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1. INTRODUCTION AND PRELIMINARY BACKGROUND

The universal C∗-algebra of an operator space X, which will be denoted by C∗〈X〉,
is defined in the next statement.

Theorem 1.1. (Theorem 3.2 in [15]) Let X be an operator space. There
exist a C∗-algebra C∗〈X〉 and a completely isometric embedding i : X → C∗〈X〉
which have the following properties:

(i) The image i(X) generates C∗〈X〉 as a C∗-algebra.
(ii) For any C∗-algebra B and any complete contraction ϕ : X → B, there

exists a ∗-homomorphism θ : C∗〈X〉 → B such that θ ◦ i = ϕ.
Moreover, such a pair (C∗〈X〉, i) is essentially unique, i.e. if (A, j) is another

pair with the above property, then there exists a ∗-isomorphism ρ : A → C∗〈X〉
with ρ ◦ j = i.

We will identify X as a subspace of C∗〈X〉 and omit i and denote the uni-
tization of C∗〈X〉 by C∗〈X〉+. We denote the set of all bounded operators on
a separable infinite dimensional Hilbert space by B. Throughout this paper, B
means a C∗-algebra and J means a closed two-sided ideal in B. We denote this
by J / B and denote the quotient map by π : B → B/J .

The lifting property and the local lifting property have been defined by Kirch-
berg ([11]).
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Definition 1.2. ([11]) Let A be a unital C∗-algebra. We say A has the
Local Lifting Property (LLP) if for any J / B, any unital complete positive map
ϕ : A→ B/J and any finite dimensional operator system E ⊂ A, the restriction of
ϕ to E has a unital completely positive lifiting ψ : E → B (i.e., π ◦ψ = ϕ|E). We
say A has the Lifting Property (LP) if one can take E = A in the above situation.
In case A is a non-unital C∗-algebra, we say A has the LLP (respectively the LP)
if the unitization A+ of A has the LLP (respectively the LP).

It is known that the full group C∗-algebra C∗(F) of any countable free group
F has the LP. If F is uncountable, then C∗(F) has the LLP ([11]). In [11], E. Kirch-
berg found various pairs of C∗-algebras such that there is only one C∗-norm on
the algebraic tensor product of each of them. In particular,

Theorem 1.3. (Proposition 1.1 in [11], see also [17]) Let A be a C∗-algebra,
then A⊗max B = A⊗min B if and only if A has the LLP.

Now, we see how universal C∗-algebras are related to the LLP. Let X be an
operator space. We denote the algebraic tensor product ofX and B byX⊗B. Then
for y ∈ X ⊗B, the norm of y induced by C∗〈X〉⊗max B is sup{‖(θ · ρ)(y)‖}, where
the supremum is taken over all Hilbert spaces H and pairs of ∗-representations
θ of C∗〈X〉 and ρ of B whose ranges commute. Since each ∗-representation θ of
C∗〈X〉 is determined by the complete contraction θ|X, this norm is equal to the
δ-norm defined below.

Definition 1.4. Let X be an operator space. For y ∈ X ⊗B, we define the
δ-norm by

δ(y) = sup{‖(σ · ρ)(y)‖B(H)},
where the supremum is taken over all Hilbert spaces H and all pairs (σ, ρ) where
ρ : B → B(H) is a ∗-representation and σ : X → B(H) is a complete contraction
whose ranges commute. We denote the resulting (after completion) Banach space
by X ⊗δ B. Then

X ⊗δ B ⊂ C∗〈X〉 ⊗max B isometrically.

On the other hand, the norm on X ⊗ B induced by C∗〈X〉 ⊗min B is, of
course, the minimal norm. So, if C∗〈X〉 has the LLP, from Theorem 1.3 we have
X ⊗δ B = X ⊗min B. We will show that the converse is also true. This is an
operator space analogue of Theorem 1.3.

Pisier’s Theorem given below states that the δ-norm is a suitable factorization
norm.

Theorem 1.5. (Theorem 6.3.1 and Corollary 6.3.5 in [18]) Let y ∈ X ⊗ B
and ỹ : X∗ → B be the associated map. Then we have

δ(y) = inf{‖u‖cb ‖v‖cb}
where the infimum is taken over all n, maps v : X∗ → Mn, and u : Mn → B with
v weak∗-continuous and ỹ = u ◦ v.

At the end of this section, we state the revived Kaplansky density theorem.

Lemma 1.6. (Lemma 2.1 in [4]) Let R∗ be the predual of a von Neumann
algebra R and let B be a C∗-algebra. Then every complete contraction from R∗
to B∗∗ (respectively B) can be approximated by finite rank complete contractions
from R∗ to B in the point-weak∗ (respectively point-norm) topology.
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2. MAIN RESULTS

Definition 2.1. Let X be an operator space. For λ > 0, we say X has
the λ-OLLP if given any J / B and a complete contraction ϕ : X → B/J , for
every finite dimensional subspace E of X, there exists a map ψ : E → B with
cb-norm 6 λ such that π ◦ ψ = ϕ|E. We say X has the λ-OLP if one can take
E = X in the above situation. We say X has the OLLP (respectively OLP) if X
has the λ-OLLP (respectively λ-OLP) for some λ > 0.

Proposition 2.2. The operator space X has the 1-OLLP (respectively the
1-OLP and is separable) if and only if C∗〈X〉 has the LLP (respectively the LP
and is separable).

Proof. We only prove the case when X has the 1-OLLP. Assume that X has
the 1-OLLP. To check that C∗〈X〉 has the LLP, we give ourselves J / B, a unital
completely positive map ϕ : C∗〈X〉+ → B/J and a finite dimensional operator
system E ⊂ C∗〈X〉+. By a standard approximation argument, we may assume
that there is a finite dimensional subspace F ⊂ X such that E is contained in
the C∗-subalgebra of C∗〈X〉+ generated by F and the unit. Note that this C∗-
subalgebra is canonically ∗-isomorphic to C∗〈F 〉+. We fix a surjective unital ∗-
homomorphism ρ : C∗(F) → C∗〈X〉+. By the assumption, there exists a complete
contraction σ : F → C∗(F) such that ρ ◦ σ = idF . By universality, σ extends to a
unital ∗-homomorphism θ : C∗〈F 〉+ → C∗(F). Clearly, we have ρ ◦ θ = idC∗〈F 〉+ .
Applying the LLP of C∗(F) to ϕ ◦ ρ, we obtain a unital completely positive map
ψ : θ(E) → B such that π ◦ ψ = ϕ ◦ ρ|θ(E). Then, ψ ◦ θ|E is a unital completely
positive lifting of ϕ. This proves that C∗〈X〉 has the LLP. The “if” part is easy.

The lemma below is due to Arveson ([1]). In fact, it is proved there for
operator systems and unital completely positive maps, but it can be generalized
to the case of operator spaces and completely bounded maps in a formal way.

Lemma 2.3. Let X be a separable operator space and let J / B. Then the
set of all completely contractively liftable maps from X to B/J is closed in the
point-norm topology.

Proof. Combine Theorem 6 in [1] and Lemma 7.1 in [13].

Corollary 2.4. Let X be a separable operator space. If X has the λ1-OLLP
and the λ2-completely bounded approximation property, then X has the λ1λ2-OLP.

Proof. We give ourselves a complete contraction ϕ : X → B/J . Let E ⊂ X

be any finite dimensional space and let ε > 0 be arbitrary. By the assumption,
there is a finite rank map ρ on X with ‖ρ‖cb < λ2 + ε such that ρ|E = idE .
Since X has the λ1-OLLP, there is a map ψ′ : ρ(X) → B with ‖ψ′‖cb 6 λ1

such that π ◦ ψ′ = ϕ|ρ(X). Define ψ : X → B by ψ = ψ′ ◦ ρ. Then, we have
‖ψ‖cb < λ1(λ2 + ε) and π ◦ ψ|E = ϕ|E. By Lemma 2.3, we are done.
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Let E ⊂ Mn and let J / B. Since for any x ∈ E ⊗min B, we have

‖x+ Mn ⊗min J‖ = lim ‖x(1⊗ (1− en))‖ = ‖x+ E ⊗min J‖,

where {ei}i is any approximate unit for J , we have a canonical isometric inclusion

(E ⊗min B)/(E ⊗min J) ⊂ (Mn ⊗min B)/(Mn ⊗min J).

Since
Mn ⊗min (B/J) = (Mn ⊗min B)/(Mn ⊗min J),

we have
E ⊗min (B/J) = (E ⊗min B)/(E ⊗min J).

By [3], [5], for any operator space X, we have the canonical isometric identification
E ⊗min X = CB(E∗, X). Using Lemma 2.3, we conclude that any complete con-
traction ϕ from E∗ to any quotient C∗-algebra B/J has a completely contractive
lifting ψ : E∗ → B, i.e., π ◦ ψ = ϕ. Now, let F be a finite dimensional operator
space. For any J / B, there is a canonical contractive isomorphism

T : (F ⊗min B)/(F ⊗min J) → F ⊗min (B/J).

We define the exactness constant ex(F ) of F by ex(F ) = sup{‖T−1‖}, where
the supremum is taken over all C∗-algebras B and ideals J / B. By the same
argument as above, we conclude that for a finite dimensional operator space F , we
have ex(F ) 6 λ if and only if any complete contraction ϕ from F ∗ to any quotient
C∗-algebra B/J has a lifting with cb-norm 6 λ. See [16] for more information
about the exactness constant.

Theorem 2.5. For an operator space X, the following are equivalent:
(i) The operator space X has the λ-OLLP.
(ii) The formal identity map X ⊗min B → X ⊗δ B has norm 6 λ.
(iii) For any finite dimensional subspace E ⊂ X and any ε > 0, there exist

a finite dimensional operator space F and two maps β : E → F, α : F → X such
that F ∗ is a subspace of a full matrix algebra, α◦β = idE and ‖α‖cb ‖β‖cb 6 λ+ε.

(iv) For any complete metric surjection q from any operator space Y onto
X, any finite dimensional subspace E ⊂ X and any ε > 0, there exists a finite
dimensional subspace Ẽ ⊂ Y such that q|Ẽ is a (λ+ ε)-complete metric surjection
onto E, i.e., for any n and any e ∈ Mn(E) with ‖e‖ < 1, there exists ẽ ∈ Mn(Ẽ)
with ‖ẽ‖ < λ+ ε such that idMn

⊗ q(ẽ) = e.

Proof. (i) ⇒ (ii). Let y ∈ X ⊗ B. Then, there exists a finite dimensional
subspace E of X with y ∈ E ⊗ B. Now, consider a surjective ∗-homomorphism
θ : C∗(F) → C∗〈X〉+. Since X has the λ-OLLP, there exists a map ψ : E → C∗(F)
with cb-norm 6 λ such that θ ◦ ψ is the canonical inclusion of E into C∗〈X〉+.
Then, ψ ⊗ idB : E ⊗min B → C∗(F) ⊗min B also has cb-norm 6 λ and θ ⊗ idB :
C∗(F)⊗min B = C∗(F)⊗max B → C∗〈X〉+ ⊗max B is contractive. Hence,

δ(y) = ‖y‖C∗〈X〉+⊗maxB = ‖(θ ⊗ idB) ◦ (ψ ⊗ idB)(y)‖ 6 λ‖y‖E⊗minB.

(ii) ⇒ (iii). Let E ⊂ X be a finite dimensional space. Consider the element
y ∈ X⊗E∗ which is associated to the inclusion map of E into X. We may assume
that E∗ ⊂ B and y ∈ X ⊗ B. Then, by assumption, δ(y) 6 λ‖y‖min = λ. Now we
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see from Theorem 1.5 that the restriction map from X∗ onto E∗ factors through
a subspace of a full matrix algebra. Taking the dual again, we are done.

(iii) ⇒ (i). Fix a complete contraction ϕ : X → B/J and fix a finite dimen-
sional subspace E ⊂ X. For any ε > 0, there exist F and α, β as in condition (iii).
We may assume ‖α‖cb 6 1 and ‖β‖cb 6 λ + ε. Since F ∗ is a subspace of a full
matrix algebra, by the preceding remarks, ϕ ◦ α : F → B/J has a lifting ψ with
‖ψ‖cb 6 1. Then, ψ ◦ β : E → B is a lifting of ϕ|E with cb-norm 6 λ + ε. By
Lemma 2.3, we are done.

(iii) ⇒ (iv). We give ourselves a complete metric surjection q : Y → X,
a finite dimensional subspace E ⊂ X and ε > 0. By (iii), there exist a finite
dimensional operator space F with F ∗ ⊂ Mn and two maps β : E → F , α : F → X
with ‖α‖cb < 1, ‖β‖cb 6 λ+ ε such that α ◦ β = idE . Let u ∈ F ∗ ⊗X ⊂ Mn ⊗X
be the element corresponding to α. Since q is a complete metric surjection and
‖u‖min = ‖α‖cb < 1, there is ũ ∈ Mn⊗Y with ‖ũ‖min < 1 such that idMn

⊗q(ũ) =
u. Let α̃ : M∗

n → Y be the complete contraction corresponding to ũ. Let Ẽ ⊂ Y

be the finite dimensional subspace defined by Ẽ = q−1(E) ∩ α̃(M∗
n). We have to

check that q|Ẽ is a (λ+ ε)-complete metric surjection. Take e ∈ E with ‖e‖ < 1.
Since F ∗ ⊂ Mn, β(e) ∈ F extends to f ∈ M∗

n with ‖f‖ = ‖β(e)‖ < λ + ε. Let
ẽ = α̃(f). Then, ‖ẽ‖ < λ+ ε and q(ẽ) = q ◦ α̃(f) = α(f |F ∗) = α ◦ β(e) = e. This
proves that q is a (λ+ε)-metric surjection. We leave it to the reader to “complete”
the proof.

(iv) ⇒ (iii). Let X∗ ⊂ B(H) be a weak∗-homeomorphic completely isometric
embedding. Then, the restriction map q : S1(H) → X is a complete metric
surjection. To prove (iii), take a finite dimensional subspace E ⊂ X and ε > 0.
By (iv), there exists a finite dimensional subspace Ẽ ⊂ S1(H) such that q|Ẽ is
a (λ + ε)-complete metric surjection onto E. We may assume that Ẽ ⊂ Sm

1 for
some m. Let F = Sm

1 /(ker(q) ∩ Sm
1 ). Then, we have F ∗ ⊂ (Sm

1 )∗ = Mm. Let
β : E → F be the map induced by the inclusion Ẽ ↪→ Sm

1 . Then, we have
‖β‖cb 6 ‖id : E → Ẽ/(ker(q) ∩ Ẽ)‖cb 6 λ + ε. Let α : F → X be the complete
contraction induced by the inclusion Sm

1 ↪→ S1(H). Clearly, we have α ◦ β = idE

and ‖α‖cb‖β‖cb 6 λ+ ε.

Corollary 2.6. Let X and Y be operator spaces and let ϕ : X → Y ∗∗ be
a complete contraction. If X has the λ-OLLP, then, for any finite dimensional
subspace E, ϕ|E can be approximated by maps from E to Y with cb-norm 6 λ in
the point-weak∗ topology.

Corollary 2.7. An operator space X is locally reflexive if X∗∗ has the
OLLP.

Proposition 2.8. Let X be a separable operator space. Then X has the
λ-OLP if and only if for any B, every complete contraction from X to B∗∗ can be
approximated by maps from X to B with cb-norm 6 λ in the point-weak∗ topology.

Proof. First, we prove the “if” part. Let J / B and ϕ : X → B/J be
a complete contraction. Since B∗∗ = (B/J)∗∗ ⊕ J∗∗, ϕ can be regarded as a
map ϕ̂ : X → B∗∗. By assumption, there exists a net of maps ϕi : X → B
with cb-norm 6 λ which converges to ϕ̂ in the point-weak∗ topology. Then,
π ◦ ϕi : X → B/J converges to ϕ in the point-weak topology. By a standard
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convexity argument, we can find a net of maps ψj : X → B with cb-norm 6 λ
such that π ◦ψj converges to ϕ in the point-norm topology. By Lemma 2.3, there
exists a lifting ψ : X → B with ‖ψ‖cb 6 λ.

Next, we prove the “only if” part. The following argument is essentially due
to E. Kirchberg (see the proof of sublemma 2.5.1 in [11]). Let I be the directed
set of all finite dimensional subspaces of B∗ and let BI be a C∗-algebra defined by

BI =
{

(xi)i∈I ∈
∏
i∈I

B : strong∗- limxi exists in B∗∗
}
.

Then the ∗-homomorphism BI 3 (xi)i∈I 7→ strong∗- limxi ∈ B∗∗ is surjective by
Kaplansky density. Let ϕ : X → B∗∗ be a complete contraction. Since X has the
λ-OLP, there is a lifting ψ : X → BI with ‖ψ‖cb 6 λ. Let ψi : X → B be the
i-th coordinate of ψ. Then ‖ψi‖cb 6 λ and the net {ψi}i∈I converges to ϕ in the
point-weak∗ topology.

Proposition 2.9. A separable operator space X has the λ-OLLP if and only
if any complete contraction ϕ from X to the Calkin algebra B/K has a lifting with
cb-norm 6 λ.

The “only if” part is an easy consequence of injectivity of B and of Lemma 2.3.
For the proof of the “if” part, we need a technical lemma. Let E be a finite di-
mensional operator space and let J be an ideal in a separable unital C∗-algebra
B. If θ is a unital completely positive map from B to B with θ(J) ⊂ K, then θ

induces complete contractions θ̇ : B/J → B/K and
∨

θ: (E ⊗min B)/(E ⊗min J) →
(E ⊗min B)/(E ⊗min K).

Lemma 2.10. For u ∈ E ⊗ (B/J) we have

‖u‖E⊗min(B/J) = sup
θ
‖idE ⊗ θ̇(u)‖E⊗min(B/K)

and
‖u‖(E⊗minB)/(E⊗minJ) = sup

θ
‖
∨

θ (u)‖(E⊗minB)/(E⊗minK),

where each supremum is taken over all unital completely positive maps θ : B → B
with θ(J) ⊂ K.

Proof. We prove only the second equation. The first equation follows from
the second equation. We may assume that E is embedded into a unital C∗-
algebra. Suppose that v ∈ E⊗minB and ‖v+E⊗min J‖ > 1. Since J is separable,
there is a strictly positive element h ∈ J , i.e., 0 6 h 6 1 and J = hJh. Let
pn = χ[ 1

n ,1](h) ∈ J∗∗. Then, pn is a projection and since lim ‖(1 − pn)h‖ = 0, we
have lim ‖(1 − pn)x‖ = 0 for all x ∈ J . Let fn ∈ C0(0, 1] be the function defined
by fn(t) = nt for 0 6 t 6 1

n and fn(t) = 1 for 1
n 6 t, and let hn = fn(h). Since

hnpn = pn, we have

‖(1⊗ (1− pn))v(1⊗ (1− pn))‖E⊗minB∗∗ >‖(1⊗ (1− hn))v(1⊗ (1− hn))‖E⊗minB

>‖v + E ⊗min J‖ > 1
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for all n. For each n, take a unital completely positive map θn : (1−pn)B(1−pn) →
Mkn

with
‖idE ⊗ θn((1⊗ (1− pn))v(1⊗ (1− pn)))‖ > 1.

Define a unital complete positive map θ′n : B → Mkn by

θ′n(b) = θn((1− pn)b(1− pn)).

Finally, let θ : B →
∞∏

n=1
Mkn

be defined by

θ(b) = (θ′n(b))∞n=1.

By the construction, θ is unital completely positive and θ(J) ⊂
( ⊕

Mkn

)
c0

.

Regarding
∞∏

n=1
Mkn as a subspace of B

( ∞⊕
n=1

Ckn

)
canonically, we can see that

‖
∨

θ (v + E ⊗min J)‖ > 1.

Now, let us prove the “if” part of Proposition 2.9.

Proof. Let X be a separable operator space and assume that any complete
contraction from X to B/K has a lifting with cb-norm 6 λ. We give ourselves a
complete contraction ϕ from X to a quotient C∗-algebra B/J . We may assume
that B is separable. Let E ⊂ X be any finite dimensional operator subspace
and let ε > 0 be arbitrary. Let u ∈ E∗ ⊗ (B/J) be the element corresponding
to ϕ|E. Then, for any complete contraction θ : B → B with θ(J) ⊂ K, the
element (id⊗ θ̇)(u) ∈ E∗⊗B/K corresponds to the complete contraction (θ̇ ◦ϕ)|E.
By the assumption, there exists a lifting of (θ̇ ◦ ϕ)|E with cb-norm 6 λ. This

means that ‖
∨

θ (u)‖(E∗⊗minB)/(E∗⊗minK) 6 λ. Thus, by Lemma 2.10, we have
‖u‖(E∗⊗minB)/(E∗⊗minJ) 6 λ. This means that there is a lifting of ϕ|E with cb-
norm 6 λ+ ε and we are done.

Remark 2.11. It can be seen from the proof that we may replace B by
∞∏

n=1
Mn and K by

( ∞⊕
n=1

Mn

)
c0

in the statements in Proposition 2.9 and in Lem-

ma 2.10. Moreover, a separable unital C∗-algebra A has the LLP if and only
if every unital completely positive map from A into the Calkin algebra has a
unital completely positive lifting. (Apply the above proof to a unital surjective
∗-homomorphism from C∗(F∞) onto A.)

For every Banach space X, the minimal operator space structure is induced
by an isometric embedding of X into a commutative C∗-algebra C. We denote
the resulting operator space by MIN(X). It is easy to see that MIN(X) does not
depend on the choice of C and that ex(MIN(X)) = 1. For every Banach space
X, the maximal operator space structure MAX(X) on X is defined so that any
contraction from MAX(X) into any operator space is completely contractive. We
have completely isometric identifications MIN(X)∗ = MAX(X∗) and MAX(X)∗ =
MIN(X∗) and therefore MAX(X)∗∗ = MAX(X∗∗). See [2], [3], [14] for details.

We list some examples. Similar results have already appeared in [10].
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Theorem 2.12. The following is a list of spaces with the OLP.
(i) Every separable predual R∗ of a von Neumann algebra R has the 1-OLP.
(ii) If X is a separable Banach space with the λ-bounded approximation

property, then MAX(X) has the λ-OLP.
(iii) The Hardy space H1 with the operator space structure induced by H1 ⊂

L1(T) has the 1-OLP.
(iv) A finite dimensional operator space E has λ-OLP if and only if

ex(E∗) 6 λ.

Proof. (i) Since R⊗minB → R⊗min (B/J) is a ∗-homomorphism with dense
range, it is a complete metric surjection. It follows that all finite rank complete
contractions from R∗ to B/J have completely contractive liftings from R∗ to B.
But, by Lemma 1.6, these maps are point-norm dense in the set of all complete
contractions, hence (i) follows from Lemma 2.3.

(ii) We only need to show that MAX(X) has the λ-OLLP (cf. Corollary 2.4).
Let E ⊂ X be a finite dimensional subspace and let ε > 0 be arbitrary. By the
assumption, there is a finite rank map ρ on X with ‖ρ‖λ+ ε such that ρ|E = idE .
Then, we have ‖E ↪→ MAX(ρ(X))‖cb 6 ‖ρ‖ and ex(MAX(ρ(X))∗) = 1. Hence
MAX(X) has the λ-OLLP.

(iii) This follows from Lemma 4.1 in [10].
(iv) This has been proved already in remarks preceding Theorem 2.5.

Remark 2.13. In particular, the above spaces can be embedded into C∗(F∞)
completely isomorphically.

There is an operator space which has the OLLP but fails to have the OLP.
For instance, MAX(`∞/c0) is such an example. Indeed, since `∞/c0 has the metric
approximation property, MAX(`∞/c0) has the 1-OLLP, but it is well known that
there is no bounded linear lifting from `∞/c0 to `∞. We do not know if the OLLP
and the OLP are equivalent for separable operator spaces.

Generally, the predual R∗ of a von Neumann algebra R has the 1-OLLP and a
maximal operator space MAX(X) with the λ-bounded approximation property has
the λ-OLLP. The proof is similar. An operator space which contains a completely
isometric copy of `3∞ cannot have the 1-OLLP. This follows from the injectivity of
`3∞ and Proposition 3.2 in [7].

Proposition 2.14. (i) If {Xi}i∈I is a family of operator spaces with the
λ-OLLP, then `1(I;Xi) (see [18]) has the λ-OLLP.

(ii) If X has the λ-OLLP and the map q : X → Y is a B-metric surjection,
i.e., q⊗ idB : X⊗min B → Y ⊗min B is a metric surjection, then Y has the λ-OLLP.

(iii) If X has the λ-OLLP and Y is a subspace of X such that there is a
complete contraction ϕ : X → Y ∗∗ with ϕ|Y = ιY , then Y has the λ-OLLP.

Proof. (i) Easy.
(ii) Since completely bounded maps tensorize the δ-tensor product, this fol-

lows from Theorem 2.5 (ii).
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(iii) Since X⊗δ B ⊂ X∗∗⊗δ B canonically, this follows from Theorem 2.5 (ii).

(Note that the residual finiteness of universal C∗-algebras gives us the canonical

inclusions C∗〈X〉 ⊂ C∗〈X∗∗〉 ⊂ C∗〈X〉∗∗.)

Remark 2.15. If X is a separable operator space with the OLP and R∗

is the separable predual of a von Neumann algebra R, then the projective tensor
product (in the sense of [6]) X⊗̂R∗ has the OLP.

If E is a finite dimensional subspace of an operator spaceX, then the quotient

map from X onto X/E is automatically a B-metric surjection. Hence, if moreover

X has the 1-OLLP then X/E has the 1-OLLP. This argument gives us an example

below. When the author asked E. Kirchberg whether the general inductive limit

is continuous with respect to the minimal tensor product or not, he kindly showed

a counterexample. The example below is another one.

Example 2.16. There exists a separable C∗-algebra A and an increasing

sequence of ideals In of A such that A/In has the LP for all n, but A/I both fails
the LLP and the WEP, where I =

⋃
In.

Let us construct such an example. Let E be a finite dimensional subspace

of C∗(F∞) such that ex(E) > 1 (cf. [16]). Fix a complete metric surjection from

S1 onto E∗ and let N be the kernel of this map. Take an increasing sequence
of finite dimensional subspaces Nn ⊂ N such that

⋃
Nn = N . By the above

argument, S1/Nn has the 1-OLLP. We claim that S1/Nn has also the complete

metric approximation property. Indeed, let F be any finite dimensional subspace

of S1/Nn and let ε > 0 be arbitrary. Then, F + Nn is a finite dimensional

subspace of S1 and there is a finite rank map ϕ on S1 with ‖ϕ‖cb < 1 + ε such

that ϕ|F +Nn = id|F +Nn. This ϕ induces a finite rank map ϕ̃ on S1/Nn with

‖ϕ̃‖cb < 1 + ε such that ϕ̃|F = idF . This proves that S1/Nn has the complete

metric approximation property. Thus, by Corollary 2.4, S1/Nn has the 1-OLP.

Let A = C∗〈S1〉 and let In = ker(C∗〈S1〉 → C∗〈S1/Nn〉). Then A/I = C∗〈E∗〉.
Since ex(E) > 1, E∗ fails the 1-OLLP, hence A/I fails the LLP. Finally, suppose

that A/I has the WEP. Then, by Proposition 1.1 in [11], we have (A/I) ⊗max

C∗(F∞) = (A/I) ⊗min C
∗(F∞), hence by the definition of the δ-norm, we have

E∗ ⊗δ C
∗(F∞) = E∗ ⊗min C

∗(F∞). Thus, applying Corollary 6.3.5 in [18] to the

inclusion map of E into C∗(F∞), we have that ex(E) = 1. This contradicts the

choice of E.
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3. MAXIMAL OPERATOR SPACES

In this section, we will prove

Proposition 3.1. The following conjectures are equivalent:
(C1) Every maximal operator space has the OLLP.
(C1′) The operator space MAX(A) has the OLLP for every separable C∗-

algebra A.
(C2) Every maximal operator space is locally reflexive.
(C2′) Every separable maximal operator space with the metric approximation

property is locally reflexive.
(C3) The Banach space B is extendibly locally reflexive.

The conjecture (C2) was raised by T. Oikhberg. Following H. Rosenthal, a
Banach space X is called extendibly locally reflexive if there is λ > 0 so that, for
any finite dimensional subspaces E ⊂ X∗∗, F ⊂ X∗ and any ε > 0, there exists a
map ϕ : X∗∗ → X∗∗ with norm < λ+ε such that ϕ(E) ⊂ X and 〈ϕ(x), f〉 = 〈x, f〉
for all x ∈ E, f ∈ F . In case X is an operator space, we say that X is operator
extendibly locally reflexive if one can find such ϕ’s with cb-norm < λ + ε. For a
Banach space X, it is not hard to see that X is extendibly locally reflexive if and
only if MAX(X) is operator extendibly locally reflexive. H. Rosenthal conjectured
that (C3) would be false.

To prove the proposition, we need several lemmas.

Lemma 3.2. Let X be a Banach space. Then MAX(X) has the λ-OLLP
if and only if for every finite dimensional subspace E ⊂ MAX(X) and ε > 0
there exists a finite dimensional subspace F ⊂ X containing E such that ‖E ↪→
MAX(F )‖cb < λ+ ε.

Proof. Since MAX(F )∗ = MIN(F ∗) is 1-exact, the ‘if’ part follows from (i)
⇒ (iii) in Theorem 2.5. Now, let us prove the ‘only if’ part. Let X be a Banach
space such that MAX(X) has the λ-OLLP and let E ⊂ MAX(X) be a finite
dimensional subspace. Then, there exists a finite dimensional maximal operator
space G (combine Theorem 2.1 in [14] and Theorem 6.3.1 in [18]) and two maps β :
E → G and α : G→ MAX(X) such that α◦β = idE and ‖α‖cb < λ+ε, ‖β‖cb = 1.
Let F = α(G). Since G is maximal, α can be regarded as a complete contraction
α̃ : G→ MAX(F ). Hence

‖E ↪→MAX(F )‖cb 6 ‖α̃‖cb‖β‖cb < λ+ ε.

Lemma 3.3. Every separable subspace of a maximal operator space is em-
beddable into MAX(B) completely isometrically.

Proof. Let Y ⊂ MAX(X) be a separable subspace. Take a completely
isometric embedding i : Y → B and extend it to a complete contraction j :
MAX(X) → B. Then, we may regard j as a complete contraction j̃ : MAX(X) →
MAX(B). Consequently, ĩ = j̃|Y is a completely isometric embedding of Y into
MAX(B).
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Lemma 3.4. Let X be a Banach space and E ⊂ X be a separable subspace.
Then there exists a separable subspace X0 ⊂ X containing E such that the inclusion
MAX(X0) ↪→ MAX(X) is completely isometric.

Proof. This follows from Corollary 2.5 in [14]. It is also well known that for
E ⊂ X there exist a separable subspace X0 ⊂ X containing E and a contraction
T : X → X∗∗

0 such that T |X0 is the canonical inclusion of X0 into X∗∗
0 .

Now, we prove Proposition 3.1. We are indebted to T. Oikhberg for the
usage of injectivity in the proof of (C2) ⇒ (C3).

Proof. (C1′) ⇒ (C1). Suppose that MAX(A) has the OLLP for every sep-
arable C∗-algebra A. Then, it can be seen that there exists a universal constant
λ > 0 such that MAX(A) has the λ-OLLP for all A. Let X be a Banach space and
let E be a finite dimensional subspace of MAX(X). By Lemma 3.4, there exists
a separable subspace X0 of MAX(X) containing E which is a maximal operator
space. Let ϕ be a complete contraction from MAX(X) to a quotient C∗-algebra
B/J and let ε > 0. Then, there exists a separable C∗-subalgebra B0 of B such that
ϕ(X0) ⊂ π(B0). Since X0 is maximal, we may regard ϕ as a complete contraction
ϕ̃ from X0 into MAX(π(B0)). Since MAX(π(B0)) has the λ-OLLP, there exists a
lifting ψ : ϕ̃(E) → B0 with ‖ψ‖cb < λ + ε such that π ◦ ψ is the formal identity
map from ϕ̃(E) onto ϕ(E). Thus, ψ ◦ ϕ̃|E is a lifting of ϕ|E with cb-norm < λ+ε.
Since E, ϕ and ε were arbitrary, this means that MAX(X) has the λ-OLLP.

(C1) ⇒ (C2). Since MAX(X∗∗) = MAX(X)∗∗ has the OLLP, MAX(X) is
locally reflexive by Corollary 2.7.

(C2) ⇒ (C2′). Obvious.
(C2′) ⇒ (C1′). Let X be a separable Banach space. Take an increasing

sequence of finite dimensional subspaces En of X such that
⋃
En is dense in X.

Let Y =
( ⊕

En

)
`1

. By the assumption, MAX(Y ) is λ-locally reflexive for some
λ > 0. We define a metric surjection q from Y onto X by q((xn)n) =

∑
xn. Then,

there exists a contractive map r : X∗∗ → Y ∗∗ with q∗∗◦r = idX∗∗ (cf. Proposition 1
in [8]). We note that r is completely contractive as a map from MAX(X∗∗) to
MAX(Y ∗∗). To see that MAX(X) has the λ-OLLP, we give ourselves a finite
dimensional subspace E of MAX(X) and ε > 0. Let jE : E ↪→ X be the inclusion
map of E into X and let ι : MAX(X) → MAX(X∗∗) be the canonical inclusion.
Since MAX(Y ) is locally reflexive, there exists a net {ψi}i of maps from E to
MAX(Y ) with cb-norm 6 λ which converges to r ◦ ι ◦ jE : E → MAX(Y ∗∗) in
the point-weak∗ topology. Let ϕi = q ◦ ψi : E → MAX(X). Then, it can be seen
that the net {ϕi}i converges to jE in the point-weak topology. Thus, we have
proved that jE is in the point-weak closure of the set of maps from E to MAX(X)
which have liftings with cb-norm 6 λ. By the standard convexity argument and
by the small perturbation argument, there exists a map ψ : E → MAX(Y ) with
cb-norm < λ + ε such that q ◦ ψ = jE . Since Y has the metric approximation
property, there exists a finite dimensional subspace F of Y containing ψ(E) such
that ‖ψ(E) ↪→ MAX(F )‖cb < 1+ε. Hence, ‖E ↪→ MAX(q(F ))‖cb < (1+ε)(λ+ε)
as desired. We conclude by Lemma 3.2.

(C2) ⇒ (C3). Let E be a finite dimensional subspace of MAX(B∗∗) and let
F be a finite dimensional subspace of B∗. By the assumption, MAX(B) is λ-locally
reflexive for some λ > 0. Hence, there exists a map ϕ : E → MAX(B) with cb-
norm < λ+ ε such that 〈ϕ(x), f〉 = 〈x, f〉 for all x ∈ E and f ∈ F . We can regard
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ϕ as a map from E to B with cb-norm < λ + ε and extend it to a map ϕ from
MAX(B∗∗) to B with cb-norm < λ+ ε. This proves that B is λ-extendibly locally
reflexive.

(C3) ⇒ (C2′). By the assumption, MAX(B) is locally reflexive. Since any
separable maximal operator space can be embedded into MAX(B) completely iso-
metrically and local reflexivity passes to subspaces, we are done.

Remark 3.5. A negative answer to the above conjectures would provide us
with an example of a separable C∗-algebra containing a non-complemented closed
two-sided ideal (∗-isomorphic to K). A positive answer would imply that all the
QWEP algebras of Kirchberg ([11]) are extendibly locally reflexive.
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1992, Astérisque 232(1995), 159–187.



On the lifting property for universal C∗-algebras of operator spaces 591

17. G. Pisier, A simple proof of a theorem of Kirchberg and related results on C∗-norms,
J. Operator Theory 35(1996), 317–335.

18. G. Pisier, An introduction to the theory of operator spaces, preprint, 1997.
19. Z-J. Ruan, Subspaces of C∗-algebras, J. Funct. Anal. 76(1988), 217–230.

NARUTAKA OZAWA
Texas A&M University

College Station, TX 77843
USA

E-mail: ozawa@math.tamu.edu

Current address:

University of Tokyo
Komaba, 153–8914

JAPAN

Received May 22, 1999.


