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Abstract. It is shown that a nest in a Hilbert spaceH is the lattice of closed
invariant subspaces of a band algebra in B(H) (i.e. an algebra generated by a
semigroup of idempotent operators) if and only if all finite-dimensional atoms
of the nest have dimension 1.

A canonical operator matrix form for operator bands, developed by the
authors, is used to demonstrate that the set of algebraic operators in B(H)
coincides with the union of all band subalgebras of B(H).

Several sufficient conditions for an operator band to be reducible and
triangularizable are presented, and a new proof is given for a theorem on
algebraic triangularizability of arbitrary operator bands.
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1. INTRODUCTION

By an operator we mean a bounded linear transformation (in a Hilbert space
setting) or a linear transformation (in a vector space setting), depending on the
context. The set of all operators on a Hilbert space H (respectively vector space
V) is denoted by B(H) (respectively L(V)). We write I and 0 for the identity and
the zero operator respectively. All Hilbert spaces (H) in this paper are assumed
to be over the field C of complex numbers.

We consider semigroups of idempotent operators under the operation of com-
position (i.e. operator multiplication). We refer to these bands as operator bands.
A linear span of an operator band is an algebra called a band algebra. Since every
abstract band can be represented (via the left regular representation) as a band
of linear transformations on a vector space over an arbitrary field, the study of
operator bands is essential for understanding all bands.
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An operator band in B(H) is said to be reducible if it has a proper closed
non-trivial invariant subspace. An operator band S ⊂ B(H) is said to be triangu-
larizable if there exists a maximal chain of closed subspaces of H each of which is
invariant under S.

We begin by demonstrating that a nest in a Hilbert space H is the lattice
of closed invariant subspaces of a band (equivalently, of a band algebra) in B(H)
if and only if all finite-dimensional atoms of the nest have dimension 1. This is a
step towards characterizing closed subspace lattices that are attainable as Lat(S),
where S is an operator band, a general question that remains open.

We proceed to use the canonical operator matrix form for bands, developed
in [9], to demonstrate that an operator is algebraic in B(H) if and only if it belongs
to a band subalgebra of B(H). It is shown that a similar result holds in a vector
space setting, provided that the minimal polynomial for the operator splits over
the underlying field. (The same canonical form is later used to give an operator-
theoretic proof for a theorem on algebraic triangularizability of arbitrary operator
bands.)

We will also present two sufficient conditions for triangularizability of an
operator band in B(H); the first in terms of the set of commutators, and the
second via semigroup structure. These are to be contrasted with the result of
R. Drnovšek ([2]) who has constructed a weakly dense (and thus irreducible) band
in B(l2).

Even though we mostly deal with a Hilbert space setting, our Hilbert space
results have Banach space generalizations (with appropriate quotients used in place
of orthogonal complements as required). In several cases the results have obvious
algebraic counterparts as well. We try, where possible, to present proofs in a way
which makes the necessary modifications apparent.

The following is standard in semigroup theory. A book by A.H. Clifford and
G.B. Preston ([1]) is a classic. For a more recent account see J.M. Howie ([6]).

An element a ∈ S is said to be idempotent with respect to an operation
◦ : S × S → S, if a ◦ a = a. A band is a semigroup of idempotents (the reference
to some fixed operation is implicit). A sub-band of a band is a subset that is
closed under the operation. A sub-band J of a band S is a band ideal in S, if
a ◦ b, b ◦ a, a ◦ b ◦ a ∈ S whenever a ∈ S, b ∈ J .

Relation ‘∼’, defined on a band (S, ◦) by

a ∼ b ⇔
{

a ◦ b ◦ a = a,
b ◦ a ◦ b = b,

is an equivalence relation.
For each element a of a band S, write Ca for the ∼-equivalence class of a.

Then Ca is a sub-band of S. We refer to Ca as the component of S containing a.
A band that has only one component is said to be rectangular.

A semigroup Q is said to be a left zero semigroup if a ◦ b = a for all a, b ∈ Q.
Right zero semigroups are defined similarly. Every rectangular band is isomorphic
to a direct product of a left zero semigroup and a right zero semigroup.

The relation ‘∼’ is a semigroup congruence. An operation ‘�’ is (well-)defined
on the set S/∼ of components of a band S by

Ca � Cb = Ca◦b.

We refer to the abelian band (S/∼,�) as the band of components of S.
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One simple consequence of S/∼ being abelian is that

a ◦ b ◦ c ∼ b ◦ a ◦ c ∼ c ◦ b ◦ a ∼ · · ·
for all a, b, c ∈ S.

Relation ‘-’, defined on a band S by

a- b ⇔ a ◦ b ◦ a = a,

is a pre-order (i.e. reflexive and transitive). We refer to ‘-’ as the band pre-order
on S. Clearly

a ∼ b ⇔
{

a- b,
b - a.

It follows that ‘-’ is a partial order exactly when all components of S are
singletons. Therefore the band pre-order on S/∼ is a partial order. We denote it
by ‘�’ and refer to it as the band order on S/∼. It is easy to see that

Ca � Cb ⇔ a- b.

It is worth observing that if S is an operator band containing I and 0, then
0 -T - I for every T ∈ S.

One more property deserves mention. (The use of ◦ and � is henceforth
abandoned. We rely on the context for the appropriate interpretation.) Clearly
CaCbCa = Ca whenever a- b. Restated without reference to components this means
that abd = ad whenever a ∼ d - b. It turns out, in general, that

ab1b2 · · · bmd = ad whenever a ∼ d - b1, b2, . . . , bm.

We refer to this property as the sandwich property.

2. NESTS ATTAINABLE AS A LATTICE OF A BAND

Definition 2.1. A nest (M,⊂) is a chain of closed subspaces of a Hilbert
space H containing {0} and H and closed under intersection and closed span; i.e.⋂

W∈L
W ∈M and

⋃
W∈L

W ∈M

for every subset L of M; (the overline indicates norm closure). Given ∅ 6= W ∈ L
we write

W− =
⋃

W ) U∈L

U.

When dim(W 	W−) = α > 0 we say that (W−,W ) is a gap of dimension α in
(M,⊂) and call the space W 	W− an α-dimensional atom of M.

Given a subset D in B(H), the lattice of all closed subspaces of H invariant
under D is denoted by Lat(D). D is called unicellular if Lat(D) is totally ordered
by inclusion, in which case it is automatically a nest.

Remark 2.2. In [2] R. Drnovšek gave a procedure for constructing a weakly
dense (and thus irreducible) band in B(l2), and hence on any separable Hilbert
space. Every infinite-dimensional Hilbert space H can be expressed as a countably
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infinite orthogonal direct sum of equi-dimensional subspaces of H. A close exam-
ination of [2] shows that Drnovšek’s procedure can be carried out on any infinite-
dimensionalH, by replacing scalar entries in the original matrices with appropriate
operator entries. In particular, every infinite-dimensional Hilbert space H admits
an irreducible Drnovšek-type band, which we shall denote by RH henceforth. By
Theorem 5.3 of [9], RH has no non-trivial zero-divisors, and consequently we may
assume that 0 6∈ RH and I ∈ RH .

If S is a unicellular band and (W1,W2) is a finite-dimensional gap of Lat(S),
then the compression of S to the atom W2 	W1 is an operator band which must
be irreducible. Since operator bands on finite-dimensional vector spaces are trian-
gularizable ([12]), it follows that dim(W2 	W1) = 1. Hence a necessary condition
for a nest to be the lattice of closed invariant subspaces of an operator band (i.e.
to be “attainable as a lattice of a band”) is that all finite-dimensional atoms have
dimension 1. Our next theorem shows that this condition is sufficient as well.

Theorem 2.3. The following assertions are equivalent for a nest M in a
Hilbert space H:

(i) All finite-dimensional atoms of M have dimension 1.
(ii) There exists an operator band S in B(H) such that the components of S

form a chain with respect to the usual order and M = Lat(S).
(iii) There exists an operator band S in B(H) such that M = Lat(S).

Proof. Only (i) ⇒ (ii) remains to be shown.
If W ∈M and W 	W− is not an infinite-dimensional atom in M, we write

KW = {E ∈ B(H) | E2 = E, Range(E) = W}.
If W 	 W− is an infinite-dimensional atom, we shall denote by [T ]W	W− the
compression of T ∈ B(H) to W 	W−, and let

KW =
{
E ∈ B(H) |E2 = E,W− ⊂ Range(E) ⊂ W,

E(W 	W−) ⊂ W 	W−, [E]W	W− ∈ RW	W−

}
.

Claim. KW is a band for every W ∈M.

If W ∈M and W 	W− is not an infinite-dimensional atom in M then KW

is a right zero band.
If W 	W− is an infinite-dimensional atom, and E,F ∈ KW , then E and F

can be (simultaneously) written as block-upper-triangular matrices

E =

(
I 0 ∗
0 R1 ∗
0 0 0

)
, F =

(
I 0 ∗
0 R2 ∗
0 0 0

)
with respect to the orthogonal decomposition H = W− ⊕ (W 	W−)⊕ (H 	W ),
where R1, R2 ∈ RW	W− . Thus EF,FE ∈ KW , so that KW is a band, as claimed.

If W1,W2 ∈ M, W1 ( W2, E1 ∈ KW1 and E2 ∈ KW2 , then E2 acts as an
identity on W1 (which contains the range of E1). Thus

E2E1 = E1.

Moreover
E1E2 = E1E1E2 = E1(E2E1)E2 = (E1E2)2,
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so that E1E2 is idempotent as well. Obviously, Range(E1E2) ⊂ Range(E1) ⊂
W1 and [E1E2]W1 = [E1]W1 (because E2 acts as an identity on W1). Therefore
Range(E1E2) = Range(E1) and E1E2 ∈ KW1 , by the definition of KW1 . We have
shown that

(KW1KW2) ∪ (KW2KW1) = KW1 .

It follows that ⋃
W∈M

KW

is a band, which will be denoted by S henceforth.
Since E2 acts as an identity on W1 and Range(E2) ⊂ W2, every closed

subspace Z of H, with Z ⊂ W1 or W2 ⊂ Z, is invariant under E2 and hence under
KW2 . This shows that each Z ∈M is invariant under⋃

Z ( W∈M

KW

and under ⋃
W⊂Z∈M

KW .

Hence M⊂ Lat(S).
The rest of the argument is devoted to demonstrating that M = Lat(S).

Since Span(S ∪ {I}) is a unital algebra and Lat(S) = Lat(Span(S ∪ {I})), it is
enough to show that the set of closed cyclic invariant subspaces of Span(S ∪ {I})
is a subset of M.

For non-triviality, suppose x ∈ H\{0}. Our goal is to show

Span(S ∪ {I})(x) ∈M.

Suppose W ∈ M and x 6∈ W . Then the orthogonal projection (zx) of x onto W⊥

is non-zero. From the definition of KW it follows that

KW (x) = W ;

(obviously, KW (x) ⊂ W ; for the reverse inclusion note that, by the definition of
KW , for each y ∈ W there exists E ∈ KW such that E(zx) = y.) Hence W ⊂ S(x).
This shows that the subspace Wx defined by

Wx =
⋃

x6∈W∈M

W,

is an element of M and is contained in S(x).

Case 1. If x ∈ Wx then

(S ∪ {I})(x) ⊂ (S ∪ {I})(Wx) ⊂ Wx,

because Wx ∈M ⊂ Lat(S). Therefore

Span(S ∪ {I})(x) = Wx ∈M,

as a direct consequence of

(S ∪ {I})(x) ⊂ Wx ⊂ S(x).
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Case 2. If x 6∈ Wx then Wx ⊂ S(x) and Wx is the largest element in M which
does not contain x. Let

Ux =
⋂

Wx ( U∈M

U.

It is clear that x ∈ Ux ∈M ⊂ Lat(S), so that

Wx ( Span(S ∪ {I})(x) ⊂ Ux.

Obviously, Ux 	Wx is an atom of M.
If dim(Ux	Wx) = 1 then Span(S ∪ {I})(x) = Ux ∈M, which is the desired

conclusion.
If Ux 	Wx is infinite-dimensional and PUx	Wx is the orthogonal projection

onto Ux 	Wx, then PUx	Wx
(x) 6= 0. It follows from the irreducibility of RUx	Wx

and the definition of KUx that

Ux 	Wx = Span(RUx	Wx
)(PUx	Wx

(x))

⊂ PUx	Wx
(Span(KUx

)(x)) ⊂ PUx	Wx
(Span(S ∪ {I})(x)).

Since Wx ⊂ S(x) we also see that

Ux = Wx ⊕ (Ux 	Wx) ⊂ Span(S ∪ {I})(x) ⊂ Ux ∈M,

which leads to the desired conclusion and completes the proof.

3. BAND ALGEBRAS AND ALGEBRAIC OPERATORS

The goal of this section is to demonstrate that an operator is algebraic in B(H)
if and only if it belongs to a band subalgebra of B(H). (This is the converse to
Theorem 3.4. It can be seen that a similar result holds in a vector space setting,
provided that the minimal polynomial for the operator splits over the underlying
field.) We need some preliminary results.

Theorem 3.1. ([4]) Finitely generated bands are finite.

Theorem 3.2. ([9]) Suppose S is a non-zero rectangular band of operators
on a Hilbert space H. Then there exist an orthogonal decomposition H = H1 ⊕
H2 ⊕ H3 (H2 6= {0}) and sets Ω ⊂ L(H2,H1), Λ ⊂ L(H3,H2), such that S has
matrix form

S =

{(
0 X XY
0 I Y
0 0 0

)∣∣∣∣∣ X ∈ Ω, Y ∈ Λ

}
with respect to this decomposition.

A similar result holds in a vector space setting.

Theorem 3.3. ([9]) If a band S of operators on a Hilbert space H has finitely
many components, then there exist an orthogonal decomposition H = H1 ⊕H2 ⊕
· · · ⊕ Hm (m is usually greater than the number of components) with respect to
which all elements of S have a block-upper-triangular matrix form, with each block
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on the diagonal being either 0 or I. Components of S are subsets that consist of
all elements with the same block-diagonal.

A similar result holds in a vector space setting.

Theorem 3.4. ([9]) If S is an operator band on a vector space V over a
field F, then every operator in the linear span of S is algebraic with a minimal
polynomial that splits over F.

Remark. The claim about minimal polynomials is not explicit in [9]. It is
shown that every operator in the linear span of S can be block-upper-triangularized
with finitely many blocks, in such a way that the diagonal blocks are scalar mul-
tiples of the identity matrix. This clearly implies the result stated here.

Theorem 3.5. If T is a bounded algebraic operator on a Hilbert space H,
then T belongs to a span of an operator band in B(H).

If T is an algebraic operator on a vector space V over a field F, such that the
minimal polynomial of T splits over F, then T belongs to a span of an operator
band on V.

Proof. We restrict attention to a Hilbert space setting. The proof of the
vector space result is analogous, with Primary Decomposition Theorem replacing
Riesz idempotents.

The proof is in two steps. The first shows that the theorem is true for all
bounded nilpotent operators T . The second demonstrates the general case by
reducing it to the case considered in the first step.

Suppose T ∈ B(H) is nilpotent of order n. Then there exists an orthogonal
decomposition H = H1 ⊕ H2 ⊕ H3 ⊕ · · · ⊕ Hn, such that with respect to this
decomposition T is represented by a block-upper-triangular operator matrix:

T =


0 T12 T13 T14 · · · T1n−1 T1n

0 0 T23 T24 · · · T2n−1 T2n

0 0 0 T34 · · · T3n−1 T3n

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 Tn−1n

0 0 0 0 · · · 0 0

 .

For each k = 1, 2, . . . , n, consider the set

Ck = {E ∈ B(H) | E2 = E and Range(E) = H1 ⊕H2 ⊕ · · · ⊕ Hk}.

Each E ∈ Ck acts as an identity on H1 ⊕ H2 ⊕ · · · ⊕ Hk. Hence EF = F for all
E,F ∈ Ck, so that Ck is a right zero band.

If E ∈ Ck and F ∈ Cm with k 6 m, then FE = E. Consequently,
(EF )(EF ) = E(FE)F = EEF = EF . It follows that both EF and FE are
idempotent. Since Range(EF ) = H1 ⊕H2 ⊕ · · · ⊕Hk = Range(E) = Range(FE),
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both FE and EF are elements of Ck. Therefore the set S =
n⋃

k=1

Ck is a band with

components C1, C2, . . . , Cn. For each k, operators

Ak =



I1 0 0 0 0 · · · 0
0 I2 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · Ik 0 · · · 0
0 0 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0


and

Bk =



I1 0 0 0 T1k+1 · · · 0
0 I2 0 0 T2k+1 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · Ik Tkk+1 · · · 0
0 0 0 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0


are elements of Ck. (‘Ij ’ denotes the identity operator on Hj .) Hence

T =
n−1∑
k=1

(Bk −Ak) ∈ Span(S),

which completes the first step of the proof.

Suppose now that T is an algebraic operator in B(H) with spectrum σ(T ) =
{λ1, λ2, . . . , λn}. For each k = 1, 2, . . . , n, the Riesz idempotent Rk corresponding
to λk commutes with T . Consequently, the ranges of R1, R2, . . . , Rn are closed
complementary subspaces of H invariant under T . An operator matrix repre-
sentation of T with respect to the (not necessarily orthogonal) decomposition
H = Range(R1)⊕ Range(R2)⊕ · · · ⊕ Range(Rn) is of the form

T =

 T1 0 0 0
0 T2 0 0
· · · · · · · · · · · ·
0 0 0 Tn

 ,

where Tk is algebraic and σ(Tk) = {λk}. It follows that Tk − λkIk is an algebraic
quasinilpotent operator on Range(Rk) and consequently must be nilpotent.

According to the first step of the proof, there exist operator bands S1,S2,

. . . ,Sn in B(Range(R1)),B(Range(R2)), . . . ,B(Range(Rn)) respectively, such that
Tk − λkIk ∈ Span(Sk), k = 1, 2, . . . , n. Clearly Sk ∪ {Ik} is still a band and
Tk ∈ Span(Sk ∪ {Ik}).
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Let S denote the set
D1 0 0 0

0 D2 0 0
· · · · · · · · · · · ·
0 0 0 Dn


∣∣∣∣∣∣∣ Dk ∈ Sk ∪ {Ik}

 .

Then S is a band in B(H) and T ∈ Span(S).

Theorem 3.3 has a number of consequences, some of which were addressed
in [9] and shall be strengthened here. We shall say that the spectrum (σ) is
operationally subordinate on an algebra A in B(H) if

σ(AB + C) ⊂ σ(A)σ(B) + σ(C) = {ab + c | a ∈ σ(A), b ∈ σ(B), c ∈ σ(C)},

for all A,B,C ∈ A. Clearly, the spectrum is operationally subordinate on a unital
algebra A exactly when it is both sublinear and submultiplicative.

The spectrum is said to be permutable ([8]) on a semigroup S of operators
in B(H) if σ(ABC) = σ(BAC),∀A,B, C ∈ S.

We refer the reader to [13] and [14] for an account of the connection be-
tween these properties and reducibility (or triangularizability) of the semigroup.
Theorem 4.2 of the next section is a sample result. Our present goal is to demon-
strate that every band algebra in B(H) has an operationally subordinate spectrum
which is permutable. In particular, in view of R. Drnovšek’s example ([2]), the
combination of these conditions does not imply reducibility even for band algebras.

Theorem 3.6. Every band algebra A ⊂ B(H) has an operationally subordi-
nate spectrum which is permutable.

Proof. The proof proceeds along the lines of Lemma 5.9 in [9] and is presented
here for completeness.

Let A be generated by a band S. If A1, . . . , An ∈ A then there exist m ∈ N,
scalars {cij}

i=n, j=m

i=1, j=1 and elements {Fij}
i=n, j=m

i=1, j=1 of S, such that

Ai =
m∑

j=1

cijFij , i = 1, . . . , n.

The sub-band T of S generated by {Fij}
i=n, j=m

i=1, j=1 is finite by Green-Rees Theo-
rem 3.1. Apply Theorem 3.3 to decompose H as an orthogonal sum H1 ⊕ H2 ⊕
· · · ⊕ Hk, with respect to which all elements of T have a block-upper-triangular
matrix form, with each block on the diagonal being either 0 or I. It follows that
A1, . . . , An are block-upper-triangular with respect to this decomposition, with
each diagonal block being some scalar multiple of identity. The spectrum of each
Ai (including the multiplicities) can be read off the block-diagonal. The desired
conclusion follows.
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4. SUFFICIENT CONDITIONS FOR REDUCIBILITY AND TRIANGULARIZABILITY

Next we present several sufficient conditions for reducibility and triangularizability
of an operator band in B(H). These should be considered in contrast to Drnovšek’s
example.

Theorem 4.1. ([12]) If a non-zero band ideal J in an operator band S is
reducible, then so is S. A similar result is true for all operator algebras.

Theorem 4.2. ([13]) For a semigroup S of compact operators in B(H) the
following are equivalent:

(i) S is triangularizable;
(ii) the spectrum is strongly permutable on S;
(iii) the spectrum is sublinear on S.

Theorem 4.3. If the norm closure of a band algebra A in B(H) contains a
non-zero compact operator, then A is reducible.

Proof. If K is a non-zero compact operator in the norm closure A of A,
then the ideal IK (of A) generated by K consists of compact operators. Since the
spectrum is operationally subordinate on A by Theorem 3.6, and every compact
operator is a point of continuity of the spectrum ([11]), it follows easily that the
spectrum is operationally subordinate on IK . By Theorem 4.2, IK is triangular-
izable, and consequently A is reducible by Theorem 4.1.

Corollary 4.4. If for every E in a band S ∈ B(H) either E or I −E has
finite rank then S is triangularizable.

Proof. A compression of S to an invariant subspace still satisfies the hy-
pothesis (on the new Hilbert space). Theorem 4.3 gives reducibility of S, and an
application of Zorn’s Lemma does the rest.

Theorem 4.5. ([3]) A subset J of a band S is a band ideal in S if and
only if:

(a) J is a union of some components of S.
(b) If C and D are components of S such that C ≺ D and D ⊂ J , then

C ⊂ J .

Given two operators A and B on the same space, the commutator [A,B] is
the operator AB −BA. If W is a set of operators, we write:

[W,W] = {[A,B] | A,B ∈ W}.

Theorem 4.6. If S is an operator band then

[S,S] = {C −D | C ∼ D in S}.

Proof. [⊂]: Immediate, since AB ∼ BA for all A,B ∈ S.
[⊃]: If C ∼ D in S then

C −D = (CD)(DC)− (DC)(CD) ∈ [S,S].

The following corollary can be proved by direct computation.
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Corollary 4.7. If S is an operator band, then [A,B]3 = 0 for every
A,B ∈ S.

Theorem 4.8. If S is an operator band containing a non-zero operator A,
distinct from the identity, such that [A,B]2 = 0 for every B ∈ S, then S is
reducible.

Proof. Suppose S is a band in B(H). Without loss of generality assume
{0, I}(S. Let A ∈ S be the operator described in the hypothesis. According
to Theorem 4.1, it is sufficient to show that the band ideal {B ∈ S | B -A} is
reducible. Denote this ideal by J and consider an arbitrary element B of J .

Observe that A has matrix form(
I 0
0 0

)
with respect to the decomposition H = Range(A)+̇Kernel(A); (Range(A) and
Kernel(A) are (non-trivial, proper) closed complementary (not necessarily orthog-
onal) subspaces). A calculation shows that (with respect to the same decomposi-
tion) B has matrix form

B =
(

E X
Y Y X

)
,

with some X, Y . Consequently:

[A,B] =
(

0 X
−Y 0

)
.

Since [A,B]2 = 0 by the hypothesis, it follows that Y X = XY = 0. Therefore

B =
(

E X
Y 0

)
,

so that B(Kernel(A)) ⊂ Range(A). Set

J (Kernel(A)) = {B(x) | B ∈ J , x ∈ Kernel(A)}.

Since it has been shown that J (Kernel(A)) ⊂ Range(A), J (Kernel(A)) is a
proper closed invariant subspace of J . If J (Kernel(A)) 6= {0} then J is reducible.

If J (Kernel(A)) = {0} then J is reducible again, because Kernel(A) is a
proper non-trivial closed invariant subspace of J .

The converse of Theorem 4.8 is false. The rectangular band{(
0 I 0
0 I 0
0 0 0

)
,

(
0 0 0
0 I I
0 0 0

)
,

(
0 I I
0 I I
0 0 0

)
,

(
0 0 0
0 I 0
0 0 0

)}
serves as a counterexample.

Corollary 4.9. If S is an operator band and T 2 = 0 for every T ∈ [S,S],
then S is triangularizable.

Proof. Since a compression of S to an invariant subspace satisfies the hy-
pothesis of Theorem 4.8 (on the subspace), a standard Zorn’s Lemma argument
gives the desired result.
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Theorem 4.10. If every component of an operator band S is either a left
zero semigroup or a right zero semigroup, then the band is triangularizable.

Proof. If S satisfies the hypothesis then so does every compression of S to
an invariant subspace. Therefore, by Zorn’s Lemma, it is sufficient to show that
S has a proper non-trivial closed invariant subspace. Assume for non-triviality
that S 6= {0, I}. Let A be a non-zero element of S different from the identity.
Then {B ∈ S | B -A} (henceforth denoted by J ) is a non-zero band ideal in S.
According to Theorem 4.1, it is enough to demonstrate that J is reducible.

If C is a component of J (i.e. a component of S contained in J ) and C is a
left zero semigroup, then BA = B for every B ∈ C. (This is because BA = B(BA)
and both B and BA are elements of the left zero semigroup C.) Similarly, if C is a
component of J which is a right zero semigroup, then AB = B for every B ∈ C.
Hence AB = B or BA = B for every B ∈ J .

A has operator matrix form

A =
(

I 0
0 0

)
with respect to the decomposition H = Kernel(A)+̇Range(A).

It follows that every B ∈ J is of the form(
∗ ∗
0 0

)
or

(
∗ 0
∗ 0

)
.

Consequently, B(Kernel(A)) ⊂ Range(A) for all B ∈ J . Therefore the same is
true for all B in the linear span of J .

If B(Kernel(A)) = {0} for every B ∈ J , then Kernel(A) is a proper closed
non-trivial invariant subspace of J . If B(Kernel(A)) 6= {0} for some B ∈ J ,
then the norm closure of {B(x) | B ∈ Span(J ), x ∈ Kernel(A)} is a proper closed
non-trivial invariant subspace of J .

5. A VIEW TO ALGEBRAIC REDUCIBILITY

In this section we use operator-theoretic methods to show how one can use a canon-
ical operator representation of an operator band with finitely many components,
given in Theorem 3.3, to derive a simple description for the set NS of all nilpotent
operators in the band algebra generated by S. Consequently we obtain a number
of algebraic results, including an operator-theoretic proof for the fact that every
operator band is algebraically triangularizable. This should be compared to [10]
and contrasted with [2].

Lemma 5.1. If A1, . . . , An belong to the same component C of an operator
band S and t1, t2, . . . , tn ∈ F, then there exist C2, . . . , Cn ∈ [C, C] such that

(t1A1 + · · ·+ tnAn) + (t2C2 + · · ·+ tnCn) = (t1 + · · ·+ tn)A1.

Proof. This is a trivial consequence of Theorem 4.6.
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Theorem 5.2. If S is an operator band then NS = Span([S,S]).

Proof. [⊃]: Suppose T =
n∑

i=1

ti[Ai, Bi] for some ti ∈ F and Ai, Bi ∈ S. Let

ST be the sub-band of S generated by the set {A1, B1, . . . , An, Bn}. Since ST

is finitely generated, it is finite by Green-Rees Theorem 3.1, and so has finitely
many components. Apply Theorem 3.3 to deduce the existence of complemen-
tary subspaces V1,V2, . . . ,Vm of V, such that with respect to the decomposition
V = V1 ⊕ V2 ⊕ · · · ⊕ Vm all elements of ST have a block-upper-triangular matrix
form, with each block on the diagonal being either 0 or I.

It follows from Theorem 4.6 that elements of [ST ,ST ] also have the block-
upper-triangular matrix form described above (with respect to V = V1⊕V2⊕· · ·⊕
Vm) and all of the block-diagonal entries in their matrices are zero. The same is
true for elements of the linear span of [ST ,ST ], and therefore every operator in
this linear span is nilpotent. Since T is one such operator the proof is complete.

Note that the reasoning used here can be easily modified to yield a proof of
the fact that NS is always a linear space.

[⊂]: Let T be a non-zero nilpotent operator in the linear span of S. Then

T =
n∑

i=1

tiAi for some 0 6= t1, t2, . . . , tn ∈ F and A1, A2, . . . , An ∈ S. According

to Green-Rees Theorem 3.1, the sub-band S{A1,...,An} of S generated by the set
{A1, . . . , An} is finite and has finitely many (say: m) components. The proof is
by induction on m.

(Base case) m = 1: Let A1, . . . , An belong to the same component C of S.
According to Theorem 3.2 there exist complementary subspaces V1,V2,V3 of V
(V2 6= {0}), such that with respect to the decomposition V = V1 ⊕ V2 ⊕ V3 every
element of C has matrix form (

0 L LM
0 I M
0 0 0

)
,

for some L,M . The matrix for T (with respect to the same decomposition) must
be of the form

T =

(
0 ∗ ∗
0 (t1 + · · ·+ tn) ∗
0 0 0

)
.

It follows that t1 + · · ·+ tn = 0 because T is nilpotent. According to Lemma 5.1
there exist C2, . . . , Cn ∈ [C, C] such that

(t1A1 + · · ·+ tnAn) + (t2C2 + · · ·+ tnCn) = (t1 + · · ·+ tn)A1 = 0.

Therefore

T = (t1A1 + · · ·+ tnAn) = −(t2C2 + · · ·+ tnCn) ∈ Span([C, C]) ⊂ Span([S,S]).

(Inductive step): Suppose the result is true for m = 1, 2, . . . , k and S{A1,...,An}
has k + 1 components.

We may assume without loss of generality that no two operators among
A1, A2, . . . , An belong to the same component. (According to Lemma 5.1, if A1, A2

belong to the same component C then t1A1 + t2A2 = (t1 + t2)A1 − t2C2, for some
C2 ∈ [C, C] ⊂ [S,S]. Consequently T + t2C2 = (t1 + t2)A1 + A3 + · · · + An.
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Repeat the procedure to obtain T + Q =
n̂∑

r=1
sir

Air
, for some Ai1 , Ai2 , . . . , Ain̂

in S, no two of which lie in the same component, some Q ∈ Span([S,S]) and
si1 , si2 , . . . , sin̂

∈ F. Clearly T ∈ Span([S,S]) ⇔ T + Q ∈ Span([S,S]) and we
have observed that in the first part of the proof that T + Q is still nilpotent.)

We may also assume that t1 = 1 (replace T by (1/t1)T ).
Re-index A1, A2, . . . , An if necessary, so that A1 belongs to a component

CA1 of S{A1,...,An}, maximal with respect to ‘�’; (in other words, A1 6-Aj for
j = 2, 3, . . . , n). Then G = S{A1,...,An} \ CA1 is a band (!), containing A2, . . . , An.
Clearly G has at most k components.

We aim to show that T belongs to the linear span of G. Since T p = 0 for

some p ∈ N, and T =
n∑

i=1

tiAi = A1 + D, for some D ∈ Span(G), it follows (from

the non-commutative binomial expansion) that

(A1)p + R + Dp = 0

for some R ∈ Span(G); (note that the linear span of G is an algebra containing
A1D, DA1 and A1DA1). Therefore

T = A1 + D = −R−Dp + D ∈ Span(G)

and consequently T ∈ Span(G).

Hence T =
N∑

i=1

siBi for some s1, s2, . . . , sn ∈ F and B1, B2, , . . . , Bn ∈ G, and

therefore T ∈ Span([S,S]) by the inductive assumption (the band generated by
B1, B2, . . . , BN is a sub-band of S with at most k components).

Denote the Jacobson Radical of an algebra A by RA. In the case when A is
a linear span of some operator band S, we write RS instead of RSpan(S).

We will use the following theorem of D. Hadwin:

Theorem 5.3. ([5]) Suppose A is an algebra of algebraic operators on a
vector space V (over a field F) such that the minimal polynomial of each element
of A splits over F. Then the following are equivalent:

(i) A is algebraically triangularizable;
(ii) RA = {T ∈ A | T is nilpotent};
(iii) A/RA is abelian.

Theorem 5.4. If S is an operator band then NS is an ideal in the linear
span of S.

Proof. In view of Theorem 5.2 it is sufficient to show that A[B,C] and
[B,C]A belong to [S,S] for A,B,C ∈ S. Since ABC ∼ ACB ∼ BCA ∼ CBA,
it follows by Theorem 4.6 that A[B,C] = ABC − ACB ∈ [S,S] and [B,C]A =
BCA− CBA ∈ [S,S].

Corollary 5.5. If S is an operator band then NS is the Jacobson Radical
RS of the linear span of S.

Proof. According to Theorem 3.4 every element of the linear span of S is
algebraic. Thus by Theorem 14 (and the Remark following Theorem 12) in Part 2
of [7], RS is the largest nil ideal (i.e. the largest ideal containing only nilpotents)
in the linear span of S. Since NS is an ideal in S, it must be that RS = NS .
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Corollary 5.6. If S is an operator band then Span(S)/RS is abelian and
S is algebraically triangularizable.

Equivalently: the only (algebraically) irreducible representations of a band
are trivial representations.

Proof. Theorem 3.4, Corollary 5.5, and Theorem 5.3.

The close relationship between the algebra Span(S)/RS and the band S/∼
of components of S is now apparent. Let S/RS denote the image of S under the
quotient map π : Span(S) → Span(S)/RS . Clearly S/RS is a band because π is
an algebra homomorphism.

Corollary 5.7. If S is an operator band then S/RS is isomorphic to the
band S/∼ of components of S.

Proof. If A,B ∈ S satisfy π(A) = π(B), then A−B ∈ RS and consequently
A − B is nilpotent. Let SA,B be the sub-band of S generated by A and B.
Then SA,B is finite with at most 6 elements. According to Theorem 3.3 there
exist complementary subspaces V1,V2, . . . ,Vm of V, such that with respect to
the decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vm all elements of SA,B have block-
upper-triangular matrix form with each block on the diagonal being either 0 or
I. Components of SA,B are subsets that consist of all elements with the same
block-diagonal. Since A− B is nilpotent, A and B have the same block diagonal
with respect to the above decomposition of V. Hence A ∼ B. Therefore CA = CB

whenever π(A) = π(B).
Since the converse is also true (reverse the direction of the argument and use

Theorem 4.6, Corollary 4.7 (b) and Corollary 5.5), it follows that

CA = CB ⇔ π(A) = π(B).

Hence, the map Ψ : S/RS → S/∼, specified by

Ψ(π(A)) = CA for all A ∈ S,

is well-defined and bijective. Since π is a homomorphism, so is Ψ.
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