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Abstract. Weak Kac algebras generalize both finite dimensional Kac al-
gebras and groupoid algebras. They naturally arise as symmetries of depth
2 inclusions of II1 factors ([16]). We show that indecomposable weak Kac
algebras are free over their counital subalgebras and prove a duality theorem
for their actions. Using this result, for any biconnected weak Kac algebra we
construct a minimal action on the hyperfinite II1 factor. The corresponding
crossed product inclusion of II1 factors has depth 2 and an integer index. Its
first relative commutant is, in general, non-trivial, so we derive some arith-
metic properties of weak Kac algebras from considering reduced subfactors.
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1. INTRODUCTION

It is well understood now that Kac algebras (Hopf C∗-algebras) are closely related
with the subfactors theory: it was announced by Ocneanu and was proved in [22],
[12], [5] and [4] that irreducible depth 2 inclusions of type II factors come from
crossed products with Kac algebras. This result was recently extended to the
case of general (i.e., not necessarily irreducible) finite index depth 2 subfactors
in [16]. It was shown then that if N ⊂ M ⊂ M1 ⊂ M2 ⊂ · · · is the Jones tower
constructed from such a subfactor N ⊂ M , then K = M ′ ∩M2 has a natural
structure of a finite-dimensional weak Kac algebra or weak Hopf C∗-algebra and
there is a minimal action of K on M1 such that M is the fixed point subalgebra
of M1 and M2 is isomorphic to the crossed product of M1 and K. This result
establishes an injective correspondence between finite index depth 2 subfactors of
a given II1 factor and weak Hopf C∗-algebras.

It is natural to ask if this correspondence is one-to-one in the case of the
hyperfinite II1 factor. Note that in [24] Yamanouchi constructed an outer action
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of any finite dimensional Kac algebra K on the hyperfinite II1 factor R, where the
outerness means that R′ ∩ RoK = C, i.e., that the first relative commutant of
the crossed product inclusion R ⊂ RoK is minimal. His construction used the
Takesaki duality for actions of Kac algebras ([6]).

In this work we extend this result to weak Kac algebras, i.e., we show that
any weak Kac algebra has a minimal action on R. Finite dimensional weak Kac
algebras generalize both finite groupoid algebras and usual Kac algebras. Note
that a weak Kac algebra is a special case of a weak Hopf C∗-algebra introduced
in [3] and [14], which is characterized by the property S2 = id. It was shown
in [17] that the category of weak Kac algebras is equivalent to the categories of
generalized Kac algebras of T. Yamanouchi ([25]) and Kac bimodules (an algebraic
version of Hopf bimodules ([8])). Compared with these objects, the advantage of
the language of weak Kac algebras is that their definition is transparently self-dual,
so it is easy to work with both weak Kac algebra and its dual simultaneously.

The paper is organized as follows.
In Section 2 we collect the necessary definitions and facts about weak Kac

algebras, their actions and crossed products, and their counital subalgebras; we
also give a brief description of the basic construction for ∗-algebras.

In Section 3 we introduce a λ-Markov condition for weak Kac algebras. A
weak Kac algebra K satisfies the λ-Markov condition if the normalized Haar trace
on K is the λ-Markov trace for the inclusion Ks ⊂ K, where Ks is the source
counital subalgebra of K. This condition is automatically satisfied if K is in-
decomposable, i.e., not isomorphic to the direct sum of two weak Kac algebras.
Theorem 3.5 shows that being λ-Markov is equivalent to the freeness of K over its
counital subalgebras; in particular, λ−1 must be a positive integer. As a corollary,
we obtain that indecomposable weak Kac algebras of prime dimension are group
algebras of cyclic groups, which extends the well-known result of Kac ([11]).

Also in this section we introduce and study basic properties of connected and
biconnected weak Kac algebras, i.e., those for which the inclusion Ks ⊂ K is con-
nected (respectively inclusions Ks ⊂ K and K∗

s ⊂ K∗ are connected). The latest
class of indecomposable weak Kac algebras is the most important for the applica-
tions to subfactors in Section 5, so we describe a way of constructing biconnected
weak Kac algebras from usual Kac algebra actions on C∗-algebras (this procedure
generalizes a construction of a groupoid from a group acting on a space).

The central result of Section 4 is a duality theorem for actions of weak Kac
algebras. This theorem is an analogue of the well known duality results for actions
of locally compact groups ([13]), Kac algebras ([6]), and Hopf algebras ([2]). It
states that if K satisfies the λ-Markov condition and acts on a C∗-algebra (von
Neumann algebra) A, then the dual crossed product algebra (AoK) oK∗ is iso-
morphic to A⊗Mλ−1(C). Let us note that a similar result for depth 2 inclusions
of von Neumann algebras was proved in [8].

In Section 5 for any biconnected weak Kac algebra K we construct a minimal
action on the hyperfinite II1 factor R (where the minimality means that the relative
commutant R′ ∩RoK is minimal). The resulting crossed product inclusion R ⊂
RoK of II1 factors has depth 2 and an integer index λ−1. We compute the
standard invariant of this inclusion, and show, in particular, that the first relative
commutant is isomorphic to the counital subalgebra of K: R′ ∩RoK ∼= Ks.

Finally, in Section 6 we construct irreducible subfactors reducing the inclu-
sion R ⊂ RoK by the minimal projection in Ks = R′ ∩ RoK. In this way



Duality for actions of weak Kac algebras 637

we can associate an irreducible finite depth subfactor of R with every irreducible
representation of K or Ks. This allows us to derive certain arithmetic properties
of biconnected weak Kac algebras.

2. PRELIMINARIES

2.1. Weak Kac algebras ([3] and [17]). Throughout this paper all weak Kac
algebras are supposed to be finite-dimensional.

The notion of a weak Kac algebra ([17]) is a special case of a more gen-
eral concept of weak C∗-Hopf algebra introduced in [3]; see [17] for a discussion
on equivalence of weak Kac algebras with other algebraic versions of a quantum
groupoid (generalized Kac algebras of T. Yamanouchi ([25]) and Kac bimodules).

A weak Kac algebra K is a finite dimensional C∗-algebra equipped with the
following linear maps:

(i) comultiplication ∆ : K → K ⊗K;
(ii) counit ε : K → C;
(iii) antipode S : K → K;

where ∆ is a (not necessarily unital) homomorphism of C∗-algebras, ε is a positive
(not necessarily multiplicative) functional, S is a ∗-preserving anti-multiplicative
and anti-comultiplicative involution (i.e., S2 = id) such that the following identi-
ties hold (we denote εs(x) = (id⊗ε)((1⊗x)∆(1)) and εt(x) = (ε⊗id)(∆(1)(x⊗1))):

(1) (∆ ⊗ id)∆ = (id⊗∆)∆ and (ε ⊗ id)∆ = id = (id⊗ε)∆, i.e., K is a
coalgebra;

(2) εs(x)y = (id⊗ε)((1⊗ x)∆(y));
(3) (εs ⊗ id)∆(x) = (1⊗ x)∆(1);
(4) m(S ⊗ id)∆(x) = εs(x) with x, y ∈ K;

where m denotes multiplication.
The following identities are equivalent to the above axioms (2)–(4) respec-

tively:

(2′) xεt(y) = (ε⊗ id)(∆(x)(y ⊗ 1));
(3′) (id⊗εt)∆(x) = ∆(1)(x⊗ 1);
(4′) m(id⊗S)∆(x) = εt(x) with x, y ∈ K.

The dual vector space K∗ has a natural structure of a weak Kac algebra
given by dualizing the structure operations of K:

〈ϕψ, x〉 = 〈ϕ⊗ ψ,∆(x)〉 (multiplication),
〈∆(ϕ), x⊗ y〉 = 〈ϕ, xy〉 (comultiplication),
〈S(ϕ), x〉 = 〈ϕ, S(x)〉 (antipode),
〈ϕ∗, x〉 = 〈ϕ, S(x∗)〉 (∗-operation),

for all ϕ,ψ ∈ K∗, x, y ∈ K. The unit is given by ε and counit by ϕ 7→ 〈ϕ, 1〉.
Below we collect the most important results of the theory of weak Kac alge-

bras. The proofs can be found in [17].
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The maps εs and εt are called source and target counital maps respectively
and we have ε2s = εs and ε2t = εt. Their images are unital C∗-subalgebras, called
counital subalgebras of K:

Ks = {x ∈ K | εs(x) = x} = {x ∈ K | ∆(x) = 1(1) ⊗ x1(2)},
Kt = {x ∈ K | εt(x) = x} = {x ∈ K | ∆(x) = 1(1)x⊗ 1(2)}.

The counital subalgebras commute: [Ks,Kt] = 0; also we have S ◦εs = εt ◦S
and S(Ks) = Kt.

Like usual finite-dimensional Kac algebras (= Hopf C∗-algebras), weak Kac
algebras have integrals in the following sense.

There exists a unique projection pε ∈ K, called a Haar projection, such that
for all x ∈ K:

pεx = pεεs(x), xpε = εt(x)pε, εs(pε) = εt(pε) = 1.

There exists a unique faithful trace τ on K, called a normalized Haar trace,
such that

(τ ⊗ id)∆ = (τ ⊗ εs)∆, (id⊗τ)∆ = (εt ⊗ τ)∆, τ ◦ εs = τ ◦ εt = ε.

The normalized Haar projection and trace are unimodular, i.e. S(pε) = pε

and τ ◦ S = τ . By duality, τ is the normalized Haar projection for the dual weak
Kac algebra K∗.

The maps

Es : K → Ks Es(x) = (τ ⊗ id)∆(x),
Et : K → Kt Et(x) = (id⊗τ)∆(x)

define τ -preserving conditional expectations (see 2.3 for the definition) from K to
counital subalgebras.

To fix the notation in what follows, let

K ∼=
N⊕

i=1

Mdi
(C), Ks

∼= Kt
∼=

L⊕
α=1

Mmα
(C),

and let {e(i)kl } (i = 1, . . . , N ; k, l = 1, . . . , di) be a system of matrix units in K,
{f (α)

rs } in Ks, and {g(α)
rs } in Kt (α = 1, . . . , L; r, s = 1, . . . ,mα). By [17] we have :

∆(pε) =
∑

i

1
di

∑
k,l

e
(i)
kl ⊗ S(e(i)lk ),

∆(1) =
∑
α

1
mα

∑
r,s

f (α)
rs ⊗ S(f (α)

sr ) =
∑
α

1
mα

∑
r,s

S(g(α)
sr )⊗ g(α)

rs .

In particular, pε is cocommutative, i.e., ∆(pε) = ς∆(pε), where ς is the flip on the
tensor product K ⊗K.

Also we denote Λ = (Λij) the (L × N) inclusion matrix ([9]) of Ks (or Kt)
into K.

2.2. Actions, dual actions, and crossed products ([15]). By a ∗-algebra
we understand an associative algebra over C equipped with a conjugate linear
anti-automorphism of order 2 (involution), x 7→ x∗.
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The notion of an action of a weak C∗-Hopf algebra on a ∗-algebra was defined
in [15]. We slightly modify that definition, since we consider only those actions
for which the map x 7→ (x . 1) (respectively x 7→ (1 / x)) is injective on a counital
subalgebra. We need definitions of left and right actions.

A left (respectively right) action of a weak Kac algebra K on a unital ∗-
algebra A is a linear map

K ⊗A 3 h⊗ a 7→ (h . a) ∈ A, respectively A⊗K 3 a⊗ h 7→ (a / h) ∈ A,
defining a structure of a left (respectively right) K-module on A such that:

(i) h . ab = (h(1) . a)(h(2) . b) (respectively ab / h = (a / h(1))(b / h(2)));
(ii) (h . a)∗ = Sh∗ . a∗ (respectively (a / h)∗ = a∗ / Sh∗);
(iii) h.1 = εt(h).1, and h.1 = 0 iff εt(h) = 0 (respectively 1/h = 1/εs(h),

and 1 / h = 0 iff εs(h) = 0).

If A is a C∗-algebra or a von Neumann algebra then we also require that
the map a 7→ (h . a) (respectively a 7→ (a / h)) to be norm continuous or weakly
continuous for all h ∈ K.

Note that the map z 7→ (z . 1) (respectively z 7→ (1 / z)) defines an injective
∗-homomorphism from Kt (respectively Ks) to A. Thus, A must contain a ∗-
subalgebra isomorphic to a counital subalgebra of K.

A trivial left (respectively right) action of K on Kt (respectively Ks) is
given by

h . a = εt(ha) (respectively a / h = εs(ah)), h ∈ K, a ∈ Kt (respectively Ks).

A dual left (respectively right) action of K∗ on K is given by

ϕ . h = h(1)〈ϕ, h(2)〉, respectively h / ϕ = 〈ϕ, h(1)〉h(2), ϕ ∈ K∗, h ∈ K.

Given a left (respectively right) action of K on a ∗-algebra A, there is a
left (respectively right) crossed product ∗-algebra AoK (respectively K nA) con-
structed as follows. As a C-vector space it is A⊗KtK (respectivelyK⊗KsA), where
K is a left (respectively right) Kt-module (respectively Ks-module) via multipli-
cation and A is a right Kt-module (respectively left Ks-module) via multiplication
by image of Kt (respectively Ks) under z 7→ (z . 1) (respectively z 7→ (1 / z)); that
is, we identify

a(z . 1)⊗ h ≡ a⊗ zh, respectively hz ⊗ a ≡ h⊗ (1 / z)a,

for all a ∈ A, h ∈ K, z ∈ Kt (respectively Ks). Let [a ⊗ h] (respectively [h ⊗ a])
denote the class of a⊗ h (respectively h⊗ a). A ∗-algebra structure is defined by

[a⊗ h][b⊗ k] = [a(h(1) . b)⊗ h(2)k], [a⊗ h]∗ = [(h∗(1) . a
∗)⊗ h∗(2)],

respectively
[h⊗ a][k ⊗ b] = [hk(1) ⊗ (a / k(2))b], [h⊗ a]∗ = [h∗(1) ⊗ (a∗ / h∗(2))],

for all a, b ∈ A, h, k ∈ K. The maps iA : a 7→ [a⊗ 1K ] (respectively a 7→ [1K ⊗ a])
and iK : h 7→ [1A ⊗ h] (respectively h 7→ [h ⊗ 1A]) are inclusions of ∗-algebras
such that AoK = iA(A)iK(K) (respectively K nA = iK(K)iA(A)). Moreover,
if A is a C∗-algebra (von Neumann algebra), then the crossed product is naturally
∗-isomorphic to a norm closed (weakly closed) ∗-algebra of operators on some
Hilbert space, i.e., it becomes a C∗-algebra (von Neumann algebra).
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For the crossed products constructed from the trivial actions ofK on counital
subalgebras we have

Kt oK ∼= K and K nKs
∼= K.

A left (respectively right) dual action of K∗ on the crossed product AoK (re-
spectively K nA) is defined as

ϕ . [a⊗ h] = [a⊗ (ϕ . h)], respectively [h⊗ a] / ϕ = [(h / ϕ)⊗ a],

for all a ∈ A, h ∈ K, ϕ ∈ K∗. The action of K∗ on K defined above is dual to the
trivial action of K on the counital subalgebra.

2.3. The basic construction for ∗-algebras ([23]). Let B be a unital ∗-
algebra, A be its ∗-subalgebra containing the unit of B. A conditional expectation
E : B → A is a faithful (i.e, such that E(Bb) = 0 implies b = 0, for b ∈ B) linear
∗-preserving map satisfying

E(ab) = aE(b), E(ba) = E(b)a, and E(a) = a,

for all a ∈ A, b ∈ B. A finite family {u1, . . . , un} ⊂ B is called a quasi-basis for E
if

b =
∑

i

uiE(u∗i b) for all b ∈ B.

It is called a basis if “the coefficients” E(u∗i b) are unique, i.e. if
∑
i

uiai = 0,

ai ∈ A ⇔ ai = 0 (∀i). A conditional expectation E is of finite-index type if there
exists a quasi-basis for E. In this case the index of E is defined as

IndexE =
∑

i

uiu
∗
i ∈ B.

IndexE belongs to the center of B and does not depend on the choice of quasi-
basis.

The basic construction for E is a ∗-algebra B ⊗A B with the multiplication
and involution given by

(b1 ⊗ b2)(b3 ⊗ b4) = b1E(b2b3)⊗ b4, (b1 ⊗ b2)∗ = b∗2 ⊗ b∗1,

for all b1, b2, b3, b4 in B. Note that the unit of this algebra is
∑
i

ui ⊗ u∗i , where

{ui} is the quasi-basis for E.
In what follows we consider only conditional expectations of finite-index type

for which a basis (not just a quasi-basis) exists.
In this case B⊗AB is canonically isomorphic to Endr

A(B), the algebra of
endomorphisms of B viewed as a right A-module, with the isomorphism ϕ :B⊗AB
→ Endr

A(B) given by

ϕ(b1 ⊗ b2)(b) = b1E(b2b), b, b1, b2 ∈ B.
B is canonically identified with the subalgebra of left multiplication operators
(x 7→ bx for x ∈ B) in Endr

A(B). Clearly, Endr
A(B) ∼= Mn(A), the ∗-algebra of

(n× n) matrices over A, since B is free of rank n over A.
Note that eA = E ∈ Endr

A(B) is a projection such that:

(i) eAbeA = E(b)eA for all b ∈ B,
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(ii) the map A 3 a 7→ aeA ∈ Endr
A(B) is injective,

and Endr
A(B) is generated by B and eA.

Conversely, if C is a ∗-algebra containing B as a unital ∗-subalgebra and
generated by B and some projection eA satisfying properties (i) and (ii) above,
then C is canonically ∗-isomorphic to B ⊗A B with the isomorphism given by
b1eAb2 7→ b1 ⊗ b2.

Due to this fact, we will denote the basic construction for E by 〈B, eA〉.
When A and B are C∗ -algebras (von Neumann algebras) then 〈B, eA〉 nat-

urally becomes a C∗-algebra (von Neumann algebra).

3. λ-MARKOV CONDITION AND CONNECTED WEAK KAC ALGEBRAS

We show that indecomposable weak Kac algebras have the Markov property (i.e.,
Es(pε) is a scalar). We prove that this property is equivalent to existence of a
basis for Es, i.e., to freeness of K over the counital subalgebra Ks, and can be
expressed in terms of the inclusion matrix of Ks ⊂ K.

We also introduce notions of connected and biconnected weak Kac algebras
which are important for applications to the theory of subfactors.

Definition 3.1. A weak Kac algebra K is decomposable if it is isomorphic
to the direct sum of two weak Kac algebras, K ∼= K1 ⊕ K2; otherwise K is
indecomposable.

These properties can be expressed in terms of the algebra Ks ∩Kt ∩ Z(K),
the hypercenter of K ([15]) (here Z(K) is the center of K).

Proposition 3.2. K is indecomposable iff the hypercenter of K is trivial,
i.e., Ks ∩Kt ∩ Z(K) = C.

Proof. If q is a projection in Ks ∩Kt ∩ Z(K), then S(q) = q, ∆(q) = (q ⊗
q)∆(1), and ∆(qh) = (q ⊗ q)∆(h) for all h ∈ K. Therefore, qK and (1− q)K are
weak Kac algebras and K = qK ⊕ (1 − q)K. Conversely, if K is decomposable
and K1 is its direct summand, then εs(1K1) = εt(1K1) = 1K1 and the unit of K1

belongs to the hypercenter of K.

It turns out that indecomposable weak Kac algebras satisfy an important
λ-Markov condition.

Definition 3.3. A weak Kac algebra K satisfies a λ-Markov condition if
Es(pε) = Et(pε) = λ

for some positive λ (note that since pε is cocommutative, we always have Es(pε) =
Et(pε)).

Proposition 3.4. If K is indecomposable, then it satisfies the λ-Markov
condition for some λ.

Proof. Note that

Es(pε) = Et(pε) =
∑

i

1
di

∑
k

e
(i)
kkτ(e

(i)
kk) =

∑
i

τi
di

∑
k

e
(i)
kk ∈ Z(K),

where τi = τ(e(i)kk) does not depend on k. Therefore, if Es(pε) 6= λ, then the
hypercenter is non-trivial and K is decomposable by Proposition 3.2.
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The following theorem describes the λ-Markov condition in several equivalent
ways.

Theorem 3.5. The following conditions are equivalent:
(i) K satisfies the λ-Markov condition;
(ii) τ = λTr where Tr is the trace of the left regular representation of K on

itself;
(iii) (ΛΛt)~m = λ~m, where ~m = (m1, . . . ,mL) is the dimension vector of a

counital subalgebra, and Λ is the L×N inclusion matrix of Ks ⊂ K;
(iv) n = λ−1 is an integer and there is a basis {xν}ν=1,...,n for Es, i.e., a

basis of K over Ks such that x =
∑
ν
xνEs(x∗νx) for all x ∈ K;

(v) n = λ−1 is an integer and there is a basis {yν}ν=1,...,n for Et, i.e., a
basis of K over Kt such that y =

∑
ν
yνEt(y∗νy) for all y ∈ K.

Proof. (i) ⇔ (ii) As we saw in the proof of Proposition 3.4, Es(pε) = λ iff
there exists λ such that τ(e(i)kk) = λdi, i.e., τ = λTr.

(ii) ⇔(iii) It suffices to prove that (iii) holds true if and only if Tr is normal-
ized by conditions (Tr⊗ id)∆(1) = (id⊗Tr)∆(1) = λ−1 (it was shown in [17] that
(Tr⊗ id)∆ = (Tr⊗εs)∆ and (id⊗Tr)∆ = (εt ⊗Tr)∆). Since Tr ◦S = Tr, we have

(Tr⊗ id)∆(1) =
K∑

α=1

1
mα

∑
r

Tr(g(α)
rr )g(α)

rr =
K∑

α=1

1
mα

( ∑
i

Λαidi

) ∑
r

g(α)
rr ,

(id⊗Tr)∆(1) =
K∑

α=1

1
mα

∑
r

f (α)
rr Tr(f (α)

rr ) =
K∑

α=1

1
mα

( ∑
i

Λαidi

) ∑
r

f (α)
rr .

This shows that (ii) is equivalent to the following condition:∑
i

Λαidi = λ−1mα, α = 1, . . . , L.

But di =
L∑

β=1

Λβimβ since the inclusion Ks ⊂ K is unital. Hence, we can rewrite

the last condition as
N∑

i=1

L∑
β=1

ΛαiΛβimβ = λ−1mα, α = 1, . . . , L,

which means precisely that (ΛΛt)~m = λ−1 ~m.
(iii) ⇒ (iv) It is clear that λ−1 is a positive rational number since all entries

of (ΛΛt) and ~m are positive integers. On the other hand, λ−1 is an algebraic
integer, since it is an eigenvalue of the integer matrix (ΛΛt), therefore, λ−1 is an
integer.

For all α = 1, . . . , L and r = 1, . . . ,mα define Kαr = Kf
(α)
rr . Then

dim(Kαr) = Tr(f (α)
rr ) =

∑
i

Λαidi = nmα.
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For all y, z ∈ Kαr we have:

Es(y∗z) = f (α)
rr Es(y∗z)f (α)

rr = (y, z)f (α)
rr ,

where (y, z) is a scalar since f (α)
rr is minimal in Ks. Clearly, ( · , · ) defines an inner

product in Kαr, which is non-degenerate since Es is faithful. Let us choose an
orthonormal basis {xαr

µ }, (µ = 1, . . . , nmα) in Kαr, α = 1, . . . L, r = 1, . . . ,mα in
such a way that

xαt
µ = xαr

µ f
(α)
rt for all t, r = 1, . . . ,mα, µ = 1, . . . , nmα.

Then we have the following relation

Es((xαr
µ )∗xα′r′

µ′ ) = δαα′δµµ′f
(α)
rr′ for all α, α′, µ, µ′, r, r′.

We claim that

xν =
∑
α

∑
r,s

1
√
mα

exp
(2srπ
mα

i
)
xαr

ν+(s−1)n, ν = 1, . . . , n,

is a basis of K over Ks. Indeed:∑
ν

xνEs(x∗νx
βt
µ )=

∑
ν

∑
α,r,s

1
mα

xαr
ν+(s−1)nEs((xαr

ν+(s−1)n)∗xβt
µ )=

1
mβ

∑
r

xβr
µ f

(β)
rt =xβt

µ

for all β = 1, . . . ,K, t = 1, . . . ,mβ , µ = 1, . . . , nmβ . Next,

Es(x∗νxκ) =
∑

α,r,r′,s,s′

1
mα

exp
(2(sr − s′r′)π

mα
i
)
Es((xαr

ν+(s−1)n)∗xαr′

κ+(s′−1)n)

= δνκ

∑
α,r,r′,s

1
mα

exp
(2s(r − r′)π

mα
i
)
f

(α)
rr′ = δνκ

∑
α,r

f (α)
rr = δνκ.

Since ‘Es -orthogonality’ implies linear independence over Ks, we conclude that
{xν} is a basis for Es.

(iv) ⇒ (iii) If there is a basis for Es : K → Ks then the basic construction
〈K, eKs〉 is isomorphic to Mn(Ks). This means that the inclusion matrix B of the
inclusion Ks ⊂ 〈K, eKs〉 satisfies B~m = λ−1 ~m. But B = ΛΛt ([9]).

(iv) ⇔ (v) We will prove (iv) ⇒ (v), the converse implication is completely
analogous. If x =

∑
ν
xνEs(x∗νx) then Sx∗ =

∑
ν
Sx∗νEt(SxνSx

∗), since Et =

S ◦ Es ◦ S, and we can take yν = Sx∗ν , ν = 1, . . . , λ−1 as a basis for Et.

Corollary 3.6. If the equivalent conditions of Theorem 3.5 are satisfied
then τ is a λ−1-Markov trace for the inclusion Kt ⊂ K (Ks ⊂ K).

Proof. We need to show that ΛtΛ~t = λ−1~t, where ~t is the “trace-vector”
corresponding to τ (3.2.3 (ii) of [10]). Since τ = λTr, we have ~t = λ~d, where
~d = (d1, . . . , dN ) is the “dimension-vector” of K. Using Theorem 3.5 (iii) we
compute

ΛtΛ~t = λΛtΛ~d = λΛtΛΛt ~m = Λt ~m = ~d = λ−1~t.

Remark 3.7. (i) Proposition 3.2 says that K is indecomposable iff the ma-
trix Λ is indecomposable in the sense of [9]. In this case, Theorem 3.5 (iii) implies
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that ~m is the Perron-Frobenius eigenvector of the matrix (ΛΛt). It is well-known
that in this case the corresponding eigenvalue λ−1 is equal to the spectral radius
of (ΛΛt), so

λ−1 = ‖ΛΛt‖ = ‖Λ‖2.

(ii) Theorem 3.5 (iv) and (v) show that an indecomposable weak Kac algebra
K is free over its counital subalgebras Ks and Kt. In particular, dimKs divides
dimK and

λ−1 =
dimK

dimKs
.

(iii) Conditional expectations Es and Et are of index-finite type and their
index is an integer scalar: IndexEs = IndexEt = λ−1.

Corollary 3.8. If K is indecomposable and dimK = p, where p is a prime,
then K ∼= CZp, a group algebra of a simple abelian group.

Proof. Remark 3.7 (ii) implies that counital subalgebras of K must be 1-
dimensional, so K is an ordinary Kac algebra. But in this case the result is
well-known ([11]).

The λ-Markov condition is invariant under duality.

Proposition 3.9. K satisfies the λ-Markov condition iff K∗ satisfies the
λ-Markov condition (with the same λ).

Proof. Since K satisfies the λ-Markov condition iff every its indecomposable
component does, it sufficed to prove this statement in the case when K is in-
decomposable. But this is trivial by Proposition 3.4 and Remark 3.7 (ii), since
dimKs = dimK∗

s .

Connected weak Kac algebras (i.e., those with connected Bratteli diagram
of the inclusion Ks ⊂ K) form a subclass of indecomposable weak Kac algebras
important for the applications to subfactors in Section 5.

Definition 3.10. A weak Kac algebra K is connected if the inclusion Ks ⊂
K is connected, i.e., Ks ∩ Z(K) = C (or, equivalently, Kt ∩ Z(K) = C), where
Z( · ) denotes the center of an algebra. K is biconnected if both K and K∗ are
connected.

Proposition 3.11. (cf. [15])] The following conditions are equivalent:
(i) K is connected;
(ii) K∗

s ∩K∗
t = C;

(iii) pε is a minimal projection in K (i.e the counital representation of K
(Section 2.2 of [17]) is irreducible).

Proof. (i)⇒ (ii) Suppose that there is β ∈ K∗
s ∩K∗

t , β 6∈ C. Since the counital
subalgebras commute, β must belong to Z(K∗

s ), the center of K∗
s . Consider the

element b ∈ K ∼= K∗∗ defined as 〈b, ϕ〉 = 〈1, βϕ〉 for all ϕ ∈ K∗. We can compute:

〈b, ϕ(1)〉ϕ(2) = 〈1, βϕ(1)〉ϕ(2) = 〈1, β(1)ϕ(1)〉β(2)ϕ(2) = βϕ,

ϕ(1)〈b, ϕ(2)〉 = ϕ(1)〈1, βϕ(2)〉 = ε(1)ϕ〈1, βε(2)〉 = βϕ,



Duality for actions of weak Kac algebras 645

therefore b ∈ Z(K). Also, for all ϕ ∈ K∗ we have

〈εs(b), ϕ〉 = 〈b, εs(ϕ)〉 = 〈1, βεs(ϕ)〉 = 〈1, βε(1)〉〈1, ε(2)ϕ〉 = 〈1, βϕ〉 = 〈b, ϕ〉,

therefore εs(b) = b and b ∈ Ks. Thus Z(K) ∩Ks 6= C1, so K is not connected.
(ii) ⇒(i) If K is not connected, then there exists b ∈ Z(K) ∩ Kt, b 6∈ C.

Define β ∈ K∗ by β : x 7→ ε(bx). We have, for all x ∈ K:

〈β, εs(x)〉 = ε(b1(1))ε(x1(2)) = ε(xεt(b)) = ε(xb),

〈β, εt(x)〉 = ε(b1(2))ε(1(1)x) = ε(bx) = ε(xb),

from where εs(β) = β = εt(β) and K∗
s ∩K∗

t 6= Cε.
(i) ⇒ (iii) If there is a proper subprojection q of pε then from the formula

for ∆(pε) we get εs(q) 6= 1 and εs(q) ∈ Z(K), so K is not connected.
(iii) ⇒ (i) Let Pε be the central support of pε. It was shown in [17] that

the quotient map K 7→ PεK (which is a homomorphism of weak Kac algebras)
is one-to-one on the counital subalgebras. Therefore Ks ∩ Z(K) is contained in
Z(PεK), and Ks ∩ Z(K) = C when pε is minimal.

The following construction generalizes transformation groupoids arising from
group actions on spaces ([20]). We associate a weak Kac algebra with any finite
dimensional C∗-algebra carrying an action of a usual Kac algebra. Our method
uses two-sided crossed products introduced in [14].

Namely, let H be a usual finite-dimensional Kac algebra (i.e., finite-dimen-
sional Hopf C∗-algebra) acting on the right on a finite-dimensional C∗-algebra A
via a ⊗ h 7→ (a / h), where a ∈ A, h ∈ H. Then H also acts on the left on Aop,
the C∗-algebra opposite to A, via (h . a) = a / S(h), where a ∈ Aop, h ∈ H.

Definition 3.12. A two-sided crossed product C∗-algebra Aop oH nA is
defined as vector space Aop ⊗H ⊗A with multiplication and involution given by

(b⊗ h⊗ a)(b′ ⊗ h′ ⊗ a′) = (h(1) . b
′)b⊗ h(2)h

′
(1) ⊗ (a / h′(2))a

′

(b⊗ h⊗ a)∗ = (h∗(1) . b
∗)⊗ h∗(2) ⊗ (a∗ / h∗(3)),

for all a, a′ ∈ A, b, b′ ∈ Aop, h, h′ ∈ H.

Let {fα
rs} be a system of matrix units in A = ⊕αMmα

(C). Then the element
e ∈ A⊗Aop and the functional ω ∈ A∗ defined by

e =
∑
α,r,s

1
mα

fα
rs ⊗ fα

sr, ω(fα
rs) = δrsmα

do not depend on the choice of matrix units. Moreover, one can directly check
that

ω(a(h . b)) = ω(b(a / h)), e(1) ⊗ (h . e(2)) = (e(1) / h)⊗ e(2),

where a ∈ A, b ∈ Aop, h ∈ H, and e = e(1) ⊗ e(2) (with the summation sign
suppressed).
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Proposition 3.13. (cf. [14]) There is a structure of weak Kac algebra on

K = Aop oH nA defined by

∆(b⊗ h⊗ a) = (b⊗ h(1) ⊗ e(1))⊗ ((h(2) . e
(2))⊗ h(3) ⊗ a),

ε(b⊗ h⊗ a) = ω(a(h . b)),

S(b⊗ h⊗ a) = a⊗ S(h)⊗ b,

where a ∈ A, b ∈ Aop, h ∈ H, and the canonical anti-isomorphism b 7→ b between

Aop and A is implicitly used.

Proof. The verification of all the axioms is straightforward and is left to the

reader.

The source and target counital subalgebras of K are

Ks = {1⊗ 1⊗ a | a ∈ A}, Kt = {b⊗ 1⊗ 1 | b ∈ Aop}.

Clearly, Ks ∩ Kt = C, so K∗ is connected by Proposition 3.11. It is easy to see

that K is biconnected iff the fixed points algebra

AH = {a ∈ A | a / h = ε(h)a, ∀h ∈ H}

is trivial.

In the special case when H = C acts trivially on A, K∗ is isomorphic to

the full matrix algebra Md(C), d = dimA. Such weak Kac algebras were classi-

fied in [17].

Example 3.14. Let A be a right coideal C∗-subalgebra of H∗ and the action

of H on A be induced by the dual action of H on H∗:

a / h = 〈h, a(1)〉a(2).

Then K = Aop oH nA is a biconnected weak Kac algebra and

λ−1 = (dimH)(dimA).

In Section 6 we derive some arithmetic properties of biconnected weak Kac

algebras from the existence of a minimal action of any such algebra on the hyper-

finite II1 factor.
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4. DUALITY FOR ACTIONS

In this section K is a weak Kac algebra satisfying the λ-Markov condition (e.g.,
indecomposable) and acting on a C∗-algebra A. Left actions are assumed every-
where; the right counterparts of the results below can be obtained similarly and
are left to the reader.

Lemma 4.1. For all a ∈ A we have

(n . a) = a(n . 1), n ∈ Ks, and (n . a) = (n . 1)a, n ∈ Kt.

Proof. For all n ∈ Ks we compute

n . a = (n(1) . a)(n(2) . 1) = (1(1) . a)(1(2)n . 1) = a(n . 1),

and similarly the second statement.

Proposition 4.2. The map EA : AoK → A defined as

EA([a⊗ h]) = a(Et(h) . 1), a ∈ A, h ∈ K,
is a faithful conditional expectation. If {yν}ν=1,...,n is a basis for Et as in Theo-
rem 3.5 (v), then {[1⊗ yν ]}ν=1,...,n is a basis for EA.

Proof. For all z ∈ Kt we compute

EA([a⊗ zh]) = a(Et(zh) . 1) = a(zEt(h) . 1)

= a(z . 1)(Et(h) . 1) = EA([a(z . 1)⊗ h]),

therefore EA is well-defined on AoK. Clearly, EA|A = idA. Let us check other
properties (using Lemma 4.1):

EA([a⊗ 1][b⊗ h][c⊗ 1]) = EA([ab(h(1) . c)⊗ h(2)]) = ab(h(1) . c)(Et(h(2)) . 1)

= ab(Et(h) . c) = ab(Et(h) . 1)c = aEA([b⊗ h])c,

for all a, b, c ∈ A and h ∈ K, so EA is a conditional expectation. We have
h =

∑
ν
yνEt(y∗νh) =

∑
ν
Et(hyν)y∗ν for all h ∈ K by Theorem 3.5 (v), so

[a⊗ h] =
∑

ν

[a⊗ Et(hyν)y∗ν ] =
∑

ν

[a(Et(hyν) . 1)⊗ 1][1⊗ y∗ν ]

=
∑

ν

[EA([a⊗ h][1⊗ y∗ν ])⊗ 1][1⊗ y∗ν ],

applying the involution we get

[a⊗ h] =
∑

ν

[1⊗ yν ][EA([1⊗ y∗ν ][a⊗ h])⊗ 1], a ∈ A, h ∈ K.

Therefore, every x ∈ AoK can be written as x =
∑
ν

[1⊗ yν ][aν ⊗ 1] for some aν ,

ν = 1, . . . , n. Since EA([1⊗ y∗νyκ]) = δνκ, we have

EA(x∗x) =
∑
ν,κ

EA([a∗ν ⊗ 1][1⊗ y∗ν ][1⊗ yκ][aκ ⊗ 1]) =
∑

ν

a∗νaν ,

and x = 0 iff EA(x∗x) = 0 iff aν = 0 (∀ν). This proves that EA is faithful and
{[1⊗ yν ]}ν=1,...,n is a basis for EA.
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Remark 4.3. IndexEA = IndexEt = λ−1.

In what follows we consider C∗-algebras A,K,K∗, AoK, and K oK∗ as
subalgebras of (AoK) oK∗ in an obvious way with inclusion maps denoted by
iA, iK etc.

Lemma 4.4. Let eA = iK∗(τ) ∈ (AoK) oK∗. Then:
(i) eAiA o K(x)eA = iA(EA(x))eA for all x ∈ AoK;
(ii) the map A 3 a 7→ iA(a)eA ∈ (AoK) oK∗ is injective.

Moreover, EA o K(eA) = λ.

Proof. For all a ∈ A, h ∈ K we compute

eAiA o K([a⊗ h])eA =[τ(1) . [a⊗ h]⊗ τ(2)τ ]=[τ(1) . [a⊗ h]⊗ εt(τ(2))][1A o K ⊗ τ ]

=[τ . [a⊗ h]⊗ ε][1A o K ⊗ τ ]= iA(EA([a⊗ h]))eA,

which proves (i). Next, we compute

EA o K(iA(a)eA) = EA o K([a⊗ 1]⊗ τ) = [a⊗ 1](λε . [1⊗ 1]) = λiA(a),

thus proving that the map a 7→ iA(a)eA is injective. Taking a = 1 in the last
formula, we obtain EA o K(eA) = λ.

Proposition 4.5. (AoK) oK∗ = (AoK)eA(AoK).

Proof. Observe that for all a ∈ A, g, h ∈ K

iA o K([a⊗ h])eAiK(g) = iA(a)(iK(h)eAiK(g)).

Since (AoK) oK∗ = span{iA(a)iK o K∗(x) | a ∈ A, x ∈ K oK∗}, it suffices to
show that K oK∗ = KeKK (here eK = [1K ⊗ τ ] ∈ K oK∗).

For this purpose, we need to show that every element of K o K∗ can be
written as a linear combination of elements iK(h)eKiK(g), h, g ∈ K.

Let {ϕγ
ij} be a system of matrix units in K∗. Since τ is the normalized Haar

projection in K∗, we have

∆(τ) =
∑

γ

1
cγ

∑
i,j

ϕγ
ij ⊗ S(ϕγ

ji),

for some integers cγ . Let {vγ
ij} be the system of comatrix units in K, dual to

{ϕγ
ij}: ∆(vγ

ij) =
∑
k

vγ
ik ⊗ vγ

kj , ε(v
γ
ij) = δij .

Fix x ∈ K and let hk = xS(vγ
pk), gk = cγv

γ
kl for some γ, p, l (k = 1, . . . ,mγ).

Then∑
k

iK(hk)eKiK(gk) =
∑

k,i,j,m

[xS(vγ
pk)vγ

km ⊗ 〈ϕγ
ij , v

γ
ml〉S(ϕγ

ji)]

=
∑
k,m

[xS(vγ
pk)vγ

km ⊗ S(ϕγ
lm)] =

∑
m

[xεs(vγ
pm)⊗ S(ϕγ

lm)]

=
[
x⊗

∑
m

〈ε(1), vγ
pm〉ε(2)S(ϕγ

lm)
]
.
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Since x ∈ K is arbitrary, it remains to show that the elements of the form ψγ
lp =∑

m
〈ε(1), vγ

pm〉ε(2)S(ϕγ
lm) form a linear basis for K∗. We have

〈S(ψγ
lp), v

β
pq〉 =

∑
m

〈ϕγ
lmε(1), v

β
pq〉〈ε(2), S(vγ

pm)〉 =
∑
m,j

〈ϕγ
lm, v

β
pj〉〈ε, v

β
jqS(vγ

pm)〉

= δγβδlp
∑
m

〈ε, vγ
mqS(vγ

pm)〉 = δγβδlpε(S(vγ
pq)) = δγβδlpδpq,

therefore, ψγ
lp = S(ϕγ

lp).

Corollary 4.6. (AoK) oK∗ ∼= 〈AoK, eA〉, i.e., (AoK) oK∗ is the

basic construction for the conditional expectation EA.

Proof. Propositions 4.2 and Proposition 4.5 show that (AoK) oK∗ is gen-

erated by AoK and projection eA in the way characterizing the basic construction

(see Subsection 2.3).

The following result is an analogue of the Takesaki duality theorem for actions

of Kac algebras ([6]) and Hopf algebras ([2]).

Theorem 4.7. (Duality for actions) Let K be a weak Kac algebra satisfying

the λ-Markov condition, acting on a C∗-algebra A. Then

(AoK) oK∗ ∼= A⊗Mn(C), where n = λ−1.

Proof. By Proposition 4.2 there is a basis for EA, therefore 〈AoK, eA〉 ∼=
A⊗Mn(C), and the result follows from Corollary 4.6.

Lemma 4.8. Let K be a weak Kac algebra acting on the right on a ∗-algebra
A. Then Kt ⊂ A′ ∩K nA.

Proof. If z ∈ Kt, then

iA(a)iK(z) = [z(1) ⊗ (a / z(2))] = [z1(1) ⊗ (a / 1(2))] = [z ⊗ a] = iK(z)iA(a),

thus Kt ⊂ A′ ∩K nA.

Definition 4.9. A right action of K on A is minimal if Kt = A′ ∩K nA.
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5. CONSTRUCTION OF A MINIMAL ACTION OF A BICONNECTED

WEAK KAC ALGEBRA ON THE HYPERFINITE II1 FACTOR

In this section we assume that K is a biconnected weak Kac algebra, in particular
that it satisfies the λ-Markov condition for some λ = n−1.

Lemma 5.1. Let K act on a finite-dimensional C∗-algebra A. Suppose that
tr is a trace on AoK, and EA from Proposition 4.2 is the tr-preserving conditional
expectation. Then tr1 = tr ◦EA o K is a trace on 〈AoK, eA〉, extending tr and
satisfying tr1(eA) = λ. In other words, if tr is a trace on AoK such that EA

preserves it, then tr is a λ-Markov trace for the inclusion A ⊂ AoK, and tr1 is
its λ-Markov extension to 〈AoK, eA〉.

Proof. Clearly, tr1 is a positive functional on 〈AoK, eA〉 extending tr. Let
us show that tr1 is a trace. By Lemma 4.4, EA o K(eA) = λ, therefore

tr1((x1eAy1)(x2eAy2)) = tr1((x1EA(y1x2)eAy2) = λ tr(EA(x1y2)EA(y1x2))

= tr1((x2eAy2)(x1eAy1)),

for all x1, y1, x2, y2 ∈ AoK. Since 〈AoK, eA〉 is spanned by elements of the
form xeAy, (x, y ∈ AoK) the result follows from Subsection 3.2.5 of [10].

Remark 5.2. In conditions of Lemma 5.1, eA is the Jones projection for
the inclusion A ⊂ AoK with respect to the Markov trace tr and EA o K :
〈AoK, eA〉 → AoK is the tr-preserving conditional expectation.

Note that the map ϕ 7→ (ϕ . 1) gives an isomorphism between K∗
t and Ks in

the crossed product algebra K oK∗.

Proposition 5.3. Let K be a connected weak Kac algebra and let tr be the
unique Markov trace for the inclusion iK(K) ⊂ K oK∗. Then

iK(K) ⊂ K oK∗

∪ ∪
iK(Ks) ≡ iK∗(Kt

∗) ⊂ iK∗(K∗)
is a symmetric commuting square with respect to tr.

Proof. By Corollary 3.6, τ is a Markov trace for the inclusion Kt ⊂ K, and
Et is the τ -preserving conditional expectation.

Since K oK∗ = (Kt oK) oK∗, it follows from Lemma 5.1 that tr extends
τ and EK : K oK∗ → K is the tr-preserving conditional expectation. We have

EK(iK∗(ϕ)) = EK([1⊗ ϕ]) = iK(ϕ . 1) ∈ iK(Ks),
for all ϕ ∈ K∗. This proves that the square is commuting. It is symmetric since
K oK∗ = iK(K)iK∗(K∗).

Corollary 4.6 implies that the sequence
Kt ⊂ K ⊂ K oK∗ ⊂ K oK∗ oK ⊂ · · · ⊂M

is the Jones tower for the inclusion Kt ⊂ K. When K is connected, all the
inclusions in this sequence are connected and the union of these C∗-algebras admits
a unique tracial state. Consequently, its von Neumann algebra completion M with
respect to this trace is a copy of the hyperfinite II1 factor. Using the standard
procedure of iterating the basic construction we can construct a von Neumann
subalgebra N ⊂M from the above symmetric commuting square.
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Proposition 5.4. The lattice of C∗-algebras obtained by iterating the basic
construction (in the horizontal direction) for the symmetric commuting square
from Proposition 5.3 is given by two sequences of alternating crossed products with
K and K∗:

K ⊂ K oK∗ ⊂ K oK∗ oK ⊂ · · · ⊂ M
∪ ∪ ∪ ∪

Ks ≡ K∗
t ⊂ K∗ ⊂ K∗ oK ⊂ · · · ⊂ N,

where we identify all C∗-subalgebras with their images in M .

Proof. Identities K∗ oK = 〈K, eK〉, K∗ oK oK∗ = 〈K∗ oK, eK o K∗〉 etc.
follow immediately from Proposition 4.5.

Proposition 5.5. There is a ∗-isomorphism between finite dimensional C∗-
algebras

Ar = K oK∗ o · · ·oK oK∗︸ ︷︷ ︸
2r factors

and Br = K nK∗ n · · ·nK nK∗︸ ︷︷ ︸
2r factors

given by the “identity” map

[h1 ⊗ ϕ1 ⊗ · · · ⊗ hr ⊗ ϕr] 7→ [h1 ⊗ ϕ1 ⊗ · · · ⊗ hr ⊗ ϕr],

where hi ∈ K, ϕi ∈ K∗.

Proof. By the definition of crossed product, the above algebras are isomor-
phic to

K ⊗
Kt=K∗

s

K∗ ⊗
K∗

t =Ks

· · · ⊗
Kt=K∗

s

K∗

as vector spaces. By Theorem 4.7, we know that these algebras are isomorphic to
Mnr (C)⊗Ks, where n = λ−1. To see that the “identity” map defines a ∗-algebra
isomorphism, it suffices to note that

[h1 ⊗ ϕ1 ⊗ · · · ⊗ hr ⊗ ϕr] ·Ar [g1 ⊗ ψ1 ⊗ · · · ⊗ gr ⊗ ψr]

= [h1(ϕ1
(1) . g

1)⊗ ϕ1
(2)(h

2
(1) . ψ

1)⊗ · · · ⊗ hr
(2)(ϕ

r
(1) . g

r)⊗ ϕr
(2)ψ

r]

= [h1g1
(1) ⊗ 〈ϕ1

(1), g
1
(2)〉ϕ

1
(2)ψ

1
(1) ⊗ · · · ⊗ 〈ψr−1

(2) , h
r
(1)〉h

r
(2)g

r
(1) ⊗ 〈ϕr

(1), g
r
(2)〉ϕ

r
(2)ψ

r]

= [h1g1
(1) ⊗ (ϕ1 / g1

(2))ψ
1
(1) ⊗ · · · ⊗ (hr / ψr−1

(2) )gr
(1) ⊗ (ϕr / gr

(2))ψ
r]

= [h1 ⊗ ϕ1 ⊗ · · · ⊗ hr ⊗ ϕr] ·Br [g1 ⊗ ψ1 ⊗ · · · ⊗ gr ⊗ ψr],

for all hi, gi ∈ K, ϕi, ψi ∈ K∗, i = 1, . . . , r, i.e. multiplications in Ar and Br are
the same.

Corollary 5.6. The lattice of algebras from Proposition 5.4 is isomor-
phic to

K ⊂ K nK∗ ⊂ K nK∗ nK ⊂ · · · ⊂ M
∪ ∪ ∪ ∪
Ks ⊂ K∗ ⊂ K∗ nK ⊂ · · · ⊂ N.

Proof. Clearly, the isomorphisms constructed in Proposition 5.5 are compat-
ible with all inclusions of the lattice from Proposition 5.4.

Our next goal is to show that there is a right action of K on N such that
M ∼= K nN .
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Proposition 5.7. Let iK : h 7→ [h ⊗ ε ⊗ 1 ⊗ · · ·] be the inclusion of K in
M , EN : M → N be the trace preserving conditional expectation. Then the map

x / h = λ−1EN (iK(pε)xiK(h)), x ∈ N, h ∈ K
defines a right action of K on N such that M = K nN (cf. Section 5 of [22]).

Proof. There is a right action of K on the ∗-subalgebra given by the union
of the generating sequence of C∗-algebras of N :

[ϕ⊗ g ⊗ · · ·] / h = [(ϕ / h)⊗ g ⊗ · · ·], h, g ∈ K, ϕ ∈ K∗.

We have
[ϕ⊗ g ⊗ · · ·] / h = λ−1[(ε / Es(pε))(ϕ / h)⊗ g ⊗ · · ·]

= λ−1EN ([pε ⊗ (ϕ / h)⊗ g ⊗ · · ·]) = λ−1EN (iK(pε)[ϕ⊗ g ⊗ · · ·]iK(h)),

therefore the map x / h = λ−1EN (ik(pε)xik(h)) extends the above action to a
weakly continuous action of K on N . Clearly, K nN = ik(K)N = M .

Corollary 5.8. [M : N ] = λ−1.

Proof. Follows from Remark 4.3 and Proposition 5.1.9 in [10].

Let us compute the higher relative commutants of the inclusion N ⊂M .

Lemma 5.9. Let K act on the left on a C∗-algebra A; then
iK∗(K∗)′ ∩ iA o K(AoK) ∩ (AoK) oK∗ = iA(A).

Proof. Let C = iK∗(K∗)′∩iA o K(AoK)∩(AoK) oK∗ and x ∈ C. Recall
that eA = iK∗(τ). Then xeA = eAxeA = EA(x)eA and since the map AoK 3 x 7→
iA o K(x)eA is injective (Lemma 4.4), it follows that x ∈ iA(A) and C ⊂ iA(A).

Conversely, for all a ∈ A,ϕ ∈ K∗ we have
iK∗(ϕ)iA(a) = [1A o K ⊗ ϕ][[a⊗ 1]⊗ ε] = [(ϕ(1) . [a⊗ 1])⊗ ϕ(2)]

= [[a⊗ 1](ϕ(1) . [1⊗ 1])⊗ ϕ(2)] = [[a⊗ 1]⊗ ϕ] = iA(a)iK∗(ϕ),

therefore iA(A) = C.

Proposition 5.10. Let N ⊂ M = M0 ⊂ M1 ⊂ M2 · · · be the Jones tower
constructed from the inclusion N ⊂M . Then

N ′ ∩Mn
∼= · · ·nK nK∗︸ ︷︷ ︸

n factors

nKt, n > 0

M ′ ∩Mn
∼= · · ·nK∗ nK︸ ︷︷ ︸

(n−1) factors

nK∗
t , n > 1.

In particular, the action of K is minimal.

Proof. Iterating the basic construction for the commuting square from Propo-
sition 5.3 in the vertical direction and using Proposition 5.5, we get the lattice

· · · · · ·
∪ ∪

K∗ oK ⊂ K∗ oK oK∗

∪ ∪
K ⊂ K oK∗

∪ ∪
K∗

t ≡ Ks ⊂ K∗.
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The Ocneanu compactness argument ([10]) and Lemma 5.9 imply that

N ′ ∩M = Kt, N ′ ∩M1 = K∗, N ′ ∩M2 = K oK∗ . . .

Similarly, one computes the relative commutants for M .

Corollary 5.11. ([15]) The inclusion N ⊂M is of depth 2.

Proof. We have seen in Section 4 thatK oK∗ ∼= Kt⊗Mn(C), where n = λ−1.
Therefore, dimZ(N ′ ∩M) = dimZ(N ′ ∩M2), and so N ⊂M is of depth 2.

Corollary 5.12. The λ-lattice of higher relative commutants ([19]) of the
inclusion N ⊂M is given by

C ⊂ K∗
t ≡ Ks ⊂ K ⊂ K∗ nK ⊂ K nK∗ nK ⊂ · · ·
∪ ∪ ∪ ∪
C ⊂ Kt ≡ K∗

s ⊂ K∗ ⊂ K nK∗ ⊂ · · · .

Remark 5.13. In a similar way one can construct a left minimal action of
a biconnected weak Kac algebra on the hyperfinite II1 factor.

6. EXAMPLES OF SUBFACTORS AND ARITHMETIC PROPERTIES

OF BICONNECTED WEAK KAC ALGEBRAS

Let K be a biconnected weak Kac algebra. Recall the notation

K ∼=
N⊕

i=1

Mdi
(C), Ks

∼= Kt
∼=

L⊕
α=1

Mmα
(C),

from Subsection 2.1. Let us also denote d = dimKs. We have dimK = dλ−1.
Reducing the inclusion N ⊂ M = K nN constructed in Section 5 by a

minimal projection q ∈ N ′ ∩M = Kt, we get an irreducible inclusion qN ⊂ qMq
of hyperfinite II1 factors with index [qMq : qN ] = τ(q)2λ−1, where τ is the
normalized trace on M (qN ⊂ qMq is of finite depth ([1]), and therefore extremal,
see [18]). But τ(q) = mα

d , when q ∈Mmα
(C), therefore

[qMq : qN ] =
m2

αλ
−1

d2
.

Note that since qN ⊂ qMq has a finite depth, its index is an algebraic integer.
But by Theorem 3.5, λ−1 is an integer, so [qMq : qN ] is rational. Therefore,
[qMq : qN ] is an integer. Thus, we proved

Proposition 6.1. d2 divides m2
αλ

−1 for all α.

Corollary 6.2. If λ−1 = p is a prime, then K ∼= CZp.

Proof. By the previous proposition we must have d = 1, so dimK = dλ−1 =
p and the result follows from Corollary 3.9.
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Next, reducing the inclusion M ⊂ M2 by a minimal projection q from the
relative commutant M ′ ∩M2 = K we get an irreducible inclusion qM ⊂ qM2q.
Clearly, this inclusion depends only on the equivalence class of q, so inclusions of
the above type are in one-to-one correspondence with irreducible representations
of K. The index is

[qM2q : qM ] = τ(q)2[M2 : M ] = τ(q)2λ−2 =
(di

d

)2

,

whenever q ∈Mdi(C). Again, the index must be an integer, so we get the following
arithmetic property of biconnected weak Kac algebras.

Corollary 6.3. The dimension of a counital subalgebra of K divides the
degree of any irreducible representation of K, i.e., d divides di for all i. In partic-
ular, d2 divides dimK, and d divides λ−1 = [M : N ].

Finally, let us remark that considering the biconnected weak Kac algebra
K = H oH∗ nH constructed from a Kac algebra H as in Example 3.14, we can
associate an irreducible subfactor with any irreducible representation of H (since
we have Kt = H in this case).
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