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Abstract. We establish a one to one correspondence between endomor-
phisms of Arveson’s continuous analogues C∗(E) of the Cuntz algebras and
certain cocycles. For the analogues of quasi-free automorphism groups there
are no positive gauge invariant KMS-weights, whereas for the gauge action
there exists a non lower semi-continuous ground weight on C∗(E). Crossed
products by quasi-free actions are often simple.
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1. INTRODUCTION

In [3] a class of C∗-algebras, called spectral algebras is defined and studied which
may be viewed as a continuous analogue of the Cuntz algebras On. Many tech-
niques established for the Cuntz algebras have parallels in the continuous situation.
For instance, recall [5] that there is a 1-1-correspondence between unitaries and
unital endomorphisms of On defined as follows: Let s1, . . . , sn be a fixed sequence
of generators of On. Then by simplicity for any u ∈ On unitary the map si 7→ usi,
i = 1, . . . , n extends to a unital endomorphism ρu of On. Conversely, any unital

endomorphism defines a unitary uρ =
n∑

i=1

ρ(si)s∗i such that ρuρ
= ρ and uρu

= u.

In this paper we first try to generalize this correspondence to Arveson’s
spectral algebras. It turns out that in case of C∗(E) we have to replace unitaries
by certain cocycles of a semigroup and unital endomorphisms by endomorphisms
whoses images contain approximate units.

We then consider an analogue of the quasi-free automorphisms in [6], using a
definition in [1] and show that there are no KMS-states and no reasonable KMS-
weights for 1-parameter groups of quasi-free actions. In the discrete case KMS-
states are closely related to diagonal subalgebras which play an important role in
the groupoid picture of On ([5] and [11]). Their absence in the continuous setting



562 Joachim Zacharias

at least indicates that here diagonals and a groupoid description must be of a
different nature.

For the analogue of the gauge action, we find a non lower semi-continuous
ground weight and show that there are no ground states. (We do not know whether
this is the first such example. Problems of this type have been posed by Sakai in
[12].)

In the last section we consider crossed products by quasi-free actions. In
the discrete case they provide examples of simple projectionless C∗-algebras with
traces coming from KMS-states. Although this has no continuous analogue, we
show that in the continuous case crossed products are also often simple. In par-
ticular, any separable locally compact abelian group can act on C∗(E∞) so that
the crossed product is simple.

Let us recall briefly the definition and basic properties of continuous ana-
logues of Cuntz algebras. For a complete discussion we refer to [3] and [15]. First
we need the following definition (Definition 1.4 of [1]) Suppose we have a measur-
able field of separable Hilbert spaces over (0,∞), i.e. a standard Borel space E
together with a Borel measurable map p : E → (0,∞) such that E(t) := p−1(t)
are separable Hilbert spaces and E ∼= E(t0) × (0,∞) as Borel fibrations. This
means that there exists a trivialization, i.e. a sequence of measurable sections
t 7→ en(t) ∈ E(t) such that (en(t)) ⊆ E(t) is an orthonormal basis for all t > 0. As-
sume further that there is a measurable product E×E → E s.t p(ef) = p(e)+p(f)
and the map E(s)⊗ E(t) 3 e⊗ f 7→ ef ∈ E(s+ t) extends to an isomorphism of
Hilbert spaces for s, t > 0. Then E is called a product system. Such a structure is a
continuous analogue of the tensor powers of a single Hilbert space, i.e. the monoid⋃
n∈N

H⊗n

. A section t 7→ u(t) ∈ E(t) such that ‖u(t)‖ = 1, u(s + t) = u(s)u(t),

s, t > 0 is called a (normalized) unit.
A representation of a product system is a measurable map φ : E → B(H),

fiberwise linear and multiplicative such that φ(e)∗φ(e) = ‖e‖21 ∀e ∈ E. It fol-
lows that any measurable section f ∈ L1(E) defines a bounded operator ξ 7→

φ(f)ξ :=
∞∫
0

dt φ(f(t))ξ. We may define the spectral algebra or continuous Cuntz

algebra C∗(E) associated to E as the norm closure of the ∗-algebra generated by{⊕
φ

φ(f)φ(g)∗ : f, g ∈ L1(E)
}

, where the direct sum runs over a representative

set of representations of E. By results of [3] there is a 1-1-correspondence between
representations of E and C∗(E).

For technical reasons, we assume that all product systems in this paper
contain nontrivial units. We also suppose that dim(E(t)) > 1, hence infinite for
one and therefore each t > 0.

Then by Section 8 of [3], C∗(E) is simple and by [15] and [16] KK-contractible,
and it contains infinite projections. Therefore it does not admit any (lower semi-
continuous) traces. By Section 4.2.19 of [15], C∗(E) is also the C∗-algebra gen-
erated by {φ(f) : f ∈ L1(E)} and E is contained in the multiplier algebra of
C∗(E).
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The most canonical representation of a product system is the regular repre-

sentation on L2(E) =
⊕∫

(0,∞)

E(t)dt given by

(λ(e)ξ)(t) =
{
eξ(t− s) if t > s,
0 otherwise,

where e ∈ E(s). By simplicity we may identify C∗(E) with λ(C∗(E)) and know
that λ(E) ⊆ M(C∗(E)) and λ(L1(E)) ⊆ C∗(E). Let λt be the correspond-
ing e0-semigroup, i.e. λt(A) =

∑
n
λ(en(t))Aλ(en(t))∗ with (en(t)) a fixed trivi-

alization of E and the sum taken weakly or strongly. A λ-cocycle is a strongly
measurable (equivalently ultraweakly continuous) family (Ut)t∈R+ ⊆ B(L2(E))

such that U∗t Ut = λt(1l) = P (t) which is the projection onto
⊕∫

(t,∞)

E(s) ds and

Usλs(Ut) = Us+t for all s, t > 0.

2. COCYCLES AND ENDOMORPHISMS

Definition Let A be a C∗-algebra and ρ be a ∗-endomorphism of A. We
call ρ unital if ρ(A) contains an approximate unit for A. End1(A) denotes the set
of unital endomorphisms of A.

Remark (i) The definition is consistent with the usual meaning for A unital.
(ii) Any ρ ∈ End1(A) extends uniquely to the multiplier algebra M(A):

Because ρ(A) contains an approximate unit for A, we have ρ(A)Aρ(A) = A (even
without taking the closure by Cohen’s factorization theorem ([7], (32.26)). Thus
for any m ∈ M(A), ρ(m)ρ(a1)bρ(a2) := ρ(ma1)bρ(a2) and ρ(a1)bρ(a2)ρ(m) :=
ρ(a1)bρ(a2m) defines a multiplier ρ(m) on A, and it is clear that ρ is homomorphic.
Of course ρ(1) = 1.

Suppose we have a semigroup t 7→ s(t), t > 0 of isometries in B(H), where
A ⊆ B(H) is a separable C∗-algebra acting nondegenerately on the separable
Hilbert space H.

Lemma If t ranges over (0,∞), the following conditions are equivalent:
(i) t 7→ s(t)ξ is dt-measurable for all ξ ∈ H;
(ii) t 7→ s(t)x, xs(t) are dt-measurable for all x ∈ A;
(iii) t 7→ s(t)x, xs(t) are continuous for all x ∈ A;
(iv) t 7→ s(t)ξ is continuous for all ξ ∈ H.

Proof. (i) ⇔ (iv) and (ii) ⇔ (iii) follow from 10.2.3 of [8], (iii) ⇒ (iv) and (ii)
⇒ (i) are evident because A acts nondegenerately. For (i) ⇒ (ii) we can follow the
proof of Pettis’ theorem. We include the argument for the readers convenience:
Suppose t 7→ s(t)ξ is measurable for all ξ ∈ H. Let (ξn) ⊆ H be norm dense in the
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unit sphere {ξ ∈ H : ‖ξ‖ = 1}. Then ‖T‖ = sup
n,m

|〈ξn, T ξm〉| for each T ∈ B(H).

Thus for any ε > 0 and t0 ∈ (0,∞) we have for x ∈ A

∆ε,t0 := {t : ‖(s(t)− s(t0))x‖ < ε} =
⋂
n,m

{t : |〈ξn, (s(t)− s(t0))xξm〉| < ε}.

In particular, ∆ε,t0 is measurable. Let (tl) ⊆ (0,∞) be a sequence such that
{xl = s(tl)x : l ∈ N} ⊆ {s(t)x : t ∈ (0,∞)} is dense in the latter. Then

⋃
l

∆ε,tl
=

(0,∞) and we define fε by induction as follows: fε|∆ε,t0 = x0, fε(t) = xl if
t ∈ ∆ε,tl

\ (∆ε,tl−1 ∪ · · · ∪∆ε,t0). We have ‖fε − s(·)x‖∞ < ε and fε is a simple
function. Similarly one shows that t 7→ xs(t) is measurable.

Lemma Let s(t) be a semigroup of isometries as in one of the conditions in

Lemma 2.3. Consider the strong integral sε = 1
ε

ε∫
0

dt s(t) in B(H) and suppose

sε ∈ A for each ε > 0. Then sεx→ x, xsε → x and s(t)x→ x, xs(t) → x for any
x ∈ A in norm, whenever ε→ 0, t→ 0. Moreover, s(t) ∈M(A) for each t > 0.

Proof. For any x ∈ A and t, ε, δ > 0 we have sεs(t)x = s(t)sεx
ε→0−→ s(t)x.

Thus x∗sεy = (s(t)x)∗sε(s(t)y)
ε→0−→ (s(t)x)∗(s(t)y) = x∗y. In the same way one

obtains x∗s∗εy, x
∗s∗εsεy

ε→0−→ x∗y which implies (sεx − x)∗(sεx − x) = x∗s∗εsεx −
x∗sεx − x∗s∗εx + x∗x → 0. So sε is a left, and because ‖s∗εsδ − sδ‖

ε→0−→ 0 also a
right approximate unit for A. We have s(t)sεx = sεs(t)x

t→0−→ sεx. The same holds
whenever x is on the other side. Now it is easy to see that the non-selfadjoint
algebra generated by the sε is dense in S := {

∫
dt f(t)s(t) : f ∈ L1(R+)}. Let

D := SAS. Then s(t)D, Ds(t) ⊆ D and s(t)d, ds(t) → d ∀d ∈ D provided t→ 0.
D is dense in A because sε is an approximate unit. Hence s(t) ∈ M(A) and
s(t) t→0−→ 1 strictly.

Proposition There is a 1-1-correspondence between:
(i) unital endomorphisms ρ ∈ End1(C∗(E)),

(ii) λ-cocycles (Ut) ⊆ B(L2(E)) such that
∞∫
0

Utλ(f(t)) dt ∈ C∗(E) for each

f ∈ L1(E).

Proof. (i)⇒(ii): Let ρ ∈ End1(C∗(E)). λ ◦ ρ defines a representation of
C∗(E) which is nondegenerate because ρ is unital. The claim would follow from
a nonunital version of 3.18 of [1]. We offer the following proof: Since λ(E) ⊆
M(C∗(E)), the extension ρ of ρ is defined on λ(E). Thus ρ(λ(en(t))) is an isometry

in L2(E) and we can form Ut =
∞∑

n=1
ρ(λ(en(t)))λ(en(t))∗ in the strong operator

topology. It is clear that t 7→ Utξ is measurable provided ξ ∈ L2(E). For any
s, t > 0 and ξ as above we have:

Utλt(Us)ξ=
∑

n

ρ(λ(en(t)))λ(en(t))∗
∑

k

λ(ek(t))
∑

l

ρ(λ(el(s)))λ(el(s))∗λ(ek(t))∗ξ,
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where all the sums are taken in the strong sense. We get the convergent sum∑
n

∑
l

ρ(λ(en(t)el(s)))λ(en(t)el(s))∗ξ.

Because (en(t)el(s)) is an orthonormal basis of E(t+s), this equals Ut+s. ρ(1) = 1

implies that U∗t Ut =
∑
λ(en(t))ρ(1)λ(en(t))∗ = λt(1) = P (t). Furthermore,

ρ(λ(f)) =

∞∫
0

dt Utλ(f(t))

for f of the form t 7→ α(t)ei(t), α ∈ L1(R+), hence for all f ∈ L1(E).

(ii)⇒(i) For any cocycle Ut as in (ii), the map e(t) 7→ Utλ(e(t)), e(t) ∈ E(t)
defines a representation of E on L2(E) and thus gives a faithful representation

of C∗(E). The assumption implies that its image lies in λ(C∗(E)) and we get

a ∗-endomorphism ρ of C∗(E). By Lemma 2.3, s(t) := Utλ(u(t)) is a strictly
continuous semigroup of isometries such that all integrals

∫
dt α(t)s(t), where α ∈

L1(R+) are in C∗(E). By Lemma 2.4, sε = 1
ε

ε∫
0

dt s(t) is an approximate unit in

C∗(E) which lies in ρ(C∗(E)) and thus ρ is unital.

We denote the above cocycle by ρU and write ρU for the endomorphism given
by U . The above proof shows that ρUt ∈ C∗(E)∗∗ for all t > 0. Let ρ∗∗ be the
bitransposed endomorphism. We write ρ(σUt) for ρ∗∗(σUt).

Remark (i) ρσUt = ρ(σUt) ρUt and ρUρV = ρρU (V )U .
(ii) If ρ = Ad(W ) for some unitary W ∈ M(C∗(E)), then Ut = Wλt(W ∗)

is the corresponding cocycle.

(iii) Let us mention without proof that there exists a partial extension of the
above correspondence to certain completely positive maps. Let ϕ : L1(E) → A

be any bounded homomorphism into a C∗-algebra A. Then ϕ extends uniquely

to a completely positive map φ : C∗(E) → A. Conversely, any completely posi-
tive map ψ such that ψ|L1(E) is homomorphic has ψ as its unique extension. If
A = C∗(E), then at =

∑
φ(λ(en(t)))λ(en(t))∗ is a family of operators such that

atλt(as) = at+s (here φ denotes the extension of φ to say C∗(E)∗∗). Conversely,
any such “subcocycle” with

∫
dt atλ(f(t)) ∈ C∗(E), ∀f ∈ L1(E) defines a com-

pletely positive map of C∗(E) into itself. This may be viewed as a continuous

analogue of the correspondence between contractions in and certain completely

positive maps on On studied in [4]. On the other hand, there should exist com-
pletely positive maps on C∗(E) which are not multiplicative on L1(E).
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3. WEIGHTS AND QUASI-FREE AUTOMORPHISMS

An automorphism of a product system E is a measurable fiberwise unitary map α
preserving the product of E. α defines an automorphism of C∗(E) also denoted
by α and such automorphisms are called quasi-free. For instance one always has
the quasi-free gauge automorphism γs(e(t)) := eiste(t), e(t) ∈ E(t). Consider the
exponential product systems En with En(t) = Fs(L2((0, t),Cn)). They are exactly
those generated by their units i.e. En(t) = [u1(t1) · · ·uk(tk)|k ∈ N, ui units, t1 +
· · · + tk = t]. The index n is a complete cocycle conjugacy invariant in this
case. In Section 8 of [1] Arveson showed that for En, n = 1, . . . ,∞, all quasi-free
automorphisms are given by

α(exp(f)) = e
ist−t‖ξ‖2/2−

t∫
0

〈ξ,uf(x)〉 dx

exp(uf + χ(0,t) ⊗ ξ),

where f ∈ L2((0, t),Cn), u is a unitary on Cn and ξ ∈ Cn. The group formed
by them is therefore U(n)oCn × R. Let αt be a 1-parameter group of quasi-free
automorphisms of C∗(E). Then αt|E(s) : E(s) → E(s) is a unitary group on the
Hilbert space E(s) i.e. αt|E(s) = eitHs . We haveHs⊗Hr

∼= Hs+r. By Theorem 3.4
of [2] the maps e−βHs are not compact for any β ∈ R. Thus we have:

Remark Fix β ∈ R and s ∈ R+. For any ε1 > 0 and c > 0 we can
find N ∈ N and vk(s) ∈ E(s) unit vectors, analytic for the action αt such that
N∑

k=0

‖e−βHsvk(s)− e−βλkvk(s)‖ < ε1 and
N∑

k=0

e−βλk > c.

It is easy to see that there are no KMS-states:

Proposition Let αt be a 1-parameter quasi-free automorphism group. Then
there is no nonzero β-KMS state ϕβ on C∗(E) for any value of β.

Proof. Suppose the contrary and let ϕβ be such a state. It extends to
M(C∗(E)). Let c > 0, ε1 > 0 and take N and vk(s) as in Remark 3.1. Note
that vk(s) ∈M(C∗(E)) by 4.2.20 of [15]. The β-KMS condition implies:

1 = ϕβ(1) >
N∑

k=0

ϕβ(vk(s)vk(s)∗) =
N∑

k=0

ϕβ(vk(s)∗αiβ(vk(s)))

>
N∑

k=0

e−λkβϕβ(vk(s)∗vk(s))− ε1 =
N∑

k=0

e−λkβ − ε1

and
N∑

k=0

e−λkβ > c. For c big enough we thus obtain a contradiction.

Recall that for any weight ϕ on a C∗-algebra which we always assume to
be positive, we have the left ideal Nϕ = {x ∈ A : ϕ(x∗x) < ∞} and the hered-
itary subalgebra Dom(ϕ) := N∗

ϕNϕ on which ϕ is finite. ϕ is called lower semi-
continuous (l.s.c. for short) if {x ∈ A+ : ϕ(x) 6 d} is norm closed in A+ for each
d > 0. In this case we have ϕ(x) = sup{ω(x) : ω ∈ A∗+, ω 6 ϕ} for any positive
element. As β-KMS condition we require that ϕ(xy) = ϕ(yαiβ(x)) for all analytic
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elements x, y ∈ Dom(ϕ). Note that KMS-weights are always invariant under the
respective group.

In order to show the absence of KMS-weights for quasi-free actions on C∗(E),
we need certain domain conditions. Let us call a section t 7→ e(t) ∈ E(t) continuous
if t 7→ λ(e(t)) is a strongly continuous family of operators (equivalently in any other
nonzero representation). Using Proposition 2.5 of [1] we can find a trivialization
(en) of E such that t 7→ en(t) is continuous for each n ∈ N. We denote the dense
subspace of L1(E) consisting of the continuous sections of compact support by
Cc(E). Then span(Cc(E)Cc(E)∗) is a norm dense ∗-subalgebra.

Consider the unbounded weight T : C∗(E) → B(L2(E)) defined as the weak
integral over the gauge group. More precisely: Let Dom(T ) :=

{
x ∈ C∗(E) :

∃y ∈ B(L2(E)) ∀ξ, η ∈ L2(E) : 〈ξ, yη〉 = 1
2π lim

a→∞

a∫
−a

dt 〈ξ, λ(γt(x))η〉
}

and define

T (x) = y for x ∈ Dom(T ).

Lemma span(Cc(E)Cc(E)∗) ⊆ Dom(T ) and for f, g ∈ Cc(E) we have

T (λ(f)λ(g)∗) =

∞∫
0

dt λ(f(t))λ(g(t))∗.

Proof. For f, g ∈ Cc(E) and ξ, η ∈ L2(E), we have

1
2π

lim
a→∞

a∫
−a

dr〈ξ, γr(λ(f)λ(g)∗)η〉= 1
2π

lim
a→∞

a∫
−a

dr
∫

dt
∫

ds eir(s−t)〈ξ, λ(f(s))λ(g(t))∗η〉

=

∞∫
0

dt 〈ξ, λ(f(t))λ(g(t))∗η〉,

because the function (s, t) 7→ 〈ξ, λ(f(s))λ(g(t))∗η〉 is continuous with compact
support.

Let AE ⊆M(C∗(E)) be the C∗-algebra generated by the set{ ∞∫
0

dt λ(f(t))λ(g(t))∗ : f, g ∈ L2(E)
}
.

From now on we may restrict T to D := {x ∈ Dom(T ) : T (x) ∈ AE} and T
remains densely defined. We call a weight ϕ on C∗(E) gauge invariant if it admits
a factorization ϕ = ϕ ◦ T , where ϕ is a weight on AE .

Theorem Let ϕ be a lower semi-continuous weight on C∗(E) such that
Cc(E)Cc(E)∗ ⊆ N∗

ϕNϕ = Dom(ϕ).
(i) ϕ is gauge invariant iff ϕ ◦ γt = ϕ for all t ∈ R and in this case there

exists a positive Borel measure µ on R+ and a measurable µ-a.e. bounded family

t 7→ A(t) ∈ B(E(t)) such that ϕ(λ(f)λ(g)∗)) =
∞∫
0

dµ(t) tr
[
A(t)(f(t)⊗ g(t))

]
.
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Suppose further that ϕ is a β-KMS-weight for the quasi-free action α and
some finite β.

(ii) If ϕ is gauge invariant, then ϕ = 0.
(iii) If there exists a unit u and λ 6= 0 such that αt(u)(s) = eiλstu(s) for all

s > 0, then ϕ = 0.

Proof. (i) Let ϕ be any weight on C∗(E) such that Cc(E) ⊆ N∗
ϕ. We define

the positive sesquilinear form

b : Cc(E)× Cc(E) → C, b(g, f) := ϕ(λ(f)λ(g)∗).

The associated Hilbert space is a subspace of the GNS-space H for ϕ. The form
b determines ϕ provided span(Cc(E)Cc(E)∗) acts non-degenerately, in particular
if ϕ is l.s.c. which we assume. Any continuous real valued function α ∈ Cc(R+)
with compact support acts on Cc(E) by (αf)(t) := α(t)f(t). Now suppose ϕ is
gauge invariant. We can write ϕ = ϕ ◦ T with some weight ϕ on AE such that{ ∞∫

0

dt λ(f(t))λ(g(t))∗ : f, g ∈ Cc(E)
}
⊆ Dom(ϕ). Clearly, ϕ ◦ γt = ϕ ∀t ∈ R,

and the gauge invariance implies b(αg, f) = b(g, αf) for any α as above. If on the
other hand, we assume ϕ ◦ γt = ϕ ∀t ∈ R, then the group (Utf)(s) := eistf(s) on
Cc(E) extends to a strongly continuous unitary group on Hϕ implementing γ. It
follows that b(αg, f) = b(g, αf) for Fourier transforms of L1-functions, and in fact
all real valued α ∈ Cc(R+). It remains to show that this condition implies the
existence of µ and t 7→ A(t).

Taking a trivialization (en) of E which consists of continuous sections, the
functionals Cc(R+) 3 α 7→ b(αei, ei) are positive and hence define positive Radon
measures on R+. By the polarization identity, we obtain complex Borel measures
µij on R+ such that µij(α) = b(αei, ej). Let µ be any regular Borel measure
whose class dominates dt and |µij | for all i, j ∈ N. Then each µij has a density
ρij with respect to µ and for µ-almost all t ∈ R+, the form

∑
aibjρij(t) is finite

whenever (ai), (bj) ∈ `2(N) (or C if E is trivial). Hence the matrix (ρij(t)) defines
a measurable family of positive operators A(t) on E(t) which are µ-a.e. bounded

and such that ϕ(λ(f)λ(g)∗) =
∞∫
0

dµ(t) tr[A(t)(f(t)⊗ g(t))]. Note that t 7→ ‖A(t)‖

is not necessarily in L∞(µ).
(ii) Let ϕ be l.s.c., gauge invariant and β-KMS, β finite such that Cc(E) ⊆

N∗
ϕ. We can find µ and t 7→ A(t) as in (i). We have for K,L ∈ span(Cc(E)Cc(E)∗):

ϕ(KL) =

∞∫
0

dµ(t) tr
[
A(t)(KL)(t, t)

]
=

∞∫
0

dµ(t)

∞∫
0

ds

min(s,t)∫
0

dλ

tr
[
A(t)

[
K(t, s)(L(s−λ, t− λ)⊗ 1λ) + (K(t− λ, s− λ)⊗ 1λ)L(s, t)

]]
=

∞∫
0

dµ(t)

∞∫
0

ds

min(s,t)∫
0

dλ

tr
[
A(t)

[
eβHte−βHtK(t, s)eβHse−βHs(L(s− λ, t− λ)⊗ 1λ)
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+ eβHte−βHt(K(t− λ, s− λ)⊗ 1λ)eβHse−βHsL(s, t)
]]

=

∞∫
0

dµ(t)

∞∫
0

ds

min(s,t)∫
0

dλ(∗)

tr
[
e−βHs

[
(L(s− λ, t− λ)⊗ 1λ)A(t)eβHt(αiβK)(t, s)

+ L(s, t)A(t)eβHt((αiβK)(t− λ, s− λ)⊗ 1λ)
]]

= ϕ(LαiβK),

where the last equality follows from the β-KMS-condition. On the other hand,

(∗∗)
ϕ(LαiβK)=

∞∫
0

dt

∞∫
0

dµ(s)

min(s,t)∫
0

dλ tr
[
A(s)

[
L(s, t)((αiβK)(t−λ, s−λ)⊗ 1λ)

+ (L(s−λ, t−λ)⊗ 1λ)(αiβK)(t, s)
]]
.

It follows that if f, g ∈ Cc(E), now also ϕ(λ(α1f)λ(α2g)∗) is defined for
bounded Borel functions α1 and α2. In particular, the families χ(a,b]Kχ(c,d] and
χ(a,b]Lχ(c,d] are in Dom(ϕ). The Radon-Nikodym theorem implies that for any

regular Borel measure ν and f ∈ L1(R+, ν), we have f(t) = lim
ε→0

1
ν(t−ε,t]

t∫
t−ε

dνf ,

ν-a.e. Now for a > ε > 0 we replace L by χ(a−ε,a]L and K by Kχ(a−ε,a].
Using a little calculation (compare Proposition 3.5 (i)), the first expression (∗)

multiplied by ε−2 converges to
∞∫
0

dµ(t) tr[e−βHaL(a, t)A(t)eβHtαiβK(t, a)] for al-

most all a > 0 and the second (∗∗) multiplied by (εµ(a − ε, a])−1 converges to
∞∫
0

dt tr[A(a)L(a, t)αiβK(t, a)] for µ-almost all a > 0 and ε → 0. Thus we may

replace µ by the Lebesgue measure and conclude then A(t) = e−βHt for almost all
t > 0.

On the other hand, e−βHt are noncompact operators and we can show that
they do not define positive weights: Let K = λ(f)λ(f)∗, f ∈ Cc(E) which is
positive. Define for δ > 0 and n ∈ N the section fen(t) = f(t − δ)en(δ) if t > δ
and 0 otherwise.

Then KN :=
N∑

n=0
λ(fen)λ(fen)∗ = λ(f)

( N∑
n=0

λ(en(δ))λ(en(δ))∗
)
λ(f)∗ 6 K

and

ϕ(K) > ϕ(KN ) =
N∑

n=0

∞∫
δ

dt tr
[
e−βHt((fen)(t)⊗ (fen)(t))

]

=
N∑

n=0

∞∫
0

dt tr
[
e−βHt(f(t)⊗ f(t))

]
tr

[
e−βHδ(en(δ)⊗ en(δ))

]
> ϕ(K)

N∑
n=0

tr
[
e−βHδ(en(δ)⊗ en(δ))

]
.
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Since the last sum diverges for N → ∞, we conclude ϕ(K) = 0. Using the
polarization identity, it follows that ϕ(Cc(E)Cc(E)∗) = 0 which finishes the proof.

(iii) Suppose ϕ is as in the assumption with GNS-construction (π,Λ,H).
Then Λ : Nϕ → H is a closed linear map ([13], 2.1.11). Let u be a unit such that
αt(u)(s) = eiλstu(s), where λ 6= 0. Then α leaves the C∗-algebra generated by
{u(α) : α ∈ Cc(R+)} invariant. This algebra is the Wiener-Hopf algebra W and
also the C∗-algebra C∗(E0) of the trivial product system. But αt = γλt on this
subalgebra, hence ϕ|W is gauge invariant. Using (ii), ϕ(u(α)u(β)∗) = 0 whenever
α, β ∈ Cc(R+). Let (αn) ⊆ Cc(R+) be a sequence of positive functions such that

supp(αn) ⊆
(
0, 1

n

)
and

n−1∫
0

dt αn = 1. Then un := u(αn)u(αn)∗ is an approximate

unit in C∗(E) and we have 〈Λ(xun),Λ(y)〉 = ϕ(unx
∗y) = 0, whenever x, y ∈ Nϕ by

the Cauchy-Schwarz inequality. Thus Λ(xun) = 0 for all n and therefore Λ(x) = 0
because Λ is closed. But this means ϕ = 0.

We now define a counterpart of the ground state of O∞ or the Toeplitz-Cuntz
algebras Tn on C∗(E). Note that according to Voiculescu ([14]), Tn is the reduced
free product of n Toeplitz algebras with respect to the ground state on T1. One
would expect to obtain C∗(En) as a kind of reduced free product of n+1 Wiener-
Hopf algebras with respect to the weight we are going to consider. Although our
weights have somewhat unusual properties, i.e. they are not lower semi-continuous,
this property is necessary if we want to obtain irreducible GNS-representations.
We keep the assumption that E contains a unit u and put:

ξε =
{ 1

εu(t) if t < ε,
0 otherwise.

Then ‖ξε‖2 = 1
ε . The same section considered as an element in L1(E) has norm 1

and is an approximate unit denoted by uε. We have the family of vector functionals
ϕε(x) = 〈ξε, λ(x)ξε〉. If the limit for ε→ 0 exists, we denote it by ϕu(x).

Proposition (i) If f ∈ L1(E) is a section, then

ϕu(λ(f)) =
1
2

lim
ε→0

1
ε

ε∫
0

dt 〈u(t), f(t)〉 =:
1
2
ωu(f).

(ii) For f, g ∈ L1(E) and one of them bounded near 0 we have ωu(f ∗ g) =
0 = ϕu(λ(f)λ(g)).

(iii) Let f, g be sections (not necessarily L1) such that λ(f)λ(g)∗ ∈ C∗(E) and

lim
ε→0

1
ε

ε∫
0

dt
ε∫
0

ds 〈u(t), f(t)〉〈g(s), u(s)〉 exists, then it is equal to 2ϕu(λ(f)λ(g)∗).

For f, g ∈ L1(E), ϕu(λ(f)λ(g)∗) = 0.
(iv) C∗(E)λ(L1∩L2)+λ(L1∩L2) is a dense left ideal and λ(L1∩L2)∗C∗(E)∼·

λ(L1 ∩ L2) is a dense hereditary subalgebra on which ϕ(λ(f)∗(λ(x) + α1)λ(g)) :=
〈f, λ(x)g〉 + α〈f, g〉 defines an extension of ϕu to a non lower semi-continuous
weight having the regular representation as its non degenerate GNS-representation.
In particular, ϕu does not depend on the choice of the unit.

(v) For the GNS-map Λϕ : Nϕ → Hϕ we have 〈Λϕ(λ(f)),Λϕ(λ(g))〉 =
ϕ(λ(f)∗λ(g)) = 〈f, g〉, ∀f, g ∈ L1 ∩ L2. Let an operator on L2(E) be defined
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by (eizNg)(t) = eiztg(t). Then ϕ(λ(f)∗γzλ(g)) = 〈f, eizNg〉 which extends to the
upper half plane. γz is the analytic extension of the gauge group.

Proof. (i) For f ∈ L1(E), 〈ξε, λ(f)ξε〉 = 1
ε2

ε∫
0

dt
t∫
0

dx 〈u(t), f(x)u(t − x)〉 =

1
ε2

ε∫
0

dt
t∫
0

dx 〈u(x), f(x)〉. If ωu(f) exists, then
ε∫
0

dt t
[

1
t

t∫
0

dx 〈u(x), f(x)〉 − ωu(f)
]

= o(ε2) shows the claim.

(ii) For f, g ∈ L1(E), 〈ξε, λ(f ∗g)ξε〉 = 1
ε2

ε∫
0

dt
t∫
0

dx 〈u(t), (f ∗g)(x)u(t−x)〉 =

1
ε2

ε∫
0

dt
t∫
0

dx
x∫
0

ds 〈u(s), f(s)〉〈u(x − s), g(x − s)〉. The conclusion follows from the

fact that for a continuous ψ ∈ Cc[0,∞) we have lim
ε→0

1
ε2

ε∫
0

dt
t∫
0

dxψ(x) = 1
2ψ(0).

(iii) 〈λ(f)∗ξε, λ(g)∗ξε〉 = 1
ε2

ε∫
0

dx
ε−x∫
0

dt 〈u(t), f(t)〉
ε−x∫
0

ds 〈g(s), u(s)〉 =

1
ε2

ε∫
0

dx
x∫
0

dt
x∫
0

ds 〈u(t), f(t)〉〈g(s), u(s)〉 and the first claim follows as in (i). The

second claim follows because x 7→
x∫
0

dt
x∫
0

ds 〈u(t), f(t)〉〈g(s), u(s)〉 is continuous

and converges to 0 for x→ 0.
(iv) We first check that ϕ given by the formula ϕ(λ(f)∗λ(x)λ(g)) = 〈f, λ(x)g〉

is well-defined. We only have to show that the map λ(x)λ(f) 7→ λ(x)f ∈ L2(E),

x ∈ C∗(E), f ∈ L1 ∩L2 is well-defined i.e.
k∑

i=1

λ(xi)λ(fi) = 0 implies
k∑

i=1

λ(xi)fi =

0. But
k∑

i=1

λ(xi)λ(fi) = 0 implies
k∑

i=1

λ(xi)λ(fi)ξε =
k∑

i=1

λ(xi)(fi ∗ uε) = 0 for all

ε > 0 and fi ∗ uε → fi in L2(E) shows that
k∑

i=1

λ(xi)fi must be 0. ϕ extends

ϕε because 〈f, λ(x)g〉 = lim
ε→0

〈f ∗ uε, λ(x)g ∗ uε〉 = lim
ε→0

〈ξε, λ(f)∗λ(x)λ(g)ξε〉 =

ϕu(λ(f)∗λ(x)λ(g)) for all x ∈ C∗(E) and f, g ∈ L1 ∩ L2. The same calculations
are valid if we replace λ(x) by 1.

The corresponding GNS-representation is obviously the regular representa-
tion which is known to be irreducible ([3], Theorem 5.2).

Suppose finally that ϕ is l.s.c. Then for any positive x ∈ C∗(E), we have
ϕ(x) = lim{ω(x) : ω ∈ C∗(E)∗+ such that ω 6 ϕ} and for any 0 6 ω 6 ϕ there ex-
ists a positive contraction Tω ∈ πϕ(C∗(E))′ such that ω(x∗y) = 〈Λϕ(x), TωΛϕ(y)〉.
But the commutant is trivial and thus ϕ bounded which is a contradiction.

(v) This follows from (iv).

In case of E = En there is a nice dense subalgebra of Dom(ϕ) which is the
polynomial ∗-algebra generated by the units in En. If u is a unit in a product
system E and f a continuous function on [0,∞) of compact support, denote the
section t 7→ f(t)u(t) by u(f). Let S1 be the algebra and S be the ∗-algebra gener-
ated by them. One can see that S is dense in C∗(E) iff E = En for some n. Note
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that for any two units u and v the function t 7→ 〈u(t), v(t)〉 is multiplicative and
hence of the form t 7→ e−c(u,v)t. c is the conditionally positive definite covariance
function of [1].

Remark Each element in S is a linear combination of words of the form
u1(f1) · · ·uk(fk)vl(gl)∗ · · · v1(g1)∗. For each f ∈ S1 the strong limit s-lim

t→0
λ(f(t))

exists and lies in C1.

Proof. Let f1, g1 ∈ Cc[0,∞) and u, v units. Then we have omitting λ:

v(g1)∗u(f1)

=

∞∫
0

dt

t∫
0

ds g1(t)f1(s)e
−c(v,u)sv(t− s)∗ +

∞∫
0

ds

s∫
0

dt g1(t)f1(s)e
−c(v,u)tu(s− t)

= v(f2)∗ + u(g2),

where f2, g2 ∈ Cc[0,∞). The first claim follows from this. For the second, observe
first that lim

t→0
λ(f(t)) exists and is in C1 if f = u(f1) for some f1 ∈ Cc[0,∞).

Next suppose that for f ∈ S1, lim
t→0

λ(f(t))ξ = αξ for any ξ ∈ L2(E). Then

λ((u(f1) ∗ f)(t))ξ =
t∫
0

dx f1(x)u(x) · λ(f(t − x))ξ → 0, whenever ξ ∈ L2(E) and

f1 ∈ Cc[0,∞).

The weight ϕ is now given on S as follows:

ϕ(λ(f))1 = ϕ(λ(f)∗)1 = s-lim
t→0

λ(f(t)), ϕ(λ(f)λ(g)∗) = 0.

Note that we could replace here λ by any other representation.
It should be possible to define our weight if E has no units using Proposi-

tion 3.3 (iv).

Proposition There is no ground state for the gauge action.

Proof. Let ω be a ground state on C∗(E). Then ω(γt(x)) = ω(x) ∀x ∈
C∗(E) ([12], 4.2.2). We may consider ω as a state on the Wiener-Hopf algebra
W generated by a unit u and suppose that in the GNS-representation of W with
respect to ω there is an invariant subspace of the form L2(R+) on which u(t)
acts like a shift by t. Otherwise ω vanishes on the ideal of compact operators
and defines a translation invariant state on W/K = C0(R) which does not exist.
We have ω(x) = 〈Ω, πω(x)Ω〉, x ∈ W and because Ω is cyclic, the component
of Ω in the subspace L2(R+) is not zero and may be identified with a function

f ∈ L2(R+). But then 〈f, γsu(t)f〉 =
∞∫
t

dr eistf(r)f(r − t) is independent of s for

any fixed positive t. Thus
∞∫
t

dr f(r)f(r − t) = 0 for t 6= 0 hence f = 0 which is a

contradiction.

Sakai remarked that if we have a unital C∗-algebra on a Hilbert space, any
1-parameter automorphism group which is implemented by a positive generator
admits a ground state ([12], 4.2.13). As we can see here the assertion is false in
the nonunital case.
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4. SIMPLICITY OF CROSSED PRODUCTS

In this section we consider a strongly continuous automorphism group w : G →
Aut(E) (i.e. w|E(t) is a strongly continuous unitary group for each t > 0), where
G is a separable locally compact abelian group. The corresponding quasi-free
automorphism group is denoted by α : G → Aut(C∗(E)). We assume that there
exists a unit u0 in E such that wg(u0) = u0 for all g ∈ G. For instance, this
assumption is fulfilled for the U(n)-part of the quasi-free group on En. Let St :=
sp(w|E(t)) ⊆ Ĝ. Then StSr = St+r for r, t > 0. We denote S :=

⋂
t>0

⋃
r<t

Sr and

T :=
⋃

t>0
St ⊇ S. Then we have:

Theorem G×α C
∗(E) is simple if S = Ĝ and is not simple if T 6= Ĝ.

The proof is an adaptation of Arveson’s arguments which lead to the sim-
plicity of C∗(E) for any E containing a unit. It will be outlined in the rest of this
section.

Notice first that the regular representation is covariant for α and denoted by
(λ,Uλ). The following shows in particular the second claim of Theorem 4.1.

Proposition λ× Uλ : G×α C
∗(E) → B(L2(E)) is faithful if S = Ĝ and is

not faithful if T 6= Ĝ.

Proof. We have sp(Uλ) = T . If T 6= Ĝ, then ker(λ × Uλ) contains the
nontrivial subalgebra generated by {ϕ ⊗ x : x ∈ C∗(E), supp(ϕ̂) ∩ T = ∅} and is
therefore not faithful.

Suppose S = Ĝ. For each γ ∈ Ĝ and any decreasing sequence (Ωk) of
neighborhoods of γ such that

⋂
k

Ωk = {γ}, choose a sequence of unitvectors ξk ∈

E(tk), tk ↘ 0 such that spw(ξk) ⊆ Ωk.
Recall the weak integral representation of elements in λ(C∗(E)): For f, g ∈

L1(E) ∩ L2(E) and ξ, η ∈ L2(E) we have ([3], 6.4):

〈ξ, λ(f)λ(g)∗η〉 =

∞∫
0

dt 〈ξ, λop
t (f ⊗ g)η〉,

where λop
t is the eo-semigroup coming from the right anti-representation r of E on

L2(E) defined by r(e)ξ(t) = ξ(t − s)e, if t > s and 0 otherwise, where e ∈ E(s).
This formula implies

[λ(f)λ(g)∗, r(ξk)] =

tk∫
0

dt λop
t (f ⊗ g)r(ξk),

which is a sequence of compact operators converging to 0 in norm. We also have
for ϕ ∈ L1(G) and ψ ∈ L2(E)∫

G

dg [ϕ(g)Uλ(g)r(ξk)− ϕ(g)〈γ, g〉r(ξk)Uλ(g)]ψ k→∞−→ 0.
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Thus [(λ×Uλ)(y)r(ξk)r(ξk)∗−r(ξk)(λ×Uλ)(α̂γ(y))r(ξk)∗]ψ k→∞−→ 0 if y =
k∑

i=1

ϕi⊗

λ(fi)λ(gi)∗. Using the fact that the commutators above converge to 0 it follows
that ker(λ × Uλ) is an α̂-invariant ideal which is not the whole algebra. It must
be 0 because C∗(E) is simple.

Theorem (Compare [3], 6.1) Let A = (λ× Uλ)(G×α C
∗(E)). Then:

(i) A ∩ K = {0};
(ii) [A, r(E)] ⊆ K;
(iii) ‖P (t)yP (t)‖ = ‖y‖ for all t > 0 and y ∈ A.

Proof. (i) We have Uλ(g)r(e)=r(wge)Uλ(g) for any e∈E and thus Ad(Uλ(g))
◦ λop

t = λop
t ◦ Ad(Uλ(g)). From the mentioned integral representation we obtain

for f, h ∈ L1(E)

(λ× Uλ)(ϕ⊗ λ(f)λ(h)∗) =

∞∫
0

dt
∫
G

dg ϕ(g)λop
t (f ⊗ h)Uλ(g)

=

∞∫
0

dt
∫
G

dg ϕ(g)Uλ(g)λop
t (Uλ(g)∗(f ⊗ h)Uλ(g))

=

∞∫
0

dt
∫
G

dg ϕ(g)Uλ(g)λop
t ((wg−1f)⊗ (wg−1h))

in the same weak sense as before. Because λop
ε (A) has infinite multiplicity for each

ε > 0 and nonzero A, the assertion follows.
(ii) Let u0 be the unit in E such that wgu0(t) = u0(t). Then λ(u0(t)) and

r(u0(t)) both commute with Uλ(g). For x = (λ× Uλ)(ϕ⊗ λ(f)λ(h)∗) we obtain:

[x, r(u0(t))] =

t∫
0

ds
∫
G

dg ϕ(g)Uλ(g)λop
s ((wg−1f)⊗ (wg−1h))r(u0(t))

which is compact because for any fixed g ∈ G, the ds-integral is a compact oper-
ator, and it is easy to see that a strong Bochner integral over compact operators
is compact.

(iii) For xi = λ(fi)λ(hi)∗ we have∥∥∥P (t)(λ× Uλ)
( k∑

i=1

ϕi ⊗ xi

)
P (t)

∥∥∥ >
∥∥∥r(u0(t))∗(λ× Uλ)

( k∑
i=1

ϕi ⊗ xi

)
r(u0(t))

∥∥∥
=

∥∥∥∥ k∑
i=1

r(u0(t))∗xir(u0(t))
∫
G

dg ϕi(g)Uλ(g)
∥∥∥∥

=
∥∥∥∥ k∑

i=1

(xi + ki)
∫
G

dg ϕi(g)Uλ(g)
∥∥∥∥
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for some compact operators ki using (ii). So this norm equals
∥∥∥(λ×Uλ)

( k∑
i=1

ϕi ⊗

xi

)∥∥∥ using (i).

Let γ be the extension of the gauge group to G×α C
∗(E). The proof of 7.1

from [3] can easily be generalized to show the following:

Theorem If (π,U) is a nonzero covariant representation of (G,C∗(E)) on
a separable Hilbert space H, then for each y ∈ G×α C

∗(E) we have

sup
t∈R

‖(π × U)(γt(y))‖ > ‖(λ× Uλ)(y)‖.

Proof. We follow Section 7 of [3] closely and only indicate the modifications.
We start with a covariant representation (π,U) of (G,C∗(E)). Instead of just
representations π and π+ in Arveson’s proof, we consider the covariant represen-
tations (π, U) =

( ∫ ⊕
π ◦ γt dt, id⊗U(g)

)
on L2(R,H) and define (π+, U+) on

L2(R+,H) as follows. Let π+ be the unique representation of C∗(E) given by
φ+ : E → B(L2(R+,H)), where (φ+(e)ξ)(x) := φ(e)ξ(x − t) if x > t and 0 oth-
erwise. Let U+(g) := id⊗U(g). Then W : L2(E) ⊗ H → L2(R+,H) defined by
W (f ⊗ ξ)(x) = φ(f(x))ξ is a unitary equivalence between the covariant represen-
tation (λ ⊗ 1l, Uλ ⊗ U) and a covariant subrepresentation of (π+, U+). For each
a > 0 we have W (P (a)⊗ 1l) = χaW , where χa is the multiplication with χ[a,∞) in
L2(R+,H). χa commutes with U+(g) and P (a)⊗ 1l with Uλ(g)⊗U(g). We finally
obtain similarly to the end of Section 7 in [3] for each y ∈ G×α C

∗(E):

sup
t∈R

‖(π × U)(γt(y))‖ > ‖(λ⊗ 1l)× (Uλ ⊗ U)(y)‖.

Because G is amenable, we can find a sequence of unit vectors (ξl) ⊆ H such that
‖U(g)ξl − ξl‖ → 0 uniformly on compact subsets of G. If ξ and η run through

the unit vectors in L2(E), then we have
∥∥∥(λ ⊗ 1l) × (Uλ ⊗ U)

( k∑
i=1

ϕi ⊗ xi

)∥∥∥ >

sup
ξ,η

lim
l→∞

〈
ξ⊗ξl, (λ⊗1l)× (Uλ⊗U)

( k∑
i=1

ϕi⊗xi

)
η⊗ξl

〉
= sup

ξ,η

〈
ξ, (λ×Uλ)

( k∑
i=1

ϕi⊗

xi

)
η
〉

=
∥∥∥(λ × Uλ)

( k∑
i=1

xi ⊗ ϕi

)∥∥∥, provided the ϕi ∈ L1(G) are of compact

support.

Corollary If S = Ĝ, then G×α C
∗(E) is γ-simple.

Proof of 4.1. We can now use Section 8 of [3] to conclude the simplicity
of G ×α C∗(E) whenever S = Ĝ. To this end let (π,U) be any nonzero co-
variant representation of (G,C∗(E)) on a separable Hilbert space H. By [3],
8.2 there exists a sequence of unit vectors (ξk) ⊆ H such that 〈ξk, π(x)ξk〉 →
ωu0(x) for each x ∈ C∗(E) where ωu0 is the state such that ωu0(λ(f)λ(g)∗) =∫

dt 〈u0(t), f(t)〉
∫

ds 〈g(s), u0(s)〉. But ωu0 is G-invariant and thus defines also
a covariant representation (πu0 , Uu0). Moreover, we have ‖(πu0 × Uu0)(y)‖ 6



576 Joachim Zacharias

‖(π × U)(y)‖ for all y ∈ G ×α C
∗(E) using the approximation by vector states.

The same holds for the units ut
0 given by ut

0(s) = eistu0(s) and thus

‖(πu0 × Uu0)(γt(y))‖ = ‖(πut
0
× Uut

0
)(y)‖ = ‖(πu0 × Uu0)(y)‖,

independently of t ∈ R. Therefore ker(π × U) is contained in a γ-invariant ideal
which must be 0 by 4.5. Thus π ×U is faithful and G×α C

∗(E) simple, provided
S = Ĝ because λ× Uλ is faithful in this case.

Remark For a quasi-free action of R, we can only conclude that there is
no l.s.c. trace on R ×α C

∗(E) which is scaled by α̂ because such a trace would
correspond to a l.s.c. KMS-weight on C∗(E) ([10]). There could exist other traces.
Under the assumption S = R however, we obtain simple and KK-contractible
C∗-algebras. Note that R ×γ C

∗(E) is stably projectionless and prime without
traces ([15]).
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