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ABSTRACT. In this paper we present a generalization of the Radon-Nikodym
theorem proved by Pedersen and Takesaki in [7]. Given a normal, semifinite
and faithful (n.s.f.) weight ¢ on a von Neumann algebra M and a strictly
positive operator ¢, affiliated with M and satisfying a certain relative in-
variance property with respect to the modular automorphism group ¥ of
p, with a strictly positive operator as the invariance factor, we construct the
n.s.f. weight <p(5% . 5%). All the n.s.f. weights on M whose modular au-
tomorphisms commute with o? are of this form, the invariance factor being
affiliated with the centre of M. All the n.s.f. weights which are relatively
invariant under o¥ are of this form, the invariance factor being a scalar.
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INTRODUCTION

In [7], G.K. Pedersen and M. Takesaki gave a construction of a normal semifinite
faithful (n.s.f.) weight ¢(-J) on a von Neumann algebra M, starting from an
n.s.f. weight ¢ on M and a strictly positive operator § affiliated with the von
Neumann algebra of elements invariant under the modular automorphisms of .
These weights ¢( - §) are precisely all the n.s.f. weights ¢ on M which are invariant
under the modular automorphisms of ¢. In this paper we will give a construction
for an n.s.f. weight @(5% . 5%) in the case where § satisfies the weaker hypothesis
o?(6') = N5t for all 5, ¢ € R and for a given strictly positive operator ), affiliated
with M and strongly commuting with 4. In this way we obtain precisely all n.s.f.
weights ¢ on M for which [D¢ : Dy], = A3¥'§". The operators A and & are
uniquely determined by v». When %) is an n.s.f. weight on M we prove that ¢¥ and
0¥ commute if and only if there exist strictly positive operators A and ¢ affiliated
with the centre of M and with M itself, respectively, such that o¢(5') = \istgit
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for all s,t € R and such that ¢ = ap(&é ~6%). When 4 is an n.s.f. weight on M
and A € RS we prove that ¢ o of = A%y for all t € R if and only if po o} = Ay
for all ¢ € R if and only if there exists a strictly positive operator § affiliated with
M such that o#(81) = Aist51 for all s,t € R and such that 1 = (62 - §7).

One important application of the Radon-Nikodym theorem of Pedersen and
Takesaki arose in the theory of locally compact quantum groups. In [6], the the-
orem is used to obtain the modular element as the Radon-Nikodym derivative
of the left and the right Haar weight. Recently, however, J. Kustermans and
the author have given a new and relatively simple definition of locally compact
quantum groups (see [2], [3]) and in this theory the right Haar weight is only rel-
atively invariant under the modular automorphism group of the left Haar weight.
In order still to be able to obtain the modular element, we need the more gen-
eral Radon-Nikodym theorem of this paper. Further, the possibility to obtain a
Radon-Nikodym derivative from the sole assumption that ¢¥ and ¢¥ commute is
new and could give rise to applications in von Neumann algebra theory. It is also
important to notice that the most powerful tool to prove the equality of two n.s.f.
weights, namely showing that the Radon-Nikodym derivative is trivial, can now
be applied in much more situations.

Let us first fix some notation. Throughout the paper, a strictly positive
operator will mean a positive, injective and self-adjoint operator on a Hilbert
space. In Paragraphs 1 to 4 we will always assume that M is a von Neumann
algebra, that ¢ is an n.s.f. weight on M and that A and § are two strictly positive,
strongly commuting operators affiliated with M. We suppose M acts on the GNS-
space ‘H of ¢. We denote by J and A the modular operators of ¢ and by (oy)
the modular automorphisms. As usual, we put 9 = {a € M | p(a*a) < oo} and
M = MN*N. We denote by A : 91 — H the map appearing in the GNS-construction
of ¢ such that (A(a), A(b)) = p(b*a). We remark that the map A is closed for the
weak operator topology on M and the weak topology on H, and refer to Chapter
10 from [9] and Chapter I from [8] for more details about n.s.f. weights. We assume
the following relative invariance :

o¢(61%) = N¥1§ for all s,t € R.

Remark that in case A\ = 1 we arrive at the premises for the construction of
Pedersen and Takesaki. Because we will regularly use analytic continuations, we
introduce the notation S(z) for the closed strip of complex numbers with real part
between 0 and Re(z).

Starting from all these assumptions, we will construct an n.s.f. weight s
on M in the first paragraph. Then we will compute the modular operators and
automorphisms of s and prove an explicit formula that justifies the notation ¢s =
o6 3.4 %). In the fourth paragraph we compute the Connes cocycle [Dys : D],
which will enable us to prove in the last paragraph the three Radon-Nikodym type
theorems mentioned above.
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1. THE CONSTRUCTION OF THE WEIGHT g

DEFINITION 1.1. For each n € Ny we define an element e,, € M by

o2 +o00 +00

n 2,2 4, 4y yiz i

Oy = ——7, €Ep =0 exp(—nz® —n Yy )N de dy € M.
SERYENEO M 4 ZO

The integral makes sense in the strong® topology. We remark that automat-
ically A satisfies o¢(A'¥) = A'¢ for all s,¢ € R, which can be proven very easily. We

also easily obtain the following lemma, using the “analytic extension techniques”
of [9], Chapter 9.

LEMMA 1.2. (i) The elements e, € M are analytic with respect to o. For
all x,y,z € C, the operator §*\Vo,(e,) is bounded, with domain H, analytic with
respect to o and satisfies o1(6" N0, (€,)) = 6" N0y, (ey,) for all t € C.

(ii) For all z € C we have o,(e,) — 1 strong* and bounded.

(iii) The function (z,y, z) — 6*No,(ey) is analytic from C3 to M.

(iv) The elements e,, are selfadjoint.

Inspired by the work of [1], we give the following definition:
DEFINITION 1.3. Define a subset 91y of M by
Mo = {a € M | ad? is bounded and adt e N}

and a map

L: N —H, a— Aad?),
where (157% denotes the closure of ads.

Remark that T' is injective and My is a left ideal in M. So T'(My N 9G)
becomes an involutive algebra by defining

[(a)['(b) =T(ab), T'(a)* =T(a*).

PROPOSITION 1.4. When we endow the involutive algebra T'(9o N IG) with
the scalar product of H, it becomes a left Hilbert algebra. The generated von
Neumann algebra is M.

Proof. 1f a,b € My N NG we have
T(ab) = A(abd?) = aT'(b)
so that I'(b) — TI'(ab) is bounded. For a,b, c € 9Ny N NG we have

(D(a)T(b), T(e)) = @((cd%)*a(bo3)) = (T(b), Ala™(c8))) = (T(b),T(a)#T(c)).
If a € TN N* one can easily verify that ena(é_%en) € Ny NNG. Moreover

F(ena(éféen)) = Alenae,) = J(a% (en))*JenA(a) — Ala).
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So I'(Me N NG) is dense in H. But also ejae, € My NN, and this converges
strongly to a. Therefore Mo NN is strongly dense in M and thus (T'( N N))?
is dense in H.

We claim that for all n € Ny and all b and b’ in the Tomita algebra of
©, the element A(e,bb’e,) belongs to the domain of the adjoint of the mapping
I'(a) — T'(a)#. This will imply the closedness of that mapping, and so this will
end the proof. To prove the claim, choose a € 91y NI;. Define the element 2 € N
by

z = (8%0_i(en))o_i (Vb (5 2en)).

Then we can make the following calculation:

—~
)
(o)
[N
—
*
—
(=%
[N
Q
A
—
)
3
S~—
=
Q
L
—
S
*
NS
Q
L
—
<
*
—
i
[N
¢
3
N—
N~—
SN—

This proves our claim. 1

DEFINITION 1.5. We define @5 as the weight associated to the left Hilbert
algebra I'(Mp N 915). This is an n.s.f. weight on M.

We denote by 9, 9 and A’ : 9V — H the evident objects associated to ¢s.
We denote by (0}) the modular automorphisms of 5. We remark that 91y C 9
and A’(a) = T'(a) for all a € Ny.

Up to now the operator A did not appear in our formulas. We only need the
relative invariance property of  to construct the analytic elements e,,, which cut
down § properly. Further on A will of course appear when we prove properties of ¢;.

2. THE MODULAR OPERATORS OF @gs
We will now calculate the modular operators and the modular automorphisms of
ws. We will give explicit formulas.
LEMMA 2.1. For all s € R define
Uy = JABis® gis gy 3is? s Als
Then (us) is a strongly continuous one-parameter group of unitaries on H.

~ Proof. Straightforward, by using the facts that JM.J = M JABS = Als .
AISFt = NStGEALS and AISAE = NIEATS for all s,¢t € R. I

DEFINITION 2.2. We define A’ as the strictly positive operator on H such
that us = A" for all s € R.

Further on, in Proposition 2.4, we will give a more explicit formula for A’.
We first need a lemma that we will use several times.
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LEMMA 2.3. Let z € C and n,m € Ny. If & € D(A'®) then Jep,Jen& €
D(A”*) ND(A?) and
AN JepJené = Joiz(en)Jo_i.(en)A 7€
A JepJemé = TN 67012 (e0) JATZ 6 %01 (e) A€
If ¢ € D(A?) then JepJen& € D(A') ND(A?) and
AN JepJenmé = J)\_%1225_20i5(en)J _%izzéza_iz(em)Azf
A JenJem€ = Joiz(en)Jo_iz(em)A%E.

Proof. Let £ € D(A’®). Recall the notation S(z) from the end of the intro-
duction. We define the function from S(z) to H that maps a to

J)\%i&Q55‘0107(en)J)\%ia257agfia(em)A/af'

This function is continuous on S(z) and analytic on its interior. In is it attains
the value

J)\iéisz(siiso's (en)J/\7%152 571308 (e7rL)A/is§: Jas (en)‘]as(em)AiSE = Ais,]enjemf.

By the results of Chapter 9 from [9] the second statement follows. The three
remaining statements are proved analogously. 1

ProprOSITION 2.4. Let r € R. The operator
JATEE AT g5 g5 AT
is closable and its closure equals A'".

Proof. Let € € D(J§ "J6"A"). Let n,m € Ny. By Lemma 2.3, we have
JepJenmé € D(A'") and

A JenJemt = JA 27 04 (€,) JN" 27 0 (em) J6 " J6TATE.
The operator A’ being closed, we obtain that £ € D(A’") and
ATE = JATE AT g5 IS ATE,

On the other hand, let ¢ € D(A’"). Let n,m € Ny. By Lemma 2.3 we have
that Je,Jen& € D(JSTJO"A™) and A" Je,Jen,& — A'"E. This implies that
D(J6~"JS"A") is a core for A’", and this ends our proof. &

Denote by S’ the closure of the operator I'(a) I'(a)* on T'(Mp N NY).
Define J' = JA"5J\5J.
PROPOSITION 2.5. )
S =JA?z.
So, J' and A’ are the modular operators associated with pg.

Proof. Let a € MoNNE and n,m, k,I € Ng. Then A(era(62¢;)) € D(A2), so
by Lemma 2.3 we have

JenJemM(era(5%e)) € D(A’%)
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and

TN JeqJenAera(dter) = 67Fo (en)INTHo2 0 (en) AT A(esa(65er)
(

en)Jo_ s (02 ) JA((07 er)a"er) = oy (en)erA(a” (52 em)er)

(en)erJo_i(emer)JT (a").

3
The last expression converges to I'(a*) = S'T'(a), while

JenJemA(eka((S%el)) = Jeno_s(e))Jemerl'(a)

converges to I'(a) when n,m,k,l — oo. This implies that T'(a) € D(A’%) and
J'A'T(a) = S'T(a). Thus, §' € J/A'Z.

On the other hand, let £ € D(J§~2J82A?). Take a sequence (&) in A(9TN
M*) such that & — & and A2&, — A€ Let n,m, k € Ng. Then JepJeny €
D(A’%) and

1

A2 JenJembe = N5 50 (e,)IN"$8%0_ 1 (em)ARE.

1 — i
2 2

If K — oo this converges to

INTR0 (en) TN R0 (em) 6 HIGEARE = Jo, (e)Jo_y (em)A'2E.

%
If n, m — oo this converges to A’%ﬁ. Because Je, Je, & € D(S') foralln,m, k € N

and because of the previous proposition, we have finally proved that D(S’) is a
1
core for A’2Z. 1

COROLLARY 2.6. We have the formula
ol(x) = AE 55 (2) 0TI A 3
for all s € R and all x € M.
COROLLARY 2.7. For all s € R, z,y,z € C and n € Ny we have
os(N"8Y0,(en)) = 0L (A" 0Y0(en)).

Note that these formulas become easier when A\ is affiliated with the centre of

M, in particular when A is a positive real number. In that case A is the closure of
J6T1JSA and J' equals \1.J, because Jx = x*J for all z belonging to the centre
of M. Moreover, we have o’ (z) = §"*os(x)07'* in that case.
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3. A FORMULA FOR g
Before proving an explicit formula for ¢s we need two lemmas. The second one

will also be used in the next section.

LEMMA 3.1. There ezists a net (x;)1er in Mo NN such that x; is analytic
with respect to o' for alll and o (x;) — 1 strong® and bounded for all z € C.

Proof. Because 99N is a strongly dense x-subalgebra of M, we can take a
net (ax)rer in Mo NN such that a, = ag, ||ax|| < 1 for all k and ar, — 1 strongly.
Define g, € M by

ar = % /exp(ftz)o{(ak)dt.

Clearly g is analytic with respect to ¢’ and
1
7o) = = [ expl(—(t = 2P)ailan)at.

Also o (qx) — 1 strong* and bounded.
Define L = Ny x K x Ng with the product order, and x(,, k.m) = €nqrem-
Then x; is analytic with respect to ¢’ for all [ and o’ (z;) — 1 strong™® and bounded

for all z € C. Let n,m € Ny and k € K. The operator enqkeméé is bounded, with
closure

1
entr(0%em) = en— /exp(*tz)di(ak)(ﬁ@m)dt-
VT
For all ¢t € R the integrand of this expression equals
eXp(—tQ)éit)\%itzo't(ak(S% (/\%(itQ_t)(S_itO'_t(em))).

This belongs to 9. When we apply A on it, we obtain

exp(—t2)" N AN 0 (e,) T A (a0 7).

As a function of ¢ this is weakly integrable. Because the mapping A is closed for
the weak operator topology on M and the weak topology on H, we can conclude
that enqk(ééem) € M. This means that e,qre,, € Mg. Analogously, we obtain
that e,grem € 5. 1

LEMMA 3.2. Ifa € W, then a(d%ey,,) belongs to N for all z € C and n € Ny.
We have Ala(6%e,)) = N (a(6°" 2ey)).
Proof. Take a net (z;);er as in the previous lemma. Then az;(6%e,) —

a(6%e,) strongly. Because x; € My we have az;(6%e,) € 9 and

Aaz;(%en)) = N(az (55 2ep)) = J' (0 (21(6°" 2 en)))* J'A (a)

1
2

- J'(d (0° 2 en))* J'N (a) = N (a(67 Zep)).

Because A, as above, is closed, we conclude that a(d%e,) € M and A(a(6%e,)) =
N(a(65"2e,)). 1
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PROPOSITION 3.3. For all x € M1 we have
ws(x) = lim <p((6éen)x(6%en)).

Proof. If x € 9 we have z(62¢,,) € M for all n and
p((52en)a” (0% en)) = A2 (0% en)|* = 1A (wen)|
= [[J'o_s(en) J'N (@) — A (@)I* = ps(z"x).
This gives the proof for all z € 9", Now let z € M*T and ps(z) = +oc.
Suppose p((62e,,)z(62e,)) does not converge to +00. Then there exists an M > 0
and a subsequence (e,, ) such that o((82ey, )z(d2ey,)) < M for all k. Thus
x%(ﬁenk) € M for all k, so a:%enk € W and ps(en, zen, ) < M for all k. Because

€n,Ten, — T strong® and bounded, this contradicts with ¢s(x) = 400 and the
o-weak lower semicontinuity of ¢s. 1

4. THE CONNES COCYCLE [Des : D]

We first state the following lemma, which can be proved in exactly the same way
as Lemma 2.1.

LEMMA 4.1. For all s € R define vy = A\25° 5 Als. Then (vs) is a strongly
continuous one-parameter group of unitaries on H.

DEFINITION 4.2. We define p as the strictly positive operator on H such
that vy = p'* for all s € R.

Recall the notation S(z) from the end of the introduction.
LEMMA 4.3. If z € MNN*, then A(z) € D(p2) and
JN"Ep3A(z) = N (z¥).

Proof. Let x € M N and n,m € N. Then e,z € 9N N* because of
Lemma 3.2. We can define a function from S(%) to H mapping « to

AT 5% (en) AYA(ema).

This function is continuous on S (%) and analytic on its interior. It attains the
value

)\%itQ(Sitot(en)AitA(emx) = p'Alepenmr)
in it. So A(eneme) € D(p?) and
J)\_%p%/\(enemx) = Ja_%((S%en)A%A(emx) = Ja_%(ééen)JA(m*em)
= A(z* (6% ep)em) = N (z enem) = J’U'_%(enem)J’A’(x*).

Because p2 is closed, we can conclude that A(z) € D(p2) and JA“spzA(z) =
AN(z*). 1
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PROPOSITION 4.4. The Connes cocycle [Dps : Dl equals A28 for all
teR.

Proof. Let x € M* NN and y € M N N*. Denote u; = A5, De-
fine F(a) = (p*A(y), A(z*)) when o € C and 0 < Re(a) < 3. Define G(a) =

(ASJN (y*), p® *A5 JA(2)) when o € C and 1 < Re(@) < 1. Because of the
previous lemma, F' and G are both well defined, continuous on their domain and
analytic in the interior. For any t € R we have

F(it) = A2 6 AT A(y), A2")) = p(auio(y))
) (PIAE TN (), A(z*))
( ;) — BTN (), —itA(x*)>:F(it+%)
G(it +1) = (JA'(y*), N6 THAT TN () = (A'(2), AT STATN ()
= (AFESN (), AN (1)) = s (0 (y)us).

So we can glue together the functions F' and G and define H(a) = F'(a) when «
belongs to the domain of F' and H(a) = G(«) when « belongs to the domain of
G. Then H is continuous on S(1) and analytic on its interior. We have

H(it) = p(zuoi(y)) and  H(it +1) = @5(01(y)u)
for all ¢ € R. Because it is easily verified that
Uprs = wop(us), u—y =o_(uy), o3(x) = uor(x)u;
for all s,t € R and x € M, we conclude that u; = [Dys : D) for all t. 1

The previous proposition also implies that the operators A and § are uniquely
determined by ¢s. If we put u; = [Dys : Diply, we have N = wfuius; and
5t = uA\~31” for all t € R, which proves our claim.

5. THREE RADON-NIKODYM THEOREMS

In this paragraph we denote by (¢f) the modular automorphism group of an n.s.f.
weight ¢ on a von Neumann algebra. We denote by M,, M, Ay, J, and A, the
same objects as defined in the introduction but we add a subscript @ for the sake
of clarity.

PROPOSITION 5.1. Let 1 and ¢ be two n.s.f. weights on a von Neumann
algebra M. Let X\ and § be two strongly commuting, strictly positive operators
affiliated with M. Then the following are equivalent:

(i) [Dy : Dg), = A28t for all t € R;

(ii) of (6%%) = Nist6'® for all s,t € R and ¢ = ;.

Proof. The implication (ii) = (i) follows from Proposition 4.4.
To prove (i) = (ii), denote uy = [Dy : Dy):. Let s,t € R. Then

142§ 1462 1 it i 1442 4 162 4
)\21t /\215 )\152&5125515 = Upys = Uth(us) — )\21t 51t0,20(>\215 515).
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This implies that

(1) Azis Nistgis — 5 (\2157515)  for all s, ¢ € R.

It follows that for all r,s,t € R

(2) O'f ()\%is2+ist)0f (515) — Jf+t ()\%is2 (Sis) _ /\%isz )\is(r—&-t)(sis.

But equation (1) implies that 0% (6') = af()ﬁéisg))\%is2 AT 518 50 by equation (2)
we get
Uf(}\ist))\%isz ST gis — /\%isz A\ls(r+1) gis

This_gives us O'.f()\iSt) = At for all r,s,t € R. Then equation (1) implies that
of (6') = Nist§'s for all s,t € R. So we can construct the weight @5 such that
[Dgs : Dol = A1 61. But then o5 = .

We will now consider the more specific case in which A is affiliated to the
centre of M. We will prove that we obtain exactly all the weights whose automor-
phism group commutes with that of .

PROPOSITION 5.2. Let ¢ and i be two n.s.f. weights on a von Neumann
algebra M. Then the following are equivalent:

(i) The modular automorphism groups o¥ and o commute.

(ii) There exist a strictly positive operator § affiliated with M and a strictly
positive operator \ affiliated with the centre of M such that o?(5it) = \ist§it for
all s,t € R and such that ¢ = @s.

(iii) There exist a strictly positive operator ¢ affiliated with M and a strictly
positive operator A affiliated with the centre of M such that [D : Do)y = ABit’ it
for allt € R.

Proof. The equivalence of (ii) and (iii) follows from Proposition 5.1. The
implication (ii) = (i) follows from Corollary 2.6 by a direct computation. We will
prove the implication (i) = (iii). Denote u; = [D%) : D], for all ¢ € R and denote
by Z the centre of M. For all x € M and s,t € R we have

of (0%(2)) = wofy(x)ui and  of (0] () = 0 (u)of,(@)of (uf).
Thus we can conclude that ujo?(u;) € Z for all s,¢ € R. But then ujufusys € Z
for all s,t € R. Because ¢¥ acts trivially on Z, we get

uof (ur) = 0%, (u;of (u)) = u—sol_y(ue) = u—yui_sus € 2.
We can conclude that w,u}, ,us € Z for all s,t € R. Then we define for (s,t) € R?
w(s,t) = ufulusy¢. The function w is strong* continuous from R? to the unitaries
fZ. Let s, s i i
of Z. Let s,s’,t € R. Because of the previous remarks we can make the following
calculation:
Iy _ © ®
w(s+5,t) = ujugy o Ustspe = upo g (Ug)ug e it (U:Us/-;-t (us))
=ujuiol (of (us)ub)ub g 11t = Uuios (U sy Ul ) UL g 44U

= uiul (Ul w4 up Juse (Uug) = ujuius i uiutug o = w(s, t)w(s,t).
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Next let s,t,t" € R. We have
(s, ) = Uy Ul = (OE (] )0 (i 11)
= ujupuiup ol (Uspeug )up = ujupuiug o) (us)o] (uhuspeus )ug
U O (U = 0] ()
= uiuluspufuiusy = w(s, t)w(s,t').
For each ¢t € R we can now take a strictly positive operator \; affiliated with Z

such that A* = w(s,t) for all s,t € R. Let t,t/ € R. Because \; and A\ are
strongly commuting we can write

()\t?At’)iS = )‘25>‘}5§ = w(s, t)w(s, t/) = iti—t/

for all s € R, where A\{*Ay denotes the closure of \Ap. It follows that Aiyy =
Ae*Ap. Put A = Ay, It follows from functional calculus that A? = A, for all ¢ € Q.
Then we have

N = (A0 = N = (s, )

for all s € R and q € Q. Because of strong* continuity we have \** = w(s,t) and
thus usy s = A*‘usu, for all s,¢ € R. Now we can easily verify that v; = )\_%it2ut
defines a strong* continuous one-parameter group of unitaries in M. So we can
take a strictly positive operator ¢ affiliated with M such that [Dt : Dl = us =

Az 5it for all t € R. This gives us (iii). 1

Now we will look at the even more specific case A € Rj. So the following
proposition becomes meaningful.

PROPOSITION 5.3. Let ¢ be an n.s.f. weight on a von Neumann algebra
M. Let § be a strictly positive operator affiliated with M and X\ € R{ such that
of (6%) = N*t§' for all s,t € R. Then we have

psoof =X "tps and poof’ =Ny forallteR.

Proof. Let a € Ny, and t € R. Then of (a) = §*of*(a)d. This belongs to
MN,; because ' is analytic with respect to o%%, and we have

Mgy (0f (@) = 67T, ATE6 7T AL AL (a).

So we get
ws(of(a*a)) = A\ 'ps(a*a) for all t € R.

Now, the conclusion follows easily. The second statement is proved analogously. 1
After stating a lemma, we will prove our third Radon-Nikodym theorem.

LEMMA 5.4. Let ¢ be an n.s.f. weight on a von Neumann algebra M and
ac M. If Noa C Ny, Noa™ C N, and if there exists a A € Ry such that
o(ax) = Np(za) for all x € M, then of (a) = Nita for all t € R.

Proof. The proof of Result 6.29 in [1] can be taken over literally. Also a
slight adaptation of the proof of Theorem 3.6 in [7] yields the result. 1
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PROPOSITION 5.5. Let ¥ and ¢ be two n.s.f. weights on a von Neumann

algebra M. Let \ € Rg. The following statements are equivalent:
(i) For all t € R we have poof = N,

(ii) For allt € R we have ¢ o af = X\"'1).

(iii) There exists a strictly positive operator ¢ affiliated with M such that
of (6') = Nt§% for all s,t € R and such that ¢ = ;.

(iv) There exists a strictly positive operator § affiliated with M such that
[Dy : Dy), = A28 for all t € R.

Proof. We have already proven the equivalence of (iii) and (iv) and the
implications (iii) = (ii) and (ili) = (i). Suppose now that (i) is valid. Put
ur = [Dy : D)y and let x € M™T. Then we have

p(uizuy) = (0%, (u)o” (2)07 (ur))
= p(u—0?,(2)ur,) = (o, (2)) = A ().

So we have Nyu, C Ny, for all ¢ € R, and thus Nyuf = of Nyu_,) C N, for all
t € R. Then we get for every x € 9, that

p(xur) = p(ujurrus) = X" o(up).

From the previous lemma we can conclude that o¢(u;) = Al*tu, for all s,t € R.
Put vy = )\’%it2ut € M. Then we have that t — v, is a strongly continuous
one-parameter group of unitaries. Define § such that 6 = v, for all t € R. So
§ is affiliated with M and [Dv : Dyl, = A2’ § and this gives us (iv). Finally
suppose (ii) is valid. From the proven implication (i) = (iv) we get the existence
of a strictly positive operator ¢ affiliated with M such that [Dy : D], = A3t it
for all t € R. Changing & to 6= we get [Di) : Dy, = A2*°§% for all ¢ € R. This
gives us again (iv). &

We conclude this paper by giving an example which shows that all situations
can really occur : we can have o} (§*) = A¥!6'* with A and § strongly commuting
but A not central, with A central but not scalar, and with A scalar. Indeed, define
M; = B(L?*(R)) and define the selfadjoint operators P and @ on the obvious

domains by
(PE)(7) =E(y) and  (Q€)(y) = —i&' (7).

Put H = exp(P) and K; = exp(Q) and denote by Tr the canonical trace on
M. Remark that Tr has a trivial modular automorphism group so that we can
define ¢; = Try as in Definition 1.5. An easy calculation yields that o' (K1) =
HUY'KsH-1t = 715 KI5 where e denotes the well known real number e. This gives
an example of our third case. Define My as the von Neumann algebra of two by
two matrices over My and 5 as the balanced weight 6(¢1, 1) (see [8]). Define
its

. -1 .
Ky = (Kl 0 ) We easily have of*(Ki*) = ( © K%, which gives

0 K;! 0
an example of our first case because My is a factor. Define M3 as the diagonal
matrices in Ms. We can restrict ¢ to M3 and keep K>. We have the same

-1
formula as above, and in this way an example of our second case, (eo 2)

being central now.
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