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Abstract. In the paper it is proved that each of the following conditions
below is sufficient for the nilpotency of a solvable Lie algebra. (They are
formulated by means of the spectrum of a Banach space representation of a
Lie algebra, introduced by C. Ott in [9].)

1) The validity of the projection property of the spectrum on Lie sub-
algebras (imposed to only one representation).

2) The existence of representations with spectra of arbitrarily small
diameters (with respect to a fixed norm on the given Lie algebra).
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0. INTRODUCTION

The main results of this note are two sufficient conditions, of homological nature,
for certain complex finite dimensional Lie algebras to be nilpotent (see Theorem 1.3
and Theorem 2.2 below). As we shall shortly explain now, these results are sug-
gested by the comparison between the spectral theories for solvable Lie algebras
of operators introduced in [5] and [1]. (These two theories agree in the nilpotent
case with the theory of [7], and in the commutative case with the several variable
spectral theory of Taylor ([14]).)

One of the main results of the spectral theory of [5] (cf. also [7], [2], [3], [4],
[9], [10]) is that, in an appropriate sense, the projection property of the spectrum
on Lie ideals holds (see Theorem 3 in [5]). In [5] it is remarked that, in general,
the projection property does not hold on any Lie subalgebra. However, [7] shows
that, in the case of a nilpotent Lie algebra, the projection property on every Lie
subalgebra holds (see also [10]).

On the other hand, for every finite-dimensional solvable Lie algebra of op-
erators G a new spectrum Σ(G) is constructed in [1]. This spectrum has the
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projection property on every Lie subalgebra (cf. Theorem 0.3 below). As an
easy consequence of this fact, if Σ(G) = {0} then G contains only quasinilpotent
operators (cf. Corollary 0.4 below) and moreover G is nilpotent ([15], [11]).

In the present note we study the analogues of these results of [1] in the
spectral theory of [5].

Our first main result is that the nilpotent Lie algebras are characterized by
the fact that the projection property of the spectrum of [5] on every Lie subalgebra
holds. (Actually we prove a more general result, involving the spectrum of a
representation ([9], [10]); see Theorem 1.3 below.) As a consequence we obtain
that every solvable Lie algebra of operators which is not nilpotent has a subalgebra
for which the spectra introduced in [5], respectively [1], are distinct. In the final of
Section 1 we investigate the projection property only on hyperplane subalgebras
(i.e., subalgebras of codimension 1), in the case of certain classes of Lie algebras
introduced in [8] and [13].

Our second main result is that if a solvable Lie algebra endowed with a norm
posseses Banach space representations with spectra (in the sense of [9]) of arbi-
trarily small diameters, then it must be a nilpotent Lie algebra (see Theorem 2.2
below). Consequently, if a solvable Lie algebra posseses a representation whose
spectrum is {0} then it is a nilpotent Lie algebra and the range of that represen-
tation consists only of quasinilpotent operators (see Corollary 2.3 below). This
result is a strengthening of Proposition 7 of [5] and, as we remarked above, it has
a variant in the framework of [1].

Next we shall introduce some conventions and notation. If F is a set of
functions defined on a set B and A is a subset of B then we denote by F|A the set
of restrictions to A of the functions from B. We shall work only with complex finite-
dimensional Lie algebras. Consequently, by solvable (respectively nilpotent) Lie
algebra we shall mean complex finite-dimensional solvable (respectively nilpotent)
Lie algebra. We shall denote by B(X ) the algebra of all bounded linear operators
on an arbitrary complex Banach space X . For the definition of a Koszul complex
and related matters we refer to [7], [5], [9], [10]. If ρ : E → B(X ) is a representation
of the Lie algebra E then we denote (cf. [9], [10]) by Kos(ρ) the Koszul complex
of ρ, and by σ(ρ) the spectrum of ρ. (We note that Kos(ρ) is denoted in [7] by
Kos(E, ρ,X ).) We denote by Ê the set of all characters of E (i.e., Lie algebra
homomorphisms from E to the field C of the complex numbers). If E is a normed
Lie algebra (i.e., it is endowed with a vector space norm), then Ê is a vector space
of bounded linear functionals on E; so Ê has a natural norm and one can speak
about the diameter diam(A) of any non-empty subset A of Ê. For e, f ∈ E we
denote as usual (ad e)f = [e, f ].
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For later use we recall two well-known results concerning bicomplexes. In
their statements X·,· denotes a bicomplex (Xi,j)i,j∈Z consisting of complex vector
spaces and linear maps; we assume that, excepting the rows Xj,·, 0 6 j 6 N , all
the other rows of X·,· consist only of zero spaces.

Lemma 0.1. Let j0 be in {0, . . . , N} and assume that, for every index j

distinct of j0, the row Xj,. is an exact complex. Then the complex Xj0,. is exact if
and only if the totalization Tot(X·,·) is exact.

Lemma 0.2. Suppose that any coloumn of X·,· contains only zero maps.
Then Tot(X·,·) is exact if and only if every row of X·,· is exact.

Finally, for the sake of completeness, we recall a few facts of the spectral
theory developed in [1]. For a Lie algebra H we denote by idH the identity auto-
morphism of H (idH(H) = H for every H in H). If moreover H is a Lie subalgebra
of B(X ) then we can also consider idH as a representation idH : H → B(X ). Now
let G be a solvable Lie subalgebra of B(X ). If H is a Cartan subalgebra of G then
we denote by

G = H⊕ CH

the root decomposition determined by H, where CH is the sum of all root spaces
corresponding to non-zero roots of G with respect to H (see the remarks preceding
Lemma 2 in the Chapter 8 of [12]). In this case we denote

ΣH := {f ∈ Ĝ : f |H ∈ σ(idH) and f |CH = 0}.

Then one can prove that ΣH is actually independent of the choice of the Cartan
subalgebra H and that ΣH ⊂ Ĝ (cf. Proposition 2.1 in [1]). We denote ΣH by
Σ(G). This subset of Ĝ was called in [1] the spectrum of G. Unlike the spectrum
from [5], the above introduced spectrum Σ(·) has the projection property on every
Lie subalgebra in the following sense (see Theorem 2.6 in [1]):

Theorem 0.3. If G is a solvable Lie subalgebra of B(X ) and L is a Lie
subalgebra of G, then Σ(G)|L = Σ(L).

As a consequence we have (Corollary 2.7 in [1]):

Corollary 0.4. If G is a solvable Lie subalgebra of B(X ) then for each
G ∈ G we have

σ(G) = {f(G) : f ∈ Σ(G)}.

We denote here as usual the spectrum of an operator G ∈ B(X ) by σ(G).
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1. PROJECTION PROPERTY

We begin with an estimate of the projection of spectrum on certain hyperplane
subalgebras which are not necessarily ideals.

Proposition 1.1. Let ρ : E → B(X ) be a representation of the Lie algebra
E. Let B be a hyperplane subalgebra of E such that there exists an ideal I of E

with dim I = 1 and E = I + B. Take γ̃ ∈ B̂ such that

(1.1) (∀) b ∈ B, (ad b)|I = γ̃(b)idI .

Then the following estimate of the “projection” σ(ρ)|B of σ(ρ) on B holds

(1.2) σ(ρ|B)4 (γ̃ + σ(ρ|B)) ⊆ σ(ρ)|B ⊆ σ(ρ|B) ∪ (γ̃ + σ(ρ|B)),

where 4 denotes the symmetric difference of sets. If moreover I ⊆ ker ρ, then

(1.3) σ(ρ)|B = σ(ρ|B) ∪ (γ̃ + σ(ρ|B)).

Proof. We begin with a preliminary observation. Take a ∈ I \ {0} and for
λ̃ ∈ Ê denote by Xρ−λ̃ the following diagram

(1.4)

0 ←− X β′←− X ⊗B
β′←− · · · β′←− X ⊗ ∧pB

β′←− · · ·yρ(a)

yρ(a)⊗idB

yρ(a)⊗id∧pB

0 ←− X β←− X ⊗B
β←− · · · β←− X ⊗ ∧pB

β←− · · ·

whose upper row is Kos(ρ|B − λ̃|B + γ̃) and whose lower row is Kos(ρ|B − λ̃|B).
By (1.1) we get

(∀)b ∈ B, ρ(a)(ρ(b)− λ̃(b) + γ̃(b)) = (ρ(b)− λ̃(b))ρ(a).

This fact easily implies that (1.4) is a commutative diagram. Then, remarking
that ∧pE = ∧pB ⊕ (a ∧ (∧p−1B)) ' ∧pB ⊕ ∧p−1B, p ∈ N, a straightforward
computation shows that Tot(Xρ−λ̃) is isomorphic to Kos(ρ− λ̃).

We now pass to the proof of (1.2). Take λ̃0 ∈ σ(ρ|B) 4 (γ̃ + σ(ρ|B)) and
define λ̃ : E → C by λ̃|B = λ̃0 and λ̃|I = 0. Then λ̃ ∈ Ê and 0 ∈ σ(ρ|B − λ̃|B)4
(γ̃ + σ(ρ|B − λ̃|B)). Consequently, one row of (1.4) is exact and the other is not
exact. Hence, by Lemma 0.1, Tot(Xρ−λ̃) is not exact. Then, by the preliminary

observation, Kos(ρ − λ̃) is not exact. We get λ̃ ∈ σ(ρ) and the first inclusion of
(1.2) is proved. Next take λ̃ ∈ σ(ρ). Then Kos(ρ− λ̃) is not exact, so Tot(ρ− λ̃)
is not exact. Hence, by Lemma 0.1, at least one row of (1.4) is not exact. This
implies λ̃|B ∈ σ(ρ|B) ∪ (γ̃ + σ(ρ|B)) and (1.2) is completely proved.

Next let us suppose that I ⊆ ker ρ, i.e., ρ(a) = 0. In view of (1.2) we must
prove only the inclusion ⊇ of (1.3). Let λ̃0 be arbitrary in the right hand side of
(1.3) and define the linear functional λ̃ : E → C by λ̃|B = λ̃0 and λ̃|I = 0. Then
λ̃ ∈ Ê and at least one row of (1.4) is not exact. Consequently, by Lemma 0.2,
the complex Tot(Xρ−λ̃) is not exact. In view of the preliminary observation we

get λ̃ ∈ σ(ρ) and (1.3) is completely proved.



Spectral conditions for the nilpotency of Lie algebras 597

Remarks 1.2. (a) The example of Section 3 of [5] (see also Example 3 of
[10]) can be justified by means of Proposition 1.1 above.

(b) The relation (1.3) from Proposition 1.1 above generalizes Remarks 2.9(1o)
of [7].

Now we apply Proposition 1.1 to establish a converse to the fact that, for the
spectrum of a representation of a nilpotent Lie algebra, the projection property
on every Lie subalgebra holds (cf. [7], [10]).

Theorem 1.3. Let ρ : L → B(X ) be a representation of the Lie algebra L.
If for every Lie subalgebra E of L with dim E 6 2 we have

σ(ρ)|E = σ(ρ|E)

then L is a nilpotent Lie algebra.

Proof. Assume that the Lie algebra L is not nilpotent. Then, in view of the
Engel Theorem, one can find b, a ∈ L \ {0} and γ ∈ C∗ such that [b, a] = γa.
Denote E = Ca + Cb, B = Cb, I = Ca. In view of the hypothesis we get

σ(ρ|B) = σ(ρ)|B = (σ(ρ)|E)|B = σ(ρ|E)|B.

But this is a contradiction with Proposition 1.1 above (see the first inclusion
in (1.2)) because in this case γ̃ 6= 0.

Remark 1.4. In Theorem 1.3 above we do not assume that L is a solvable
Lie algebra.

Corollary 1.5. Let G be a solvable Lie subalgebra of B(X ) which is not
nilpotent. Then there exists a Lie subalgebra L of G such that

σ(idL) 6= Σ(L).

Proof. Here we use notation introduced in [1]. If Σ(L) = σ(idL) for every
Lie subalgebra L of G then, by Theorem 2.6 in [1], the spectrum of the identic
representation idG : G → B(X ) has the projection property on every Lie subalgebra
of G. Hence G is a nilpotent Lie algebra by Theorem 1.3 above, a contradiction
with the hypothesis.

To conclude this section, we show that, for certain types of solvable Lie
algebras, it suffices to impose the condition from Theorem 1.3 only for hyperplane
subalgebras to get the nilpotency of the algebra. First we give the definitions,
suggested by [13] and [8].

Definition 1.6. A Lie algebra L is called strongly hypersolvable if for each
Lie subalgebra E with dim E > 3 the following condition holds:

(∗) for every e ∈ E one can find a proper ideal I(e) of E with e ∈ I(e).
Remarks 1.7. (a) In [13] a Lie algebra is called hypersolvable if it is solvable

and verifies the condition (∗) for every Lie subalgebra E with dim E > 4.
(b) Using the classical Levi-Malcev theorem ([12]) one easily checks that each

strongly hypersolvable Lie algebra (in the sense of Definition 1.6 above) is solvable,
hence it is hypersolvable in the sense of [13].

(c) Every nilpotent Lie algebra is strongly hypersolvable but not conversely
(cf. the example of K. Teleman in [13]).



598 Daniel Beltiţă

Definition 1.8. ([8]) A Lie algebra is called ∆-reduced if the intersection
of its hyperplane subalgebras is {0}.

Remark 1.9. Unlike [8] we use here complex Lie algebras.
Proposition 1.10. Let ρ : L→ B(X ) be a representation of the Lie algebra

L and assume that for every hyperplane subalgebra E of L we have
σ(ρ)|E ⊆ σ(ρ|E).

(i) If L is strongly hypersolvable then it is nilpotent.
(ii) If L is metabelian (i.e., [[L,L], [L,L]] = {0}) then it is nilpotent.
(iii) If L is ∆-reduced solvable then it is even abelian.
Proof. We begin with a preliminary observation: the hypothesis implies that

every one-dimensional ideal of L commutes with L. Indeed, assume that there
exists an ideal I of L such that dim I = 1 and [I, L] 6= {0}. As a by-product of
the proof of Theorem 1.6.9 from [6] it then follows that one can find a hyperplane
Lie subalgebra B of L such that L = B + I. Let γ̃ be as in Proposition 1.1. By
Proposition 1.1 we have (γ̃ +σ(ρ|B))\σ(ρ|B) ⊂ σ(ρ)|B. But γ̃ 6= 0 (since [I, L] 6=
{0}) and σ(ρ|B) is a compact set (see Theorem 2 in [5] and also Corollary 11
in [10]). Hence we have a contradiction with the hypothesis σ(ρ)|B ⊆ σ(ρ|B).
The above observation is proved.

We now come back to the proof of the assertions (i)–(iii).
(i) In view of the previous observation it suffices to prove by induction on

n := dim L that if L is strongly hypersolvable and every one-dimensional ideal of
L commutes with L then L is nilpotent. This is obvious if dim L = 2. Now assume
that this fact holds for Lie algebras of dimension strictly less than n. Let J be a
proper Lie ideal of L. If J has an one-dimensional ideal which does not commute
with J then consider a chain of ideals of L,

J = J0 ⊂ J1 ⊂ · · · ⊂ Jk = L

such that dim(Ji+1/Ji) = 1 for i = 0, . . . , k− 1. (Such a chain exists since the Lie
algebra L is solvable by Remark 1.7 (b).) Now if we apply step by step Lemma 7
from [13] we deduce that L has an one-dimensional ideal which does not commute
with L. But this contradicts our assumption. Thus every one-dimensional ideal
of J commutes with J . Since J is in turn hypersolvable, the induction hypothesis
then implies that J is nilpotent. Consequently every proper ideal of L is nilpotent.
Since L is solvable (see Remark 1.7 (b)) it then follows that L is even nilpotent.

(ii) Suppose that L is not nilpotent. Let H be a Cartan subalgebra of L, R
be the corresponding set of non-zero roots and {Lα}α∈R be the corresponding set
of root spaces. Then we have

⊕
α∈R

Lα ⊆ [L,L] (see e.g. Proposition 1.2 (3)) in [6]).

Hence the hypothesis implies that [Lα, Lβ ] = {0} for all α, β ∈ R.
Now let us choose α ∈ R and l ∈ Lα \ {0} such that for every h ∈ H we have

[h, l] = α(h)l. Since [Lβ , l] = {0} for every β ∈ R and L = H ⊕
⊕

β∈R

Lβ , it follows

that I := C l is a one-dimensional ideal of L which is not central (i.e., [I, L] 6= {0}).
But this contradicts the observation from the beginning of the proof.

(iii) By Proposition 11 of [8] (which holds also for complex Lie algebras)
one easily checks that, if [L,L] 6= {0}, then one can find a one-dimensional Lie
ideal I of L such that [I, L] 6= {0}. But this contradicts the observation from the
beginning of the proof. Hence the Lie algebra L is abelian.
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2. DIAMETERS OF SPECTRA

In this section we extend Proposition 7 of [5] to the case of solvable Lie algebras.
To this end we need the following elementary result.

Lemma 2.1. Let γ1, . . . , γs be non-zero complex numbers. For any non-
empty compact subset K of C we denote K0 = K and, for 1 6 p 6 s,

Kp =
⋃

16i1<···<ip6s

(K + γi1 + · · ·+ γip
).

Then there exists a positive number ω depending on γ1, . . . , γs and independent of
K, such that the following set

M = {z ∈ C : there exists a unique p in {0, . . . , s} such that z ∈ Kp}

has the diameter at least ω. In particular, M has at least two distinct elements.

Proof. After a suitable rotation of the complex plane we may suppose that
xi = Re γi 6= 0 for 1 6 i 6 s. The following situations can occur:

(i) Not all the numbers x1, . . . , xs have the same sign.
(ii) All the numbers x1, . . . , xs have the same sign.

We shall study only the first of these possibilities since the second possibility
can be treated similarly. In the case (i) we necessarily have s > 2. After a suitable
renumbering we may suppose that there exists q ∈ {1, . . . , s− 1} such that all the
numbers x1, . . . , xq are negative and all the numbers xq+1, . . . , xs are positive. We
define

ω := −x1 − · · · − xq + xq+1 + · · ·+ xs.

Let us choose ζ−, ζ+ ∈ K such that

Re ζ− = inf{Re λ : λ ∈ K}, Re ζ+ = sup{Re λ : λ ∈ K}.

We shall verify that the following complex numbers

λ− := ζ− +
q∑

j=1

γj , λ+ := ζ+ +
s∑

j=q+1

γj

are two elements of M with |λ− − λ+| > ω. First we note that |λ− − λ+| >
Re(λ+−λ−) > ω. Moreover, if p ∈ {1, . . . , s} \ {q} and 1 6 i1 < · · · < ip 6 s then
x1 + · · ·+xq < xi1 + · · ·+xip

(because x1, . . . , xq are all the negative terms of the
sequence x1, . . . , xs) and x1, . . . , xq < 0. Hence for every λ ∈ K we have

Re λ− 6 Re(λ + γ1 + · · ·+ γq) < Re(λ + γi1 + · · ·+ γip
)

and
Re λ− < Re ζ− 6 Re λ.

Consequently, λ− 6∈ Kp for p ∈ {0, . . . , s} \ {q}; but λ− ∈ Kq, so λ− ∈ M .
Similarly, one can check that λ+ 6∈ Kp for p ∈ {0, . . . , s} \ {s− q}; but λ+ ∈ Ks−q,
so we have also λ+ ∈M .
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Theorem 2.2. Let E be a normed solvable Lie algebra. If E posseses Banach
space representations with spectra of arbitrarily small diameters then it is nilpotent.

Proof. Actually we shall prove the following statement equivalent with that
of Theorem 2.2: if the normed solvable Lie algebra E is not nilpotent then there
exists a positive number ω such that for every Banach space representation ρ :
E → B(X ) we have diam(σ(ρ)) > ω. To this end we proceed by induction on
n = dim E.

For n = 1 the statement is obvious. Next let us assume that n > 2 and that
the above statement holds for Lie algebras of dimension strictly less than n. We
consider each Lie subalgebra endowed with the norm inherited from E.

If E has a proper Lie ideal J such that J is not a nilpotent Lie algebra then
in view of the induction hypothesis we can choose a positive number ω which is not
bigger than the diameter of the spectrum of every Banach space representation of
J . In particular, using the projection property on Lie ideals (cf. Theorem 3 of [5];
see also Theorem 3.4 of [10]), we get

diam(σ(ρ)) > diam(σ(ρ)|J) = diam(σ(ρ|J)) > ω

for every Banach space representation ρ : E → B(X ).
Next let us assume that every proper Lie ideal of E is nilpotent. Since

the Lie algebra E is solvable, we can choose a basis {e1, . . . , en} of E such that
‖ek‖ = 1 (1 6 k 6 n),

(2.1) [ej , ei] =
i∑

k=1

ck
jiek 1 6 i < j 6 n

and, for certain m, {ek : 1 6 k 6 m} is a basis of [E,E]. Let I be the Lie ideal of
E spanned by e1, . . . , en−1. In view of our assumption, I is nilpotent. So ci

ji = 0
for 1 6 i < j 6 n− 1. Next we study the two possible cases:

(a) There exists an i0 in {1, . . . , n− 1} such that ci0
n i0

= 0. Then the deter-
minant ∣∣∣∣∣∣∣

cn−1
n n−1 · · · c1

n n−1

0
. . .

...
0 0 c1

n 1

∣∣∣∣∣∣∣
vanishes hence, by (2.1), the vectors [en, en−1], . . . , [en, e1] ∈ [E,E] are linearly
dependent. Then, since we already know that ci

ji = 0 for 1 6 i < j 6 n − 1, one
easily deduces as above that every n−1 vectors from the set {[ej , ei] : 1 6 i < j 6
n} are linearly dependent. Consequently we have

m = dim[E,E] 6 n− 2.

Then J1 := C en + [E,E] and J2 := C en−1 + · · ·+ C em+1 + [E,E] are proper Lie
ideals of E. Hence J1, J2 are nilpotent in view of our assumption. Since E = J1+J2

we get that E is a nilpotent Lie algebra, thus contradicting the hypothesis. Hence
the present case cannot actually appear.

(b) Let us suppose now that γi := ci
ni 6= 0 for each i in {1, . . . , n − 1}.

Then we can apply Lemma 2.1 for γ1, . . . , γn−1; denote by ω the corresponding
positive number. We show that ω has the desired property. To this end let us
consider an arbitrary Banach space representation ρ : E → B(X ). We consider
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in ∧pI the basis {ei1 ∧ · · · ∧ eip
: 1 6 i1 < · · · < ip 6 n − 1} and endow the set

of multi-indices {(i1, . . . , ip) : 1 6 i1 < · · · < ip 6 n − 1} with the lexicographic
ordering (see e.g. [3], page 89). Let us consider the operator, where 0 6 p 6 n−1)
θp

en
: X ⊗ ∧pI → X ⊗∧pI:

θp
en

(x⊗ e) = ρ(en)x⊗ e +
p∑

j=1

(−1)j−1x⊗ [en, eij ] ∧
j
∧
e

defined for x ∈ X , e = ei1 ∧ · · · ∧ eip
, where the notation

j
∧ means the omission

of eij (cf. page 6 in [7]). As in [3] we compute now the spectrum of θp
en

. The
operator θp

en
is represented by a lower-triangular matrix with entries from B(X ).

If we denote b = ρ(en) ∈ B(X ) then by (2.1) we get

θp
en

(x⊗ ei1 ∧ · · · ∧ eip
) = (b + γi1 + · · ·+ γip

)x⊗ ei1 ∧ · · · ∧ eip
+ S

where S is a sum of terms of the form ck1···kp
x⊗ek1 ∧· · ·∧ekp

with ck1···kp
∈ C and

(k1, . . . , kp) being a multi-index lexicographically strictly less than (i1, . . . , ip). It
follows that, on the diagonal of the lower-triangular matrix representing θp

en
, one

finds the operators

b + γi1 + · · ·+ γip , 1 6 i1 < · · · < ip 6 n− 1,

and below the diagonal the entries are scalar multiples of idX . Consequently for
λ ∈ C we have

(2.2) θp
en
− λ is not invertible⇐⇒ λ ∈

⋃
16i1<···<ip6n−1

(σ(b) + γi1 + · · ·+ γip).

Next we consider the commutative diagram

(2.3)

0 0 0
↓ ↓ ↓

0 ← X ← · · · ← X ⊗ ∧pI ← · · · ← X ⊗ ∧n−1I ← 0
↓ ↓ ↓

0 ← X ← · · · ← X ⊗ ∧pI ← · · · ← X ⊗ ∧n−1I ← 0
↓ ↓ ↓
0 0 0

whose rows coincide with Kos(ρ|I) and whose p-th column is θp
en
−λ (see Lemma 1.1

in [7]). Then, in view of the choice of ω (see (2.2) and Lemma 2.1 applied for K =
σ(b) and s = n−1) we obtain two complex numbers λ1, λ2 with |λ1−λ2| > ω (> 0)
such that, for λ ∈ {λ1, λ2}, precisely n− 1 columns of (2.3) are not exact. Then,
for such λ, the totalization of (2.3) is not exact (by Lemma 0.1). If we define
λ̃j : E → C by λ̃j |I = 0 and λ̃j(en) = λj , then λ̃j ∈ Ê and, by Lemma 1.5 of
[7], Kos(ρ− λ̃j) is not exact (j ∈ {1, 2}). Consequently we get λ̃1, λ̃2 ∈ σ(ρ). But
‖λ̃1 − λ̃2‖ > |λ̃1(en)− λ̃2(en)| = |λ1 − λ2| > ω. So diam(σ(ρ)) > ω, as desired.

Now we can formulate the following generalization of Proposition 7 of [5].

Corollary 2.3. Let ρ be a Banach space representation of the solvable Lie
algebra E. If σ(ρ) contains only one element λ̃ then E is a nilpotent Lie algebra
and for every e ∈ E the spectrum of the operator ρ(e) is {λ̃(e)}.
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Proof. We endow E with a norm and then apply Theorem 2.2 to get the
nilpotency of E. Then we apply the projection property of the spectrum on one-
dimensional Lie subalgebras (see e.g. Corollary 0.2 in [1]).

Acknowledgements. The author thanks to Professor Mihai Şabac, who read a first
version of the present paper and made most useful remarks.
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13. M. Şabac, A generalisation of Lie’s theorem, Rev. Roumaine Math. Pures Appl.

20(1975), 961–970.
14. J.L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal.

6(1970), 172–191.
15. W. Wojtynski, Banach-Lie algebras of compact operators, Studia Math. 59(1976),

55–65.

DANIEL BELTIŢĂ
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Note added in proof. A notion of essential spectrum for Banach space representations
of Lie algebras was introduced by A. Dosiev in the paper “The algebra of
power series of elements of a nilpotent Lie algebra and S lodkowski spectra”
(to appear in the journal Algebra i Analiz), extending the notion of essential
spectrum of operators. We note that the main results of the present paper
(notably Theorem 1.3 and Theorem 2.2) still hold when σ(ρ) stands for the
essential spectrum of the representation ρ.
On the other hand, we note two references where self-contained introductions
to the spectral theory of representations of Lie algebras can be found:
[1] C. Ott, Gemeinsame Spektren auflösbarer Operator-Liealgebren, Ph.D.
Dissertation, Kiel 1997.
[2] D. Beltiţă, M. Şabac, Lie Algebras of Bounded Operators, Oper. Theory
Adv. Appl., vol. 120, Birkhäuser, Basel 2001.


