatC∗ϕ.

SinceMz is finite dimensional and {kϕ(n)(z)} are linearly independent for dis-
tinct ϕ(n)(z), it follows that for each z ∈ D, the orbit {ϕ(n)(z)} is finite. However,
this contradicts Proposition 4.20. Hence, the result follows.

Recall that an operator is called reductive if every invariant subspace for
the operator is reducing. The following determines the reductive composition
operators.

Proposition A composition operator is reductive if and only if ϕ(z) = αz
for some constant α where |α| 6 1.

Proof. First assume that Cϕ is reductive. Since Cϕ1 = 1, it follows that C
is reducing. This implies that ϕ(0) = 0 and so

z2H 2 ∈ LatCϕ ⊆ LatC∗ϕ.

It follows that ∨
{1, z} = (z2H 2)⊥ ∈ LatCϕ.

So we have
Cϕz = ϕ = αz + β for some α, β ∈ C.

Since ϕ(0) = 0, we conclude that β = 0 and so ϕ(z) = αz where |α| 6 1.
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Conversely, assume that ϕ(z) = αz. If |α| < 1, then Cαz is a compact
normal operator and hence every invariant subspace of Cαz contains a spanning
set of eigenvectors. Thus, by the work of Wermer ([20]), it follows that Cαz is
reductive. If ϕ(z) = eiθz for some real number θ, then Ceiθz is a unitary operator
whose eigenvectors form a basis, namely {zn}∞0 . So, there exists a sequence of
polynomials pn(z) such that pn(Ceiθz) converge strongly to C∗eiθz ([20]). Hence
Ceiθz is reductive.

Proposition Let ϕ be an analytic self-map of the unit disk with the Denjoy-
Wolff point a ∈ D such that 0 6= ϕ′(a). Then the commutant of Cϕ is reflexive.

Proof. Without loss of generality, assume that ϕ(0) = 0. First assume that
0 < |ϕ′(0)| < 1. Then C∗ϕ is upper triangular with respect to the basis {zn}.

Hence, C∗ϕ has eigenvectors fn ∈Mn ≡
n∨
i=0

{zi} with the corresponding eigenvalues

ϕ′(0)
n
. Since 0 < |ϕ′(0)| < 1, {ϕ′(0)n} are all distinct and so the eigenvectors fn

corresponding to distinct eigenvalues are linearly independent. So
∞∨
n=0

{fn} = H 2.

Hence, C∗ϕ has a spanning collection of eigenvectors. So C∗ϕ and also Cϕ are
hyper-reflexive ([5]).

If |ϕ′(0)| = 1, then Cϕ is normal and so its commutant is reflexive ([22]).

Remark A characterization of compact composition operators on H 2 is the
following ([3]):

Cϕ is compact if and only if whenever {fn} is bounded and fn converges
uniformly on compact subsets to 0, then Cϕfn converges to 0 in the norm.

Suppose Cϕ is compact and ϕ(a) = a. Then Cϕ is power bounded by Propo-
sition 1.1 and so for any f ∈ H 2, {Cnϕf} is a bounded sequence that converges to
f(a) uniformly on compact subsets of D. Since Cϕ is compact, the above charac-
terization implies that {Cnϕf} converges to f(a) in norm.

Let M0 ⊆ M1 be subspaces of H 2. If f ∈ M1, then denote by f̂ the
equivalence class of f in M1/M0. In the case of Hilbert spaces we can identify
the quotient M1/M0 with the orthogonal complement of M0 in M1. Also, denote
by Cϕ|M1/M0 the compression of Cϕ to the orthogonal complement of M0 in
M1.

Theorem Let Cϕ be power compact. Suppose Cϕ has a continuous chain
of invariant subspaces {Mα}06α61 such that M0 does not include the constants.
Then f(a) = 0 for any f ∈M1, where a is the Denjoy-Wolff point of ϕ.

Proof. Let CNϕ be compact for some N ∈ N and suppose there exists f ∈M1

such that f(a) 6= 0. Since CnNϕ f → f(a) in norm by the above remark, we have
f(a) ∈ M1. Hence, 1 ∈ M1. Since 1 /∈ M0, it follows that Cϕ(N) |M1/M0 has
eigenvalue 1 corresponding to eigenfunction 1̂ ∈M1/M0.

On the other hand, since {Mα} is a continuous chain of invariant subspaces,
Cϕ(N)

∣∣M1/M0 is a compact operator with a maximal continuous chain of invari-
ant subspaces. Hence, Cϕ(N)

∣∣M1/M0 is quasi-nilpotent. This yields a contradic-
tion to 1 ∈ σ(Cϕ(N)

∣∣M1/M0).



Invariant subspaces of composition operators 471

Proposition Let CNϕ be power compact and σ a non-constant eigenvector

of CNϕ . If
∞∨
n=0

{σn} has finite codimension, then there does not exist a continuous

chain {Mα}06α61 of invariant subspaces for Cϕ such that M1 = H 2.

Proof. Since σ is a non-constant eigenfunction of CNϕ , we have that CNϕ σ =
ϕ′(a)Nmσ for some m ∈ N. Note that since Cϕ is 1 − 1, ϕ′(a) 6 0. By way
of contradiction, suppose that there exists such a continuous chain of invariant
subspaces for Cϕ.

Claim: σn ∈M0 for all n ∈ N.

Suppose σj /∈ M0 for some j ∈ N. Then CNϕ
∣∣ (H 2/M0) has a non-zero

eigenvalue, ϕ′(a)j , corresponding to σ̂j ∈ H 2/M0. However, since CNϕ
∣∣ (H 2/M0)

is compact and {Mα}06α61 is a continuous maximal chain of invariant subspaces,
CNϕ

∣∣ (H 2/M0) is quasi-nilpotent which contradicts CNϕ
∣∣ (H 2/M0) having a non-

zero eigenvalue. This proves the claim.

By using the claim, we obtain that
∞∨
n=0

{σn} ⊆ M0. Since
∞∨
n=0

{σn} has finite

co-dimension, it follows that M⊥
0 has finite dimension.

However, since {M⊥
α }06α61 form a non-trivial increasing continuous chain

of invariant subspaces for C∗ϕ, it is not possible for M⊥
0 to have finite dimension.

Hence, the result follows.

Theorem Suppose Cϕ is power compact and 0 < |ϕ′(a)| < 1, where a is the
Denjoy-Wolff point of ϕ. Then there does not exist a non-trivial continuous chain
of invariant subspaces for Cϕ starting from 0.

Proof. Let CNϕ be compact for some N ∈ N. Since CNϕ is compact, ϕ(N) has
no finite angular derivative at any point in ∂D ([3], p. 132). Also, since CNϕ is
compact, ϕ(N) is neither the identity nor an elliptic disk automorphism since these
operators are invertible. Hence, by Theorem 1.2 and Julia-Caratheodory Theorem
([3], p. 51) it follows that ϕ(N) and so ϕ must have the Denjoy-Wolff point in
D. Without loss of generality, assume that ϕ(0) = 0. By considering orthogonal
components, we will prove the equivalent formulation of the theorem for C∗ϕ. By
way of contradiction, suppose that {Mα}06α61 is a continuous chain of invariant
subspaces for C∗ϕ such that M1 = H 2. Denote by fn the eigenvector satisfying

C∗ϕ(N)fn = ϕ′(0) nNfn where fn ∈
n∨
i=0

{zi}.

Note that
∞∨
n=0

{fn} = H 2 since 0 < |ϕ′(a)| < 1.

Since CNϕ is compact and C∗
ϕ(N) |(M1/M0) has a maximal chain of invariant

subspaces, C∗
ϕ(N) |(M1/M0) is quasi-nilpotent.

Claim: Every eigenvector fn is in M0.
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Assume that some fm /∈ M0 for some m ∈ N. Then since M1 = H 2,
f̂m ∈ M1/M0 is an eigenvector of C∗

ϕ(N) |(M1/M0) that corresponds to a non-

zero eigenvalue ϕ′(0)
mN

. This contradicts the fact that C∗
ϕ(N) |(M1/M0) is quasi-

nilpotent. Hence, fn ∈M0 for every n ∈ N.

So H 2 =
∞∨
n=0

{fn} ⊆ M0. Hence, {Mα}06α61 is a trivial chain. This yields

a contradiction.

Theorem Suppose Cϕ is power compact and ϕ′(a) 6= 0, where a is the
Denjoy-Wolff point of ϕ. Then there does not exist a non-trivial continuous chain
of invariant subspaces for Cϕ starting from C.

Proof. Let CNϕ be compact for some N ∈ N. Then ϕ(N) and so ϕ must have
the Denjoy-Wolff point in D. Without loss of generality, assume that ϕ(0) = 0. We
will prove the equivalent of this theorem for C∗ϕ. By way of contradiction, suppose
that {Mα}06α61 is a non-trivial continuous chain of invariant subspaces for C∗ϕ
such that M1 = zH 2. For each n > 0, denote by fn the eigenvector satisfying

C∗ϕ(N)fn = ϕ′(0) nNfn where fn ∈
n∨
i=0

{zi}.

Note that if |ϕ′(a)| = 1, then Cϕ would be an elliptic disk automorphism

and so cannot be compact. Hence, we have 0 < |ϕ′(a)| < 1 and so
∞∨
n=0

{fn} = H 2.

Since f0 = 1 is a constant, C is reducing for Cϕ.

Claim: fn(0) = 0 for all n > 1.

Let n > 1. Then

ϕ′(0)
nN
fn(0) = ϕ′(0)

nN
〈fn, 1〉 = 〈CN

∗

ϕ fn, 1〉 = 〈fn, CNϕ 1〉 = 〈fn, 1〉 = fn(0).

Hence, fn(0) = 0 or ϕ′(0)
nN

= 1. Since 0 < |ϕ′(0)| < 1, ϕ′(0)m 6= 1 for any
m ∈ N. Hence, we have fn(0) = 0 for all n > 1.

Thus, fn ∈ zH 2 for all n ∈ N and so
∞∨
n=1

{fn} = zH 2. An argument similar to

that of Theorem 4.27 will yield that fn ∈M0 for all n > 0. So zH 2 =
∞∨
n=1

{fn} ⊆

M0. Hence, {Mα}06α61 is a trivial chain. This yields a contradiction.

Corollary Suppose Cϕ is power compact and ϕ′(a) 6= 0, where a is the
Denjoy-Wolff point of ϕ. If {Mα}06α61 is a non-trivial continuous chain of

invariant subspaces for Cϕ, where M1 = H 2, then
∞∨
n=0

{σn} ⊆ M0, where σ is a

non-constant eigenvector of Cϕ corresponding to the eigenvalue ϕ′(a).
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Proof. Suppose that {Mα}06α61 is such a collection of invariant subspaces
for Cϕ. Assume CNϕ is compact for some N ∈ N. Then C∗

ϕ(N) |(M1/M0) is quasi-
nilpotent. Arguing as in Proposition 4.26 will yield that every σn must be in M0.

Hence,
∞∨
n=0

{σn} ⊆ M0.

If ϕ(z) = αz, where |α| < 1, then 1 and z are both common eigenfunctions
of Cϕ and Cψ with eigenvalues

Cϕ1 = 1, C∗ϕ1 = 1, C∗ϕz = αz, Cϕz = αz.

In general, however, not much is known about the characteristics of common eigen-
functions of Cϕ and Cψ. The following proposition proves the lack of these common
eigenfunctions under some assumptions.

Proposition If {ϕ(n)(0)} has a limit point in D, then Cϕ and C∗ϕ do not
have a common eigenfunction.

Proof. Suppose that

Cϕf = λf,(4.1)
C∗ϕf = γf,(4.2)

for some constants λ, γ ∈ C where ‖f‖ = 1. Note that f 6= 1 since otherwise
{ϕ(n)(0)} would not have a limit point in D. Then

λ = 〈λf, f〉 = 〈Cϕf, f〉 = 〈f, C∗ϕf〉 = γ〈f, f〉 = γ.

This yields that

λf(0) = 〈C∗ϕf, 1〉 = 〈f, Cϕ1〉 = 〈f, 1〉 = f(0).

So f(0) = 0 or λ = 1. If λ = 1, then Cϕf = f . By repeated applications of
Cϕ and using the Denjoy-Wolff Theorem, we conclude that f is a constant, which
is a contradiction.

Hence we must have that f(0) = 0. Then by repeated applications of Cϕ to
equation 4.1 and evaluating at 0 we obtain that

f(ϕ(n)(0)) = Cnϕf(0) = λnf(0) = 0.

So f vanishes on {ϕ(n)(0)}∞n=0. Since {ϕ(n)(0)}∞n=0 has a limit point in D, f
must be zero, which contradicts that f is an eigenvector.

Proposition Let ϕ be an analytic self-map of the unit disk. Then ϕ is
univalent if and only if CϕH 2 contains a univalent function.

Proof. Suppose that CϕH 2 contains a univalent function f and that ϕ(z1) =
ϕ(z2) for some z1, z2 ∈ D. Let {gn} ⊆ H 2 be such that Cϕgn → f in H 2 norm.
Thus,

(Cϕgn)(z1) = gn(ϕ(z1)) = gn(ϕ(z2)) = (Cϕgn)(z2).

Since Cϕgn → f , we conclude that f(z1) = f(z2). Hence z1 = z2 since f is
univalent.

Conversely, if ϕ is univalent, then clearly ϕ = Cϕz ∈ CϕH 2.
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Remark The following result can also be proven analogously;
If ϕ fixes a point a ∈ D and CϕM = M for any invariant subspace M that

does not contain the constants, then ϕ is univalent.

Proposition If ϕ is an analytic self-map of the unit disk such that ϕ(0) = 0,
then no polynomial can be cyclic for C∗ϕ.

Proof. If ϕ(0) = 0, then each subspace znH 2 is invariant for Cϕ and so

Mn =
n∨
i=0

{zi} is invariant for C∗ϕ. Hence, L ≡
∞⋃
n=1

Mn consists of non-cyclic

vectors for C∗ϕ. Thus no polynomial can be cyclic for C∗ϕ.

Given two operators A and B, denote by [A,B] the commutator AB − BA
of A and B. Moreover, two operators A and B are said to quasi-commute if each
commutes with [A,B].

Lemma Let ϕ and ψ be analytic self-maps of the unit disk. Suppose that ϕ
fixes a point in D. If f is a non-constant eigenfunction of Cϕ and f ∈ ker[Cϕ, Cψ],
then Cϕ commutes with Cψ.

Proof. Suppose Cϕf = λf for some λ ∈ D. Since f ∈ ker[Cϕ, Cψ], we have

[Cϕ, Cψ]f = (CϕCψ − CψCϕ)f = 0.

By using Cϕf = λf , this yields

Cϕ(f ◦ ψ) = λ(f ◦ ψ).

Since f is an eigenfunction of Cϕ corresponding to λ, and the eigenspaces of
Cϕ corresponding to each eigenvalue are 1-dimensional, we obtain that f ◦ψ = γf
for some γ ∈ C. So f is a non-constant common eigenvector of Cϕ and Cψ.
Since ϕ has the Denjoy-Wolff point in D, Proposition 1.4 yields that Cϕ and Cψ
commute.

Theorem Let ϕ and ψ be non-constant analytic self-maps of D. Suppose
that Cϕ commutes with [Cϕ, Cψ] and that ϕ fixes a point in D. If Cϕ has a non-
constant eigenvector in H 2, then Cϕ commutes with Cψ.

Proof. First we prove that ϕ and ψ have the same fixed point. Without loss
of generality, assume that ϕ(0) = 0. Since Cϕ commutes with [Cϕ, Cψ], we have

Cϕ(CϕCψ − CψCϕ) = (CϕCψ − CψCϕ)Cϕ.

Taking the adjoint of the above equation and evaluating at 1 while using ϕ(0) = 0
we get

(CϕCψ − CψCϕ)∗C∗ϕ1 = C∗ϕ(CϕCψ − CψCϕ)∗1,

kψ(0) − kϕ(ψ(0)) = kϕ(ψ(0)) − kϕ(2)(ψ(0)),

2kϕ(ψ(0)) = kϕ(2)(ψ(0)) + kψ(0).

Hence, ϕ(ψ(0)) = ϕ(2)(ψ(0)) = ψ(0). This implies that ψ(0) is a fixed point of ϕ.
Since ϕ cannot have two distinct fixed points in D, it follows that ψ(0) = 0.
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Suppose that Cϕσ = λσ where σ ∈ H 2 is non-constant. Since Cϕ commutes
with [Cϕ, Cψ] and the eigenspaces of Cϕ corresponding to each eigenvalue are one
dimensional by Proposition 1.4, we get that

[Cϕ, Cψ]σ = λ′σ for some λ′ ∈ C.

However, since Cϕ commutes with [Cϕ, Cψ], we conclude ([8] and [18]) that
[Cϕ, Cψ] is quasi-nilpotent. Hence, [Cϕ, Cψ]σ = 0. The result now follows from
Lemma 4.34.

Corollary Suppose that Cϕ and Cψ quasi-commute and that ϕ fixes a point
in D. If Cϕ has a non-constant eigenvector in H 2, then Cϕ nad Cψ commute.

Proof. This follows immediately from Theorem 4.35.

An operator T is called unicellular if the lattice of its invariant subspaces is
totally ordered.

Theorem If ϕ has the Denjoy-Wolff point in D, then Cϕ is not unicellular.
If there exists λ ∈ D such that {ϕ(n)(λ)} are the zeros of a Blaschke product,
then Cϕ is not unicellular. In particular, if ϕ is in the Half-Plane\Dilation or
Half-Plane\Translation case, then Cϕ is not unicellular.

Proof. Suppose that Cϕ is unicellular and that ϕ(a) = a ∈ D. Note that since
Cϕ leaves the constants invariant, every invariant subspace of Cϕ must contain the
constants. If ϕ(a) = a ∈ D, then C and (z − a)H 2 are invariant under Cϕ. This
yields a contradiction to Cϕ being unicellular.

Now assume that Cϕ is unicellular and that there exists λ such that {ϕ(n)(λ)}

are the zeros of a Blaschke product. Then M =
∞∨
n=0

{kϕ(n)(λ)} is invariant under

C∗ϕ and so M⊥ is invariant under Cϕ and is a non-trivial invariant subspace. Since
Cϕ is unicellular, 1 ∈M⊥. So 0 = 〈kλ, 1〉. This yields a contradiction.
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