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Abstract. This paper deals with geometric properties of sequences of re-
producing kernels related to invariant subspaces of the backward shift op-
erator in the Hardy space H2. Let Λ = (λn)n>1 ⊂ D, Θ be an inner

function in H∞(L(E)), where E is a finite dimensional Hilbert space, and
(en)n>1 a sequence of vectors in E. Then we give a criterion for the vec-

tor valued reproducing kernels (kΘ( · , λn)en)n>1 to be a Riesz basis for

KΘ := H2(E)	ΘH2(E). Using this criterion, we extend to the vector valued
case some basic facts that are well-known for the scalar valued reproducing
kernels. Moreover, we study the stability problem, that is, given a Riesz
basis (kΘ( · , λn))n>1, we characterize its perturbations (kΘ( · , µn))n>1 that
preserve the Riesz basis property. For the case of asymptotically orthonor-
mal sequences, we give an effective upper bound for uniform perturbations
preserving stability and compare our result with Kadeč’s 1/4-theorem.
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1. INTRODUCTION

This paper is devoted to geometric properties of sequences of reproducing kernels
in Hardy spaces. These properties are of interest for several reasons. First of
all, if we consider a C00-contraction, T , in a Hilbert space, then by Sz.-Nagy and
C. Foias’ theory, T is unitarily equivalent to its canonical model MΘ,

MΘf := PΘ(zf), f ∈ KΘ.

Here KΘ is the model space

KΘ := H2(E)	ΘH2(E),

E is an auxiliary Hilbert space, H2(E) stands for the E-valued Hardy space in
the unit disc D := {z ∈ C : |z| < 1 }, Θ is the characteristic function of T and PΘ
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is the orthogonal projection onto KΘ. The spectral theory of MΘ in the language
of the characteristic function Θ (see [23], [17], [20]) depends on the geometry of
reproducing kernels of KΘ, that is, on the (operator-valued) functions

kΘ(z, λ) :=
1−Θ(z)Θ(λ)∗

1− λz
, z, λ ∈ D,

satisfying
〈f(λ), e〉 = 〈f, kΘ( · , λ)e〉H2(E),

for every λ ∈ D, e ∈ E and f ∈ KΘ. Moreover, in some approaches, the kernels
kΘ(z, λ) and their various analogs are the starting point for the model theory and
its applications, especially to various interpolation problems; see [7], [3] and [10].
Our goal in this paper is to extend to the vector valued case some basic facts that
are well-known for the scalar valued reproducing kernels (E = C, see [17], [13]).

Recall that a scalar inner function ϑ can be written as ϑ = SB, where S is
the singular inner factor of ϑ,

S(z) = exp
(
−

∫
T

ζ + z

ζ − z
dµ(ζ)

)
,

the measure dµ being positive and singular with respect to the Lebesgue measure
dm, and B is the corresponding Blaschke product,

B =
∏
n>1

bλn
,

bλn
:= |λn|

λn

λn−z

1−λnz
. It is known (see [18]) that ϑ

z−λn
∈ Kϑ are eigenvectors of Mϑ,

and kλn
:= 1

1−λnz
∈ Kϑ are eigenvectors of the adjoint operator M∗

ϑ :

Mϑ

(
ϑ

z − λn

)
= λn

ϑ

z − λn
, M∗

ϑkλn = λnkλn .

Moreover, it is proved in [13] that the union of eigenvectors of Mϑ and M∗
ϑ forms

an unconditional basis (a Riesz basis) in Kϑ if and only if the reproducing kernels
(kS( · , λn))n>1 form the same kind of basis inKS . The latter property is, therefore,
important for some applications such as the string scattering theory, see [13] and
[19] for details.

Secondly, some motivation comes from control theory and signal processing.
Namely, in the special case where Θ = Θa := exp(a z+1

z−1 ), the reproducing kernels
kΘ( · , λ), with λ ∈ D, arise as images of the exponential functions exp(−iµω)χ(0,a),
with µ := i 1+λ

1−λ , under a natural unitary map going from L2(0, a) to KΘ. The
property of families of exponentials (and hence, of reproducing kernels kΘ for
Θ = Θa) to be a Riesz basis is important for control theory. Indeed, under
some further hypotheses, the theory of controllability of a dynamic system x′(t) =
Ax(t) + Bu(t), t > 0, x(0) = x0, depends on the geometric properties of the
system of exponentials (exp(−λnt)B∗ψn)n>1, where (ψn)n>1 is the sequence of
eigenvectors of A∗, associated to the sequence of eigenvalues (λn)n>1. For more
details on the relationships between the controllability problems and the geometry
of families of exponentials we refer to [1] and [18].
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A third reason to study geometric properties of sequences of reproducing
kernels is just to understand better non-harmonic exponentials (exp(iλnt))n>1

which appear frequently, say, in analysis of convolution equations (see, for instance,
[13] and [29]).

To solve the problem of Riesz bases for the families (kΘ( · , λn))n>1 in scalar
KΘ, S.V. Hruscev, N.K. Nikolski and B.S. Pavlov proposed in [13] a new method
(see also [17]). They gave a criterion in terms of the Carleson condition and
invertibility of a certain Toeplitz operator. In the first part of this paper, using
the above-mentioned operator approach, we give vector valued generalizations of
several results of Hruscev, Nikolski and Pavlov.

Another subject of this paper concerns stability properties of reproducing
kernel bases (kΘ( · , λn))n>1 under small perturbations of the poles λn. A reason to
study the stability properties is that the criteria mentioned above involve, however,
some properties of a given family (kΘ( · , λn)en)n>1 that are rather difficult to
verify. On the other hand, in many cases, the given family is a slight perturbation
of another family (kΘ( · , µn)e′n)n>1 that is known to be a basis. This gives rise
to the stability problem whose formal statement can be found in Subsection 3.1
below. Roughly speaking, given a Riesz basis (kΘ( · , λn))n>1 in KΘ, the problem
is to characterize its perturbations (kΘ( · , µn))n>1 that still enjoy the property of
being a Riesz basis. In fact, this problem was initially raised by R.E.A.C. Paley
and N. Wiener for the orthogonal basis (exp(int), n ∈ Z) in L2(0, 2π). A sufficient
condition for such stability is given in [21]. For this case, the problem of uniform
stability (see Subsection 3.1) was completely solved by A. Ingham and M. Kadeč
(see [15] and [14]). In 1990, A. Avdonin and I. Joo gave a sufficient condition for
stability of general unconditional bases of exponentials. In Section 3, we give a
generalization of this result for the reproducing kernels (kΘ( · , λn)en : n > 1).

The paper is organized as follows. In Section 2, we deal with Riesz bases of
vector valued reproducing kernels (kΘ( · , λn)en)n>1. Our goal is to separate, as
far as it is possible, the influence of the three parameters involved: the frequency
spectrum Λ = (λn)n>1, the spatial directions en, n > 1, and the inner function
Θ generating the model subspace KΘ. In particular, if E is a finite dimensional
Hilbert space, we prove, in Theorem 2.1, the vector analog of Hruscev, Nikolski
and Pavlov’s criterion for a family (kΘ( · , λn)en)n>1 to be a Riesz basis for KΘ.
If (kλn

en)n>1 is not a Riesz basis for KB , then we adapt a method proposed by
V. Vasyunin in the scalar case to gather “sufficiently close” eigenvectors in such a
way that the rearranged family forms an unconditional basis of subspaces. If Λ is
a finite union of Carleson sets and sup

n>1

r(Θ(λn)) < 1, where r(Θ(λn)) denotes the

spectral radius of the operator Θ(λn), then we prove, in Theorem 2.4, that there
exist a sequence (en)n>1 in E and m ∈ N such that (kΘm( · , λn)en)n>1 forms a
Riesz basis in its hull. Under the assumption that lim

n→∞
‖Θ(λn)∗en‖ = 0, we prove

in Theorem 2.8 that (kΘ( · , λn)en)n>1 is a Riesz basis if and only if it is uniformly
minimal (see [6] for a scalar analogue of this result).

In Section 3, we consider the case where 1 < p < +∞, Λ = (λn)n>1 ⊂ D,
Θ is a (scalar) inner function such that sup

n>1

|Θ(λn)| < 1 and Kp
Θ := Hp ∩ ΘzHp.

If (kΘ( · , λn))n>1 is an unconditional basis in Kp
Θ, then we prove the existence
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of ε > 0 such that (kΘ( · , µn))n>1 is an unconditional basis in Kp
Θ, whenever

(µn)n>1 ⊂ D is a sequence satisfying

sup
n>1

|bλn
(µn)| < ε

(see Theorems 3.1 and 3.3). In Theorem 3.4, we prove a vector-valued ana-
logue of this stability result. For the case of asymptotically orthogonal sequences
(kΘ( · , λn))n>1, we give a numerical upper bound for ε (see Theorem 3.10) and
compare this result with Kadeč’s 1/4-theorem.

In conclusion, let us fix some notation. E always stands for a complex
Hilbert space. The symbol P+ (respectively P−) stands for the Riesz orthogonal
projection from L2(E) onto H2(E) (respectively onto L2(E)	H2(E)). The space
of all bounded linear operators acting on E will be denoted by L(E). We write

L∞(L(E)) := {f : T → L(E) such that f is measurable and bounded}

and

H∞(L(E)) := {f : D → L(E) such that f is analytic and bounded}.

A function Θ ∈ H∞(L(E)) is called inner if the operator Θ(ζ) is an isometry for
almost all ζ ∈ T. For a function ϕ ∈ L∞(L(E)), the symbol Hϕ denotes the
Hankel operator defined on H2(E) by

Hϕf := P−(ϕf),

and Tϕ denotes the Toeplitz operator defined on H2(E) by

Tϕf := P+(ϕf).

Let (an) and (bn) be real sequences. We write (an) � (bn) if there exist two
constants c, C > 0 such that

can 6 bn 6 Can, ∀n > 1.

2. UNCONDITIONAL BASES OF REPRODUCING KERNELS

Here we recall some standard facts about sequences of vectors and subspaces in a
Banach space. Let (Kn)n>1 be a sequence of subspaces of a Banach space X . It
is called minimal (respectively uniformly minimal) if, for every n, the operators

(2.1) Pnx = Pn

( ∑
j

xj

)
= xn,

defined on the set of finite sums x =
∑
j

xj , xj ∈ Kj , are continuous (respectively,

uniformly bounded, i.e. sup
n
‖Pn‖ <∞). For the case of 1-dimensional subspaces

Kn = C · en, en ∈ X , one has Pn = 〈 · , φ∗n〉en, where (φ∗n)n>1 is a biorthogonal
family of (en)n>1, that is, a sequence of continuous linear functionals on X such
that

〈en, φ
∗
k〉 = δnk.
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Hence the definition above is equivalent to the standard one. A sequence (Kn)n>1

is called an unconditional basis of its hull if, for every x ∈ Span{Kn : n > 1}, the
series

∑
n>1

Pnx unconditionally converges to x. Moreover, if Span{Kn : n > 1} =

X , we say that (Kn)n>1 is unconditionnal basis of X . It is well known (see, for
example, [17]) that (Kn)n>1 is an unconditional basis of its hull if and only if it
is minimal and

sup
σ∈F

‖Pσ‖ <∞,

where F := {σ ⊂ N : σ finite} and Pσ :=
∑

n∈σ
Pn. Let H be a Hilbert space,

(Kn)n>1 a family of subspaces, minimal and total in H, with a total family of
spectral projections (Pn)n>1; then by Köthe-Toeplitz’ theorem, (Kn)n>1 is an
unconditional basis of H if and only if it is a Riesz basis, that is, there exists a
constant c > 0 such that

1
c

∑
j

‖xj‖2 6

∥∥∥∥∑
j

xj

∥∥∥∥2

6 c
∑

j

‖xj‖2,

for every finite family xj ∈ Kj , j > 1. The latter is also equivalent to the existence
of an isomorphism V of Span(Kj : j > 1) such that the subspaces V Kn, n > 1, are
pairwise orthogonal. Note that the above definitions also work for finite sequences
(Kj)j>1, and in particular, for a pair of subspaces K1,K2 of a Hilbert space H.
Then the angle, α(K1,K2), beetween K1 and K2 can be defined by the conditions

α(K1,K2) ∈
[
0,
π

2

]
, cos(α(K1,K2)) = sup

x∈K1, y∈K2
‖x‖=1, ‖y‖=1

|〈x, y〉|.

It follows from the definition that

cos(α(K1,K2)) = ‖PK1PK2‖, sin(α(K1,K2)) = ‖P1‖−1,

where PKi
are the corresponding orthogonal projections, i = 1, 2, and P1 is defined

in formula (2.1).
Let Λ = (λn)n>1 ⊂ D, Θ be an inner function in H∞(L(E)), and (en)n>1

a sequence of unit vectors in E. In this section, we are looking for necessary and
sufficient conditions on Θ, Λ and (en)n>1 for the family (kΘ( · , λn)en)n>1 to be
a Riesz basis of its hull. Recall that, in the scalar case where dimE = 1, the
following was proved in [13]: if sup

n>1

|Θ(λn)| < 1 then (kΘ( · , λn))n>1 is a Riesz

basis of its hull if and only if Λ ∈ (C) and PΘ|KB is an isomorphism onto its range
(which is also equivalent to the fact that TBΘ is left invertible). Here Λ ∈ (C)
means that Λ = (λn)n>1 satisfies the Carleson condition

δ(Λ) := inf
n>1

|Bλn(λn)| > 0,

where Bλn
:= B

bλn
. The constant δ(Λ) is called the Carleson constant of the

sequence Λ.

2.1. Some geometric properties of vector valued reproducing ker-
nels. Here we list some general properties of vector-valued reproducing kernels.
(So, below, P stands for “property”).
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(P1) If E is a finite dimensional Hilbert space, then (kλn
en)n>1 is minimal

in H2(E) if and only if (λn)n>1 is a Blaschke sequence (see for instance [1]).

(P2) If (kΘ( · , λn)en)n>1 is minimal, then (kλnen)n>1 is minimal. More
generally, if T is a bounded operator in E and (Txn)n>1 is a minimal family then
(xn)n>1 is also minimal and its biorthogonal family is given by (T ∗ψn)n>1 where
(ψn)n>1 is the biorthogonal family of (Txn)n>1.

To get a similar result for uniform minimality, we need the following property.

(P3) Let Λ ⊂ D, (eλ)λ∈Λ be a family of unit vectors in E. Then

‖kΘ( · , λ)eλ‖ � ‖kλeλ‖ ⇐⇒ sup
λ∈Λ

‖Θ(λ)∗eλ‖ < 1.

Indeed, since kΘ( · , λ)eλ = (1− λz)−1(1−ΘΘ(λ)∗)eλ, we have

‖kΘ( · , λ)eλ‖2 =
1− ‖Θ(λ)∗eλ‖2

1− |λ|2
, ‖kλeλ‖2 =

1
1− |λ|2

,

and the result follows.

The following property is a straightforward consequence of (P3) and a lemma
of S. Hruscev and N. Nikolski (see [19], Lemma 120, page 173).

(P4) If (kΘ( · , λn)en)n>1 is uniformly minimal and

sup
n>1

‖Θ(λn)∗en‖ < 1,

then (kλnen)n>1 is also uniformly minimal.

(P5) If (en)n>1 is a relatively compact sequence in E, then (kλnen)n>1 is a
Riesz basis of its hull if and only if it is uniformly minimal (see [24]).

(P6) If dimE = N < ∞, and (kλn
en)n>1 is uniformly minimal, then Λ =

(λn)n>1 is the union of N -Carleson sets. In this case, we say that Λ is N -Carleson
(see, for instance, Corollary 2 on page 164 of [17]).

For N -Carleson sequences Λ, a necessary and sufficient condition for
(kλnen)n>1 to be a Riesz basis of its hull was found by S.A. Ivanov, see [1]. To
state this condition ((P7) below), we set

G(Λ, r) :=
⋃
λ∈Λ

Ω(λ, r),

where Ω(λ, r) = {z : |bλ(z)| < r} is the hyperbolic disc of radius r and center λ.
Denote by Gm(Λ, r), m = 1, 2, . . ., the connected components of the set G(Λ, r)
and write Λm(r) := Λ ∩ Gm(Λ, r). For a sequence (eλ)λ∈Λ in E and for Λ′ ⊂ Λ,
we set E(Λ′) := Span(eµ : µ ∈ Λ′).

(P7) Assume that Λ := (λn)n>1 is N -Carleson. Then (kλn
en)n>1 is a Riesz

basis of its hull if and only if there exists an r > 0 such that

inf
m>1

min
λ∈Λm(r)

α
(
eλ, E(Λm(r) \ {λ})

)
> 0.
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For the proof, see [1].

Now, we state some facts concerning the relationship between the properties
of scalar and vector families. The idea is that the geometric properties of scalar
families (kλn

)n>1 are “stronger” than those of vector valued families (kλn
en)n>1.

To make this fact clearer, some general properties of Hilbert tensor products will
be useful. Let E and H be separable Hilbert spaces. We denote by H ⊗ E the
completion of the algebraic tensor product with respect to the Hilbert-Schmidt
norm ‖ · ‖HS defined for a finite sum A :=

∑
k

xk ⊗ yk by

‖A‖HS :=
( ∑

n>1

‖Aen‖2
)1/2

,

where (en)n>1 is an orthonormal basis of H. Here we identify A with the operator
A : H → E defined by

Ah =
∑

k

〈h, xk〉yk, for h ∈ H,

where 〈· , ·〉 is a bilinear pairing of H with itself. Using these definitions, one can
easily identify L2 ⊗ E with L2(E) by∑

k

xk ⊗ yk −→
∑

k

xk(ζ)yk, ζ ∈ T

where xk ∈ L2(T), yk ∈ E.
Indeed, let A be a finite sum, A =

∑
k

xk ⊗ yk ∈ H ⊗ E and let (bj)j be an

orthonormal basis of E. Then, we have

‖A‖2HS =
∑
n>1

∑
j>1

|〈Aen, bj〉|2 =
∑
n>1

∑
j>1

∣∣∣∣ ∑
k

〈en, xk〉〈yk, bj〉
∣∣∣∣2

=
∑
j>1

∑
n>1

∣∣∣∣〈en,
∑

k

〈yk, bj〉xk

〉∣∣∣∣2 =
∑
j>1

∥∥∥∥∑
k

〈yk, bj〉xk

∥∥∥∥2

L2

=
∑
j>1

∫
T

∣∣∣∣ ∑
k

〈yk, bj〉xk(ζ)
∣∣∣∣2 dm(ζ) =

∫
T

∑
j>1

∣∣∣∣〈 ∑
k

xk(ζ)yk, bj

〉∣∣∣∣2 dm(ζ)

=
∫
T

∥∥∥∥∑
k

xk(ζ)yk

∥∥∥∥2

E

dm(ζ) =
∥∥∥∥∑

k

xk(·)yk

∥∥∥∥2

L2(E)

.

The following property is well known:

(P8) Let V ∈ L(H) and U ∈ L(E). Then V ⊗U : H⊗E → H⊗E defined by

(V ⊗ U)
( ∑

k

xk ⊗ yk

)
:=

∑
k

V xk ⊗ Uyk,

is a bounded operator, and we have ‖V ⊗ U‖ 6 ‖V ‖ ‖U‖.
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(P9) Assume that a family (xn)n>1 in H is either minimal, or uniformly
minimal, or a Riesz basis. Then:

(i) the family (xn ⊗ yn)n>1 enjoys the same property for every yn ∈ E,
yn 6= 0;

(ii) the family of subspaces (xn ⊗ E)n>1 has the same property as (xn)n>1;
(iii) if (yk)k>1 ⊂ E possesses the same property as (xn)n>1, then so does the

double-indexed family (xn ⊗ yk)n,k>1.

Indeed, (i) is a consequence of (ii). To check (ii), we simply write down the
corresponding (spectral) projections Eσ for (xn⊗E)n>1 in terms of the projections
Pσ for the family (xn)n>1. Clearly, Eσ = Pσ ⊗ I for every finite subset σ ⊂ N.
Since ‖Eσ‖ 6 ‖Pσ‖ (see (P8)), claim (ii) follows from the remarks in the beginning
of this section and the corresponding property of (xn)n>1.

To check (iii), we observe first that Ek = Pk⊗Qk where Qk stands for the co-
ordinate projection for the sequence (yk)k>1, i.e. Qk = 〈 · , φk〉yk, (φk)k>1 ⊂ E be-
ing a biorthogonal sequence. Since ‖Ek‖ 6 ‖Pk‖ ‖Qk‖ for every k, the minimality
and uniform minimality properties follow. In the case when (xn)n>1 and (yk)k>1

are Riesz bases, we take isomorphisms V and U making them orthogonal. That
is (V xn)n>1 and (Uyk)k>1 are orthogonal sequences. Clearly (V xn ⊗ Uyk)n,k>1

is an orthogonal family in H ⊗E and V ⊗U is an isomorphism of H ⊗E. Hence,
(xn ⊗ yk)n,k>1 is a Riesz basis.

(P10) Let (Kn)n>1 be a family of subspaces in H having one of the following
properties: to be minimal, uniformly minimal or a Riesz basis. Then the family of
subspaces (Kn ⊗ E)n>1 has the same property in H ⊗ E.

The proof is the same as for (P9) (ii) since Eσ = Pσ⊗I are the corresponding
coordinate projections.

(P11) Let dimE = N <∞. The following assertions are equivalent:
(i) There exists a family of vectors (eλ)λ∈Λ in E, ‖eλ‖ = 1 such that X :=

(kλeλ : λ ∈ Λ) is a Riesz basis of its hull.
(ii) Λ is N -Carleson.

Indeed, (i)⇒(ii) is (P5).

To prove (ii)⇒(i), we set Λ =
N⋃

i=1

Λi, Λi ∈ (C), and write Λi := {λn,i : n > 1}.

Consider an orthonormal basis (e1, e2, . . . , eN ) of E and define for λ ∈ Λ

eλ := ei, if λ ∈ Λi.

As Λi ∈ (C), the family (kλn,i
)n>1 is a Riesz basis and (P9) implies that (kλn,i

⊗
ei = kλn,iei : n > 1, 1 6 i 6 N) is also a Riesz basis.

2.2. Some vector valued generalizations. In this subsection, using the
operator approach, we obtain the following criterion for a family (kΘ( · , λn)en)n>1

to be a Riesz basis of its hull.
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Theorem 2.1. Let Λ ⊂ D, N = dimE <∞ and Θ be an inner function in
H∞(L(E)). Let (eλ)λ∈Λ be a family of vectors in E, ‖eλ‖ = 1, such that

sup
λ∈Λ

‖Θ(λ)∗eλ‖ < 1.

Denote by B the inner function in H∞(L(E)) satisfying

KB = Span{kλeλ : λ ∈ Λ}.

Then the following assertions are equivalent:
(i) (kΘ( · , λ)eλ)λ∈Λ is a Riesz basis of its hull.
(ii) (a) Λ is N -Carleson;

(b) there exists an r>0 such that inf
m>1

min
λ∈Λm(r)

α
(
eλ, E(Λm(r)\{λ})

)
>0;

(c) TB∗Θ is left invertible in H2(E).

We also consider the problem of rearranging a given family (kΘ( · , λn)en)n>1

into a basis of subspaces. Finally, under the additional assumption lim
n→∞

‖Θ(λn)∗en‖
= 0, we prove the equivalence between uniform minimality and the property of
being a Riesz basis.

To prove Theorem 2.1, we need some facts which are easy generalizations of
well-known results in the scalar case (see for example [19]). The proofs are similar
to their scalar-valued prototypes, so we omit them.

Lemma 2.2. Let Θ and B be L(E)-valued inner functions. The following
statements are equivalent:

(i) PΘ|KB is an isomorphism onto its range;
(ii) dist(B∗Θ,H∞(L(E)) < 1;
(iii) ‖PBΘ‖ < 1;
(iv) TB∗Θ is left invertible in H2(E).

Proof of Theorem 2.1. (i)⇒(ii): Since (kΘ( · , λ)eλ : λ ∈ Λ) is a Riesz basis
of its hull, it is uniformly minimal and (P4) implies that X = (kλeλ : λ ∈ Λ) is
also uniformly minimal. From (P6) we deduce that Λ is N -Carleson. It follows
from (P7) that (ii) is satisfied. Now observe that the operator PΘ|KB maps the
Riesz basis X onto the Riesz basis of its hull (kΘ( · , λ)eλ : λ ∈ Λ) and thus it must
be an isomorphism onto its range. This implies by Lemma 2.2 that TB∗Θ is left
invertible in H2(E).

(ii)⇒(i): Using (P7), we deduce from (a) and (b) that X = (kλeλ : λ ∈ Λ)
is a Riesz basis of KB . Lemma 2.2 and (c) imply that PΘ|KB is an isomorphism
onto its range. Hence PΘX = (kΘ( · , λ)eλ : λ ∈ Λ) is a Riesz basis of its hull.

Remark 2.3. In fact, to prove (ii)⇒(i), we do not need the assumptions
dimE <∞ and

sup
λ∈Λ

‖Θ(λ)∗eλ‖ < 1.

In the scalar case, if a family of rootspaces (Kλ)λ∈Λ of a model operator is not
a basis, V. Vasyunin proposed a method to gather “sufficiently close” rootspaces in
such a way that the new family forms a Riesz basis (see, for instance, [17], Lecture
IX, pp. 229–230). Using a similar method and (P10), it is easy to generalize this
result to the vector case. Moreover, if we have a Riesz basis family of subspaces
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(KΘn
)n>1 such that dimKΘn

6 k, ∀n > 1, then it is also possible to split this
family into a union of k sequences, each forming a Riesz basis of its hull.

In applications (particularly in control theory) it is useful, given a family of
exponentials (exp(iµnt)un)n>1, to know if one can find a real number a > 0 such
that the family (exp(iµnt)un)n>1 forms a Riesz basis of its hull in L2(0, a;E). In
the language of reproducing kernels, this is equivalent to saying that there exists
a > 0 such that (kΘa

1
( · , λn))n>1 is a Riesz basis of its hull, where Θa

1 = exp(a z+1
z−1 ).

For a general scalar inner function Θ, Hruscev, Nikolski and Pavlov showed that
under the assumption sup

n>1

|Θ(λn)| < 1, the Carleson condition Λ ∈ (C) is necessary

and sufficient for the existence of n ∈ N such that (kΘn( · , λ) : λ ∈ Λ) is a
Riesz basis of its hull. Now, we give a generalization of this result to the vector
case. There are several possibilities to extend the property sup

n>1

|Θ(λn)| < 1 to

the case dimE > 1. Namely, one can think about properties sup
n>1

‖Θ(λn)‖ < 1,

sup
n>1

‖Θ(λn)∗en‖ < 1 or sup
n>1

r(Θ(λn)) < 1, where r(T ) denotes the spectral radius

of an operator T . All of these assumptions coincide in the scalar case (dimE = 1).
Now, we present a result with the assumption sup

n>1

r(Θ(λn)) < 1.

Theorem 2.4. Let Θ be an L(E)-valued inner function, dimE = N < ∞
and Λ = (λn)n>1 ⊂ D be such that

(2.2) sup
n>1

r(Θ(λn)) < 1.

The following assertions are equivalent:
(i) Λ is N -Carleson;
(ii) There exists a sequence (en)n>1 in E, ‖en‖ = 1, such that for all suf-

ficiently large m ∈ N, the family (kΘm( · , λn)en : n > 1) is a Riesz basis of its
hull.

To prove Theorem 2.4 we need two lemmas.

Lemma 2.5. Let Λ ⊂ D and (eλ)λ∈Λ be a family of unit vectors in E such
that (kλeλ : λ ∈ Λ) is a Riesz basis of its hull. Denote by B the inner function
such that KB := Span{kλeλ : λ ∈ Λ}. Then there exists a constant C such that

‖PBΘ∗‖ 6 C sup
λ∈Λ

‖Θ(λ)∗eλ‖,

for every inner function Θ in H∞(L(E)).

Proof. Since (kλeλ : λ ∈ Λ) is a Riesz basis of its hull, there exist two
constants c1, C1 > 0 such that

(2.3) c1
∑
λ∈Λ

|aλ|2‖kλ‖2 6

∥∥∥∥ ∑
λ∈Λ

aλkλeλ

∥∥∥∥2

6 C1

∑
λ∈Λ

|aλ|2‖kλ‖2,

and

(2.4)
∑
λ∈Λ

(1− |λ|2)‖f(λ)‖2 6 C1‖f‖2,
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for all finite families (aλ) in C and all f ∈ KB . Now, observing that PBΘ∗kλeλ =
PBkλΘ(λ)∗eλ, we can write∥∥∥∥PBΘ∗

∑
λ∈Λ

aλkλeλ

∥∥∥∥ =
∥∥∥∥PB

∑
λ∈Λ

aλkλΘ(λ)∗eλ

∥∥∥∥ 6

∥∥∥∥ ∑
λ∈Λ

aλkλΘ(λ)∗eλ

∥∥∥∥
= sup

f∈H2(E)
‖f‖61

∣∣∣∣∑
λ∈Λ

aλ〈f(λ),Θ(λ)∗eλ〉
∣∣∣∣

6 sup
f∈H2(E)
‖f‖61

∑
λ∈Λ

|aλ| ‖Θ(λ)∗eλ‖ ‖f(λ)‖

6 sup
λ∈Λ

‖Θ(λ)∗eλ‖ sup
f∈H2(E)
‖f‖61

∑
λ∈Λ

|aλ| ‖f(λ)‖.

On the other hand, by the Cauchy-Schwarz inequality, (2.3) and (2.4), we see that∑
λ∈Λ

|aλ| ‖f(λ)‖ 6
1
√
c1

∥∥∥∥ ∑
λ∈Λ

aλkλeλ

∥∥∥∥√
C1‖f‖.

Then we obtain∥∥∥∥PBΘ∗
∑
λ∈Λ

aλkλeλ

∥∥∥∥ 6

√
C1

c1
sup
λ∈Λ

‖Θ(λ)∗eλ‖
∥∥∥∥ ∑

λ∈Λ

aλkλeλ

∥∥∥∥,
which proves the lemma with C =

√
C1
c1

.

Lemma 2.6. Let T ∈ L(X) be a contraction in a finite dimensional Banach
space, N = dimX < ∞. Assume that r := r(T ) < 1. Then, for each ε > 0 with
r + ε < 1, and for each φ ∈ Hol(|z| 6 r + ε), we have

‖φ(T )‖ 6
2N−1

εN
sup

|z|=r+ε

|φ(z)|.

Proof. Using the Riesz-Dunford calculus we can write

‖φ(T )‖ 6
1
2π

∫
|λ|=r+ε

‖Rλ(T )‖ |φ(λ)|dλ.

On the other hand, it is well known that

‖Rλ(T )‖ 6
‖T − λI‖N−1

|det(T − λI)|
,

(see, for instance, [4]). Hence, we have

‖Rλ(T )‖ 6
2N−1

dist(λ, σ(T ))N
,

which implies the result.
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Corollary 2.7. Let Λ = (λn)n>1 ⊂ D, Θ be an L(E)-valued inner func-
tion, dimE = N <∞. Assume that

r := sup
n>1

r(Θ(λn)) < 1.

Then, for every 0 < c < 1, there exists M ∈ N such that, for all m > M , we have
sup
n>1

‖Θ(λn)m‖ < c.

Proof. Let ε > 0 be such that r + ε < 1. Using Lemma 2.6 with T = Θ(λn)
and φ(z) := zm, we get

‖Θ(λn)m‖ 6
2N−1

εN
(r + ε)m.

Choose M ∈ N such that 2N−1

εN (r + ε)M < c. Then, for all m > M , we have

sup
n>1

‖Θ(λn)m‖ < c.

Proof of Theorem 2.4. (ii)⇒(i): By Corollary 2.7, there exists M ∈ N such
that, for all m > N , we have

sup
n>1

‖Θ(λn)m‖ < 1.

The conclusion now follows from Theorem 2.1.
(i)⇒(ii): Using (P11), we construct a family of unit vectors (en)n>1 in E

such that (kλnen : n > 1) is a Riesz basis of its hull. Denote by B the inner
function such that KB := Span{kλn

en : n > 1}. By Lemma 2.5, there exists a
constant C such that

‖PBΘp∗‖ 6 C sup
n>1

‖Θ(λn)p∗‖ = C sup
n>1

‖Θ(λn)p‖.

Using Corollary 2.7, we now choose M ∈ N so as to ensure

sup
n>1

‖Θ(λn)m‖ < 1
C
,

for all m > M . Hence we get
‖PBΘ∗m‖ < 1,

which proves the result by Lemma 2.2 and Theorem 2.1.

In general, uniform minimality is a much weaker property than that of being
a Riesz basis. For the reproducing kernels (kλeλ)λ∈Λ in H2(E), with dimE <∞,
these two properties coincide. It is interesting to know whether the equivalence of
these two properties remains true for the families (kΘ( · , λn)en : n > 1). In the
scalar case, it is shown in [13] that, under the extra assumption lim

n→∞
|Θ(λn)| =

0, these two properties are equivalent. This result has also been proved by
I. Boricheva using different techniques based on the so-called Schur parameters
of the function Θ at the zeros of the Blaschke product B (see [6]). Now, we give
a generalization of this result for the vector valued case under the assumption
(2.5) lim

n→∞
‖Θ(λn)∗en‖ = 0.
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Without this assumption, the equivalence between uniform minimality and Riesz

basis is still open, even in the scalar case.

Theorem 2.8. Let E be a finite dimensional Hilbert space, dimE = N . Let

Λ = (λn)n>1 ⊂ D and Θ be an inner function in H∞(L(E)). Let (en)n>1 be a
family of unit vectors in E. Assume that (2.5) is satisfied. Then the following

assertions are equivalent:

(i) (kΘ( · , λn)en : n > 1) is a Riesz basis of its hull;

(ii) (kΘ( · , λn)en : n > 1) is uniformly minimal.

Proof. (i)⇒(ii) is obvious.

(ii)⇒(i): Without loss of generality, we can assume that Θ is a purely con-

tractive function, that is ‖Θ(z)e‖ < ‖e‖ for every z ∈ D and every e 6= 0 (see [23]).

Thus (2.5) implies that

sup
λ∈Λ

‖Θ(λ)∗eλ‖ < 1,

and (P4) implies that X := (kλn
en : n > 1) is uniformly minimal. Hence it is a

Riesz basis by (P5). For M > 1, denote by BM the inner function generating the

subspace

KBM
:= Span(kλn

en : n > M).

By Lemma 2.5, there exists a constant C, depending on the family X only, such

that

‖PBΘ∗|KBM
‖ 6 C sup

n>M

‖Θ(λn)∗en‖.

As lim
n→∞

‖Θ(λn)∗en‖ = 0, we can find M > 1 such that

sup
n>M

‖Θ(λn)∗en‖ <
1
C
.

So we get

‖PBΘ∗|KBM
‖ < 1,

which implies by Lemma 2.2 and Theorem 2.1 that (kΘ( · , λn)en : n > M) forms

a Riesz basis of its hull. Thanks to minimality of the whole family, it is easy to

see that (kΘ( · , λn)en : n > 1) is a Riesz basis of its hull.
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3. STABILITY OF UNCONDITIONAL BASES OF REPRODUCING KERNELS

3.1. The stability problem. Now, we are going to consider the stability
problem mentioned in the introduction. Namely, let Λ = (λn)n>1 be a sequence in
D, E = (en)n>1 a sequence in E, and Θ be an L(E)-valued inner function. Suppose
that the sequence of reproducing kernels (kΘ( · , λn)en)n>1 is an unconditional
basis of its hull and let (εn)n>1 be a sequence of positive numbers. We say that
(kΘ( · , λn)en)n>1 is (εn)-stable if each sequence (kΘ( · , λ′n)e′n)n>1 satisfying

|bλn
(λ′n)| 6 εn and ‖en − e′n‖ 6 εn, n > 1,

is a Riesz basis of its hull. Given an unconditional basis of its hull (kΘ( · , λn)en)n>1,
the stability problem is to describe (εn)n>1 such that (kΘ( · , λn)en)n>1 is (εn)-
stable. We will consider the case of kλn

as a limit case of kΘ( · , λn), with Θ ≡ 0, and
therefore, use the same language for the families of reproducing kernels (kλn

en)n>1

in H2(E). We will also study the case of scalar reproducing kernels (kΘ( · , λn))n>1

in Banach spaces Kp
Θ, 1 < p < +∞, and use the same definition of stability. First,

we recall some well-known facts.
Setting Hp

− := {f ∈ Lp : f̂(n) = 0, n > 0}, for p ∈ (1,∞), we know, from
the M. Riesz theorem on conjugate functions, that Lp is the direct sum of Hp and
Hp
−, and hence using the duality

〈f, g〉 :=
∫
T

fg dm,

we may identify (in the sesquilinear manner) the dual space (Hp)∗ with Hq, where
q is the conjugate exponent of p, that is, 1

p + 1
q = 1. For a scalar inner function

Θ, Kp
Θ denotes the subspace of Hp defined by

Kp
Θ := Hp ∩ΘHp

0 ,

where Hp
0 := zHp and

kΘ( · , λ) :=
1−Θ(λ)Θ

1− λz
∈ Kp

Θ.

Then
f(λ) = 〈f, kΘ( · , λ)〉, λ ∈ D, f ∈ Kq

Θ.

If Λ = (λn)n>1 is a sequence in D and Θ is an inner function, we denote by JΘ,Λ

the operator defined on Kq
Θ by

JΘ,Λf = (f(λn))n>1, f ∈ Kq
Θ.

The following characterization of unconditional bases is shown in [13], Part II,
Theorem 6.3. Assume that sup

n>1

|Θ(λn)| < 1. The family (kΘ( · , λn))n>1 is an

unconditional basis of Kp
Θ if and only if the operator JΘ,Λ is an isomorphism from

Kq
Θ onto `q((1− |λn|2)1/q).

As mentioned in the introduction, the story of (εn)-stability started with
R.E. Paley and N. Wiener in 1934. Namely, Paley and Wiener looked for the better
constant δ > 0 such that (exp(iµnt))n>1 is a Riesz basis of L2(0, 2π), whenever
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(µn)n>1 is a sequence satisfying |µn − n| 6 δ. The Paley-Wiener result, with
δ = 1

π2 , was later improved by R.J. Duffin and J.J. Eachus ([9]) up to δ = log 2
π .

In 1936, A. Ingham ([14]) gave an example showing that such a δ should be less
than 1

4 . And, finally, in 1964, M. Kadeč ([15]) showed that δ < 1
4 is sufficient (see

[17], Lectures 8 and 11, for an exposition of relations between exponentials and
reproducing kernels and for an alternative proof of M. Kadeč’ result). This result
was the object of several generalizations by V. Katsnelson ([16]), A. Avdonin ([2]),
and Hruscev-Nikolski-Pavlov ([13]). In particular, in [13] (Corollary 2.5, p. 295),
the following generalization of an earlier result by R. Duffin and A. Schaeffer
is proved: given a Riesz basis (exp(iλnt))n>1 of L2(0, a) such that inf

n>1
Imλn >

0, then there exists ε > 0 such that (exp(iµnt))n>1 is a Riesz basis of L2(0, a)
whenever the µn’s satisfy |µn − λn| 6 ε. Later on, this result was generalized to
the case of vector valued exponentials by Avdonin, Ivanov and Joo ([1]). We now
give generalizations of these results to reproducing kernels. The following three
theorems are the main results of this section. In Subsection 3.2, we compare these
results with Kadeč’ 1/4-theorem quoted above. Subsection 3.3 contains the proofs
of Theorems 3.1, 3.3, 3.10, and a remark for the proof of Theorem 3.4.

In this section, if Λ is a Blaschke sequence in D, we denote by BΛ the Blaschke
product associated to Λ.

Theorem 3.1. Let 1 < p < ∞, Λ = (λn)n>1 ⊂ D, and Θ be an inner
function in H∞ such that (kΘ( · , λn))n>1 is an unconditional basis of Kp

Θ. Assume
that

sup
n>1

|Θ(λn)| < 1.

Then there exists ε = ε(Λ,Θ, p) such that (kΘ( · , λn))n>1 is (εn)-stable in Kp
Θ for

every (εn)n>1 satisfying sup
n>1

εn < ε.

Remark 3.2. It follows from our proof that the constant ε = ε(Λ,Θ, p) can
be taken to be any number satisfying 0 < ε < δ

2 and

sup
n>1

|Θ(λn)|+ 2ε < 1,(3.1)

2ε
δ/2− ε

‖J−1
Θ,Λ‖

(
128

1 + ε

1− ε
(1 + 6 log 1/δ)

1 + ε+ δ/2
1− ε− δ/2

)1/q

< 1(3.2)

where δ = δ(Λ) is the Carleson constant of the sequence Λ and q is the conjugate
exponent of p.

In fact, for p = 2, we can improve the upper bound for ε as follows.

Theorem 3.3. Let Λ = (λn)n>1 ⊂ D, Θ be an inner function such that

sup
n>1

|Θ(λn)| < 1.

Assume that (kΘ( · , λn))n>1 is a Riesz basis of its hull. Then (kΘ( · , λn))n>1 is
(εn)-stable for every (εn)n>1 satisfying

sup
n>1

εn <
δ6

8
1− γ

1 + γ
,
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where δ = δ(λ) and γ := dist(ΘBΛ,H
∞).

The vector valued analogue of Theorem 3.1 is as follows.

Theorem 3.4. Let Λ = (λn)n>1 ⊂ D, E be a finite dimensional Hilbert
space, (en)n>1 ⊂ E, ‖en‖ = 1, and Θ ∈ H∞(L(E)) be an inner function such that
(kΘ( · , λn)en)n>1 is a Riesz basis of KΘ = H2(E)	ΘH2(E). Assume that

sup
n>1

‖Θ(λn)∗en‖ < 1.

Then there exists ε = ε(Λ,Θ, (en)) such that (kΘ( · , λn)en)n>1 is (εn)-stable for
every (εn)n>1 satisfying sup

n>1

εn < ε.

Remark 3.5. (i) Since N = dimE < ∞, we know from Theorem 2.1 that

Λ is N -Carleson, Λ =
N⋃

i=1

Λi, Λi ∈ (C). Let δ := inf
i
δ(Λi) > 0. Moreover, since

(kΘ( · , λn)en)n>1 is an unconditional basis of KΘ, the operator JΘ,Λ defined by

JΘ,Λf := (〈f(λn), en〉)n>1, f ∈ KΘ,

is an isomorphism from KΘ onto `2((1−|λn|2)1/2). Then it follows from our proof
that the constant ε = ε(Λ,Θ, (en)) can be taken to be any number ε > 0 satisfying
ε < δ

2 and

sup
n>1

‖Θ(λn)∗en‖+ 2ε(ε+ 1) + ε < 1,(3.3)

2ε
δ/2− ε

‖J−1
Θ,Λ‖

(
128N

1 + ε

1− ε
(1 + 6 log 1/δ)

1 + ε+ δ/2
1− ε− δ/2

)1/2

< 1.(3.4)

(ii) In fact, the assumption dimE < ∞ of Theorem 3.4 can be dropped if
we assume that Λ is N -Carleson.

(iii) Theorem 3.4 allows the following asymptotic form. Under the same
hypotheses, let (µn)n>1 ⊂ D and (an)n>1 ⊂ E be such that

lim
n→+∞

|bλn(µn)| = 0, and lim
n→+∞

‖an − en‖ = 0.

Then there exists N ∈ N such that (kΘ( · , µn)an)n>N is a Riesz basis of its hull.
Indeed, let ε > 0 be a constant defined by Theorem 3.4. Choose N ∈ N such

that
sup
n>N

|bλn
(µn)| < ε, and sup

n>N

‖an − en‖ < ε.

It follows from the proof of Theorem 3.4 that (kΘ( · , µn)an)n>N is a Riesz basis
of its hull.

Let us comment on these results. First of all, they strengthen the Hruscev-
Nikolski-Pavlov result cited above, the Euclidean neighborhoods |λn − µn| 6 ε

being replaced by the hyperbolic ones |λn−µn

λn−µn
| 6 ε. These two neighborhoods are

comparable when |λn − µn| 6 AεImλn, where A is an absolute constant; this
means that for the case sup

n
(Imλn) = ∞ our result is sharper.
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As another commentary, we compare these results with known general sta-
bility criteria for Riesz bases in Hilbert spaces. In fact, L. Dovbysh, N. Nikolski
and V. Sudakov proved that general Riesz bases are (εn)-stable only if

∑
n
ε2n <∞

(see [8]). Theorems 3.1 and 3.4 show that, for bases of reproducing kernels in
KΘ, the situation is much better, and one can guarantee stability with respect to
uniform perturbations sup

n>1

εn < ε.

3.2. Asymptotically orthonormal bases of reproducing kernels. In
this subsection, we introduce the notion of asymptotically orthonormal bases.
Then we give a method to construct asymptotically orthonormal bases consist-
ing of reproducing kernels. In this case, we compare our constant in Theorem 3.3
with the constant in Kadeč’s 1/4-theorem.

Definition 3.6. Let (fn)n>1 be a sequence in a Hilbert space H. We say
that (fn)n>1 is an asymptotically orthonormal basis of its hull (and write (fn)n>1 ∈
(AOS)) if, for every sufficiently large N , there exist cN , CN > 0 such that

(3.5) cN
∑
n>N

|an|2 6

∥∥∥∥ ∑
n>N

anfn

∥∥∥∥2

6 CN

∑
n>N

|an|2,

for every finite sum
∑

n>N

anfn, and

lim
N→∞

cN = 1, lim
N→∞

CN = 1.

The following lemma shows that this definition is equivalent to those of
A.L. Volberg (see [28]). But first, we need the notion of orthogonalizer. If (xn)n>1

is a Riesz basis of its hull then there exists an isomorphism V defined on X :=
Span(xn : n > 1) which transforms (xn)n>1 onto an orthonormal basis. Such an
operator V is called an orthogonalizer of (xn)n>1.

Lemma 3.7. Let (fn)n>1 be a Riesz basis of its hull and let V be an orthog-
onalizer of (fn)n>1. The following assertions are equivalent:

(i) (fn)n>1 ∈ (AOS).
(ii) There exist a unitary operator U and a compact operator K such that

V = U +K.
(iii) There exist a compact operator K such that the Gram matrix G =

(〈fn, fk〉)n,k can be written as
G = I +K,

with I the identity mapping.

Proof. (ii)⇒(iii): Let V be an isomorphism from X := Span{fn : n > 1}
onto `2 and V fn = en, n > 1, with (en)n>1 the standard orthonormal basis of `2.
Denote V1 := V −1, and let a = (an)n>1 ∈ `2. Then∥∥∥∥V1

( ∑
n>1

anen

)∥∥∥∥2

=
∑
n,j

anaj〈fn, fj〉 = 〈Ga, a〉.
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Hence G = V ∗
1 V1. If V = U + K then it is clear that V1 = V −1 = U1 + K1,

with U1 a unitary operator and K1 a compact operator. It follows that G =
(U∗

1 +K∗
1 )(U1 +K1) = I +K2, with K2 a compact operator.

(iii)⇒(ii): Assume that G = V ∗
1 V1 = I + K with K a compact operator.

Since (fn)n>1 is a Riesz basis of its hull, V1 is an isomorphism from `2 onto
X . Consider the polar decomposition of V1 = JR with R a positive operator
on `2 and J a unitary operator (see for instance [22], Theorem 12.35, page 332).
Then V ∗

1 V1 = RJ∗JR = R2 = I + K. So R2 − I = K. Since R is positive,
I + R is invertible and it follows that R − I = (R + I)−1K is compact. Hence,
V1 = J + JK1 = J +K2.

(ii)⇒(i): Let V = U + K, V −1 = U1 + K1, with U,U1 unitary operators
and K,K1 compact operators. Let εN := ‖K|Span(fn : n > N)‖ and ε̃N :=
‖K1|Span(fn : n > N)‖. Since K is compact, we have lim

N→+∞
εN = 0, and for all

f ∈ Span(fn : n > N)

‖V f‖ = ‖Uf +Kf‖ 6 ‖f‖+ εN‖f‖ = (1 + εN )‖f‖.

Similarly, for all g ∈ Span(en : n > N), we have

‖V −1g‖ 6 (1 + ε̃N )‖g‖,

which implies that (fn)n>1 ∈ (AOS).
(i)⇒(iii): Using the same computations, we show that

‖PN (I −G)PN‖ = sup
a∈`2, ‖a‖61

∣∣∣∣ ∑
n>N

|an|2 −
∥∥∥∥ ∑

n>N

anfn

∥∥∥∥2∣∣∣∣.
Hence ‖PN (I−G)PN‖ 6 1−cN , which implies lim

N→+∞
‖PN (I−G)PN‖ = 0. Hence,

to conclude, it suffices to note that

I −G = PN (I −G) + (I − PN )(I −G) = PN (I −G)PN + TN ,

with a finite rank operator TN .

Now we recall Volberg’s necessary and sufficient condition for a family R(Λ)
:=

(
kλn

‖kλn‖

)
n>1

of H2 reproducing kernels to be an asymptotically orthonormal

basis of its hull (see [28]).

Theorem 3.8. (Volberg) Let Λ = (λn)n>1 ⊂ D. The following statements
are equivalent:

(i) R(Λ) is an asymptotically orthonormal basis of its hull.
(ii) lim

n→+∞
|Bλn

(λn)| = 1, where Bλn
:=

∏
k 6=n

bλk
.

Next, we need the following lemma.
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Lemma 3.9. Let Λ = (λn)n>1 ⊂ D and Θ be an inner function in H∞.
(i) Assume that

lim
n→+∞

|Bλn(λn)| = 1, and lim
n→+∞

|Θ(λn)| = 0.

Then RΘ(Λ) :=
(

kΘ( · ,λn)
‖kΘ( · ,λn)‖

)
∈ (AOS).

(ii) Assume that RΘ(Λ) ∈ (AOS). Then R(Λ) ∈ (AOS).
(iii) Let M = (µn)n>1 ⊂ D be such that

|bλn(µn)| 6 ε < 1.

If R(Λ) ∈ (AOS) then R(M) ∈ (AOS).

Proof. (i) Since lim
n→+∞

|Bλn
(λn)| = 1, we get from Volberg’s theorem that

R(Λ) ∈ (AOS). Therefore there exist cN , CN → 1 such that

(3.6) cN
∑
n>N

|an|2 6

∥∥∥∥ ∑
n>N

an
kλn

‖kλn
‖

∥∥∥∥2

6 CN

∑
n>N

|an|2.

Since lim
n→+∞

|Θ(λn)| = 0, we have

lim
n→+∞

‖kΘ( · , λn)‖2

‖kλn
‖2

= lim
n→+∞

(1− |Θ(λn)|2) = 1.

Hence RΘ(Λ) ∈ (AOS) if and only if
(

kΘ( · ,λn)
‖kλn‖

)
n>1

∈ (AOS). Moreover∥∥∥∥ ∑
n>N

an
kΘ( · , λn)
‖kλn‖

∥∥∥∥2

=
∥∥∥∥ ∑

n>N

an
kλn

‖kλn‖

∥∥∥∥2

−
∥∥∥∥ ∑

n>N

anΘ(λn)
kλn

‖kλn‖

∥∥∥∥2

,

and

(3.7)

inf
n>N

|Θ(λn)|2cN
∑
n>N

|an|2 6

∥∥∥∥ ∑
n>N

anΘ(λn)
kλn

‖kλn
‖

∥∥∥∥2

6 sup
n>N

|Θ(λn)|2CN

∑
n>N

|an|2.

Comparing (3.6) and (3.7), we find that RΘ(Λ) ∈ (AOS).
(ii) Let (ψn)n>1 be the biorthogonal family of RΘ(Λ). Then it is clear (for

instance, from Lemma 3.7) that (ψn)n>1 is also an asymptotically orthonormal
basis of its hull. Moreover, we have

lim
n→+∞

dist2
(

kΘ( · , λn)
‖kΘ( · , λn)‖

,Span(kΘ( · , λk) : k 6= n)
)

= lim
n→+∞

1
‖ψn‖2

= 1.

Then we use a formula proved by I.A. Boricheva:

dist2
(

kΘ( · , λn)
‖kΘ( · , λn)‖

,Span(kΘ( · , λk) : k 6= n)
)

= |Bλn
(λn)|2

∏
i>1

1− |Θi+1(λn)|2

1− |Θi+1(λn)|2|bλi
(λn)|2

,
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where Θi are the Schur-Nevanlinna functions associated to (Θ,Λ) (see [6]). Since∏
i>1

1− |Θi+1(λn)|2

1− |Θi+1(λn)|2|bλi
(λn)|2

6 1,

we get

dist2
(

kΘ( · , λn)
‖kΘ( · , λn)‖

,Span(kΘ( · , λk) : k 6= n)
)

6 |Bλn(λn)|2,

so lim
n→+∞

|Bλn
(λn)| = 1, which implies by Volberg’s theorem that R(Λ) is an

asymptotically orthonormal basis of its hull.
(iii) Set δn := |Bλn(λn)|. Since lim

n→+∞
δn = 1, there exists N ∈ N such that

λ :=
2ε

1 + ε2
< inf

n>N
δn.

Using Lemma 3.13 below, we get, for k > N ,

∏
j 6=k

|bµj
(µk)| >

∏
j 6=k

|bλj
(λk)| − λ

1− λ
∏

j 6=k

|bλj
(λk)|

=
δk − λ

1− λδk
.

Hence
lim

k→+∞

∏
j 6=k

|bµj
(µk)| = 1,

which implies by Volberg’s theorem that R(M) is an asymptotically orthonormal
basis of its hull.

The following stability result will be derived from Theorem 3.3 and Lem-
ma 3.9.

Theorem 3.10. Let RΘ(Λ) ∈ (AOS) be such that

lim
n→+∞

|Θ(λn)| = 0.

Let M := (µn)n>1 ⊂ D such that

|bλn(µn)| 6 ε < 1, n > 1.

Then there exists N ∈ N such that
(

kΘ( · ,µn)
‖kΘ( · ,µn)‖

)
n>N

is a Riesz basis of its hull.

Remark 3.11. When compared to Kadeč’s theorem, our result seems to be
surprising. But, in fact, as it was mentioned above, we use hyperbolic distances
whereas Kadeč’s theorem uses the Euclidean ones. So our result is sharper for the
case sup

n>1

Im(λn) = +∞ and worse for the case inf
n>1

Im(λn) = 0.

3.3. Proofs of theorems 3.1, 3.3 and 3.10. First of all, we give auxiliary
results which will be useful in the sequel.
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Lemma 3.12. Let λ, µ ∈ D and 0 < ε < 1 be such that |bλ(µ)| 6 ε. Then we
have

1
2

(
1− ε

1 + ε

)
6

1− |λ|2

1− |µ|2
6 2

(
1 + ε

1− ε

)
.

Proof. Thanks to a lemma of Vinogradov-Havin (see [12]), we have

1− ε

1 + ε
6

1− |λ|
1− |µ|

6
1 + ε

1− ε
.

Then it suffices to notice that 1− |λ| 6 1− |λ|2 6 2(1− |λ|).

Lemma 3.13. Let Λ(λn)n>1 be a sequence satisfying the Carleson condition
with constant δ = δ(Λ). Let 0 < λ < 1. If 2λ

1+λ2 < δ and

|bλn
(µn)| 6 λ, n > 1,

then M := (µn)n>1 ∈ (C) and, more precisely, we have

δ(M) >
δ − 2λ/(1 + λ2)
1− 2λδ/(1 + λ2)

.

Proof. See e.g. [11], page 310.

Remark 3.14. This lemma means that (kλn
)n>1 is (εn)-stable as soon as

sup
n>1

εn < λ.

If λ = δ/3, we have
δ(M) > δ/3.

If λ = δ/2, then we have
δ(M) > δ3.

Lemma 3.15. Let Λ = (λn)n>1 ∈ (C) so that δ(Λ) > δ > 0. Then for any
function f ∈ Hq, we have∑

n>1

|f(λn)|q(1− |λn|2) 6 32(1 + 2 log 1/δ)‖f‖q
q.

Proof. For q = 2, see [17]. For q 6= 2, using the Riesz-Smirnov factorization,
we get the result from the case q = 2.

Lemma 3.16. Let Λ = (λn)n>1 ∈ (C), and let δ = δ(Λ) be its Carleson
constant. Suppose (µn)n>1 is a sequence in D satisfying

|bλn
(µn)| 6 ε <

δ

2
, ∀n > 1.

Then for any function f ∈ Hq, we have∑
n>1

|f(λn)−f(µn)|q(1−|µn|2) 6 64(1+6 log 1/δ)
(

1 + ε+ δ/2
1− ε− δ/2

)(
2ε

δ/2− ε

)q

‖f‖q
q.
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Proof. Set g(z) := f(z)−f(µn)
bµn (z) . Then it is easy to see that g ∈ Hq. As

Ω(λn, δ/2) ⊂ D, we can apply the maximum principle. Hence

|g(λn)| 6 sup
ξ∈∂Ω(λn,δ/2)

|g(ξ)|.

If ξ ∈ ∂Ω(λn, δ/2), we have |bµn
(ξ)| > ||bµn

(λn)| − |bλn
(ξ)|| > δ/2− ε. Therefore,∣∣∣∣f(λn)− f(µn)

bµn
(λn)

∣∣∣∣ 6
1

δ/2− ε
sup

ξ∈∂Ω(λn,δ/2)

|f(ξ)− f(µn)|.

Then, consider un ∈ ∂Ω(λn, δ/2) such that

|f(un)| = sup
ξ∈∂Ω(λn,δ/2)

|f(ξ)|.

We get ∣∣∣∣f(λn)− f(µn)
bµn

(λn)

∣∣∣∣ 6
2

δ/2− ε
|f(un)|.

Consequently,

|f(λn)− f(µn)|q(1− |µn|2) 6

(
2ε

δ/2− ε

)q

(1− |µn|2)|f(un)|q.

On the other hand, |bµn
(un)| 6 |bµn

(λn)|+ |bλn
(un)| 6 ε+δ/2. From Lemma 3.12,

we get

1− |µn|2 6 2
(

1 + ε+ δ/2
1− ε− δ/2

)
(1− |un|2).

Thus

|f(λn)− f(µn)|q(1− |µn|2) 6 2
(

2ε
δ/2− ε

)q(1 + ε+ δ/2
1− ε− δ/2

)
(1− |un|2)|f(un)|q.

Moreover, as |bλn(un)| 6 δ/2, it follows from Lemma 3.13 that (un)n>1 satisfies
the Carleson condition and we have

inf
k>1

∏
j 6=k

∣∣∣∣ uk − uj

1− ukuj

∣∣∣∣ > δ3.

Using Lemma 3.15, we obtain∑
n>1

(1− |un|2)|f(un)|q 6 32(1 + 6 log 1/δ)‖f‖q
q,

which completes the proof.

Proof of Theorem 3.1. Let ε < δ/2 be a number satisfying (3.1) and (3.2)
and let M = (µn)n>1 ⊂ D be such that

sup
n>1

|bλn
(µn)| < ε.

From Lemma 3.12, it follows that

(3.8)
1
2

(
1− ε

1 + ε

)
6

1− |λn|2

1− |µn|2
6 2

(
1 + ε

1− ε

)
, ∀n > 1.
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On the other hand, we have∣∣∣∣Θ(λn)−Θ(µn)
bλn(µn)

∣∣∣∣ 6

∥∥∥∥Θ−Θ(µn)
bµn

∥∥∥∥
∞

= ‖Θ−Θ(µn)‖∞ 6 2.

Hence |Θ(λn)−Θ(µn)| 6 2ε and then

sup
n>1

|Θ(µn)| 6 sup
n>1

|Θ(λn)|+ 2ε < 1.

Consequently, thanks to the characterization of unconditional bases recalled
in Subsection 3.1, to prove that (kΘ( · , µn))n>1 is an unconditional basis in Kp

Θ,
it suffices to check that JΘ,M is an isomorphism from Kq

Θ onto `q((1− |µn|2)1/q).
In view of Lemma 3.6, we have, for all f ∈ Hq,

(3.9)
( ∑

n>1

|f(λn)− f(µn)|q(1− |µn|2)
)1/q

6 C(δ, ε)‖f‖q,

where

C(δ, ε) :=
(

64(1 + 6 log 1/δ)
(

1 + ε+ δ/2
1− ε− δ/2

))1/q( 2ε
δ/2− ε

)
.

This implies that JΘ,M is a continuous operator from Kq
Θ into `q((1− |µn|2)1/q).

Denote by U the operator defined from `q((1 − |λn|2)1/q) onto `q((1 − |µn|2)1/q)
by Ua := a, a ∈ `q((1−|λn|2)1/q). From (3.8), it follows that U is an isomorphism
and

‖U−1‖ 6

(
2
1 + ε

1− ε

)1/q

.

Further, we have

JΘ,M = UJΘ,Λ + JΘ,M − UJΘ,Λ = UJΘ,Λ(I + J−1
Θ,ΛU

−1(JΘ,M − UJΘ,Λ)).

Hence to prove that JΘ,M is an isomorphism, it suffices to check that

‖J−1
Θ,Λ‖ ‖U

−1‖‖JΘ,M − UJΘ,Λ‖ < 1.

But inequality (3.9) means that

‖JΘ,M − UJΘ,Λ‖ 6 C(δ, ε),

and the result follows from (3.2).

To prove Theorem 3.3, we use an operator approach based on the criterion
of Hruscev, Nikolski and Pavlov for bases of reproducing kernels.

Proof. Let (µn)n>1 ⊂ D be such that

|bλn
(µn)| 6 ε := sup

n>1

εn <
δ6

8
1− γ

1 + γ
.

Since
δ6

8
1− γ

1 + γ
<
δ

2
, we deduce from Lemma 3.13 that M := (µn)n>1 ∈ (C) and

δ(M) > δ3. Using the criterion of Hruscev, Nikolski and Pavlov, it remains to
prove that

dist(ΘBM ,H∞) < 1.
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It follows from a theorem of P. Jones and S.A. Vinogradov (see, for instance, [17],
Lecture VIII, Section 4) that there exists f ∈ H∞ satisfying

f(µn) = BΛ(µn), and ‖f‖∞ 6
8
δ6

sup
n>1

|BΛ(µn)|.

Therefore BΛ − f ∈ BMH∞ and ‖f‖∞ 6 8
δ6 ε. So

dist(BΛBM ,H∞) 6 ‖f‖∞ 6
8
δ6
ε.

Let g, h ∈ H∞ be such that

(3.10) ‖ΘBΛ − h‖∞ = dist(ΘBΛ,H
∞) = γ,

and

(3.11) ‖BΛBM − g‖∞ = dist(BΛBM ,H∞) 6
8
δ6
ε

which implies that ‖g‖∞ 6 8
δ6 ε+ 1. Moreover since ΘBM − gh = ΘBΛ(BΛBM −

g) + (ΘBΛ − h)g, we have

dist(ΘBM ,H∞) 6 ‖BΛBM − g‖∞ + ‖g‖∞‖ΘBΛ − h‖∞.
Hence we get from (3.11)

dist(ΘBM ,H∞) 6
8
δ6
ε+

(
8
δ6
ε+ 1

)
γ < 1.

Proof of Theorem 3.10. Using Lemma 3.9, we see that R(Λ) and R(M) are
(AOS). Hence there exist constants cN , c̃N , CN , C̃N tending to 1 and such that,
for every sufficiently large N , we have

(3.12) cN
∑
n>N

|an|2‖kλn
‖2 6

∥∥∥∥ ∑
n>N

ankλn

∥∥∥∥2

6 CN

∑
n>N

|an|2‖kλn
‖2,

and

(3.13) c̃N
∑
n>N

|an|2‖kµn‖2 6

∥∥∥∥ ∑
n>N

ankµn

∥∥∥∥2

6 C̃N

∑
n>N

|an|2‖kµn‖2.

Write ΛN = (λn)n>N and MN = (µn)n>N . Then, we have

dist(ΘBΛN
,H∞) = ‖HΘBΛN

‖ = ‖PBΛN
|ΘH2‖ = ‖PΘH2 |KBΛN

‖,

where PΘH2 is the orthogonal projection onto ΘH2. Moreover,∥∥∥∥PΘH2

( ∑
n>N

ankλn

)∥∥∥∥2

=
∥∥∥∥ ∑

n>N

anΘ(λn)kλn

∥∥∥∥2

6 CN

∑
n>N

|an|2|Θ(λn)|2‖kλn
‖2

6 CN sup
n>N

|Θ(λn)|2
∑
n>N

|an|2‖kλn
‖2

6
CN

cN
sup
n>N

|Θ(λn)|2
∥∥∥∥ ∑

n>1

ankλn

∥∥∥∥2

,



Bases of reproducing kernels in model spaces 541

by (3.12). Hence ‖PΘH2 |KBΛN
‖ 6

√
CN

cN
sup
n>N

|Θ(λn)|, which implies that

lim
N→∞

dist(ΘBΛN
,H∞) = 0.

Moreover, as previously, we show that

dist(BΛN
BMN

,H∞) 6

√
C̃N

c̃N
ε.

Therefore, arguing as in the proof of Theorem 3.3, we get

dist(ΘBMN
,H∞) 6

√
C̃N

c̃N
ε+

(√
C̃N

c̃N
ε+ 1

)
dist(ΘBΛN

,H∞),

and we can choose N sufficiently large to make the last quantity strictly less than 1,
whenever ε < 1.

The proof of Theorem 3.4 is similar to that of Theorem 3.1, with the following
lemma in place of 3.15.

Lemma 3.17. Let E be a complex separable Hilbert space. Let Λ = (λn)n>1

be an N -Carleson subset of D, so that

Λ =
N⋃

i=1

Λi, Λi ∈ (C),

and denote by δi the Carleson constant of Λi. Then for any function f ∈ H2(E),
we have ∑

λ∈σ

(1− |λ|2)‖f(λ)‖2E 6 32
N∑

i=1

(1 + 2 log 1/δi)‖f‖2H2(E).

Using an orthonormal basis of E, we prove this lemma in the same way as
Lemma 3.15.
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UFR Mathématiques/Informatique
351, Cours de la Libération

33405 Talence Cedex
FRANCE

E-mail: fricain@math.u-bordeaux.fr

Received April 26, 1999; revised December 16, 1999.


