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Abstract. In this paper we present a generalization of the Radon-Nikodym
theorem proved by Pedersen and Takesaki in [7]. Given a normal, semifinite
and faithful (n.s.f.) weight ϕ on a von Neumann algebra M and a strictly
positive operator δ, affiliated with M and satisfying a certain relative in-
variance property with respect to the modular automorphism group σϕ of
ϕ, with a strictly positive operator as the invariance factor, we construct the

n.s.f. weight ϕ(δ
1
2 · δ

1
2 ). All the n.s.f. weights on M whose modular au-

tomorphisms commute with σϕ are of this form, the invariance factor being
affiliated with the centre of M. All the n.s.f. weights which are relatively
invariant under σϕ are of this form, the invariance factor being a scalar.
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INTRODUCTION

In [7], G.K. Pedersen and M. Takesaki gave a construction of a normal semifinite
faithful (n.s.f.) weight ϕ( · δ) on a von Neumann algebra M, starting from an
n.s.f. weight ϕ on M and a strictly positive operator δ affiliated with the von
Neumann algebra of elements invariant under the modular automorphisms of ϕ.
These weights ϕ( · δ) are precisely all the n.s.f. weights ψ on M which are invariant
under the modular automorphisms of ϕ. In this paper we will give a construction
for an n.s.f. weight ϕ(δ

1
2 · δ 1

2 ) in the case where δ satisfies the weaker hypothesis
σϕs (δit) = λistδit for all s, t ∈ R and for a given strictly positive operator λ, affiliated
with M and strongly commuting with δ. In this way we obtain precisely all n.s.f.
weights ψ on M for which [Dψ : Dϕ]t = λ

1
2 it2δit. The operators λ and δ are

uniquely determined by ψ. When ψ is an n.s.f. weight on M we prove that σψ and
σϕ commute if and only if there exist strictly positive operators λ and δ affiliated
with the centre of M and with M itself, respectively, such that σϕs (δit) = λistδit
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for all s, t ∈ R and such that ψ = ϕ(δ
1
2 · δ 1

2 ). When ψ is an n.s.f. weight on M
and λ ∈ R+

0 we prove that ψ ◦ σϕt = λ−tψ for all t ∈ R if and only if ϕ ◦ σψt = λtψ

for all t ∈ R if and only if there exists a strictly positive operator δ affiliated with
M such that σϕs (δit) = λistδit for all s, t ∈ R and such that ψ = ϕ(δ

1
2 · δ 1

2 ).
One important application of the Radon-Nikodym theorem of Pedersen and

Takesaki arose in the theory of locally compact quantum groups. In [6], the the-
orem is used to obtain the modular element as the Radon-Nikodym derivative
of the left and the right Haar weight. Recently, however, J. Kustermans and
the author have given a new and relatively simple definition of locally compact
quantum groups (see [2], [3]) and in this theory the right Haar weight is only rel-
atively invariant under the modular automorphism group of the left Haar weight.
In order still to be able to obtain the modular element, we need the more gen-
eral Radon-Nikodym theorem of this paper. Further, the possibility to obtain a
Radon-Nikodym derivative from the sole assumption that σϕ and σψ commute is
new and could give rise to applications in von Neumann algebra theory. It is also
important to notice that the most powerful tool to prove the equality of two n.s.f.
weights, namely showing that the Radon-Nikodym derivative is trivial, can now
be applied in much more situations.

Let us first fix some notation. Throughout the paper, a strictly positive
operator will mean a positive, injective and self-adjoint operator on a Hilbert
space. In Paragraphs 1 to 4 we will always assume that M is a von Neumann
algebra, that ϕ is an n.s.f. weight on M and that λ and δ are two strictly positive,
strongly commuting operators affiliated with M. We suppose M acts on the GNS-
space H of ϕ. We denote by J and ∆ the modular operators of ϕ and by (σt)
the modular automorphisms. As usual, we put N = {a ∈ M | ϕ(a∗a) < ∞} and
M = N∗N. We denote by Λ : N → H the map appearing in the GNS-construction
of ϕ such that 〈Λ(a),Λ(b)〉 = ϕ(b∗a). We remark that the map Λ is closed for the
weak operator topology on M and the weak topology on H, and refer to Chapter
10 from [9] and Chapter I from [8] for more details about n.s.f. weights. We assume
the following relative invariance :

σt(δis) = λistδis for all s, t ∈ R.

Remark that in case λ = 1 we arrive at the premises for the construction of
Pedersen and Takesaki. Because we will regularly use analytic continuations, we
introduce the notation S(z) for the closed strip of complex numbers with real part
between 0 and Re(z).

Starting from all these assumptions, we will construct an n.s.f. weight ϕδ
on M in the first paragraph. Then we will compute the modular operators and
automorphisms of ϕδ and prove an explicit formula that justifies the notation ϕδ =
ϕ(δ

1
2 · δ 1

2 ). In the fourth paragraph we compute the Connes cocycle [Dϕδ : Dϕ],
which will enable us to prove in the last paragraph the three Radon-Nikodym type
theorems mentioned above.



A Radon-Nikodym theorem for von Neumann algebras 479

1. THE CONSTRUCTION OF THE WEIGHT ϕδ

Definition 1.1. For each n ∈ N0 we define an element en ∈M by

αn =
2n2

Γ( 1
2 )Γ( 1

4 )
, en = αn

+∞∫
−∞

+∞∫
−∞

exp(−n2x2 − n4y4)λixδiy dxdy ∈M.

The integral makes sense in the strong* topology. We remark that automat-
ically λ satisfies σt(λis) = λis for all s, t ∈ R, which can be proven very easily. We
also easily obtain the following lemma, using the “analytic extension techniques”
of [9], Chapter 9.

Lemma 1.2. (i) The elements en ∈ M are analytic with respect to σ. For
all x, y, z ∈ C, the operator δxλyσz(en) is bounded, with domain H, analytic with
respect to σ and satisfies σt(δxλyσz(en)) = δxλy+txσt+z(en) for all t ∈ C.

(ii) For all z ∈ C we have σz(en) → 1 strong* and bounded.
(iii) The function (x, y, z) 7→ δxλyσz(en) is analytic from C3 to M.
(iv) The elements en are selfadjoint.

Inspired by the work of [1], we give the following definition:

Definition 1.3. Define a subset N0 of M by

N0 = {a ∈M | aδ 1
2 is bounded and aδ

1
2 ∈ N}

and a map
Γ : N0 → H, a 7→ Λ(aδ

1
2 ),

where aδ
1
2 denotes the closure of aδ

1
2 .

Remark that Γ is injective and N0 is a left ideal in M. So Γ(N0 ∩ N∗
0)

becomes an involutive algebra by defining

Γ(a)Γ(b) = Γ(ab), Γ(a)# = Γ(a∗).

Proposition 1.4. When we endow the involutive algebra Γ(N0 ∩N∗
0) with

the scalar product of H, it becomes a left Hilbert algebra. The generated von
Neumann algebra is M.

Proof. If a, b ∈ N0 ∩N∗
0 we have

Γ(ab) = Λ(abδ
1
2 ) = aΓ(b)

so that Γ(b) 7→ Γ(ab) is bounded. For a, b, c ∈ N0 ∩N∗
0 we have

〈Γ(a)Γ(b),Γ(c)〉 = ϕ((cδ
1
2 )∗a(bδ

1
2 )) = 〈Γ(b),Λ(a∗(cδ

1
2 ))〉 = 〈Γ(b),Γ(a)#Γ(c)〉.

If a ∈ N ∩N∗ one can easily verify that ena(δ−
1
2 en) ∈ N0 ∩N∗

0. Moreover

Γ(ena(δ−
1
2 en)) = Λ(enaen) = J(σ i

2
(en))∗JenΛ(a) → Λ(a).
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So Γ(N0 ∩ N∗
0) is dense in H. But also enaen ∈ N0 ∩ N∗

0, and this converges
strongly to a. Therefore N0 ∩N∗

0 is strongly dense in M and thus (Γ(N0 ∩N∗
0))

2

is dense in H.
We claim that for all n ∈ N0 and all b and b′ in the Tomita algebra of

ϕ, the element Λ(enbb′en) belongs to the domain of the adjoint of the mapping
Γ(a) 7→ Γ(a)#. This will imply the closedness of that mapping, and so this will
end the proof. To prove the claim, choose a ∈ N0 ∩N∗

0. Define the element x ∈ N
by

x := (δ
1
2σ−i(en))σ−i(b′

∗
b∗(δ−

1
2 en)).

Then we can make the following calculation:

〈Λ(x),Γ(a)〉 = ϕ((aδ
1
2 )∗(δ

1
2σ−i(en))σ−i(b′

∗)σ−i(b∗(δ−
1
2 en)))

= ϕ(b∗(δ−
1
2 en)(aδ

1
2 )∗(δ

1
2σ−i(en))σ−i(b′

∗))

= ϕ(b∗ena∗(δ
1
2σ−i(en))σ−i(b′

∗)) = ϕ(b∗en(a∗δ
1
2 )σ−i(enb′

∗))

= ϕ(enb′
∗
b∗en(a∗δ

1
2 )) = 〈Γ(a)#,Λ(enbb′en)〉.

This proves our claim.

Definition 1.5. We define ϕδ as the weight associated to the left Hilbert
algebra Γ(N0 ∩N∗

0). This is an n.s.f. weight on M.

We denote by N′, M′ and Λ′ : N′ → H the evident objects associated to ϕδ.
We denote by (σ′t) the modular automorphisms of ϕδ. We remark that N0 ⊂ N′

and Λ′(a) = Γ(a) for all a ∈ N0.
Up to now the operator λ did not appear in our formulas. We only need the

relative invariance property of δ to construct the analytic elements en, which cut
down δ properly. Further on λ will of course appear when we prove properties of ϕδ.

2. THE MODULAR OPERATORS OF ϕδ

We will now calculate the modular operators and the modular automorphisms of
ϕδ. We will give explicit formulas.

Lemma 2.1. For all s ∈ R define

us = Jλ
1
2 is2δisJλ

1
2 is2δis∆is.

Then (us) is a strongly continuous one-parameter group of unitaries on H.

Proof. Straightforward, by using the facts that JMJ = M′, J∆is = ∆isJ ,
∆isδit = λistδit∆is and ∆isλit = λit∆is for all s, t ∈ R.

Definition 2.2. We define ∆′ as the strictly positive operator on H such
that us = ∆′is for all s ∈ R.

Further on, in Proposition 2.4, we will give a more explicit formula for ∆′.
We first need a lemma that we will use several times.
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Lemma 2.3. Let z ∈ C and n,m ∈ N0. If ξ ∈ D(∆′z) then JenJemξ ∈
D(∆′z) ∩ D(∆z) and

∆′zJenJemξ = Jσiz̄(en)Jσ−iz(em)∆′zξ

∆zJenJemξ = Jλ
1
2 iz̄2δz̄σiz̄(en)Jλ

1
2 iz2δ−zσ−iz(em)∆′zξ.

If ξ ∈ D(∆z) then JenJemξ ∈ D(∆′z) ∩ D(∆z) and

∆′zJenJemξ = Jλ−
1
2 iz̄2δ−z̄σiz̄(en)Jλ−

1
2 iz2δzσ−iz(em)∆zξ

∆zJenJemξ = Jσiz̄(en)Jσ−iz(em)∆zξ.

Proof. Let ξ ∈ D(∆′z). Recall the notation S(z) from the end of the intro-
duction. We define the function from S(z) to H that maps α to

Jλ
1
2 iᾱ2

δᾱσiᾱ(en)Jλ
1
2 iα2

δ−ασ−iα(em)∆′αξ.

This function is continuous on S(z) and analytic on its interior. In is it attains
the value

Jλ−
1
2 is2δ−isσs(en)Jλ−

1
2 is2δ−isσs(em)∆′isξ=Jσs(en)Jσs(em)∆isξ=∆isJenJemξ.

By the results of Chapter 9 from [9] the second statement follows. The three
remaining statements are proved analogously.

Proposition 2.4. Let r ∈ R. The operator

Jλ−
1
2 ir2Jλ−

1
2 ir2Jδ−rJδr∆r

is closable and its closure equals ∆′r.

Proof. Let ξ ∈ D(Jδ−rJδr∆r). Let n,m ∈ N0. By Lemma 2.3, we have
JenJemξ ∈ D(∆′r) and

∆′rJenJemξ = Jλ−
1
2 ir2σir(en)Jλ−

1
2 ir2σ−ir(em)Jδ−rJδr∆rξ.

The operator ∆′r being closed, we obtain that ξ ∈ D(∆′r) and

∆′rξ = Jλ−
1
2 ir2Jλ−

1
2 ir2Jδ−rJδr∆rξ.

On the other hand, let ξ ∈ D(∆′r). Let n,m ∈ N0. By Lemma 2.3 we have
that JenJemξ ∈ D(Jδ−rJδr∆r) and ∆′rJenJemξ → ∆′rξ. This implies that
D(Jδ−rJδr∆r) is a core for ∆′r, and this ends our proof.

Denote by S′ the closure of the operator Γ(a) 7→ Γ(a)# on Γ(N0 ∩ N∗
0).

Define J ′ = Jλ−
i
8 Jλ

i
8 J .

Proposition 2.5.
S′ = J ′∆′ 12 .

So, J ′ and ∆′ are the modular operators associated with ϕδ.

Proof. Let a ∈ N0 ∩N∗
0 and n,m, k, l ∈ N0. Then Λ(eka(δ

1
2 el)) ∈ D(∆

1
2 ), so

by Lemma 2.3 we have

JenJemΛ(eka(δ
1
2 el)) ∈ D(∆′ 12 )
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and

J ′∆′ 12 JenJemΛ(eka(δ
1
2 el)) = δ−

1
2σ i

2
(en)Jλ−

i
4 δ

1
2σ− i

2
(em)∆

1
2 Λ(eka(δ

1
2 el))

= δ−
1
2σ i

2
(en)Jσ− i

2
(δ

1
2 em)JΛ((δ

1
2 el)a∗ek) = σ i

2
(en)elΛ(a∗(δ

1
2 em)ek)

= σ i
2
(en)elJσ− i

2
(emek)JΓ(a∗).

The last expression converges to Γ(a∗) = S′Γ(a), while

JenJemΛ(eka(δ
1
2 el)) = Jenσ− i

2
(el)JemekΓ(a)

converges to Γ(a) when n,m, k, l → ∞. This implies that Γ(a) ∈ D(∆′ 12 ) and
J ′∆′ 12 Γ(a) = S′Γ(a). Thus, S′ ⊂ J ′∆′ 12 .

On the other hand, let ξ ∈ D(Jδ−
1
2 Jδ

1
2 ∆

1
2 ). Take a sequence (ξk) in Λ(N ∩

N∗) such that ξk → ξ and ∆
1
2 ξk → ∆

1
2 ξ. Let n,m, k ∈ N0. Then JenJemξk ∈

D(∆′ 12 ) and

∆′ 12 JenJemξk = Jλ−
i
8 δ−

1
2σ i

2
(en)Jλ−

i
8 δ

1
2σ− i

2
(em)∆

1
2 ξk.

If k →∞ this converges to

Jλ−
i
8σ i

2
(en)Jλ−

i
8σ− i

2
(em)Jδ−

1
2 Jδ

1
2 ∆

1
2 ξ = Jσ i

2
(en)Jσ− i

2
(em)∆′ 12 ξ.

If n,m→∞ this converges to ∆′ 12 ξ. Because JenJemξk ∈ D(S′) for all n,m, k ∈ N
and because of the previous proposition, we have finally proved that D(S′) is a
core for ∆′ 12 .

Corollary 2.6. We have the formula

σ′s(x) = λ
1
2 is2δisσs(x)δ−isλ−

1
2 is2

for all s ∈ R and all x ∈M.

Corollary 2.7. For all s ∈ R, x, y, z ∈ C and n ∈ N0 we have

σs(λxδyσz(en)) = σ′s(λ
xδyσz(en)).

Note that these formulas become easier when λ is affiliated with the centre of

M, in particular when λ is a positive real number. In that case ∆′ is the closure of
Jδ−1Jδ∆ and J ′ equals λ

i
4 J , because Jx = x∗J for all x belonging to the centre

of M. Moreover, we have σ′s(x) = δisσs(x)δ−is in that case.
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3. A FORMULA FOR ϕδ

Before proving an explicit formula for ϕδ we need two lemmas. The second one
will also be used in the next section.

Lemma 3.1. There exists a net (xl)l∈L in N0 ∩N∗
0 such that xl is analytic

with respect to σ′ for all l and σ′z(xl) → 1 strong* and bounded for all z ∈ C.

Proof. Because N0∩N∗
0 is a strongly dense ∗-subalgebra of M, we can take a

net (ak)k∈K in N0∩N∗
0 such that a∗k = ak, ‖ak‖ 6 1 for all k and ak → 1 strongly.

Define qk ∈M by

qk =
1√
π

∫
exp(−t2)σ′t(ak) dt.

Clearly qk is analytic with respect to σ′ and

σ′z(qk) =
1√
π

∫
exp(−(t− z)2)σ′t(ak) dt.

Also σ′z(qk) → 1 strong* and bounded.
Define L = N0 × K × N0 with the product order, and x(n,k,m) = enqkem.

Then xl is analytic with respect to σ′ for all l and σ′z(xl) → 1 strong* and bounded
for all z ∈ C. Let n,m ∈ N0 and k ∈ K. The operator enqkemδ

1
2 is bounded, with

closure
enqk(δ

1
2 em) = en

1√
π

∫
exp(−t2)σ′t(ak)(δ

1
2 em) dt.

For all t ∈ R the integrand of this expression equals

exp(−t2)δitλ 1
2 it2σt(akδ

1
2 (λ

1
2 (it2−t)δ−itσ−t(em))).

This belongs to N. When we apply Λ on it, we obtain

exp(−t2)δitλ 1
2 it2∆itJλ−

1
2 it2δitσ− i

2−t
(em)JΛ(akδ

1
2 ).

As a function of t this is weakly integrable. Because the mapping Λ is closed for
the weak operator topology on M and the weak topology on H, we can conclude
that enqk(δ

1
2 em) ∈ N. This means that enqkem ∈ N0. Analogously, we obtain

that enqkem ∈ N∗
0.

Lemma 3.2. If a ∈ N′, then a(δzen) belongs to N for all z ∈ C and n ∈ N0.
We have Λ(a(δzen)) = Λ′(a(δz−

1
2 en)).

Proof. Take a net (xl)l∈L as in the previous lemma. Then axl(δzen) →
a(δzen) strongly. Because xl ∈ N0 we have axl(δzen) ∈ N and

Λ(axl(δzen)) = Λ′(axl(δz−
1
2 en)) = J ′(σ′i

2
(xl(δz−

1
2 en)))∗J ′Λ′(a)

→ J ′(σ′i
2
(δz−

1
2 en))∗J ′Λ′(a) = Λ′(a(δz−

1
2 en)).

Because Λ, as above, is closed, we conclude that a(δzen) ∈ N and Λ(a(δzen)) =
Λ′(a(δz−

1
2 en)).



484 Stefaan Vaes

Proposition 3.3. For all x ∈M+ we have

ϕδ(x) = lim
n
ϕ((δ

1
2 en)x(δ

1
2 en)).

Proof. If x ∈ N′ we have x(δ
1
2 en) ∈ N for all n and

ϕ((δ
1
2 en)x∗x(δ

1
2 en)) = ‖Λ(x(δ

1
2 en))‖2 = ‖Λ′(xen)‖2

= ‖J ′σ− i
2
(en)J ′Λ′(x)‖2 → ‖Λ′(x)‖2 = ϕδ(x∗x).

This gives the proof for all x ∈ M′+. Now let x ∈ M+ and ϕδ(x) = +∞.
Suppose ϕ((δ

1
2 en)x(δ

1
2 en)) does not converge to +∞. Then there exists an M > 0

and a subsequence (enk
)k such that ϕ((δ

1
2 enk

)x(δ
1
2 enk

)) 6 M for all k. Thus
x

1
2 (δ

1
2 enk

) ∈ N for all k, so x
1
2 enk

∈ N′ and ϕδ(enk
xenk

) 6 M for all k. Because
enk

xenk
→ x strong* and bounded, this contradicts with ϕδ(x) = +∞ and the

σ-weak lower semicontinuity of ϕδ.

4. THE CONNES COCYCLE [Dϕδ : Dϕ]

We first state the following lemma, which can be proved in exactly the same way
as Lemma 2.1.

Lemma 4.1. For all s ∈ R define vs = λ
1
2 is2δis∆is. Then (vs) is a strongly

continuous one-parameter group of unitaries on H.

Definition 4.2. We define ρ as the strictly positive operator on H such
that vs = ρis for all s ∈ R.

Recall the notation S(z) from the end of the introduction.

Lemma 4.3. If x ∈ N ∩N′∗, then Λ(x) ∈ D(ρ
1
2 ) and

Jλ−
i
8 ρ

1
2 Λ(x) = Λ′(x∗).

Proof. Let x ∈ N ∩ N′∗ and n,m ∈ N. Then emx ∈ N ∩ N∗ because of
Lemma 3.2. We can define a function from S( 1

2 ) to H mapping α to

λ−
1
2 iα2

δασ−iα(en)∆αΛ(emx).

This function is continuous on S( 1
2 ) and analytic on its interior. It attains the

value
λ

1
2 it2δitσt(en)∆itΛ(emx) = ρitΛ(enemx)

in it. So Λ(enemx) ∈ D(ρ
1
2 ) and

Jλ−
i
8 ρ

1
2 Λ(enemx) = Jσ− i

2
(δ

1
2 en)∆

1
2 Λ(emx) = Jσ− i

2
(δ

1
2 en)JΛ(x∗em)

= Λ(x∗(δ
1
2 en)em) = Λ′(x∗enem) = J ′σ′− i

2
(enem)J ′Λ′(x∗).

Because ρ
1
2 is closed, we can conclude that Λ(x) ∈ D(ρ

1
2 ) and Jλ−

i
8 ρ

1
2 Λ(x) =

Λ′(x∗).
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Proposition 4.4. The Connes cocycle [Dϕδ : Dϕ]t equals λ
1
2 it2δit for all

t ∈ R.

Proof. Let x ∈ N∗ ∩ N′ and y ∈ N ∩ N′∗. Denote ut = λ
1
2 it2δit. De-

fine F (α) = 〈ραΛ(y),Λ(x∗)〉 when α ∈ C and 0 6 Re(α) 6 1
2 . Define G(α) =

〈λ i
8 JΛ′(y∗), ρᾱ−1λ

i
8 JΛ′(x)〉 when α ∈ C and 1

2 6 Re(α) 6 1. Because of the
previous lemma, F and G are both well defined, continuous on their domain and
analytic in the interior. For any t ∈ R we have

F (it) = 〈λ 1
2 it2δit∆itΛ(y),Λ(x∗)〉 = ϕ(xutσt(y))

F
(
it+

1
2

)
= 〈ρitλ

i
8 JΛ′(y∗),Λ(x∗)〉

G
(
it+

1
2

)
= 〈λ i

8 JΛ′(y∗), ρ−itΛ(x∗)〉 = F
(
it+

1
2

)
G(it+ 1) = 〈JΛ′(y∗), λ

1
2 it2δ−it∆−itJΛ′(x)〉 = 〈Λ′(x), Jλ 1

2 it2δitJ∆itΛ′(y∗)〉

= 〈λ 1
2 it2δitΛ′(x),∆′itΛ′(y∗)〉 = ϕδ(σ′t(y)utx).

So we can glue together the functions F and G and define H(α) = F (α) when α
belongs to the domain of F and H(α) = G(α) when α belongs to the domain of
G. Then H is continuous on S(1) and analytic on its interior. We have

H(it) = ϕ(xutσt(y)) and H(it+ 1) = ϕδ(σ′t(y)utx)

for all t ∈ R. Because it is easily verified that

ut+s = utσt(us), u−t = σ−t(u∗t ), σ′t(x) = utσt(x)u∗t
for all s, t ∈ R and x ∈M, we conclude that ut = [Dϕδ : Dϕ]t for all t.

The previous proposition also implies that the operators λ and δ are uniquely
determined by ϕδ. If we put ut = [Dϕδ : Dϕ]t, we have λit = u∗tu

∗
1ut+1 and

δit = utλ
− 1

2 it2 for all t ∈ R, which proves our claim.

5. THREE RADON-NIKODYM THEOREMS

In this paragraph we denote by (σϕt ) the modular automorphism group of an n.s.f.
weight ϕ on a von Neumann algebra. We denote by Nϕ,Mϕ,Λϕ, Jϕ and ∆ϕ the
same objects as defined in the introduction but we add a subscript ϕ for the sake
of clarity.

Proposition 5.1. Let ψ and ϕ be two n.s.f. weights on a von Neumann
algebra M. Let λ and δ be two strongly commuting, strictly positive operators
affiliated with M. Then the following are equivalent:

(i) [Dψ : Dϕ]t = λ
1
2 it2δitfor all t ∈ R;

(ii) σϕt (δis) = λistδis for all s, t ∈ R and ψ = ϕδ.

Proof. The implication (ii) ⇒ (i) follows from Proposition 4.4.
To prove (i) ⇒ (ii), denote ut = [Dψ : Dϕ]t. Let s, t ∈ R. Then

λ
1
2 it2λ

1
2 is2λistδitδis = ut+s = utσ

ϕ
t (us) = λ

1
2 it2δitσϕt (λ

1
2 is2δis).
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This implies that

(1) λ
1
2 is2λistδis = σϕt (λ

1
2 is2δis) for all s, t ∈ R.

It follows that for all r, s, t ∈ R

(2) σϕr (λ
1
2 is2+ist)σϕr (δis) = σϕr+t(λ

1
2 is2δis) = λ

1
2 is2λis(r+t)δis.

But equation (1) implies that σϕr (δis) = σϕr (λ−
1
2 is2)λ

1
2 is2λisrδis, so by equation (2)

we get
σϕr (λist)λ

1
2 is2λisrδis = λ

1
2 is2λis(r+t)δis.

This gives us σϕr (λist) = λist for all r, s, t ∈ R. Then equation (1) implies that
σϕt (δis) = λistδis for all s, t ∈ R. So we can construct the weight ϕδ such that
[Dϕδ : Dϕ]t = λ

1
2 it2δit. But then ϕδ = ψ.

We will now consider the more specific case in which λ is affiliated to the
centre of M. We will prove that we obtain exactly all the weights whose automor-
phism group commutes with that of ϕ.

Proposition 5.2. Let ϕ and ψ be two n.s.f. weights on a von Neumann
algebra M. Then the following are equivalent:

(i) The modular automorphism groups σψ and σϕ commute.
(ii) There exist a strictly positive operator δ affiliated with M and a strictly

positive operator λ affiliated with the centre of M such that σϕs (δit) = λistδit for
all s, t ∈ R and such that ψ = ϕδ.

(iii) There exist a strictly positive operator δ affiliated with M and a strictly
positive operator λ affiliated with the centre of M such that [Dψ : Dϕ]t = λ

1
2 it2δit

for all t ∈ R.

Proof. The equivalence of (ii) and (iii) follows from Proposition 5.1. The
implication (ii) ⇒ (i) follows from Corollary 2.6 by a direct computation. We will
prove the implication (i) ⇒ (iii). Denote ut = [Dψ : Dϕ]t for all t ∈ R and denote
by Z the centre of M. For all x ∈M and s, t ∈ R we have

σψt (σϕs (x)) = utσ
ϕ
t+s(x)u

∗
t and σϕs (σψt (x)) = σϕs (ut)σ

ϕ
t+s(x)σ

ϕ
s (u∗t ).

Thus we can conclude that u∗tσ
ϕ
s (ut) ∈ Z for all s, t ∈ R. But then u∗tu

∗
sus+t ∈ Z

for all s, t ∈ R. Because σϕ acts trivially on Z, we get

u∗tσ
ϕ
s (ut) = σϕ−t(u

∗
tσ

ϕ
s (ut)) = u−tσ

ϕ
s−t(ut) = u−tu

∗
s−tus ∈ Z.

We can conclude that utu∗s+tus ∈ Z for all s, t ∈ R. Then we define for (s, t) ∈ R2,
w(s, t) = u∗tu

∗
sus+t. The function w is strong* continuous from R2 to the unitaries

of Z. Let s, s′, t ∈ R. Because of the previous remarks we can make the following
calculation:

w(s+ s′, t) = u∗tu
∗
s+s′us+s′+t = u∗tσ

ϕ
s′(u

∗
s)u

∗
s′us′+tus(u

∗
sσ

ϕ
s′+t(us))

= u∗tu
∗
sσ

ϕ
s′(σ

ϕ
t (us)u∗s)u

∗
s′us′+tus = u∗tu

∗
sσ

ϕ
s′(u

∗
tus+tu

∗
s)u

∗
s′us′+tus

= u∗tu
∗
s(u

∗
s′us′+tu

∗
t )us+t(u

∗
tut) = u∗tu

∗
sus+tu

∗
tu
∗
s′us′+t = w(s, t)w(s′, t).
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Next let s, t, t′ ∈ R. We have

w(s, t+ t′) = u∗t+t′u
∗
sus+t+t′ = (σϕt′(u

∗
t )ut)u

∗
tu
∗
t′u

∗
sut′σ

ϕ
t′(us+t)

= u∗tu
∗
t′u

∗
sut′σ

ϕ
t′(us+tu

∗
t )ut = u∗tu

∗
t′u

∗
sut′σ

ϕ
t′(us)σ

ϕ
t′(u

∗
sus+tu

∗
t )ut

= u∗tu
∗
t′u

∗
sut′σ

ϕ
t′(us)u

∗
sus+t = u∗t (u

∗
t′u

∗
sus+t′)u

∗
sus+t

= u∗tu
∗
sus+tu

∗
t′u

∗
sus+t′ = w(s, t)w(s, t′).

For each t ∈ R we can now take a strictly positive operator λt affiliated with Z
such that λis

t = w(s, t) for all s, t ∈ R. Let t, t′ ∈ R. Because λt and λt′ are
strongly commuting we can write

(λt̂·λt′)is = λis
t λ

is
t′ = w(s, t)w(s, t′) = λis

t+t′

for all s ∈ R, where λt̂·λt′ denotes the closure of λtλt′ . It follows that λt+t′ =
λt̂·λt′ . Put λ = λ1. It follows from functional calculus that λq = λq for all q ∈ Q.
Then we have

λisq = (λq)is = λis
q = w(s, q)

for all s ∈ R and q ∈ Q. Because of strong* continuity we have λist = w(s, t) and
thus us+t = λistutus for all s, t ∈ R. Now we can easily verify that vt = λ−

1
2 it2ut

defines a strong* continuous one-parameter group of unitaries in M. So we can
take a strictly positive operator δ affiliated with M such that [Dψ : Dϕ]t = ut =
λ

1
2 it2δit for all t ∈ R. This gives us (iii).

Now we will look at the even more specific case λ ∈ R+
0 . So the following

proposition becomes meaningful.

Proposition 5.3. Let ϕ be an n.s.f. weight on a von Neumann algebra
M. Let δ be a strictly positive operator affiliated with M and λ ∈ R+

0 such that
σϕt (δis) = λistδis for all s, t ∈ R. Then we have

ϕδ ◦ σϕt = λ−tϕδ and ϕ ◦ σϕδ
t = λtϕ for all t ∈ R.

Proof. Let a ∈ Nϕδ
and t ∈ R. Then σϕt (a) = δ−itσϕδ

t (a)δit. This belongs to
Nϕδ

because δit is analytic with respect to σϕδ , and we have

Λϕδ
(σϕt (a)) = δ−itJϕδ

λ−
1
2 tδ−itJϕδ

∆it
ϕδ

Λϕδ
(a).

So we get
ϕδ(σ

ϕ
t (a∗a)) = λ−tϕδ(a∗a) for all t ∈ R.

Now, the conclusion follows easily. The second statement is proved analogously.

After stating a lemma, we will prove our third Radon-Nikodym theorem.

Lemma 5.4. Let ϕ be an n.s.f. weight on a von Neumann algebra M and
a ∈ M. If Nϕa ⊂ Nϕ, Nϕa

∗ ⊂ Nϕ and if there exists a λ ∈ R+
0 such that

ϕ(ax) = λϕ(xa) for all x ∈ Mϕ, then σϕt (a) = λita for all t ∈ R.

Proof. The proof of Result 6.29 in [1] can be taken over literally. Also a
slight adaptation of the proof of Theorem 3.6 in [7] yields the result.
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Proposition 5.5. Let ψ and ϕ be two n.s.f. weights on a von Neumann
algebra M. Let λ ∈ R+

0 . The following statements are equivalent:
(i) For all t ∈ R we have ϕ ◦ σψt = λtϕ.
(ii) For all t ∈ R we have ψ ◦ σϕt = λ−tψ.
(iii) There exists a strictly positive operator δ affiliated with M such that

σϕt (δis) = λistδis for all s, t ∈ R and such that ψ = ϕδ.
(iv) There exists a strictly positive operator δ affiliated with M such that

[Dψ : Dϕ]t = λ
1
2 it2δit for all t ∈ R.

Proof. We have already proven the equivalence of (iii) and (iv) and the
implications (iii) ⇒ (ii) and (iii) ⇒ (i). Suppose now that (i) is valid. Put
ut = [Dψ : Dϕ]t and let x ∈M+. Then we have

ϕ(u∗txut) = ϕ(σϕ−t(u
∗
t )σ

ϕ
−t(x)σ

ϕ
−t(ut))

= ϕ(u−tσ
ϕ
−t(x)u

∗
−t) = ϕ(σψ−t(x)) = λ−tϕ(x).

So we have Nϕut ⊂ Nϕ for all t ∈ R, and thus Nϕu
∗
t = σϕt (Nϕu−t) ⊂ Nϕ for all

t ∈ R. Then we get for every x ∈ Mϕ that

ϕ(xut) = ϕ(u∗tutxut) = λ−tϕ(utx).

From the previous lemma we can conclude that σϕs (ut) = λistut for all s, t ∈ R.
Put vt = λ−

1
2 it2ut ∈ M. Then we have that t 7→ vt is a strongly continuous

one-parameter group of unitaries. Define δ such that δit = vt for all t ∈ R. So
δ is affiliated with M and [Dψ : Dϕ]t = λ

1
2 it2δit and this gives us (iv). Finally

suppose (ii) is valid. From the proven implication (i) ⇒ (iv) we get the existence
of a strictly positive operator δ affiliated with M such that [Dϕ : Dψ]t = λ−

1
2 it2δit

for all t ∈ R. Changing δ to δ−1 we get [Dψ : Dϕ]t = λ
1
2 it2δit for all t ∈ R. This

gives us again (iv).

We conclude this paper by giving an example which shows that all situations
can really occur : we can have σϕt (δis) = λistδis with λ and δ strongly commuting
but λ not central, with λ central but not scalar, and with λ scalar. Indeed, define
M1 = B(L2(R)) and define the selfadjoint operators P and Q on the obvious
domains by

(Pξ)(γ) = γξ(γ) and (Qξ)(γ) = −iξ′(γ).
Put H = exp(P ) and K1 = exp(Q) and denote by Tr the canonical trace on
M1. Remark that Tr has a trivial modular automorphism group so that we can
define ϕ1 = TrH as in Definition 1.5. An easy calculation yields that σϕ1

t (K is
1 ) =

H itK is
1 H

−it = e−itsK is
1 , where e denotes the well known real number e. This gives

an example of our third case. Define M2 as the von Neumann algebra of two by
two matrices over M1 and ϕ2 as the balanced weight θ(ϕ1, ϕ1) (see [8]). Define

K2 =
(
K1 0
0 K−1

1

)
. We easily have σϕ2

t (K is
2 ) =

(
e−1 0
0 e

)its

K is
2 , which gives

an example of our first case because M2 is a factor. Define M3 as the diagonal
matrices in M2. We can restrict ϕ2 to M3 and keep K2. We have the same

formula as above, and in this way an example of our second case,
(

e−1 0
0 e

)
being central now.
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