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Abstract. Two operators on a separable Hilbert space are (U+K)-equivalent
(A ∼=U+K B) if A = R−1BR, where R is invertible and R = U +K, U unitary,
K compact. The (U +K)-orbit of A is defined as (U +K)(A) = {B ∈ B(H) :
A ∼=U+K B}. This orbit lies between the unitary and the similarity orbit. In
addition, two (U +K)-equivalent operators are compalent.

In this article we develop a block tridiagonal decomposition technique
that allows us to show that an operator is in the (U + K)-orbit of another
operator in some cases where the similarity of the two operators is apparent.
We construct an essentially normal operator (model) with multiply connected
(non-essential) spectrum and describe the closure of the (U +K)-orbit of this
model.
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INTRODUCTION AND PRELIMINARIES

For H a complex separable infinite-dimensional Hilbert space B(H) denotes the
Banach algebra of bounded linear operators onH equipped with the usual operator
norm. Whenever we speak of closures of subsets of B(H), we will have the norm
topology in mind.

K(H) denotes the closed ideal of all compact operators on H. The Calkin
algebra B(H)/K(H) is denoted by A(H). The canonical quotient map from B(H)
to A(H) is denoted by π and σe(T ) = σ(π(T )) denotes the essential spectrum
of T .
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The Fredholm index of a (semi-)Fredholm operator T is denoted by ind(T ).
The Fredholm domain {z ∈ C : T − zI is Fredholm} of an arbitrary operator T is
denoted by ρF(T ). Recall that ρF(X) = C \ σe(X).

In this article, the notation cl(Q) will be used for the closure of Q when
Q is a subset of a topological space. When Q is a subset of C, Q∗ will denote
{z : z ∈ Q}. The symbol Q, where Q is a set, will be avoided here.

Many equivalence relations exist on B(H). In the present article we are
interested in (U + K)-equivalence and the related notion of (U + K)-orbit which
were first introduced by Herrero in [8].

For a Hilbert space H, we set

U +K = (U +K)(H) = {R ∈ B(H) :R is invertible in B(H) and

R is of the form unitary plus compact}.

Two operators A,B ∈ B(H) are said to be (U + K)-equivalent (A ∼=U+K B) if
A = R−1BR, for some R ∈ (U + K)(H). Note that this defines an equivalence
relation on B(H). We define the (U +K)-orbit of an operator T as

(U +K)(A) = {B ∈ B(H) : A ∼=U+K B}.
Clearly, we have

U(T ) ⊆ (U +K)(T ) ⊆ S(T ),

where U(T ) is the unitary orbit of T and S(T ) is the similarity orbit.
One can also check that whenever two operators are (U+K)-equivalent, they

are compalent.
The (U + K)-orbit of an operator need not be closed. As is the case with

other orbits, one can find out more about the closures of (U+K)-orbits than about
the orbits themselves. We will write A →U+K B when B ∈ cl(U + K)(A). Note
that this defines a transitive relation.

The concept of compalence comes up often in investigation of (U+K)-orbits.
Since compalence is best understood for essentially normal operators, it comes as
no surprise that descriptions of closures of (U +K)-orbits of specific operators are
only available for some classes of essentially normal operators. (See [6], [7], [12],
[10], [1].)

Some basic properties of the relation →U+K are as follows:

Proposition 0.1. Let A be essentially normal. If A→U+K B, we have
(i) σ(A) ⊆ σ(B);
(ii) A ∼ B (and hence B is essentially normal);
(iii) σe(A) = σe(B);
(iv) ind(A− z) = ind(B − z) for z ∈ ρF(A) = ρF(B);
(v) nul(A− z) 6 nul(B − z) for z ∈ ρF(A) = ρF(B);
(vi) nul(A− z)∗ 6 nul(B − z)∗ for z ∈ ρF(A) = ρF(B).

The proof of (i), (ii) and (iii) is elementary (see [4]) and the properties (iv)
and (v) follow from Theorem 1.13 in [9].

The idea of using a model — a specific operator with certain spectral proper-
ties — as a first step towards the investigation of the closures of (U +K)-orbits of
a whole class of essentially normal operators sharing the same spectral properties
is due to Marcoux ([12]). In a previous article ([6]) by Guinand and himself, the
following is shown:
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Theorem 0.2. ([6]) Let S be the forward unilateral shift. An operator T is
in cl(U +K)(S) if and only if it satisfies the following conditions:

(i) T is essentially normal;
(ii) σ(T ) = σ(S) = {z ∈ C : |z| 6 1};
(iii) σe(T ) = σe(S) = T = {z ∈ C : |z| = 1};
(iv) ind(T − z) = ind(S − z) = −1 for |z| < 1.

Descriptions of closures of orbits of Hilbert space operators are usually in
terms of spectral properties, one may therefore suspect that any operator T that
has the same spectral properties as S will have cl(U +K)(T ) = cl(U +K)(S). This
is indeed the case, as was shown in [12].

There, an operator T ∈ B(H) is called shift-like if
(a) T is essentially normal;
(b) σ(T ) = D = {z ∈ C : |z| 6 1};
(c) σe(T ) = T;
(d) ind(T − λ) = −1 for all λ ∈ {z ∈ C : |z| < 1};
(e) nul(T − λ) = 0 for all λ ∈ {z ∈ C : |z| < 1}.
With this definition one can prove a theorem which is in a certain sense

complementary to the above theorem. One can then use the transitivity of the
relation →U+K to obtain a description of the closure of the (U + K)-orbit of the
whole class of shift-like operators.

Theorem 0.3. ([12]) Suppose that T is shift-like. Then S ∈ cl(U +K)(T ).

Corollary 0.4. ([12]) Therefore, since the relation →U+K is transitive, we
have cl(U +K)(T ) = cl(U +K)(S).

Summing up we see that describing the closure of the (U + K)-orbit of one
particular operator S was the first step towards finding this description for the
whole class of essentially normal operators with the same spectral properties.

In [4], the present author constructs model operators and describes the clo-
sures of the (U + K)-orbits of these models for various spectral pictures. The in-
vestigation includes operators with different indices, operators with disconnected
spectra, operators with enlarged essential spectra, and operators with isolated
spectral points.

The above information on (U + K)-orbits is merely the necessary minimum
that is needed to present the main results of this article. For an up-to-date survey
of this area the reader is referred to [13].

Having defined some basic concepts, we can now outline the subject of the
present article. In the remainder of this preliminary section we shall develop some
holomorphic functional calculus techniques that can be applied to the investigation
of closures of (U +K)-orbits.

In the main part of the article we shall construct another model and describe
the closure of its (U +K)-orbit. We shall be interested in the case where the non-
essential spectrum σ(X) \ σe(X) is a multiply connected domain. Note that so
far the only existing description of the (U +K)-orbit of an operator with multiply
connected non-essential spectrum is due to Guinand and Marcoux, who describe
the closures of (U +K)-orbits of weighted shifts (including bilateral shifts), in [7].
That result provides a model whose non-essential spectrum is an annulus. The
model whose closure of (U+K)-orbit will be described here allows for non-essential
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spectra of more general shape, including multiply connected domains with more
than one hole.

A block tridiagonal decomposition technique is developed in Section 2 which
may be of use in the investigation of the closures of (U +K)-orbits of other oper-
ators. (See Section 3 of [4] for another application of this technique.)

Let us now introduce several auxiliary lemmas that deal with the relationship
between functional calculus, (U +K)-orbits and spectral properties. Suppose that
A and B are essentially normal operators and ϕ is a function holomorphic on (a
neighbourhood of) σ(A). We shall show here that A ∈ cl((U+K)(B)) implies that
ϕ(A) ∈ cl((U +K)(ϕ(B))).

Lemma 0.5. Suppose A ∈ cl(U +K)(B) and let ϕ be a holomorphic function
on (a neighbourhood of) σ(A). Then ϕ(A) ∈ cl(U +K)(ϕ(B)).

Proof. SupposeR−1
n BRn→A, Rn∈(U+K). Then p(R−1

n BRn)=R−1
n p(B)Rn

whenever p is a rational function with poles outside σ(A) and hence, by passing to
the limit, we see that ϕ(R−1

n BRn) = R−1
n ϕ(B)Rn. We are using Runge’s theorem

here to approximate ϕ uniformly on σ(A), see [14], Theorem 13.6.
Consequently, R−1

n ϕ(B)Rn = ϕ(R−1
n BRn) → ϕ(A) by the continuity of the

functional calculus. This shows that ϕ(A) ∈ cl(U +K)(ϕ(B)) .

One can also easily show that holomorphic functions preserve compalence of
essentially normal operators and that the existence of eigenvalues is preserved:

Lemma 0.6. Let A ∼ B, A, B essentially normal. Let ϕ be a holomorphic
function on (a neighbourhood of) σ(A)∪σ(B). Then ϕ(A) and ϕ(B) are essentially
normal and ϕ(A) ∼ ϕ(B).

Lemma 0.7. Suppose that z0 is an eigenvalue of A and ϕ is holomorphic on
(a neighbourhood of) σ(A). Then ϕ(z0) is an eigenvalue of ϕ(A).

The auxiliary results that we have proved here will be used at the end of
Section 3. To see an easy application right now, we shall generalize the description
of the closure of the (U + K)-orbit of shift-like operators from [12]. (Recall that
shift-like operators are operators with the same spectral properties as the unilateral
shift.) Note that a stronger result (with a more involved proof) was shown in [11].

Theorem 0.8. Suppose Ω is a simply connected analytic Cauchy domain
and A is an essentially normal operator on a separable Hilbert space H with the
following spectral properties:

(a) σ(A) = cl(Ω);
(b) σe(A) = ∂Ω;
(c) ind(A− z) = −1, z ∈ Ω:
(d) nul(A− z) = 0, z ∈ Ω;
Then the closure of the (U +K)-orbit of the operator A is

cl((U +K)(A)) = {T ∈ B(H) :

(i) T is essentially normal,

(ii) σ(T ) = cl(Ω),

(iii) σe(T ) = ∂Ω,

(iv) ind(T − λ) = −1 for all λ ∈ Ω}.
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Proof. Let ϕ be an invertible holomorphic map from a neighbourhood of
D to C such that ϕ|D is a conformal map of D onto Ω. Let A, T be as in
the Theorem. First we will use [12], Theorem 2.5, to show that ϕ−1(T ) ∈
cl((U + K)(ϕ−1(A))). Applying Lemma 0.6 to operators A, T and to the map
ϕ−1, we see that ϕ−1(A), ϕ−1(T ) are essentially normal and the index properties of
ϕ−1(A), ϕ−1(T ) are as needed. Similarly, Lemma 0.7 shows that nul(ϕ−1(A)−z) =
0 for |z| < 1. Hence by [12], Theorem 2.5, ϕ−1(T ) ∈ cl((U + K)(ϕ−1(A))) and so
by Lemma 0.5, T ∈ cl((U +K)(A)).

Before we proceed, let us recall some more notation. For two operators A,B
we shall write A ∼=ε B if there exists a unitary operator U such that ‖A−U∗BU‖ <
ε. Note that we do not require that A− U∗BU be compact.

For X ⊆ C, ε > 0, we set Xε = {x ∈ C : dist(x,X) < ε}.

1. A MODEL WITH MULTIPLY CONNECTED (NON-ESSENTIAL) SPECTRUM

As in [4], the basic building block of our model will be a generalization of the
Hardy space H2. Recall that a nonempty bounded open subset Ω of the complex
plane C is a Cauchy domain if Ω has finitely many components, the closures of any
two of which are disjoint, and the boundary ∂Ω of Ω is composed of a finite positive
number of closed rectifiable Jordan curves, no two of which intersect. A Cauchy
domain with an analytic boundary will be called an analytic Cauchy domain.

Let us briefly recall the way the Hardy spaces H2(Ω, µ) were constructed in
[4], to which the reader is referred for more details. Although the space H2(Ω, µ)
is a generalization of the space H2, it is still a rather special case because of the
conditions we impose here on Ω. For more on generalized Hardy spaces, see [5].

Let Ω be a simply connected analytic Cauchy domain. Then there exists a
ρ > 1 and an invertible holomorphic function ϕ from {z : |z| < ρ} to C such that
ϕ|D is a conformal map of D onto Ω. Let us fix a ϕ with these properties.

We start by defining the set H2(Ω) of holomorphic functions on Ω :

H2(Ω) = {f ◦ ϕ−1 : f ∈ H2(D)}.

For g holomorphic on Ω, we shall denote

ĝ(z) = lim
r→1−

g(ϕ(r · ϕ−1(z))), z ∈ ∂Ω.

For g ∈ H2(Ω), ĝ(z) exists almost everywhere on ∂Ω with respect to the arc length
measure λ and ĝ ∈ L2(∂Ω, λ).

Next, we let µ be a measure on ∂Ω equivalent to λ (i.e. µ and λ are assumed
to be absolutely continuous with respect to each other). For g, h ∈ H2(Ω), define
an inner product

〈g, h〉 =
∫

∂Ω

g(z) · h(z) dµ.

H2(Ω) with this inner product becomes a Hilbert space; we shall denote itH2(Ω, µ).
This space inherits many of its properties from H2(D). Some of the properties that
we shall need here follow.
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Lemma 1.1. Let Ω be a simply connected analytic Cauchy domain.
(i) g ∈ H2(Ω) if and only if g is holomorphic on Ω, ĝ(z) exists almost

everywhere on ∂Ω and ĝ ∈ L2(∂Ω, λ);
(ii) Let g ∈ H2(Ω). For r ∈ [0, 1), let

gr(z) = g(ϕ(r · ϕ−1(z))), z ∈ Ω.

Then gr ∈ C(cl(Ω))∩H2(Ω) and gr → g as r → 1− in any H2(Ω, µ). Note that gr

can also be viewed as a function which is holomorphic on an open set that includes
cl(Ω).

We define Ĥ2(Ω, µ) = {ĝ : g ∈ H2(Ω, µ)}. There is a one-to-one correspon-
dence g 7→ ĝ between these two sets. As is the custom for H2(D), we shall identify
these two sets whenever it is convenient.

We can now define a multiplication operator M(Ω, µ) on H2(Ω, µ) by

M(Ω, µ)(g)(z) = z · g(z), z ∈ Ω.

Then M(Ω, µ) is an essentially normal operator and the spectral properties of
M(Ω, µ) are as follows:

(i) σ(M(Ω, µ)) = cl(Ω);
(ii) σe(M(Ω, µ)) = ∂Ω;
(iii) ind(M(Ω, µ)− z) = −1, z ∈ Ω;
(iv) min ind(M(Ω, µ)− z) = 0, z ∈ Ω.
(See [9], Sections 3.2 and 4.1.3.)
In [4] we used the operator M(Ω, µ) by itself as a model for the class of

operators sharing its spectral properties. We also used it as a building block for
more involved models. Let us recall the description of cl(U + K)(M(Ω, µ)) and
some of the auxiliary results about M(Ω, µ) which will also be needed here.

Lemma 1.2. For z0 ∈ Ω there is a function ψ ∈ H2(Ω, µ) such that ψ has a
simple zero at z0, ψ(z) 6= 0 for z 6= z0, |ψ(z)| = 1 almost everywhere on ∂Ω.

Lemma 1.3. Let z0 be in Ω. Then M(Ω, µ) is unitarily equivalent to an
operator of the form (

z0 0
Q M(Ω, µ)

)
,

for some Q ∈ B(C,H2(Ω, µ)).

Lemma 1.4. Let C be an operator of the form

C =
(
Fd 0
T M(Ω, µ)

)
,

where Fd is a diagonal matrix. Then the following statements are equivalent:
(i) C ∼=U+K M(Ω, µ);
(ii) C is similar to M(Ω, µ);
(iii) the diagonal entries {z1, z2, . . . , zn} of Fd are distinct, they lie in Ω, and

C has no eigenvalues;
(iv) the diagonal entries {z1, z2, . . . , zn} of Fd are distinct and lie in Ω, and,

for 1 6 i 6 n, the i-th column ti of T is not in

ran(M(Ω, µ)− ziI) = {f ∈ H2(Ω, µ) : f(zi) = 0}.
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Lemma 1.5. Let z0 ∈ Ω. Then there exists an orthonormal basis {e0, e1, . . .}
of H2(Ω, µ) such that the matrix of the operator M(Ω, µ) with respect to this basis
is the Toeplitz matrix 

z0 0
z1 z0 0
z2 z1 z0 0

. . . . . . . . . . . .

 .

Theorem 1.6. Let Ω be a simply connected analytic Cauchy domain. The
closure of the (U +K)-orbit of the operator M(Ω, µ) is

cl((U +K)(M(Ω, µ))) = {T ∈ B(H2(Ω, µ)) :

(i) T is essentially normal,

(ii) σ(T ) = cl(Ω),

(iii) σe(T ) = ∂Ω,

(iv) ind(T − λ) = −1 for all λ ∈ Ω}.

In this article we shall not be interested in Hardy spaces over domains other
than simply connected analytic Cauchy domains. Nevertheless, note that when a

domain Ω =
n⋃

i=1

Ωn consists of n simply connected analytic Cauchy components

and µi are measures on ∂Ωi equivalent to the corresponding arc length measures,

we can regard any element f = (f1, f2, . . . , fn) of
n⊕

i=1

H(Ωi, µi) as a holomorphic

function on Ω by setting f(z) = fi(z), where i is such that z ∈ Ωi. We shall adopt
this point of view when it is convenient, mostly to simplify notation. With this

in mind, note that the operator M =
n⊕

i=1

M(Ωi, µi) can also be defined by the

formula M(f)(z) = z · f(z), z ∈ Ω.
We are now ready to proceed to construct the model with which we shall be

concerned in the rest of this article. Let us consider a connected analytic Cauchy
domain which is not simply connected. Assume that Ω = Ω1 \ cl(Ω2), where Ω1

is a simply connected analytic Cauchy domain, Ω2 is an analytic Cauchy domain

consisting of n simply connected components, Ω2 =
n⋃
1

Ω2,i, cl(Ω2) ⊆ Ω1. We

want to construct an essentially normal operator M with the following spectral
properties:

(i) σ(M) = cl(Ω);
(ii) σe(M) = ∂Ω;
(iii) ind(M − z) = −1, z ∈ Ω;
(iv) min ind(M − z) = 0, z ∈ Ω.
This operator will then serve as a model for the class of operators sharing

the same spectral properties.
One possible construction of the model would consist of constructing a Hardy

space H2(Ω) and using a multiplication operator on this space. This would require
a different, more general definition of the Hardy space than the one used at the
beginning of this section.
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While a model could be constructed in this way, we would run into difficul-
ties if we attempted to describe the closure of its (U + K)-orbit using the same
techniques as in [4]. In particular, the Lemmas 1.2 and 1.5 would no longer hold
in this setting. We will therefore construct our model in a different manner. The
operator M(Ω1, µ), where Ω1 is as above, will be one of its building blocks. When
we investigate the model we construct here, we shall be able to make use of our
investigation of the properties of M(Ω1, µ) in [4].

Let now µ be a measure on ∂(Ω1) and for i = 1, 2, . . . , n, let µi be a measure
on ∂(Ω∗2,i); all of these measures are assumed to be equivalent to the respective arc

length measures. Let A = M(Ω1, µ) and let B =
n⊕

i=1

M(Ω∗2,i, µi). We are already

familiar with the spectral properties of A and B. As a first step in constructing
our model, let us consider the (essentially normal) operator M0 = A ⊕ B∗. The
spectral properties of M0 are as follows:

(i) σ(M0) = cl(Ω1);
(ii) σe(M0) = ∂Ω;
(iii) nul(M0 − z) = 0, z ∈ Ω;
(iv) nul(M∗

0 − z) = 1, z ∈ Ω;
(v) ind(M0 − z) = −1, z ∈ Ω;
(vi) nul(M0 − z) = 1, z ∈ Ω2;
(vii) nul(M∗

0 − z) = 1, z ∈ Ω2;
(viii) ind(M0 − z) = 0, z ∈ Ω2.
We see that M0 has some of the properties we require of M : the properties

(ii), (iii), (iv), (v) and (viii) are as required. We shall now construct M as compact
perturbation of M0. This will allow us to change the spectrum of our operator (to
exclude Ω2) without disturbing the already correct essential spectrum and index
properties.

The following lemma shows how this can be accomplished. In fact, the lemma
is more general than necessary for the construction of the model. The additional
information will be useful when we investigate the closure of the (U +K)-orbit of
the model.

Lemma 1.7. Let Ω,Ω1,Ω2,1,Ω2,2, . . . ,Ω2,n, µ, µ1, µ2, . . . , µn be as above. Let
1Ω1 be the constant function equal to 1 on Ω1. Let A,B be as above. For b ∈
n⊕

i=1

H2(Ω∗2,i, µi), let Cb be an operator from
n⊕

i=1

H2(Ω∗2,i, µi) into H2(Ω1, µ) defined

by Cbg = (1Ω1 ⊗ b∗)(g) = 〈g, b〉 ·1Ω1 , g ∈
n⊕

i=1

H2(Ω2,i, µi). Next, define an operator

Mb on H2(Ω1, µ)⊕ (
n⊕

i=1

H2(Ω∗2,i, µi)) by

Mb =
(
A Cb

0 B∗

)
.

(a) If b(z) 6= 0 for z ∈ Ω2, we have
(i) σ(Mb) = cl(Ω);
(ii) σe(Mb) = ∂Ω;
(iii) nul(Mb − z) = 0, z ∈ Ω;
(iv) nul(M∗

b − z) = 1, z ∈ Ω;
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(v) ind(Mb − z) = −1, z ∈ Ω.
(b) If b(z0) = 0 for some z ∈ Ω2, then z0 is an eigenvalue of Mb.

With this lemma in hand, we can finish the construction of the model by
letting b(z) = 1 for z ∈ Ω2 and letting M = Mb.

Proof. (a) Since the essential spectrum and index properties of Mb are al-
ready known (Mb being a compact perturbation of M0), it suffices to show that
nul(Mb − z) = 0 for z ∈ Ω1 \ cl(Ω2) and nul(Mb − z) = 0 for z ∈ Ω2.

Let z ∈ Ω1 \ cl(Ω2). We want to show that Mb − z does not have any
eigenvalues. Suppose that(

A− z Cb

0 B∗ − z

)(
f
g

)
=
(

0
0

)
for some f ∈ H2(Ω1, µ), g ∈

n⊕
i=1

H2(Ω2,i, µi), i.e.

(A− z)f + Cbg = 0, (B∗ − z)g = 0.

But z /∈ σ(B∗), so g = 0 and hence (A− z)f = 0. Since nul(A− z) = 0, we must
have f = 0. We have shown that nul(Mb − z) = 0.

Suppose next that z ∈ Ω2 and again(
A− z Cb

0 B∗ − z

)(
f
g

)
=
(

0
0

)
for some f ∈ H2(Ω1, µ), g ∈

n⊕
i=1

H2(Ω2,i, µi), i.e.

(A− z)f + Cbg = 0, (B∗ − z)g = 0.

Assume that g 6= 0. Then g ⊥ ran(B − z). Since codim ran(B − z) = 1, we see
that ran(B − z) = {g}⊥. But b(z) 6= 0, which means that b /∈ ran(B − z) and so
〈g, b〉 6= 0. From above, we know that (A − z)f = −Cbg = −〈g, b〉 · 1Ω1 , hence
(A − z)f is a non-zero multiple of 1Ω1 , i.e. a non-zero constant function on Ω1.
This is a contradiction, as [(A− z)f ](z) = 0.

Hence we must have g = 0. This implies (A − z)f = 0 and so, as above,
f = 0. We see that nul(M − z) = 0 in this case too.

(b) Suppose that b(z0) = 0 for some z0 ∈ Ω2. We can then choose g0 ∈
n⊕

i=1

H2(Ω2,i, µi) such that (B∗− z0)g0 = 0, g0 6= 0. We now have g0 ⊥ ran(B− z0)

and b ∈ ran(B − z0), hence g0 ⊥ b. Consequently, (M − z0)
(

0
g0

)
=
(

0
0

)
and

z0 ∈ σ(M).
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2. BLOCK TRIDIAGONAL DECOMPOSITION TECHNIQUE

The following two auxiliary results will allow us to show that an operator is in the
closure of the (U + K)-orbit of another operator in some situations where at first
only the similarity of the two operators is apparent. Since even the statements are
rather technical, the reader may prefer to first have a quick glance at Lemma 2.3
and its proof.

Lemma 2.1. (a) Suppose that L,N,R0, R1, . . . , Rn are operators on a Hilbert
space H with the following properties:

(i) LRk −RkN = 0, k = 0, 1, . . . , n.

(ii) H can be decomposed as H =
∞⊕

i=0

Hi, where each subspace Hi is

finite-dimensional and the operators L,N,R0, R1, . . . , Rn have a block tri-diagonal
form with respect to this decomposition, i.e. R(k)

ij = Lij = Nij = 0, if |i− j| > 1,

i > 0, j > 0, where R(k)
ij is the (i, j)-entry of the operator matrix of Rk with respect

to the above decomposition and Lij, Nij are the (i, j)-entries of L,N , respectively.
(iii) ‖Rk −Rk+1‖ < ε for k = 0, 1, . . . , n− 1.

Construct an operator R whose matrix is {Rij}∞i,j=0, where

Ri,j =

{
R

(n−i−j)
i,j , n− i− j > 0,

R
(0)
i,j , n− i− j < 0.

Then ‖LR−RN‖ 6 15ε(‖N‖+ ‖L‖)
(b) Suppose that R0, R1, . . . , Rn, S0, S1, . . . , Sn are operators on a Hilbert

space H with the following properties:
(i) R0 = S0 = I, Sk = R−1

k , k = 1, 2, . . . , n.

(ii) H can be decomposed as H =
∞⊕

i=0

Hi, where each subspace Hi is

finite-dimensional and the operators Sk and Rk, k = 1, 2, . . . , n have a block tri-
diagonal form with respect to this decomposition.

(iii) ‖Rk −Rk+1‖ < ε and ‖Sk − Sk+1‖ < ε for k = 0, 1, . . . , n− 1.
Suppose that R is constructed as above and construct an operator S whose

matrix is {Sij}∞i,j=0, where

Si,j =

{
S

(n−i−j)
i,j , n− i− j > 0,

S
(0)
i,j , n− i− j < 0.

Let m = max(‖R0‖, ‖R1‖, . . . , ‖Rn‖, ‖S0‖, ‖S1‖, . . . , ‖Sn‖). Then ‖RS − I‖ 6
30εm and ‖SR− I‖ 6 30εm.

Note that the operators R and S constructed here also have block tri-diagonal

matrices with respect to the decomposition H =
∞⊕

i=0

Hi. This is what the entries
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of the matrix of R look like when n is even:
R

(n)
0,0 R

(n−1)
0,1

R
(n−1)
1,0 R

(n−2)
1,1 R

(n−3)
1,2

R
(n−3)
2,1 R

(n−4)
2,2 R

(n−5)
2,3

. . . . . . . . .

R
(3)
n
2 −1, n

2 −2
R

(2)
n
2 −1, n

2 −1
R

(1)
n
2 −1, n

2

R
(1)
n
2 , n

2 −1
R

(0)
n
2 , n

2
R

(0)
n
2 , n

2 +1

R
(0)
n
2 +1, n

2
R

(0)
n
2 +1, n

2 +1
R

(0)
n
2 +1, n

2 +2

. . . . . . . . .

For an odd n, the picture is similar. The entries which are left blank equal
zero.

Proof. (a) Denote P = LR−RN . We will investigate the entries Pij of the

matrix of P with respect to the decomposition H =
∞⊕

i=0

Hi. As the matrices of

L,N and R are block tri-diagonal, we see that Pij = 0 for |i− j| > 2.
To simplify notation, we shall set

Rk = R0, R
(k)
ij = R

(0)
ij for k < 0, i, j > 0.

With this convention, for any n > 0, we have Rij = R
(n−i−j)
ij , i, j > 0 and we still

have LRk −RkN = 0 for k 6 n.
For |i− j| 6 2, we have

‖Pij‖ = ‖(LR−RN)ij‖
= ‖(LR−RN)ij − (LRn−j−i −Rn−j−iN)ij‖

=
∥∥∥∥ ∞∑

l=0

LilRlj − LilR
(n−i−j)
lj −RilNlj +R

(n−i−j)
il Nlj

∥∥∥∥
=
∥∥∥∥ min(i+1,j+1)∑

l=max(0,i−1,j−1)

LilR
(n−l−j)
lj −LilR

(n−i−j)
lj −R(n−l−i)

il Nlj +R(n−i−j)
il Nlj

∥∥∥∥.
The restriction of the summation range is possible because of the block tri-diagonal
form of L,N and R. Note that, as |l − i| 6 1, |l − j| 6 1, we have

|(n− i− j)− (n− l − j)| 6 1, |(n− i− j)− (n− l − i)| 6 1.

Hence
‖Pij‖ 6 3(‖L‖ · ε+ ‖N‖ · ε) = 3 · ε(‖N‖+ ‖L‖).

Now

P =
2∑

r=−2

Pr,
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where
(Pr)ij =

{
Pij if j = i+ r,
0 otherwise.

From the above estimate, we see that ‖Pr‖ 6 3 · ε(‖N‖+ ‖L‖) and hence
‖P‖ 6 15ε(‖N‖+ ‖L‖).

(b) The proof is similar to that of (a). Since the whole situation is symmetric,
it suffices to show that ‖RS−I‖ 6 30εm. Denote Q = RS−I. We will investigate

the entries Qij of the matrix of Q with respect to the decomposition H =
∞⊕

i=0

Hi.

We can again see that Qij = 0 for |i− j| > 2.
To simplify notation, we shall set

Rk = R0, R
(k)
ij = R

(0)
ij for k < 0, i, j > 0,

Sk = S0, S
(k)
ij = S

(0)
ij for k < 0, i, j > 0.

With this convention, we have Rij = R
(n−i−j)
ij and Sij = S

(n−i−j)
ij , i, j > 0 and

we have RkSk − I = 0 for k 6 n.
For |i− j| 6 2, we have

‖Qij‖ = ‖(RS − I)ij‖ = ‖(RS − I)ij − (Rn−j−iSn−j−i − I)ij‖

=
∥∥∥∥ ∞∑

l=0

RilSlj −R
(n−i−j)
il S

(n−i−j)
lj

∥∥∥∥
=
∥∥∥∥ min(i+1,j+1)∑

l=max(0,i−1,j−1)

R
(n−l−i)
il S

(n−l−j)
lj −R

(n−i−j)
il S

(n−i−j)
lj

∥∥∥∥
=
∥∥∥∥ min(i+1,j+1)∑

l=max(0,i−1,j−1)

R
(n−l−i)
il (S(n−l−j)

lj − S
(n−i−j)
lj )

+ (R(n−l−i)
il −R

(n−i−j)
il )S(n−i−j)

lj

∥∥∥∥
6 3(mε+ εm) = 6εm.

Using the fact that Qij = 0 for |i− j| > 2, we can estimate
‖Q‖ 6 30εm.

Corollary 2.2. (a) Suppose that L,N,R0, . . . , Rn are operators satisfying
(i), (iii) in Lemma 2.1 (a). Suppose that K is a compact operator and let Q = RnK.
Then there exists an operator R such that

(i) R−R0 has finite rank;
(ii) ‖RK −Q‖ < ε(‖K‖+ 6 max{‖R0‖, ‖R1‖, . . . , ‖Rn‖});
(iii) ‖LR−RN‖ 6 15ε(‖L‖+ ‖N‖).

(b) Suppose that we have in addition operators S0, S1, . . . , Sn satisfying (i),
(iii) in Lemma 2.1 (b). Then we can also construct an operator S such that, in
addition to the properties (i), (ii) and (iii) in part (a) of this lemma, we have

‖RS − I‖ 6 30εmax(‖R0‖, ‖R1‖, . . . , ‖Rn‖, ‖S0‖, ‖S1‖, . . . , ‖Sn‖),
‖SR− I‖ 6 30εmax(‖R0‖, ‖R1‖, . . . , ‖Rn‖, ‖S0‖, ‖S1‖, . . . , ‖Sn‖).
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Proof. (a) Since K is compact, we can fix a finite-dimensional H0 ⊂ H such
that ‖PH0K −K‖ < ε. Next, fix a basis e1, e2, . . . of H. Set

K1 = span{H0, LH0, L
∗H0, NH0, N

∗H0, R0H0, R
∗
0H0, . . . , e1},

H1 = K1 	H0,

and continue in this manner: with K1,K2, . . . ,Ki,H1,H2, . . . ,Hi constructed, we
set

Ki+1 = span{Ki, LKi, L
∗Ki, NKi, N

∗Ki, R0Ki, R
∗
0Ki, . . . , ei+1},

Hi+1 = Ki+1 	Hi.

Then the conditions (i), (ii), (iii) of Lemma 2.1 (a) are satisfied. We can therefore
construct R such that ‖LR−RN‖ 6 15ε(‖N‖+‖L‖), R−R0 is finite dimensional
and

‖RK −Q‖ = ‖(R−Rn)K‖
6 ‖(R−Rn)PH0K‖+ ‖(R−Rn)(PH0K −K)‖
6 ε · ‖K‖+ 6 max{‖R0‖, ‖R1‖, . . . , ‖Rn‖} · ε.

To see why the last inequality holds, consider the (i, j) entry of the operator matrix
of (R−Rn):

‖(R−Rn)ij‖ = ‖R(n−i−j)
ij −R

(n)
ij ‖ 6 2 ·max{‖R0‖, ‖R1‖, . . . , ‖Rn‖},

and since (R−Rn) is block tri-diagonal, we have

‖R−Rn‖ 6 6 ·max{‖R0‖, ‖R1‖, . . . , ‖Rn‖}.
(b) It suffices to alter the construction of the spaces Hk so that the result-

ing decomposition H =
∞⊕

i=0

Hi makes the matrices of S0, S1, . . . , Sn also block

tridiagonal. Then we can finish the proof by applying Lemma 2.1 (b).

We are now ready to use these results to make the first step towards the
investigation of the model M constructed in the previous section.

Lemma 2.3. Assume that Ω = Ω1 \ cl(Ω2), where Ω1 is a simply connected
analytic Cauchy domain, Ω2 is an analytic Cauchy domain consisting of n sim-

ply connected components, Ω2 =
n⋃
1

Ω2,i, cl(Ω2) ⊆ Ω1. Let now µ be a measure

on ∂(Ω1) and for i = 1, 2, . . . , n, let µi be a measure on ∂(Ω∗2,i); all of these
measures are assumed to be equivalent to the respective arc length measures. Let

A = M(Ω1, µ) and let B =
n⊕

i=1

M(Ω∗2,i, µi). Let 1Ω1 be the constant function equal

to 1 on Ω1 and let 1Ω∗2
be the constant function equal to 1 on Ω∗2. Let C be an

operator from
n⊕

i=1

H2(Ω∗2,i, µi) into H2(Ω1, µ) defined by C = 1Ω1 ⊗ 1∗Ω∗2 . Define

an operator M on H2(Ω1, µ)⊕
( n⊕

i=1

H2(Ω∗2,i, µi)
)

by

M =
(
A C
0 B∗

)
.
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Next, let D = 1Ω1 ⊗d∗, where d ∈ C(cl(Ω∗2))∩H2(Ω∗2) with d(z) 6= 0 for z ∈ cl(Ω∗2)
and set

X =
(
A D
0 B∗

)
.

Then we have
X ∈ cl(U +K)(M).

Proof. One can easily see that M and X are similar. Indeed, since d ∈
C(cl(Ω∗2)) with d(z) 6= 0 for z ∈ cl(Ω), the operator H on H2(Ω∗2, µ) defined by

(Hf)(z) = d(z)f(z), z ∈ Ω∗2

is invertible. We also have HB = BH and hence H∗B∗ = B∗H∗. The operator(
I 0
0 (H−1)∗

)(
A C
0 B∗

)(
I 0
0 H∗

)
=
(
A CH∗

0 (H−1)∗B∗H∗

)
=
(
A CH∗

0 B∗

)
is then similar to M . But for all g ∈ H2(Ω∗2, µ)

CH∗g = 〈H∗g, 1Ω∗2
〉1Ω1 = 〈g,H1Ω∗2

〉1Ω1 = 〈g, d〉1Ω1 = Dg,

i.e. CH∗ = D and X is similar to M .
Now we will show that X ∈ cl(U +K)(M). Let m = max(‖d‖sup, ‖d−1‖sup).

Fix ε > 0 so that 30εm < 1
2 . Let γ be a holomorphic logarithm of d on Ω∗2 (see

[14], Theorem 13.11), i.e. eγ = d. Fix a large n so that m · ‖eγ/n − 1‖sup < ε.
Then we have

‖ek·γ/n − e(k−1)·γ/n‖sup < ε, k = −n,−n+ 1, . . . , n.

Let Rk be the multiplication by ek·γ/n on H2(Ω∗2), k = 0, 1, . . . , n and let Sk be
the multiplication by e−k·γ/n.

We have Rn = H, ‖Rk − Rk+1‖ < ε, Sn = H−1, ‖Sk − Sk+1‖ < ε for
k = 0, 1, . . . , n − 1 and RkH = HRk, Sk = R−1

k , k = 0, 1, . . . , n. If we let both
L and N equal B, we see that the conditions (i), (iii) in Lemma 2.1 (a) as well
as the conditions (i), (iii) in Lemma 2.1 (b) are satisfied. Moreover, we have
RnC

∗ = HC∗ = (CH∗)∗ = D∗. We can now apply Corollary 2.2 to see that there
exist operators R,S such that

(i) R−R0 = R− I is finite-dimensional, and
(ii) we have

‖CR∗ −D‖ = ‖RC∗ −D∗‖ < ε(‖C‖+ 6 max{‖R0‖, ‖R1‖, . . . , ‖Rn‖})
6 ε(‖C‖+ 6m),

(iii) ‖RB −BR‖ 6 30ε‖H‖ 6 30εm,
(iv) ‖RS − I‖ 6 30εm < 1

2 and ‖SR− I‖ 6 30εm < 1
2 .

Note that (i) says that R is of the form unitary plus compact. The condition
(iv) implies that SR and RS are both invertible and ‖(SR)−1‖ < 2, ‖(RS)−1‖ < 2.
Therefore R is invertible and ‖R−1‖ 6 2‖S‖ 6 6m, and we have

‖(R∗)−1B∗R∗ −B∗‖ = ‖RBR−1 −B‖ = ‖(RB −BR)R−1‖ 6 180εm2.
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Summing up, we get∥∥∥∥(A D
0 B∗

)
−
(
I 0
0 (R−1)∗

)(
A C
0 B∗

)(
I 0
0 R∗

)∥∥∥∥
=
∥∥∥∥(A−A D − CR∗

0 B∗ − (R∗)−1B∗R∗

)∥∥∥∥ 6 ε(‖C‖+ 6m) + 180εm2.

Since now
(
I 0
0 R∗

)
∈ (U+K)(H2(Ω1, µ)⊕H2(Ω∗2, µ)) and since ε can be chosen

to be arbitrarily small, we see that(
A D
0 B∗

)
∈ cl(U +K)

((
A C
0 B∗

))
.

3. THE CLOSURE OF THE (U +K)-ORBIT OF M

We shall now continue the investigation of the (U + K)-orbit of our model.

First we want to know which operators of the form
(
A D
0 B∗

)
are in cl(U+K)(M).

The following is an easy corollary of Lemma 2.3.

Lemma 3.1. Let M =
(
A C
0 B∗

)
be as constructed above. Let D = 1Ω1⊗d∗,

where d ∈ H2(Ω∗2) and set

X =
(
A D
0 B∗

)
.

Then we have (i) ⇔ (ii) ⇒ (iii), where
(i) d(z) 6= 0 for z ∈ Ω∗2;
(ii) σ(X) ∩ Ω2 = ∅;
(iii) X ∈ cl(U +K)(M).

Proof. The equivalence (i) ⇔ (ii) follows from Lemma 1.7.
Assume that d satisfies (i). Lemma 1.1 allows us to find a d′ ∈ C(cl(Ω∗2))

such that d′(z) 6= 0 for z ∈ cl(Ω∗2) and ‖d − d′‖H2(Ω∗2) can be made arbitrarily
small. (This construction is to be done on each component of Ω∗2 separately.)

By Lemma 2.3, we have(
A 1Ω1 ⊗ d′

∗

0 B∗

)
∈ cl(U +K)(M),

and hence X ∈ cl(U +K)(M).

Lemma 3.2. Let k ∈ N. Denote by Fk the subspace of H2(Ω1) spanned by
1, z, z2, . . . , zk. Let X be an operator of the form

X =
(
A F
0 B∗

)
,
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where F is a finite rank operator with ranF ⊆ Fk. Then X is (U +K)-equivalent
to an operator of the form (

A D
0 B∗

)
,

where D = 1Ω1 ⊗ d∗, for some d ∈ H2(Ω∗2). This (U + K)-equivalence is of the
form

X =
(
I Z
0 I

)(
A D
0 B∗

)(
I −Z
0 I

)
,

where Z is a finite-rank operator.
Moreover, d can be calculated as d = G(F ), where G is the linear map from

{Y ∈ B(H2(Ω∗2),H
2(Ω1)) : ranY ⊆ Fk for some k}

into H∞(Ω∗2) such that
G(p⊗ g∗) = θ(p)g,

where p is a polynomial on Ω1, g ∈ H2(Ω∗2) and θ is a bounded map from H2(Ω1)
into H∞(Ω∗2) defined by

θ(f)(z) = f(z), z ∈ Ω∗2.

Proof. Observe that(
I Z
0 I

)(
A F
0 B∗

)(
I −Z
0 I

)
=
(
A F + ZB∗ −AZ
0 B∗

)
.

We will find a compact Z such that G = F + ZB∗ − AZ satisfies ranG ⊆ Fk−1

(for k > 1). The lemma will then follow by induction. (Note that the expression
ZB∗ −AZ is linear in the variable Z.)

Let g0 be such that F − zn ⊗ g∗0 ∈ Fk−1 and let Z = zn−1 ⊗ g∗0 . Then

(F + ZB∗ −AZ)g = Fg + 〈B∗g, g0〉zn−1 − 〈g, g0〉Azn−1

= (Fg − 〈g, g0〉zn) + 〈g, z · g0〉zn−1 ∈ Fk−1.

The fact that d = G(F ) can be verified by an easy calculation. The bound-
edness of θ follows from the Cauchy theorem.

Lemma 3.3. Suppose f ∈ H2(Ω1), g ∈ H2(Ω∗2). Define g0 ∈ H2(Ω∗2) by
g0 = θ(f)g, where θ is the map introduced in Lemma 3.2. Then for every ε > 0
there exists a finite-rank operator X : H2(Ω∗2) → H2(Ω1) for which

‖f ⊗ g∗ −XB∗ +AX − 1Ω1 ⊗ g∗0‖ < ε.

In particular, we have(
A f ⊗ g∗

0 B∗

)
∈ cl(U +K)

((
A 1Ω1 ⊗ g∗0
0 B∗

))
,(

A 1Ω1 ⊗ g∗0
0 B∗

)
∈ cl(U +K)

((
A f ⊗ g∗

0 B∗

))
.
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Proof. Let {fk}∞k=1 be a sequence of polynomials such that fk → f in
H2(Ω1). Then by Lemma 3.2, there exist a finite-rank Zk : H2(Ω∗2) → H2(Ω1)
and gk ∈ H2(Ω∗2) such that

fn ⊗ g∗ − ZkB
∗ +AZk = 1Ω1 ⊗ g∗k,

for k = 1, 2, . . . .
Recall that gk = θ(fk) · g. We have fk → f in H2(Ω1), hence θ(fk) → θ(f)

in H∞(Ω∗2) and gk = θ(fk) · g → g0 = θ(f) · g in H2(Ω∗2).
With ε > 0 given, choose k such that ‖gk − g0‖ < ε/2, ‖fk − f‖ < ε/2‖g‖

and set X = Zk. Then we have

‖f ⊗ g∗ −XB∗ +AX − 1Ω1 ⊗ g∗0‖
= ‖(fk ⊗ g∗ − ZkB

∗ +AZk − 1Ω1 ⊗ g∗0) + (f − fk)⊗ g∗ + 1Ω1 ⊗ (g − g0)∗‖
= ‖0 + (f − fk)⊗ g∗ + 1Ω1 ⊗ (g − g0)∗‖ < ε.

The second statement follows easily using (U + K)-similarities of the form(
I X
0 I

)
.

Corollary 3.4. Let W ∈ B(H2(Ω∗2),H
2(Ω1)) be finite-rank, say W =

k∑
i=1

fi ⊗ g∗i . Set g0 =
k∑

i=1

θ(fi) · gi. Then for every ε > 0 there exists a finite-

dimensional operator X : H2(Ω∗2) → H2(Ω1) for which

‖W −XB∗ +AX − 1Ω1 ⊗ g∗0‖ < ε.

Proof. This follows from the linearity of the expression XB∗−AX in X.

Lemma 3.5. Let W ∈ B(H2(Ω∗2),H
2(Ω1)) be compact. Then there exists a

g ∈ H2(Ω∗2) such that(
A W
0 B∗

)
∈ cl(U +K)

((
A 1Ω1 ⊗ g∗

0 B∗

))
(
A 1Ω1 ⊗ g∗

0 B∗

)
∈ cl(U +K)

((
A W
0 B∗

))
.

Proof. Choose ε > 0. Choose z0 ∈ Ω1 arbitrarily. Let ψ ∈ H2(Ω1) be the
function constructed in Lemma 1.2. Let {ek}∞k=1, en = ψn · e0 be the basis of
H2(Ω1) constructed in Lemma 1.5. Denote r = max{|ψ(z)| : z ∈ cl(Ω2)} and note
that, by the maximum modulus principle, we have r < 1.

Write W as

W =
∞∑

i=0

ei ⊗ h∗i

and let

Wk =
k∑

i=0

ei ⊗ h∗i , k = 0, 1, . . . .
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Then by Corollary 3.4, if we define gk ∈ H2(Ω∗2) by gk =
k∑

i=0

θ(ei) ·hi, one can find

a finite dimensional Xk : H2(Ω∗2) → H2(Ω1) such that

‖Wk −XkB
∗ +AXk − 1Ω1 ⊗ g∗k‖ < ε.

Observe that

‖θ(ei)‖H∞(Ω∗2) 6 M‖ψi|Ω2‖∞ = Mri, M = max
cl(Ω∗2)

{e0}

and hence ∥∥∥∥ ∞∑
i=k

θ(ei) · hi

∥∥∥∥ 6
∞∑

i=k

Mri‖W‖ = M‖W‖ rk

1− r
.

Therefore the sequence gk has a limit in H2(Ω∗2). We shall call it g.
We can now choose k0 such that ‖W −Wk0‖ < ε and M rk0+1

1−r < 1. Then we
have ‖hi‖ < ‖W −Wk0‖ < ε, i > k0 and hence

‖g − gk0‖ 6
∞∑

i=k0+1

Mriε = εM
rk0+1

1− r
< ε.

We have

‖W −Xk0B
∗ +AXn0 − 1Ω1 ⊗ g∗‖

6 ‖Wk0 −Xk0B
∗ +AXn0 − 1Ω1 ⊗ g∗k0

‖+ ‖W −Wk0‖+ ‖g − gk0‖
6 ε+ ε+ ε = 3ε.

Both statements of the lemma now follow easily using (U + K)-similarities of the

form
(
I Xk0

0 I

)
.

Lemmas 3.5 and 3.1 together give

Corollary 3.6. Let X =
(
A W
0 B∗

)
, W compact. Suppose that σ(X) =

σ(M) = cl(Ω1) \ Ω2. Then X ∈ cl(U +K)(M).

This is as far as we are able to get with the investigation of the original
model. We shall now restrict the class of models we are investigating. This will
also restrict the class of spectral pictures we study. We will subsequently use
functional calculus to get back to the original class of spectral pictures.

Theorem 3.7. Assume that in the model M =
(
A C
0 B∗

)
constructed above

we have Ω1 = D and µ is the arc length measure. In other words, A is unitarily
equivalent to the forward unilateral shift. Let X be an essentially normal operator
such that

(i) σ(X) = σ(M) = cl(Ω1) \ Ω2;
(ii) σe(X) = σe(M) = ∂Ω1 ∪ ∂Ω2;
(iii) ind(X − λ) = ind(M − λ) = −1 for λ ∈ Ω1 \ cl(Ω2).

Then X ∈ cl(U +K)(M).
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Proof. By the Brown–Douglas–Fillmore theorem ([3]), ifX satisfies the above
conditions, then there exists a unitary U and a compact L so that, setting K =
ULU∗, we have X = U∗MU + L = U∗(M +K)U . Thus it suffices to show that
M +K ∈ cl((U + K)M). Let us therefore assume without loss of generality that
X = M +K, where K is compact.

Fix ε > 0. Let {1, z, z2, . . .} be the canonical basis of H2(Ω1, µ) = H2(D).
For each i = 1, . . . n, use Lemma 1.5 to construct a basis of H2(Ω2,i, µi) with
respect to which the matrix of M(Ω2,i, µi) is a Toeplitz matrix. Denote the k-th
element of this basis as e′ik.

We shall now construct a basis {ek}∞k=1 of H2(Ω1, µ)⊕
( n⊕

i=1

H2(Ω∗2,i, µi)
)

as

follows:

ek = zl, for k = l(n+ 1) + 1, l = 0, 1, . . . ,

ek = e′j,l, for k = l(n+ 1) + j, l = 0, 1, . . . , j = 1, 2 . . . , n.

Let Pk be the orthogonal projection onto span{ei}k
i=0, k = 0, 1, . . .. Since K

is compact, the sequence {M+PkKPk}∞k=1 converges to M+K in the norm. Find
k0 such that ‖Pk0KPk0 −K‖ < ε and σ(M + Pk0KPk0 −K) ⊆ (σ(X))ε. Denote
K0 = Pk0KPk0 −K and notice that X1 = M +K0 is of the form(

A C1 0
F1 C3

B∗

)
.

Notice that the entries of the matrix of C1 are zeros except for the bottom row,
i.e. ranC1 ⊆ span{1Ω1}, if we consider C1 as an operator from C2k0 into H2(D).
We want to show that X1 is close to (U +K)(M).

Let F2 be a perturbation of F1 such that
• ‖F2 − F1‖ < ε;
• σ(F2) ⊆ Ω1;
• the eigenvalues of F2 are simple.
Let

X2 =

(
A C1 0

F2 C3

B∗

)
.

Then we have ‖X2 −X‖ < 2ε and σ(X2) ⊆ cl(Ω1).
The fact that F2 has simple eigenvalues allows us now to use Lemma 1.4 to

see that an arbitrarily small perturbation of C1 to C ′1 will cause
(
A C ′1

F2

)
to

have no eigenvalues and to be (U +K)-equivalent to A. Moreover, one can do this
so that ran(C1 − C ′1) ⊆ span{1Ω1}. Choose such a perturbation small enough so
that in addition to this we have ‖C1 − C ′1‖ and the spectrum of

X3 =

(
A C ′1 0

F2 C3

B∗

)
lies in (σ(X))ε ∩ cl(Ω1).

We now have the following situation:
(i) ‖X3 −X‖ < 3ε;
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(ii) σ(X3) ⊆ cl(Ω1);

(iii)
(
A C ′1

F2

)
has no eigenvalues and is (U +K)-equivalent to A;

(iv) X3 may have eigenvalues in Ω2. These are not more than ε away from
∂Ω2. There may be infinitely many of these. If this is the case, any cluster point
of the set of eigenvalues will be in ∂Ω2 (because σe(X3) = ∂(Ω1) ∪ ∂(Ω2)).

In the next step, we want to find X4 close to X3 with the same properties
except that there will be only finitely many eigenvalues in Ω2.

Notice that condition (iii) implies thatX3 is (U+K)-equivalent to an operator

of the form Y =
(
A L

B∗

)
, L compact, which of course has the same spectral

properties as X3. We want to show that there is an X4 of the form

X4 =

(
A C ′1 0

F2 C ′3
B∗

)
such that ‖X3 − X4‖ < ε, and X4 has the desired spectral properties. This will
easily follow once we prove:

Claim. Let Y =
(
A F

B∗

)
, F finite-dimensional. Suppose that Y has the

spectral properties described above for X3. Let η > 0. Then there exists a F ′ such

that Y ′ =
(
A F ′

B∗

)
has only finitely many eigenvalues in Ω2 and ‖F −F ′‖ < η,

ranF ′ ⊆ ranF .

Proof of the Claim. Suppose F =
n0∑
i=1

fi ⊗ g∗i , gi ∈ H2(Ω∗2), fi ∈ H2(Ω1).

Using Runge’s theorem and the definition of H2(Ω∗2), we can find polynomials g′i
such that for F ′ =

n0∑
i=1

fi ⊗ g′i
∗ we have ‖F − F ′‖ < ε and moreover ‖F − F ′‖ is

small enough so that Ω2 \ σ(Y ′) 6= ∅. From Lemmas 1.7 and 3.3, we know that

the eigenvalues of Y ′ inside Ω2 correspond to the zeros of k =
n0∑
i=1

θ(fi) · g′i. This is

(can be extended to) a holomorphic function on Ω1. If k had infinitely many zeros
in Ω2, it would be a constant equal to zero, causing Ω2 \σ(Y ′) = ∅, contradiction.
This proves the claim, we can now resume the proof of Proposition 3.7.

We now have

X4 =

(
A C ′1 0

F2 C ′3
B∗

)
with respect to H = H2(Ω1)⊕Ck0 ⊕H2(Ω∗2). We know that ranC ′1 ⊆ span{1Ω1},

‖X4 − X‖ < 4ε, σ(X4) ⊆ cl(Ω2),
(
A C ′1

F2

)
has no eigenvalues and is (U + K)-

equivalent to A. X4 may have eigenvalues in Ω2. These are not further than ε away
from ∂Ω2 and there are only finitely many of them. Suppose these eigenvalues are
λ1, λ2, . . . , λm.
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Denote H0 = span{H(λ1;X4),H(λ2;X4), . . . ,H(λm;X4)}. If we knew that
H0 ⊥ H2(Ω1) and H0 ⊥ H2(Ω∗2), i.e. H0 is a subspace of the underlying space
of F2, we could move the eigenvalues λi away from Ω2 by perturbing F2. As we
shall see next, it is true that H0 ⊥ H2(Ω1) and H0 ⊥ H2(Ω∗2) can be achieved by
altering the decomposition of H.

For each i = 1, 2, . . . ,m, let ni be such that H(λi;X4) ⊆ ker(X4 − λi)ni .
Note that for any λ and k, Xk

4 is of the formAk C ′′1 C ′′2
F k

2 C ′′3
B∗k

 .

One can verify by induction that
ran (C ′′1 C ′′2 ) ⊆ span{1, (x− λ), . . . , (x− λ)k−1}.

If now

(
f
h
g

)
is in ker(X4 − λi)k, we have

(X4 − λi)k

(
f
h
g

)
=

Ak − λi C ′′1 C ′′2
F k

2 − λi C ′′3
B∗k − λi

( fh
g

)

=

 (Ak − λi)f + C ′′1 h+ C ′′2 g
(F k

2 − λi)h+ C ′′3 g
(B∗k − λi)g

 =

(
0
0
0

)
.

Now (Ak−λi)f is linearly independent of ran (C ′′1 C ′′2 ), forcing (Ak−λi)f =
0 and hence f = 0. This implies that H0 ⊥ H2(Ω1).

Notice also that the H2(Ω∗2) component of any vector in ker(X4 − λi)k (de-
noted here by g) is in ker(B∗ − λi)k.

We use Lemma 1.3 n1 times to find vectors {f1, f2, . . . , fn1} such that the
matrix of B∗ is 

λ1 · · ·
λ1 · · ·

. . .
λ1 · · ·

B∗′


with respect to the decomposition span{f1, f2, . . . , fn1} ⊕ span{f1, f2, . . . , fn1}⊥,
where B∗′ is a unitarily equivalent copy of B∗. Note that ker(B∗ − λ1)n1 =
span{f1, f2, . . . , fn1}. We can now continue in this manner until we can write B∗
as 

λ1 · · ·
λ1 · · ·

. . .
λ1 · · ·

λ2 · · ·
. . .

λm · · ·
B∗′′
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with respect to the decomposition span{f1, f2, . . . , fn0} ⊕ span{f1, f2, . . . , fn0}⊥,

where n0 =
m∑

i=1

ni and B∗′′ is another unitarily equivalent copy of B∗. Note that

ker(B∗ − λi)ni ⊆ span{f1, f2, . . . , fn0} for i = 1, 2, . . . ,m and consequently we
have

H0 ⊥ (H2(Ω∗2)	 span{f1, f2, . . . , fn0}).
We can now rewrite X4 as

X4 =

A C ′1
F2 C ′31 C ′32

B1 B2

B∗′′

 =

(
A C ′1 0

F3 B′2
B∗′′

)

with respect to the decomposition

H = H2(Ω1)⊕ Ck0 ⊕ span{f1, f2, . . . , fn0} ⊕H2(Ω∗2)
′

∼= H = H2(Ω1)⊕ Ck0+n0 ⊕H2(Ω∗2)
′

where H2(Ω∗2)
′ is an isometrically isomorphic copy of H2(Ω∗2). We have now

H1 ⊆ Ck0 ⊕ span{f1, f2, . . . , fn0} ∼= Ck0+n0 . We shall denote B∗′′ as B∗ from now
on.

For i = 1, 2, . . . ,m, let Ii be the identity operator on

spani
j=1H(λj ;X4)	 spani−1

j=1H(λj ;X4)

and let λ′i ∈ Ω1 \ cl(Ω2) be chosen so that |λi − λ′i| < ε. Set

X5 = X4 +
m∑

i=1

(λ′i − λi)Ii.

Then X5 is of the form

X5 =

(
A C ′1 0

F4 B′2
B∗

)
,

we have σ(X5) = cl(Ω1) \Ω2, ‖X5 −X‖ < 5ε and λ′i, i = 1, 2, . . . ,m, are the only
points with nul(X5 − λi) > 0.

Next, we decompose the finite dimensional operator F4 as

F4 =
(
F5 D1

F6

)
,

where σ(F5) ⊆ cl(Ω2) and σ(F6) ∩ cl(Ω2) = ∅. We have

X5 =

A D2 D3

F5 D1 D4

F6 D5

B∗

 .

Since σ(F6)∩ σ(B∗) = ∅, Corollary 2.5 of [6] allows us to find a Z such that(
I −Z

I

)(
F6 D5

B∗

)(
I Z

I

)
=
(
F6 0

B∗

)
.
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The operator X5 is now (U +K)-equivalent to

X6 =

 I
I

I −Z
I

X5

 I
I

I Z
I

 =

A D2 D′
3 D′

6
F5 D′

1 D′
4

F6 0
B∗

 .

Let M1 =
∥∥∥∥( I −Z

I

)∥∥∥∥ · ∥∥∥∥( I Z
I

)∥∥∥∥. Recall that the only eigenvectors of X5

were of the form

 0
h′i
g′i
0

 and hence the eigenvectors of X6 will in fact be the same:

 I
I

I −Z
I


 0
h′i
g′i
0

 =

 0
h′i
g′i
0

 .

Next, consider Lemma 1.4 and perturb D′
3, D

′
1, F6 so that(

A D2 E1

F5 E2

F7

)
∼=U+K A,

∥∥∥∥∥
(
D′

3
D′

1
F6

)
−

(
E1

E2

F7

)∥∥∥∥∥ < ε

M1
,

and F7 has simple eigenvalues in Ω1 \ cl(Ω2).
Then

X7 =

A D2 E1 D′
6

F5 E2 D′
4

F7 0
B∗


is (U +K)-equivalent to an operator of the form(

A K7

B∗

)
,

where K7 is compact.
Let us check if X7 has any eigenvalues in Ω2. Suppose λ ∈ Ω2 and

(X7 − λ)

 f
g
h
k

 =

A− λ D2 E1 D′
6

F5 − λ E2 D′
4

F7 − λ 0
B∗ − λ


 f
g
h
k

 =

 0
0
0
0

 .

Then we have (F7 − λ)h = 0 and hence h = 0. But then

(X7 − λ)

 f
g
0
k

 = (X6 − λ)

 f
g
0
k

 =

 0
0
0
0

 ,

which is a contradiction — X6 does not have any such eigenvalues.
So X7 has no eigenvalues in Ω2 and by Corollary 3.6, we have X7 ∈ cl(U +

K)(M). Hence
dist(X6, (U +K)(M)) <

ε

M1
,
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which implies
dist(X5, (U +K)(M)) < ε,

and hence
dist(X, (U +K)(M)) < 6ε.

This last statement holds for any ε > 0, so finally X ∈ cl(U +K)(M).

Finally, we can use functional calculus to obtain models for the original more
general class of spectral pictures.

Corollary 3.8. Let Ω = Ω1 \ cl(Ω2), where Ω1 is a simply connected an-
alytic Cauchy domain, Ω2 is an analytic Cauchy domain consisting of n simply

connected components, Ω2 =
n⋃
1

Ω2,i, cl(Ω2) ⊆ Ω1. Let ϕ be an invertible holomor-

phic map from a neighbourhood of D to C such that ϕ|D is a conformal map of D
onto Ω1. (This is the map which was used to construct H2(Ω1).) Then we have
ϕ−1(Ω) = D \ cl(Ω′2), where Ω′2 is an analytic Cauchy domain consisting of n sim-

ply connected components, Ω′2 =
n⋃
1

Ω′2,i, cl(Ω′2) ⊆ D. Let now µ be a measure on

∂(D) and for i = 1, 2, . . . , n, let µi be a measure on ∂(Ω′2,i
∗) equivalent to the arc

length measure; all these measures are assumed to be equivalent to the respective

arc length measures. Let M ′ =
(
M(D, µ) C

0 M(Ω′2,i
∗)

)
be the model constructed

above. Then M = ϕ(M ′) has the following spectral properties:
(i) σ(M) = cl(Ω);
(ii) σe(M) = ∂Ω;
(iii) nul(M − z) = 0, z ∈ Ω;
(iv) nul(M∗ − z) = 1, z ∈ Ω;
(v) ind(M − z) = −1, z ∈ Ω.
Let X be an essentially normal operator such that:
(i) σ(X) = σ(M) = cl(Ω1) \ Ω2;
(ii) σe(X) = σe(M) = ∂Ω1 ∪ ∂Ω2;
(iii) ind(X − λ) = ind(M − λ) = −1 for λ ∈ Ω1 \ cl(Ω2).
Then X ∈ cl(U +K)(M).

Proof. The proof is very similar to that of Theorem 0.8. Lemmas 0.6 and 0.7
allow us to verify that M has the spectral properties described in the statement.
Note that M ′ is the type of operator for which Proposition 3.7 provides conditions
that are sufficient for an operator to lie in cl(U + K)(M ′). Using Lemmas 0.6
and 0.7 again, we see that ϕ−1(X) satisfies the conditions of Proposition 3.7 and
hence ϕ−1(X) ∈ cl(U +K)(M ′). Now X ∈ cl(U +K)(ϕ(M ′)) = cl(U +K)(M) by
Lemma 0.5.

Theorem 3.9. Let M = ϕ(M ′) be as in Corollary 3.8. Then X ∈ cl(U +
K)(M) if and only if:

(i) σ(X) = σ(M) = cl(Ω1) \ Ω2 or σ(X) = cl(Ω1);
(ii) σe(X) = σe(M) = ∂Ω1 ∪ ∂Ω2;
(iii) ind(X − λ) = ind(M − λ) = −1 for λ ∈ Ω1 \ cl(Ω2);
(iv) ind(X − λ) = ind(M − λ) = 0 for λ ∈ Ω2.

Note that if we know that X = M + K, where K is compact, the only
condition which is not satisfied automatically is condition (i).
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Proof. The necessity of these conditions is easily verified.
Suppose that X satisfies the conditions of the theorem. We can use Propo-

sition 4.4 of [2] to find an operator X0 such that ‖X − X0‖ is arbitrarily small,
and X0 satisfies the conditions of Corollary 3.8. Then X0 ∈ cl(U + K)(M) and
consequently X ∈ cl(U +K)(M).

4. FURTHER COMMENTS

In this chapter we shall state two open questions related to the results of this
paper.

The model investigated in Corollary 3.8 only allows for the index to be equal
to −1 in the interior of the spectrum. A model with index equal to 1 can be dealt
with easily using the adjoint. One would however like to know the following.

Question 4.1. Suppose M is the model investigated in Corollary 3.8. Let

i > 1. What is cl(U +K)
( i⊕

k=1

M
)

?

Finally, whenever the closure of the (U+K)-orbit is described for a model with
a certain spectral picture, one may wish to go beyond the model and investigate
the whole class of operators sharing the same spectral picture.

Question 4.2. Suppose M is the model investigated here. Call an operator
X M -like if it has the same spectral picture (including nullity) as M . Is it true
that for any M -like operator, we have M ∈ cl(U +K)(X) ?

If the answer to this question is affirmative, transitivity of the relation →U+K
implies that cl(U + K)(X) = cl(U + K)(M) whenever X is an M -like operator.
(Compare [12].)

See also the final section of [4] for more open questions concerning (U +K)-
orbits of essentially normal operators.
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