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Abstract. We investigate composition operators between spaces of analytic
functions on the unit disk ∆ in the complex plane. The spaces we consider
are the weighted Nevanlinna class Nα, which consists of all analytic functions
f on ∆ such that

R
∆

log+ |f(z)|(1− |z|2)α dx dy < ∞, and the corresponding

weighted Bergman spaces Ap
α, −1 < α < ∞, 0 < p < ∞. Let X be any of

the spaces Ap
α, Nα and Y any of the spaces Aq

β , Nβ , β > −1, 0 < q < ∞.
We characterize, in function theoretic terms, when the composition operator
Cϕ : f 7→ f ◦ ϕ induced by an analytic function ϕ : ∆ → ∆ defines an
operator X → Y which is continuous, respectively compact, respectively
order bounded.
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1. STATEMENT OF THE RESULTS

Let ∆ be the unit disk {z ∈ C : |z| < 1} in the complex plane, and let H(∆) be
the space of all analytic functions ∆ → C. Any analytic map ϕ : ∆ → ∆ gives rise
to an operator Cϕ : H(∆) → H(∆) defined by Cϕ(f) := f ◦ ϕ, the composition
operator induced by ϕ.

Suppose we are given two linear subspaces X and Y of H(∆), endowed with
suitable topologies. One of the central problems on composition operators is to
know when Cϕ maps X into Y and in fact to compare function theoretic properties
of ϕ and operator theoretic properties of Cϕ : X → Y .

Such problems are addressed here for weighted Nevanlinna classes and
weighted Bergman spaces with respect to boundedness, compactness and order
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boundedness of the operator. As for the latter concept; see e.g. ([6]). Its impor-
tance is due to close relations to absolutely summing operators and their relatives
and, accordingly, to a variety of factorization properties. Special cases of the prob-
lems to be discussed in the sequel have recently been studied by various authors,
in particular within the setting of Hardy spaces and the classical Nevanlinna class
N as well as of standard Bergman spaces and of the area version of N ; see [19],
[20], [8], [3], [4], [11], [22], for example.

Let −1 < α <∞. We use the standard weighted area measure mα on ∆ and
work with the corresponding weighted Bergman spaces Apα, (0 < p <∞) and the
weighted Nevanlinna class Nα which can be thought of as a limit case of the Apα
as p→ 0. Definitions will be given in the next section. Here we only explain what
is needed to understand the statements of the results.

In this paper, arcs in the unit circle ∂∆ will be sets of the form I = {z ∈
∂∆ : θ1 6 arg z < θ2} where θ1, θ2 ∈ [0, 2π) and θ1 < θ2. Normalized length of an
arc I will be denoted by |I|, so |I| = (2π)−1

∫
I

|dz|. The Carleson box based on an

arc I is the set

S(I) :=
{
z ∈ ∆ : 1− |I| 6 |z| < 1, z/|z| ∈ I

}
.

Let s be any positive number. A Borel measure µ on ∆ is called an s-Carleson
measure if µ(S(I)) = O(|I|s) on Carleson boxes S(I). µ is said to be a compact
s-Carleson measure if even µ(S(I)) = o(|I|s) is true. Here O(·) and o(·) are the
usual Landau symbols.

We present our results in four theorems. We start with continuity and com-
pactness.

Theorem 1.1. Let α, β ∈ (−1,∞) and ϕ : ∆ → ∆ analytic.
(i) Cϕ : Nα → Nβ exists as a continuous operator if and only if mβ,ϕ is a

(α+ 2)-Carleson measure: mβ,ϕ(S(I)) = O(|I|α+2).
(ii) Cϕ : Nα → Nβ exists as a compact operator if and only if mβ,ϕ is a

compact (α+ 2)-Carleson measure: mβ,ϕ(S(I)) = o(|I|α+2).

Here mβ,ϕ is the image measure mβ ◦ ϕ−1 on the Borel sets of ∆.
Order boundedness can be characterized as follows:

Theorem 1.2. Let α, β ∈ (−1,∞) and ϕ : ∆ → ∆ analytic. Cϕ : Nα → Nβ
exists as an order bounded operator if and only if (1− |ϕ|2)−(α+2) ∈ L1(mβ).

Theorems 1.1 and 1.2 complement nicely known characterizations for com-
position operators between weighted Bergman spaces (see [8], Propositions 2, 3,
and 6):

(A) Cϕ : Apα → Aqβ exists as a continuous operator if and only if mβ,ϕ is a
(α+ 2)q/p-Carleson measure: mβ,ϕ(S(I)) = O(|I|(α+2)q/p).

(B) Cϕ : Apα → Aqβ exists as a compact operator if and only if mβ,ϕ is a
compact (α+ 2)q/p-Carleson measure: mβ,ϕ(S(I)) = o(|I|(α+2)q/p).

(C) Cϕ : Apα → Aqβ exists as order bounded operator if and only if (1 −
|ϕ|2)−(α+2)q/p ∈ L1(mβ).

Here 0 < p 6 q < ∞. Notice that, for any choice of −1 < α, β < ∞ and
0 < p <∞, the results for Cϕ : Nα → Nβ are the same as for Cϕ : Apα → Apβ . We
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refer to Chapter 5 in [6] for unexplained terminology and facts on order bounded
operators and related material. We only mention that a Hilbert space operator is
order bounded if and only if it is Hilbert-Schmidt.

In general, every Lp-valued order bounded operator factorizes in a canonical
fashion through a space C(K) of continuous functions on some compact Hausdorff
space K and is in fact a p-integral operator. For composition operators Cϕ :
Apα → Aqβ one can do better. Let X be the space of all f ∈ H(∆) such that
sup
z∈∆

(1 − |z|2)(α+2)|f(z)| is finite. It is well-known that X is a Banach space with

respect to this expression and isomorphic to `∞, and that Apα embeds continuously
into X. Now Cϕ : Apα → Aqβ is order bounded iff Cϕ actually maps X into Aqβ and
it is then automatically order bounded. This can be proved either by modifying
the argument given in [7], Theorem 7.1, or by adaption of the lacunary series
argument from [1], Theorem 16, as in [14].

The following consequence of Theorem 1.2 may appear unexpected. Looking
at formal identitiesNα ↪→ Nβ as the composition operators induced by the identity
map ∆ → ∆, we may state:

Corollary 1.3. Let α, β > −1 be given. The following are equivalent:
(i) β > α+ 1.
(ii) Nα is a subset of Nβ, and the corresponding embedding is order bounded.
(iii) For some (and then every) 0 < p < ∞, Apα is a subset of Apβ, and the

corresponding embedding is order bounded.

Of course, the equivalence of (i) and (iii) can also be seen directly once
the independence of p is known. Moreover, by atomic decomposition, each Apβ is
isomorphic to `p, so that, for example in the case p = 1, we are just discussing
nuclearity of the canonical embedding A1

α ↪→ A1
β .

The case of operators from Apα to Nβ and from Nα to Aqβ appears to be
interesting enough to be treated separately.

Theorem 1.4. No matter how we choose −1 < α, β < ∞, 0 < p < ∞,
and the analytic function ϕ : ∆ → ∆, Cϕ : Apα → Nβ is always well-defined and
continuous; it is even order bounded and compact.

Again, this applies in particular to embeddings Apα ↪→ Nβ .
The other result reads as follows:

Theorem 1.5. Let ϕ : ∆ → ∆ be analytic, −1 < α, β <∞ and 0 < q <∞.
Then Cϕ exists as a continuous operator Nα → Aqβ if and only if

exp
1

(1− |ϕ|2)α+2
∈

⋂
r>0

Lr(mβ),

and in this case, the operator is compact and order bounded.

Note that the condition is independent of q, so that in the above situation
Cϕ actually maps Nα into

⋂
q>0

Aqβ .

The integrability condition in Theorem 1.5 is equivalent to requiring conver-

gence of
∞∑
n=1

exp(c n(α+2)/(α+3)) · ‖ϕn‖1,β for some c > 0. Using this it is possible
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to show that composition operators Cϕ : Nα → Aqβ enjoy strong nuclearity prop-
erties, obtained from the standard Banach space concepts in a natural manner
by taking into account Nα’s structure as an F -space. We plan to return to such
topics elsewhere.

The situation for the classical Nevanlinna class N and Hardy spaces Hp has
recently been closely investigated by N. Jaoua ([11]) and J.S. Choa, H.O. Kim
and J.H. Shapiro ([4]); some of the above results even extend formally to this case
by just allowing α to take the value −1. We mention the following extension of
a result from the latter paper. We take N−1 to be the Smirnov class, usually
denoted N+.

Corollary 1.6. For any α > −1, every composition operator is compact
as an operator N → Nα; it is order bounded if and only if α > 0.

In particular, N ↪→ Nα is compact for α > −1 and order bounded iff α > 0.
Here compactness and order boundedness for operators N → Nα are defined

by straightforward generalization of the concepts used before (see [4] and [11]).
However, we can also rely on the old definition by observing that the operators
in question contain compact, respectively order bounded, factors Nα′ → Nα for
suitably chosen −1 < α′ < α.

The proof is easy modulo known results. One of the main results in [4] is that
a composition operator on N is compact if and only if it takes its values in N+.
Corollary 1.6 can be deduced from this as follows. It is clear that N is a linear
subspace of Nα. Moreover, as was shown by T. Domenig ([7], Theorem 8.4), there
is an analytic map ψ : ∆ → ∆ such that, simultaneously for each 0 < p < ∞,
Cψ defines an isomorphic embedding of Apα into Hp. An examination of the
argument reveals that Cψ also provides an isomorphic embedding of Nα into N+.
Its restriction to N is compact, by [4], and so N ↪→ Nα is compact as well. The
order boundedness part follows from Corollary 1.3.

We refer to the next section for definitions and terminology, and for the basic
material on weighted Nevanlinna classes Nα and related spaces. The proofs of the
Theorems 1.1, 1.2, 1.4 and 1.5 will then be given in the subsequent sections.

2. BACKGROUND

To keep our notation simple, we shall frequently denote positive constants just
by C and c allowing them to change their meaning from line to line. Also, given
two families x = (x(ω))ω∈Ω and y = (y(ω))ω∈Ω of non-negative real numbers (or
functions), we write x � y if (there exist constants c, C > 0 such that) cx(ω) 6
y(ω) 6 Cx(ω) for all ω ∈ Ω.

Let ∆ be the unit disk {z ∈ C : |z| < 1} in the complex plane, and let m be
normalized area measure on ∆; so dm(x+ iy) = π−1 dxdy. It is well-known that
for each −1 < α <∞,

dmα(z) := (α+ 1) (1− |z|2)α dm(z),

is a probability measure on (the Borel algebra of) ∆. For 0 < p <∞, the canonical
norm (a p -norm if 0 < p < 1) on the corresponding Lebesgue space Lp(mα) will
be denoted by ‖ · ‖p,α; so that ‖f‖p,α =

( ∫
∆

|f |p dmα

)1/p. As a ‘limit case’ of the
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Lp(mα), we introduce the space Llog+(mα) of all (mα-a.e. equivalence classes of)
measurable functions f on ∆ satisfying

Tα(f) :=
∫
∆

log+ |f |dmα <∞.

As usual, log+ x is log x if x > 1 and 0 if 0 6 x 6 1. From p log+ x 6 xp for all
p ∈ (0,∞) and x ∈ [0,∞) we get

p Tα(f) 6 ‖f‖pp,α
if f ∈ Lp(mα). It follows that Llog+(mα) contains each of the spaces Lp(mα),
0 < p <∞.

Since log+ x 6 log (1 + x) 6 log 2 + log+ x for x > 0, a measurable function
f on ∆ belongs to Llog+(mα) if and only if

|||f |||α :=
∫
∆

log (1 + |f |) dmα

is finite. We write |||f |||α = ∞ if f /∈ Llog+(mα). Obviously,

(2.1) max {|||f + g|||α, |||fg|||α} 6 |||f |||α + |||g|||α
for all f, g ∈ Llog+(mα). Consequently, Llog+(mα) is not only a vector space but
even an algebra. It also follows from (2.1) that, by setting

dα(f, g) := |||f − g|||α
for f, g ∈ Llog+(mα), we obtain a translation invariant metric on Llog+(mα). More
is true:

Proposition 2.1. For any α ∈ (−1,∞), ||| · |||α is an F-norm under which
Llog+(mα) is an F-space.

Moreover, dα-convergence implies convergence in measure, and the canonical
embedding Lp(mα) ↪→ Llog+(mα) is continuous (0 < p <∞).

Here an F -space is just a complete metrizable topological vector space. See
[12] or [15] for the definition and properties of F -norms.

Proof. We omit the routine verification of the F -norm properties. It is also
easy to see that convergence in measure is weaker than convergence with respect
to dα.

To prove completeness, let (fn) be a Cauchy sequence in Llog+(mα) and
let f be its limit with respect to convergence in measure. It follows that every
subsequence of (fn) admits a further subsequence (gk) which converges mα-a.e.
to f . By Fatou’s lemma,

∫
∆

log (1 + |gk − f |) dmα becomes as small as we please

provided we choose k large enough. It follows that f belongs to Llog+(mα) and is
the dα-limit of (gk), hence of (fn).

That the embedding Lp(mα) ↪→ Llog+(mα) is continuous can be derived
directly from relations stated above, or by using the closed graph theorem.
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H(∆) is a Fréchet space (locally convex, metrizable and complete) with re-
spect to the compact-open topology, that is, the topology of uniform convergence
on compact subsets of ∆; in fact, H(∆) is even a Fréchet algebra. By Montel’s
theorem, bounded sets in H(∆) are relatively compact; accordingly, bounded se-
quences in H(∆) admit convergent subsequences. Convergence in this space will
be referred to as local uniform (l.u.) convergence.

Let again −1 < α < ∞ and 0 < p < ∞ be given. The weighted Bergman
space

Apα := H(∆) ∩ Lp(mα)

is a closed linear subspace of the (p -)Banach space Lp(mα).
The weighted Nevanlinna class is defined as the set

Nα := H(∆) ∩ Llog+(mα) ;

it is a linear subspace (even a subalgebra) of H(∆) which contains all the spaces
Apα, 0 < p <∞. Take note of the fact that Nα is a topological vector space with
respect to the induced F -norm ||| · |||α. This is in contrast to the situation for the
classical Nevanlinna class N , which is far from being a topological vector space
([19]), but the Smirnov class N+ (see [9]) can be looked at as the case α = −1 of
the spaces Nα. We have:

Proposition 2.2. With respect to ||| · |||α, Nα is an F -space whose topology
is stronger than that of local uniform convergence.

Proof. To see that convergence with respect to ||| · |||α implies l.u. conver-
gence, recall that if f ∈ Nα then, by subharmonicity of log (1 + |f |),

(2.2) log(1 + |f(z)|) 6
M0|||f |||α

(1− |z|2)α+2

for all z ∈ ∆, where M0 is a constant depending only on α. In particular, if (fn)
is a Cauchy sequence in Nα then it converges l.u. to some f ∈ H(∆). As before,
by Fatou’s lemma, f belongs to Nα and satisfies lim

n
|||f − fn|||α = 0 — which was

what we wanted.

It is clear that if −1 < α < β < ∞, then Nα is contained in Nβ and
the embedding is continuous. To see that the containment is strict just look at
the asymptotic behaviour of |||fw|||α and |||fw|||β as |w| → 1, where fw(z) =

exp
[(

1− |w|2

(1− wz)2

)β+2]
for w ∈ ∆. It is equally clear that N embeds continuously

into Nα, for every α > −1.
Proposition 2.2 will be applied to characterize continuity and compactness

of a composition operator Cϕ : X → Y where X and Y are taken from the
spaces Nα and Aqα, with possibly varying parameters. Subsets B in Nα are called
bounded if they are bounded for the defining linear topology. Note that a linear
map u : Nα → Y is continuous iff it is bounded in the sense that u(B) ⊂ Y is
bounded for every bounded subset B of Nα. We say that u is compact if u(B) ⊂ Y
is relatively compact for some 0-neighbourhood B ⊂ Nα.

As usual, compactness of Cϕ : X → Y can be described as follows:
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Proposition 2.3. Let ϕ : ∆ → ∆ be analytic. Then Cϕ : X → Y is compact
if and only if for every sequence (fn) which is bounded in X and converges to 0

l.u., lim
n→∞

‖Cϕfn‖Y = 0.

Proof. This is known for X = Apα, so it suffices to look at the case where X
is Nα and Y is Nβ or Aqβ ; accordingly, ‖ · ‖Y is ||| · |||β or ‖ · ‖q,β .

Suppose first that Cϕ : Nα → Y is compact. Let (fn) be a bounded sequence

in Nα which converges l.u. to 0. We argue by contradiction and assume that

‖Cϕfn‖Y does not converge to zero. Passing to a subsequence if necessary, we
may assume that inf

n
‖Cϕfn‖Y > 0. Using the compactness of Cϕ and passing to

another subsequence if needed, we can assume that lim
n→∞

‖g − Cϕfn‖Y = 0 for
some g ∈ Y . If Y = Nβ , then

log (1 + |(g − Cϕfn)(z)|) 6
M0|||g − Cϕfn|||β

(1− |z|)β+2

by (2.2), and if Y = Aqβ , then

|(g − Cϕfn)(z)| 6
‖g − Cϕfn‖q,β

(1− |z|2)(β+2)/q

for all z ∈ ∆; see [21]. Hence g−Cϕfn → 0 l.u. But fn → 0 l.u. implies Cϕfn → 0
l.u., so that g = 0 and lim

n→∞
‖Cϕfn‖Y = 0: contradiction!

Next we show that the condition in Proposition 2.3 implies that Cϕ : Nα → Y
is compact. For this, let (fn) be a bounded sequence in Nα. By Proposition 2.1,

(fn) is bounded in H(∆) and so, by Montel’s theorem, admits a subsequence

(fnk
) which converges l.u. to some f ∈ H(∆). As in the proof of Proposition 2.1,

f belongs to Nα, hence lim
k→∞

‖Cϕ(f − fnk
)‖Y = 0. The proof is complete.

Let X be a quasi-Banach space and Y a subspace of a vector lattice L. We

say that an operator u : X → Y is order bounded if it maps the unit ball BX
of X into an order interval of L: for some g > 0 in L we have |Tf | 6 g for

all f ∈ BX . Within the setting of composition operators on Hardy spaces and

weighted Bergman spaces, this concept was investigated in [10], [13] and [8]. We
take L = Lq(mα) if Y is Aqβ , and L = Llog+(mβ) if Y is Nβ . To extend this
definition to X = Nα we follow [11] and say that u : X → Y is order bounded

if every ball BX(0, s) = {x ∈ X : d(x, 0) 6 s} (s > 0, d the given metric of X)

is mapped into an order interval: M(u, s) := sup
x∈BX(0,s)

|u(x)| exists in L for every

s > 0.
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3. PROOF OF THEOREM 1.1

We keep the preceding notations. Note that the measure mβ,ϕ = mβ ◦ ϕ−1 lives
on ϕ(∆) and satisfies

(3.1)
∫
∆

log (1 + |f ◦ ϕ|) dmβ =
∫
∆

log (1 + |f |) dmβ,ϕ

for all f ∈ Nβ .
(i) Assume first of all that Cϕ : Nα → Nβ is continuous. In order to show that

mβ,ϕ is an (α+ 2)-Carleson measure, fix θ ∈ [0, 2π), h ∈ (0, 1], put w = (1− h)eiθ

and consider the test function

fw(z) = exp
[(

1− |w|2

(1− wz)2

)α+2]
.

Since log (1 + x) 6 1 + log+ x for x > 0,

|||fw|||α 6 1 +
∫
∆

log+ |fw|dmα 6 1 +
∫
∆

∣∣∣∣ 1− |w|2

(1− wz)2

∣∣∣∣α+2

dmα(z) 6 K,

where K is a constant depending only on α. Here we have used Lemma 4.2.2 of
[23]. If I is the arc centered at eiθ of sufficiently small (normalized) length h, then
|1 − wz|−4(α+2) > c h−4(α+2) and Re

[
(1 − wz)2(α+2)

]
> c h2(α+2) for z ∈ S(I),

hence

log+ |fw(z)| = log+

∣∣∣∣ exp
(1− |w|2)α+2 (1− wz)2(α+2)

|1− wz|4(α+2)

∣∣∣∣
=

(1− |w|2)α+2 Re
[
(1− wz)2(α+2)

]
|1− wz|4(α+2)

>
c2

hα+2

and so, by (3.1) and since log+ x 6 log(1 + x) on [0,∞),

|||Cϕfw|||β >
∫
S(I)

log+ |fw|dmβ,ϕ >
c2

hα+2
·mβ,ϕ(S(I)).

This proves that mβ,ϕ is an (α+ 2)-Carleson measure.
Suppose conversely that mβ,ϕ is an (α+2)-Carleson measure. To prove that

Cϕ maps Nα (continuously) into Nβ , we follow [18] and [2] and divide ∆ into
dyadic boxes. Let D denote the family of dyadic arcs in ∂∆, that is, the family of
all arcs of the form{

z ∈ ∂∆ :
2πk
2n

6 arg z <
2π(1 + k)

2n

}
, k = 0, 1, . . . , 2n − 1, n = 0, 1, . . . .

Given any arc I in ∂∆, let H(I) denote the half of S(I) which is closest to the
origin, that is,

H(I) = {z ∈ S(I) : 1− |I| 6 |z| < 1− |I|/2}.
Note that the H(I)’s for I ∈ D are pairwise disjoint and cover ∆. Fix any enu-
meration {Hj : j = 1, 2, . . .} of these sets and select a point aj in each Hj . Almost
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any point would work but in order to simplify some parts later on in the proof let
us agree that aj is the ‘center’ of Hj in the sense that |aj | and arg aj bisect the
interval of absolute values and the interval of arguments, respectively, of points
in Hj . If Hj = H(I) then |I| � 1 − |aj |. Given f ∈ Nα, let a∗j ∈ Hj (closure of
Hj) be a point where log(1 + |f |) attains its maximum on Hj . If n is such that
Hj is contained in An := {z ∈ ∆ : 1 − 2−n 6 |z| < 1 − 2−(n+1)}, then the set
Sj := {z ∈ ∆ : 1− 2−(n+1) 6 |z| < 1− 2−(n+2), | arg z− arg a∗j | < 2−n−1} contains
a disc ∆j with center a∗j and radius comparable to 2−n. Note that Sj intersects
at most 6 of the sets Hk and that 1 − |z|2 � 2−n whenever z ∈ Sj . Using these
observations and the submean value property of log(1 + |f |), we get∫

∆

log (1 + |f |) dmβ,ϕ =
∑
j

∫
Hj

log (1 + |f |) dmβ,ϕ

6
∑
j

sup
w∈Hj

log (1 + |f(w)|)mβ,ϕ(Hj) 6 C
∑
j

log (1 + |f(a∗j )|)(1− |aj |2)α+2

6 C
∑
j

∫
∆j

log (1 + |f(z)|) dmα(z) 6 C
∑
j

∫
Hj

log (1 + |f(z)|) dmα(z)

6 C

∫
∆

log(1 + |f(z)|) dmα(z) = C |||f |||α,

as desired.
(ii) is just the ‘little o’ version of (i) and has a similar proof. Only minor mod-

ifications are needed; for example, the test functions in (i) should be replaced by

z 7→ (1− |w|2) exp
[(

1− |w|2

(1− wz)2

)α+2]
, |w| = 1− h.

4. PROOF OF THEOREM 1.2

Suppose first that Cϕ : Nα → Nβ is order bounded: for each s > 0, there is
a gs ∈ Llog+(mβ) such that gs > 0 and |Cϕf(z)| 6 gs(z) for all f ∈ Nα with
|||f |||α 6 s and almost all z ∈ ∆. Consequently, for almost all w ∈ ∆, gs(w) >
sup{|f(ϕ(w))| : f ∈ Nα, |||f |||α 6 s}. We claim that there is a constant κ,
depending only on α and s, such that

fw(z) = exp
[
κ

(
1− |ϕ(w)|2

(1− ϕ(w)z)2

)α+2]
− 1

belongs to BNα(0, s).
This can be seen through the following modification of an argument from [11].

We start by fixing s > 0 and w ∈ ∆ such that ϕ(w) 6= 0 and choose then ε > 0
such that log (1+ε)+(2ε/π) < s and δ = δ(ε) > 0 such that |ez−1| < ε whenever

|z| < δ. We put η := δ

(
1− cos ε

2

)α+2

.
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Consider the sector S(w, ε) := {z ∈ ∆ : | arg z − argϕ(w)| < ε}. If z ∈
∆ \ S(w, ε), then |1− ϕ(w)z| > 1− cos ε, hence∣∣∣∣ 1− |ϕ(w)|2

(1− ϕ(w)z)2

∣∣∣∣ 6
2

|1− ϕ(w)z|
6

2
1− cos ε

.

This implies that if we choose κ < η, then |fw(z)| < ε for z ∈ ∆ \ S(w, ε), hence∫
∆\S(w,ε)

log (1 + |fw|) dmβ 6 log (1 + ε).

As before, Lemma 4.2.2 from [23] provides a constant K such that∫
S(w,ε)

log (1+|fw|) dmβ 6
∫

S(w,ε)

(1+log+ |fw|) dmβ 6 2mβ(S(w, ε))+κK =
2ε
π

+κK.

Combining these two estimates, we obtain

|||fw|||α 6 log (1 + ε) +
2ε
π

+ κK.

If we now choose κ such that in addition κK 6 s − log (1 + ε) − 2ε/π, then
|||f |||α 6 s, as asserted.

Using this,

gs(w) > |fw(ϕ(w))| = exp
[

κ

(1− |ϕ(w)|2)α+2

]
− 1,

is immediate, and so (1− |ϕ|2)−(α+2) ∈ L1(mβ).
Conversely, if ϕ is such that (1− |ϕ|2)−(α+2) ∈ L1(mβ) then (2.2) yields

(4.1) log (1 + |Cϕf(z)|) 6
M0|||f |||α

(1− |ϕ(z)|2)α+2
.

Thus Cϕf ∈ Nβ and Cϕ : Nα → Nβ is order bounded, ‘order bounds’ being the
functions z 7→ exp(M0 s (1− |ϕ(z)|2)−(α+2)), s > 0.

5. PROOF OF THEOREM 1.4

Without loss of generality, we may assume that ϕ(0) = 0; otherwise we can replace
ϕ with τ ◦ ϕ where τ is the Möbius transform of ∆ which exchanges 0 and ϕ(0).

First of all, if f is in Apα with ‖f‖p,α 6 1 then, as in [21], we get

(5.1) |Cϕf(z)| 6 1
(1− |ϕ(z)|2)(α+2)/p

for all z ∈ ∆. By Schwarz’s lemma, |ϕ(z)| 6 |z| for all z ∈ ∆, hence

|||Cϕf |||β 6
∫
∆

log
(

1 +
1

(1− |ϕ(z)|2)(α+2)/p

)
dmβ(z)

6
∫
∆

log
(

1 +
1

(1− |z|2)(α+2)/p

)
dmβ(z) 6 C.
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It follows that, regardless of which analytic function ϕ : ∆ → ∆ we choose, Cϕ
exists as a continuous operator Apα → Nβ .

Next we pass to compactness. Let (fn) be a sequence in the unit ball of Apα.
Linearity allows us, passing to a subsequence if necessary, to assume that (fn)
converges l.u. to 0. We must prove that lim

n
|||Cϕfn|||β = 0. Given 0 < δ < 1,

write |||Cϕfn|||β = In + Jn where

In :=
∫

|z|6δ

log (1 + |fn ◦ ϕ|) dmβ and Jn :=
∫

|z|>δ

log (1 + |fn ◦ ϕ|) dmβ .

By compactness of {|z| 6 δ}, (In) is a null sequence. In order to deal with the
Jn’s, we apply (5.1). Accordingly,

Jn =
∫

|z|>δ

log (1 + |fn ◦ ϕ)|) dmβ 6
∫

|z|>δ

log
(

1 +
1

(1− |ϕ(z)|2)(α+2)/p

)
dmβ(z)

6
∫

|z|>δ

log
(

1 +
1

(1− |z|2)(α+2)/p

)
dmβ(z).

Since the last integral tends to 0 as δ → 1, we are done by Proposition 2.3.
To see that Cϕ : Apα → Nβ is actually order bounded, look at the functions

fw(z) =
(

1− |ϕ(w)|2

(1− ϕ(w)z)2

)(α+2)/p

.

Since
∫
∆

log 1
1−|z|2 dmβ(z) <∞, our claim follows from (5.1).

6. PROOF OF THEOREM 1.5

Suppose that Cϕ : Nα → Aqβ exists as a continuous operator. Suppose we are
given θ ∈ [0, 2π), h ∈ (0, 1) sufficiently small, and M > 0. Write w = (1 − h)eiθ.
This time we choose

gw(z) = exp
[
M

q
·
(

1− |w|2

(1− wz)2

)α+2]
as our test function. It is easy to see that gw ∈ Nα with ‖gw‖Nα

6 C where C
depends on M, q and α. Let again I be the arc with center at eiθ and |I| = h. For
z ∈ S(I) we get, again since 1/(|1−wz|)4(α+2) > c/h4(α+2) and Re(1−wz)2(α+2) >
c h2(α+2),

‖Cϕgw‖q,β >
∫
S(I)

|gw(z)|qdmβ,ϕ(z) > exp
(
c2M

hα+2

)
·mβ,ϕ

(
S(I)

)
.

This yields

(6.1) mβ,ϕ(S(I)) = O
[

exp
(
− M

|I|α+2

)]
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for all M > 0.
We claim that (6.1) implies that for each K > 0

(6.2) exp
[

K

(1− |ϕ|2)α+2

]
∈ L1(mβ).

For this we return to the decomposition of ∆ used in the proof of part (i) of
Theorem 1.1. If Hj = H(I) then c1(1 − |aj |2)−(α+2) 6 |I|−(α+2) 6 C1(1 −
|aj |2)−(α+2), and if z ∈ ∆j then c2(1 − |aj |2)−(α+2) 6 (1 − |z|2)−(α+2) 6 C2 (1 −
|aj |2)−(α+2). Let zj ∈ ∆j be such that (1 − |zj |2)−(α+2) = max

z∈Hj

(1 − |z|2)−(α+2).

Then c3(1− |aj |2)−(α+2) 6 (1− |zj |2)−(α+2) 6 C3(1− |aj |2)−(α+2). Here the cj ’s
and Cj ’s are absolute constants. Fix K > 0 and choose M > K C3/c1. We get
from (6.1)∫

∆

exp
(
(K(1− |z|2)−(α+2)

)
dmβ,ϕ(z)

=
∑
j

∫
Hj

exp
(
K(1− |z|2)−(α+2)

)
dmβ,ϕ(z)

6
∑
j

sup
z∈Hj

exp
(
K(1− |z|2)−(α+2)

)
mβ,ϕ(Hj)

6 C
∑
j

exp(K(1− |zj |2)−(α+2)
)
exp

(
−Mc1(1− |aj |2)−(α+2)

)
6 C

∑
j

exp
(
(KC3 −Mc1)(1− |aj |2)−(α+2)

)
6 C

∑
j

∫
∆j

exp
(

KC3 −Mc1
C2(1− |z|2)α+2

)
dm(z)

(1− |z|2)2

6 C
∑
j

∫
Hj

exp
(

KC3 −Mc1
C2(1− |z|2)α+2

)
dm(z)

(1− |z|2)2

6 C

∫
∆

exp
(

KC3 −Mc1
C2(1− |z|2)α+2

)
dm(z)

(1− |z|2)2
6

CC2

Mc1 −KC3
mα(∆),

which gives (6.2). Conversely, it is readily seen that (6.2) implies that Cϕ : Nα →
Aqβ is order bounded. Of course, such an operator is always continuous, so that
only compactness requires an argument.

But this is easy. The condition in the theorem is independent of q, so that,
for each r > q, Cϕ : Nα → Aqβ admits a factorization Nα → Arβ ↪→ Aqβ . By atomic
decomposition, Arβ is isomorphic to `r and Aqβ is isomorphic to `q; compare [5]
and [17] for a proof. So our claim follows from Pitt’s theorem; see for example
[16], p. 208.
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6. J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge
University Press, Cambridge 1995.

7. T. Domenig, Order bounded and p-summing composition operators, Contemp. Math.
213(1998), 27–41.

8. T. Domenig, H. Jarchow, R. Riedl, The domain space of an analytic composition
operator, J. Austral. Math. Soc. Ser. A 66(1999), 56–65.

9. P. Duren, Theory of Hp Spaces, Academic Press, New York 1970.
10. H. Hunziker, H. Jarchow, Composition operators which improve integrability,

Math. Nachr. 152(1991), 83–99.
11. N. Jaoua, Order bounded composition operators on the Hardy Spaces and the

Nevanlinna class, Studia Math. 134(1999), 35–55.
12. H. Jarchow, Locally Convex Spaces, Teubner-Verlag, Stuttgart 1981.
13. H. Jarchow, Compactness properties of composition operators, Rend. Circ. Mat.

Palermo (2) Suppl. 56(1998), 91–97.
14. H. Jarchow, R. Riedl, Factorization properties of composition operators through

Bloch type spaces, Illinois J. Math. 39(1995), 431–440.
15. N.J. Kalton, N.T. Peck, J.W. Roberts, An F -Space Sampler, London Math.

Soc. Lecture Note Ser., vol. 89, Cambridge Univ. Press, Cambridge 1984.
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