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Abstract. This paper deals with a class of non-self-adjoint quadratic pen-
cils of block operator matrices. The main results concern the structure and
location of the spectrum and theorems about the minimality, completeness
and basis properties of the eigenvectors and associated vectors corresponding
to certain parts of the spectrum. Finally, an application to the problem of
vibrations of a rotating beam is given.
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1. INTRODUCTION

The spectral theory of quadratic operator pencils is a classical subject with many
applications in elasticity theory. A fundamental contribution to the theory of
self-adjoint operator pencils is due to Krein and Langer ([7]). Also, operators
which have a certain block matrix representation occur frequently in mathematical
physics. Recent contributions to this area may be found e.g. in [2], [1], [8], and [9].

In this paper we are going to study a class of damped non-self-adjoint
quadratic operator pencils the coefficients of which are unbounded block oper-
ator matrices. Our aim is to investigate the spectrum of such pencils, to study
the properties of the eigenvectors and associated vectors corresponding to certain
parts of the spectrum, and to apply the results to the problem of vibrations of a
rotating beam with inner and outer damping in a possibly inhomogeneous outer
medium. A fundamental tool here are factorization theorems by Markus, Matsaev
and Russu ([11], [12], [13], [10]).

Let H be a separable (infinite dimensional) Hilbert space. We consider a
quadratic operator pencil L acting in the product space H×H and given by the
matrix representation

(1.1) L(λ) = λ2

(
I 0
0 I

)
+λ

(
αA + K1 0

0 αA + K2

)
+

(
A βA

−βA A

)
, λ ∈ C.
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Here A is an unbounded self-adjoint operator in H with domain D(A) having
compact resolvent, A > δI with some δ > 0, α and β are positive constants, and
K1,K2 are bounded operators, 0 6 K1,K2 6 γI with some ∞ > γ > 0. The
domain of L(λ) is independent of λ and given by D(L(λ)) = D(A)×D(A).

An example for such a quadratic operator pencil arises in elasticity theory:
The system of differential equations

EI
∂4u

∂z4
+ ωκEI

∂4v

∂z4
+ κEI

∂5u

∂z4∂t
+ ε1

∂u

∂t
+ m

∂2u

∂t2
= 0,(1.2)

EI
∂4v

∂z4
− ωκEI

∂4u

∂z4
+ κEI

∂5v

∂z4∂t
+ ε2

∂v

∂t
+ m

∂2v

∂t2
= 0(1.3)

on the finite interval [0, l] describes the vibrations of a rotating beam of length l and
mass density m per unit length. Here EI > 0 is the (constant) bending stiffness
of the beam sections, ω > 0 is the angular frequency of the rotation, κ > 0 is the
coefficient of inner damping (Voigt material), and ε1, ε2 are nonnegative continuous
functions on [0, l] describing the outer viscous damping. In the general case when
the outer medium is inhomogeneous, one has ε1 6≡ ε2 (see e.g. [3]).

The boundary conditions to be imposed e.g. in the case of hinged ends are

(1.4)
u(0, t) = u(l, t) =

∂2u

∂z2
(0, t) =

∂2u

∂z2
(l, t) = 0,

v(0, t) = v(l, t) =
∂2v

∂z2
(0, t) =

∂2v

∂z2
(l, t) = 0.

For simplicity, we assume that m ≡ 1. Then separation of variables

(1.5) (u(z, t), v(z, t))t = eλt(y1(z), y2(z))t, z ∈ [0, l], t > 0,

leads to a spectral problem of the form

L(λ)y = 0, λ ∈ C,

for y = (y1, y2)t in the Hilbert space L2(0, l)×L2(0, l) where the operators A and
K in L2(0, l) are given by

Ay := EI y(4), D(A) := {y ∈ L2(0, l) : y(0) = y(l) = y′′(0) = y′′(l) = 0},(1.6)
Kiy := εiy, D(Ki) := L2(0, l), i = 1, 2,(1.7)

and the constants α and β are given by α := κ, β := ωκ.
In Section 2 we first determine the structure of the spectrum of the quadratic

operator pencil (1.1). We show that its essential spectrum consists of the points
− 1+iβ

α ,− 1−iβ
α , and that outside the essential spectrum L has 3 branches of eigen-

values accumulating at the points of the essential spectrum and at∞. Secondly, we
prove a criterion for the stability of the pencil L, that is, a criterion guaranteeing
that the spectrum of L lies in the open left half plane.

In Section 3 we consider the case K1 = K2 where L in fact decomposes
into two quadratic pencils in H. In this case the eigenvalue branch accumulating
at ∞ splits again into two branches. We derive theorems about the minimal-
ity, completeness and basis properties of the eigenvectors and associated vectors
corresponding to the 4 branches of eigenvalues of L.
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In Section 4 we consider the case K1 6= K2. We prove a theorem about the
minimality, completeness and basis properties of the eigenvectors and associated
vectors corresponding to the branch of eigenvalues of L accumulating at ∞. Fi-
nally, in Section 5, we apply all results to the problem (1.2)–(1.4) of vibrations of
a rotating beam.

2. THE SPECTRUM OF L

We define the resolvent set ρ(L) of the quadratic operator pencil L as

ρ(L) := {λ ∈ C : L(λ) : D(A)×D(A) →H×H is bijective,

L(λ)−1 is bounded}

and its spectrum σ(L) as σ(L) := C \ ρ(L). For λ ∈ C, the operator L(λ) is called
Fredholm if L(λ) is closed, its kernel is finite dimensional and its range is finite
codimensional (see e.g. [6], Chapter IV, Section 5.1). A point λ0 ∈ C is said to
be an eigenvalue of L if L(λ) is not injective. An eigenvalue λ0 ∈ C of L is called
normal (or of finite type) if λ0 is isolated and L(λ0) is Fredholm. The essential
spectrum of L is defined as

σess(L) := {λ ∈ C : L(λ) is not Fredholm}.

In order to determine the essential spectrum of the operator pencil L, we
consider the transformed pencil Ld given by Ld(λ) := S−1L(λ)S on D(A)×D(A)
for λ ∈ C where the operator matrix S in H×H is of the form

S :=
(

I iI
iI I

)
.

Then, for λ ∈ C,

Ld(λ) := λ2

(
I 0
0 I

)
+ λ

(
αA + 1

2 (K1 + K2) i
2 (K1 −K2)

− i
2 (K1 −K2) αA + 1

2 (K1 + K2)

)
+

(
(1 + iβ)A 0

0 (1− iβ)A

)
,

and Ld(λ) is closed (Fredholm) if and only if L(λ) is closed (Fredholm).

Theorem 2.1. The essential spectrum of L consists of the two points

−1 + iβ
α

,−1− iβ
α

.

The other points of the spectrum of L are normal eigenvalues which accumulate at
most at the points − 1+iβ

α , − 1−iβ
α , and at ∞.

Proof. Let λ ∈ C. If we write Ld(λ) in the form(
(λα+(1+iβ))A+λ2I+λ 1

2 (K1+K2) λ i
2 (K1−K2)

−λ i
2 (K1−K2) (λα+(1−iβ))A+λ2I+λ 1

2 (K1+K2)

)
,
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it is not difficult to see that Ld(λ) (with domain D(A) × D(A)) is closed if and
only if λ 6= − 1±iβ

α . Now let λ 6= − 1±iβ
α . Since

(2.1)

Ld(λ)
(

A−1 0
0 A−1

)
=λ2

(
A−1 0
0 A−1

)
+λ

(
αI + 1

2 (K1 + K2)A−1 i
2 (K1 −K2)A−1

− i
2 (K1 −K2)A−1 αI + 1

2 (K1 + K2)A−1

)
+

(
(1 + iβ)I 0

0 (1− iβ)I

)
=

(
(1 + iβ + λα)I 0

0 (1− iβ + λα)I

)
+ K(λ),

where K(λ) is a compact operator in H×H, the operator on the left hand side of
(2.1) is Fredholm (see e.g. [4], Chapter XI, Theorem 4.2). Hence the same is true
for Ld(λ). On the other hand, since H is infinite dimensional, it follows from (2.1)
that Ld

(
− 1±iβ

α

)
is not Fredholm. Moreover, the operator in (2.1) is bijective for

λ = 0. Now the theorem follows e.g. from a theorem about analytic Fredholm
operator valued functions (see [4], Chapter XI, Corollary 8.4).

Remark 2.2. From the minimality and completeness results which will be
proved in the next two sections more precise statements about the accumulation of
the eigenvalues will follow if the resolvent of A belongs to a certain von Neumann–
Schatten class: In the next section we are going to show that in the case K1 = K2

the normal eigenvalues of L split into 4 branches of eigenvalues, two branches
accumulating at the points − 1+iβ

α , − 1−iβ
α , and two branches at ∞. In Section 4,

for the case K1 6= K2, it will turn out that again ∞ is an accumulation point of
eigenvalues, but the branches of eigenvalues accumulating at ∞ can, in general,
not be separated as in the case K1 = K2.

Theorem 2.3. Assume that there exists a µ > 0 with K1 > µI, K2 > µI,
and such that

(2.2)
µ

α
> δ and

β2

4µα
< 1, or

µ

α
< δ and

β2δ

(αδ + µ)2
< 1.

Then the spectrum of L lies in the open left half plane.

Proof. If λ0 ∈ σess(L), then obviously Re (λ0) < 0 by the above theo-
rem. Otherwise, if λ0 ∈ σ(L) \ σess(L), then λ0 is an eigenvalue of L. Let
Y = (y, z)t ∈ D(A) × D(A), ‖y‖2 + ‖z‖2 = 1, be a corresponding eigenvector.
Then (L(λ0)Y, Y ) = 0 implies that

Re (λ0)2 − Im (λ0)2 + Re (λ0)(α((Ay, y) + (Az, z)) + (K1y, y)(2.3)

+ (K2z, z)) + (Ay, y) + (Az, z) = 0,

2 Re (λ0)Im (λ0) + Im (λ0)(α((Ay, y) + (Az, z)) + (K1y, y)(2.4)

+ (K2z, z)) + 2β Im (Az, y) = 0.
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Calculating Im (λ0) from (2.4), using the estimate

|2Im (Az, y)| 6 2|(Az, y)| = 2|(A1/2z,A1/2y)|
6 ‖A1/2z‖2 + ‖A1/2y‖2 = (Ay, y) + (Az, z)

and substituting it into (2.3), we arrive at

(2.5)
Re (λ0)2−

β2((Ay, y) + (Az, z))2

(2Re (λ0) + α((Ay, y) + (Az, z)) + (K1y, y) + (K2y, y))2

+Re (λ0) (α((Ay, y)+(Az, z))+(K1y, y) + (K2z, z))+(Ay, y)+(Az, z)60.

The left hand side is monotonically increasing for Re (λ0) ∈ [0,∞). But the
condition (2.2) and A > δ > 0 imply that

− β2((Ay, y) + (Az, z))2

(α((Ay, y) + (Az, z)) + (K1y, y) + (K2z, z))2
+ (Ay, y) + (Az, z) > 0,

a contradiction to (2.5). Hence Re (λ0) < 0.

3. THE CASE K1 = K2 = K

In this case the operator pencil Ld in H×H is the orthogonal sum of two quadratic
operator pencils L± in H,

Ld(λ) =
(
L+(λ) 0

0 L−(λ)

)
, λ ∈ C,

where
L±(λ) := λ2I + λ(αA + K) + (1± iβ)A, λ ∈ C.

In the following we are going to prove minimality, completeness and basis re-
sults for the eigenvectors and associated vectors corresponding to various branches
of eigenvalues of L.

With regard to the eigenvalues which will prove to accumulate at ∞, we
introduce the auxiliary operator pencils L1

± given by

L1
±(λ) :=

λ2

α
A−1/2L±

(
1
λ

)
A−1/2

= λ2 1± iβ
α

I + λ

(
I +

1
α

A−1/2KA−1/2

)
+

1
α

A−1, λ ∈ C.

Lemma 3.1. The spectrum and the essential spectrum of L1
± are given by:

(i) σ(L1
±) =

{
1
λ : λ ∈ σ(L±)

}
∪ {0};

(ii) σess(L1
±) =

{
0,− α

1±iβ

}
.

Proof. The assertions are immediate from Theorem 2.1 and from the defini-
tion of L1

±.
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The numerical range (or root domain) of a quadratic operator polynomial T
in H is the set of all roots of all possible polynomials (T ( · )y, y), y ∈ H, y 6= 0
(see [10], Section 26.3). It consists of at most two components. If the numerical
range of T consists of two disjoint components (called the root zones of T ), then,
clearly, for any y ∈ H, y 6= 0, the polynomial (T ( · )y, y) has exactly one root in
each component.

Lemma 3.2. The numerical range of L1
+ consists of two components ∆1

+,
∆̃1

+ which are bounded and separated by the strip

(3.1)
{

λ ∈ C : 0 < Im (λ) <
αβ

1 + β2

}
,

say ∆1
+ below and ∆̃1

+ above this strip. There exists a simple contour Γ1
+ sur-

rounding ∆1
+ ∪ {0} and separating ∆1

+ ∪ {0} from ∆̃1
+, and such that

inf
λ∈Γ1

+, ‖y‖=1

∣∣(L1
+(λ)y, y)

∣∣ > 0.

Proof. The first assertion follows from the fact that L1
+ is a pencil of bounded

operators. For the proof of the second statement, fix an element y ∈ H, ‖y‖ = 1,
consider the function

ϕ(λ, η) := λ2 1 + iβ
α

+ λ

(
1 + η

1
α

(
KA−1/2y, A−1/2y

))
+ η

1
α

(
A−1/2y, A−1/2y

)
for λ ∈ C, η ∈ [0, 1], and assume that there exists a point λ0 in the strip (3.1) and
an η ∈ [0, 1] such that ϕ(λ0, η) = 0. The point λ0 has a representation λ0 = t + id
with t ∈ R and 0 < d < αβ

1+β2 . Hence

(t2+2itd−d2)
1 + iβ

α
+

(
t+id

) (
1 + η

1
α

(
KA−1/2y, A−1/2y

))
+η

1
α

∥∥A−1/2y
∥∥2 = 0.

Taking the imaginary part and multiplying by α
β yields

t2 + 2
td

β
− d2 + d

α

β

(
1 + η

1
α

(
KA−1/2y, A−1/2y

))
= 0.

This is equivalent to(
t +

d

β

)2

=
d

β2

(
d(1 + β2)− αβ

(
1 + η

1
α

(
KA−1/2y, A−1/2y

)))
,

which implies, since K > 0, that

d >
αβ

1 + β2
,

a contradiction. Thus ϕ(λ, η) 6= 0, η ∈ [0, 1], and in particular (L1
+(λ)y, y) =

‖y‖2ϕ(λ, 1) 6= 0 for all λ in the strip (3.1).
The zeros λ1(η), λ2(η) of ϕ( · , η) = 0 depend continuously on the param-

eter η, and λ1(0) = 0, λ2(0) = − α
1+iβ are separated by the strip (3.1). Then,

according to what was proved above, so are λ1(η), λ2(η) for all η ∈ [0, 1]. In par-
ticular, the zeros of (L1

+( · )y, y) = ‖y‖2ϕ( · , 1) are separated by the strip (3.1).
This proves the second statement. The remaining assertions are immediate.
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The subsequent corollary about the existence of a spectral root of L1
+ (or,

equivalently, of a canonical factorization of λ−1L1
+(λ)) follows from the above

lemma by some general results of Markus and Matsaev ([11], [12], see also [10],
Theorems 26.19 and 26.12).

Corollary 3.3. The operator pencil L1
+ has a spectral root Z1

+ such that

σ(Z1
+) = σ(L1

+) ∩∆1
+.

In the following let Sp, 1 6 p 6 ∞, denote the von Neumann–Schatten classes
of compact operators (see [5], Chapter III, Section 7, or [10], Section 2.4). Further,
for an operator T ∈ S∞ we denote by n(τ, T ) the sum of the algebraic multiplicities
of the eigenvalues of T in {λ ∈ C : |λ| > τ−1}. For a quadratic operator pencil T
the nonzero spectrum of which in some bounded domain G containing 0 consists
of a sequence of eigenvalues of finite algebraic multiplicity converging to 0, we
denote by n(τ,G, T ) the sum of the algebraic multiplicities of the eigenvalues of
T in {λ ∈ C : |λ| > τ−1} ∩G (see [10], Section 22.4). Using a theorem of Markus,
Matsaev and Russu ([13]), we obtain:

Theorem 3.4. (i) The set of eigenvectors and associated vectors correspond-
ing to the eigenvalues of L1

+ in ∆1
+ is minimal in H.

(ii) If A−1 ∈ Sp for some p < ∞, then the set of eigenvectors and associ-
ated vectors corresponding to the eigenvalues of L1

+ in ∆1
+ is complete in H. If,

in addition, n
(
τ, 1

αA−1
)
∼ c1τ

c2 as τ → ∞ with some 0 < c1, c2 < ∞, then
n(τ,G1

+,L1
+) ∼ c1τ

c2 , where G1
+ is the interior of the curve Γ1

+.
(iii) If n(τ,A−1) = O(τγ) for some γ ∈ (0, 1

2 ], then the set of eigenvectors
and associated vectors corresponding to the eigenvalues of L1

+ in ∆1
+ is a Riesz

basis with parentheses in H. If, in addition, n
(
τ, 1

αA−1
)

= c1τ
c2 +O(τβ) for some

0 < c1, c2 < ∞, 0 6 β < α 6 β + γ, then also n(τ,G1
+,L1

+) = c1τ
c2 + O(τβ).

Proof. The theorem follows from a general result of Markus, Matsaev and
Russu (see [13]) which is contained in [10], Theorem 22.13 and Corollary 26.20. To
apply the statements therein, we choose H = 1

αA−1, T = 0 for (ii) and H = 1
αA−1,

D0 = 0, D1 = 1
αA−1/2KA−1/2+γ where γ ∈ (0, 1

2 ] for (iii).

Remark 3.5. Analogous assertions hold for the pencil L1
−.

With regard to the branches of eigenvalues possibly accumulating at − 1±iβ
α ,

we first consider the pencils L± themselves.

Lemma 3.6. The numerical range of L+ consists of two components ∆+, ∆̃+

which are separated by the strip

{λ ∈ C : −δ2 < Im (λ) < δ2}

where

δ2 := β
((

α2 + (2α‖K‖+ 4) δ−1 + ‖K‖2δ−2
)2 + 16β2δ−2

)−1/4
.
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The component located in the half plane {λ ∈ C : Im (λ) 6 −δ2}, say ∆+, is
bounded, and there exists a simple closed curve Γ+ surrounding ∆+ and separating
it from ∆̃+, and such that

inf
λ∈Γ+

y∈D(A), ‖y‖=1

|(L+(λ)y, y)| > 0.

Proof. Let y ∈ D(A), ‖y‖ = 1. Then the solutions λ±(y) of (L+(λ)y, y) = 0
are given by

(3.2) λ±(y) = −α(Ay, y) + (Ky, y)
2

±
√

(α(Ay, y) + (Ky, y))2

4
− (1 + iβ)(Ay, y).

Hence

|Im (λ±(y))| = 1
2

∣∣Im (
(α(Ay, y) + (Ky, y))2 − 4(1 + iβ)(Ay, y)

)1/2∣∣
=

1
2
√

2

(
4(Ay, y)− (α(Ay, y) + (Ky, y))2 +

((
(α(Ay, y) + (Ky, y))2

− 4(Ay, y)
)2 + 16β2(Ay, y)2

)1/2
)1/2

> β

((
(α(Ay, y) + (Ky, y))2 − 4(Ay, y)

(Ay, y)2

)2

+
16β2

(Ay, y)2

)−1/4

> δ2.

This proves the first assertion. The second statement follows from the fact that
the root λ+(y) lying in the half plane {λ ∈ C : Im (λ) 6 −δ2} tends to − 1+iβ

α
when (Ay, y) tends to infinity. The remaining assertions are then immediate.

In order to apply the results of Markus, Matsaev and Russu used before we
need to consider pencils of bounded operators. Therefore we introduce

L2
±(λ) :=

1
α

A−1/2L±
(

λ− 1± iβ
α

)
A−1/2

=
λ2

α
A−1+ λ

(
I − 2(1± iβ)

α2
A−1 +

1
α

A−1/2KA−1/2

)
+ B±

where

B± =
(1± iβ)2

α3
A−1− 1± iβ

α2
A−1/2KA−1/2.

Corollary 3.7. The numerical range of L2
+ consists of two components

∆2
+, ∆̃2

+ which are bounded and separated by the strip{
λ ∈ C :

β

α
− δ2 < Im (λ) <

β

α
+ δ2

}
,

say ∆2
+ below and ∆̃2

+ above this strip. There exists a simple closed curve Γ2
+

surrounding ∆2
+ ∪ {0} and separating it from ∆̃2

+, and such that

inf
λ∈Γ2

+, ‖y‖=1

∣∣(L2
+(λ)y, y)

∣∣ > 0.

Proof. All assertions follow immediately from Lemma 3.6 by definition of L2
+

(note that δ2 < β
α ).
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Theorem 3.8. (i) The set of eigenvectors and associated vectors correspond-
ing to the eigenvalues of L2

+ in ∆2
+ is minimal in H.

(ii) If A−1 ∈ Sp for some p < ∞, then the set of eigenvectors and asso-
ciated vectors corresponding to the eigenvalues of L2

+ in ∆2
+ is complete in H.

If, in addition, n(τ,B+) ∼ c1τ
c2 as τ → ∞ with some 0 < c1, c2 < ∞, then

n(τ,G2
+,L2

+) ∼ c1τ
c2 , where G2

+ is the interior of the curve Γ2
+.

Proof. As in the proof of Theorem 3.4, we use [10], Theorem 22.13 and
Corollary 26.20. To apply the statements therein, we now choose H = B+, T = 0
for (ii), and we note that if A−1 ∈ Sp for some p < ∞, then also B+ ∈ Sp (see
e.g. [5]).

Remark 3.9. Analogous assertions hold for the pencil L2
−.

In order to formulate statements for the original pencil L, we first note that

σ(L) = σ(Ld) = σ(L+) ∪ σ(L−).

We denote by λ1
k and λ2

k, k = 1, 2, . . . , the eigenvalues of the pencil L+ located in
the upper and lower half plane, respectively (counted according to their algebraic
multiplicities). It is not difficult to see that then the complex conjugates λ1

k and λ2
k,

k = 1, 2, . . . , are the eigenvalues of the pencil L− located in the lower and upper
half plane, respectively. We denote the corresponding eigenvectors and associated
vectors of L+ by y1

k and y2
k, and those of L− by y1

k and y2
k.

Then the eigenvalues of Ld (and hence those of L) can be separated into the
4 branches {λ1

k}, {λ2
k} and {λ1

k}, {λ2
k}, which lie symmetrically to the real axis.

The corresponding eigenvectors and associated vectors of Ld are of the form

(y1
k, 0)t, (y2

k, 0)t, (0, y1
k)t, (0, y2

k)t.

The respective eigenvectors of L are given by

(y1
k, iy1

k)t, (y2
k, iy2

k)t, (iy1
k, y1

k)t, (iy2
k, y2

k)t,

and there are analogous formulas for the associated vectors of L.

Theorem 3.10. (i) The set of eigenvectors and associated vectors of L cor-
responding to the eigenvalues λ1

k and λ1
k, k = 1, 2, . . . , is minimal in the space

HA−1 × HA−1 where HA−1 = (H, (A−1 · , A−1 · )), complete in HA−1 × HA−1 if
A−1 ∈ Sp for some p < ∞, and a Riesz basis with parentheses in HA−1 ×HA−1 if
n(τ,A−1) = O(τγ) for some γ ∈ (0, 1

2 ].
(ii) The set of eigenvectors and associated vectors of L corresponding to the

eigenvalues λ2
k and λ2

k, k = 1, 2, . . . , is minimal in the space HA−1 × HA−1 and
complete in HA−1 ×HA−1 if A−1 ∈ Sp for some p < ∞.

In particular, λ1
k, λ1

k → ∞, λ2
k → − 1+iβ

α , λ2
k → − 1−iβ

α for k → ∞ if
A−1 ∈ Sp for some p < ∞.

Proof. The assertions in (i) and (ii) follow from Theorems 3.4 and 3.8. The
statement about the accumulation at the points of the essential spectrum fol-
lows from Theorem 2.1 together with the minimality and completeness from (i)
and (ii).
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4. THE GENERAL CASE

Now we consider the general case of a quadratic block operator matrix pencil (1.1)
with possibly different K1,K2. In this case L cannot be written as the orthogonal
sum of two pencils in H, and hence there exists no decomposition of the spectrum
as it was used in the previous section.

In order to guarantee a certain subdivision of the spectrum of L also here
and to obtain minimality, completeness and basis results for the eigenvectors and
associated vectors, we have to assume in addition that

(4.1) δ >
4
α2

.

We choose ρ > 0 such that

(4.2) ρ >
βαδ

α2δ − 4
.

Lemma 4.1. On the segment Γ1 := {λ ∈ C : Re (λ) = − 2
α , |Im (λ)| 6 ρ} we

have the estimate

inf
λ∈Γ1

Y ∈D(A)×D(A), ‖Y ‖=1

|(L(λ)Y, Y )| > 0.

Proof. Let λ = − 2
α + iτ with τ ∈ R, Y = (y, z)t with y, z ∈ D(A) and

‖y‖2 + ‖z‖2 = 1. Then

|(L(λ)Y, Y )|

=
∣∣∣∣(− 2

α
+ iτ

)2

+
(
− 2

α
+ iτ

) (
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)
+ (Ay, y) + (Az, z) + β(Az, y)− β(Ay, z)

∣∣∣∣
>

∣∣∣∣ 4
α2

− τ2 − (Ay, y)− (Az, z)− 2
α

(K1y, y)− 2
α

(K2z, z)
∣∣∣∣ > δ − 4

α2
> 0

by assumption (4.1).

Lemma 4.2. On the rays Γ±2 := {λ ∈ C : Re (λ) > − 2
α , Im (λ) = ±ρ} we

have the estimate

inf
λ∈Γ±2

Y ∈D(A)×D(A), ‖Y ‖=1

|(L(λ)Y, Y )| > 0.

Proof. Let λ = t + iρ with t > − 2
α , Y = (y, z)t with y, z ∈ D(A) and

‖y‖2 + ‖z‖2 = 1. Then
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∣∣(L(λ)Y, Y
)∣∣ >

∣∣Im (
L(λ)Y, Y

)∣∣
=

∣∣2tρ + ρ
(
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)
+ 2β Im (Az, y)

∣∣
=

∣∣2t +
(
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)∣∣
·

∣∣∣∣∣ρ +
2β Im (Az, y)

2t +
(
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

) ∣∣∣∣∣
>

(
− 4

α
+ αδ

) ∣∣∣∣∣ρ− 2β |Im (Az, y)|∣∣2t +
(
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)∣∣
∣∣∣∣∣

> α

(
δ − 4

α2

) ∣∣∣∣ρ− 2αβ |(Az, y)|
α2δ − 4

∣∣∣∣
> α

(
δ − 4

α2

) ∣∣∣∣ρ− 2αβ ‖A1/2z‖ ‖A1/2y‖
α2δ − 4

∣∣∣∣
> α

(
δ − 4

α2

) ∣∣∣∣∣ρ− αβ
(
‖A1/2z‖2 + ‖A1/2y‖2

)
α2δ − 4

∣∣∣∣∣
> α

(
δ − 4

α2

) ∣∣∣∣ρ− αβδ

α2δ − 4

∣∣∣∣ > 0

by assumption (4.1) and the choice of ρ according to (4.2).

Lemma 4.3. On the segment Γ3 := {λ ∈ C : Re (λ) = ρ1, |Im (λ)| 6 ρ} with
ρ1 > ρ we have

inf
λ∈Γ3

Y ∈D(A)×D(A), ‖Y ‖=1

|(L(λ)Y, Y )| > 0.

Proof. Let λ = ρ1 + iτ with |τ | 6 ρ, Y = (y, z)t with y, z ∈ D(A) and
‖y‖2 + ‖z‖2 = 1. Then

|(L(λ)Y, Y )| >
∣∣Re

(
L(λ)Y, Y

)∣∣
=

∣∣ρ2
1 − τ2 + ρ1

(
α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)
+ (Ay, y) + (Az, z)

∣∣
> 2 (αδρ1 + δ) > 0

since ρ1 > ρ.

By Γ we now denote the rectangle the sides of which are Γ1,Γ3 and parts of
the rays Γ+

2 ,Γ−2 . Further, we denote by G− the interior and by G+ the exterior of
Γ (without the boundary of Γ).

Lemma 4.4. For any fixed Y ∈ D(A)×D(A), the polynomial (L(λ)Y, Y ) has
one root in G− and one root in G+.

Proof. Consider the auxiliary pencil

L1(λ) = L
(

λ− 2
α

)
, λ ∈ C,
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and the corresponding polynomial (L1(λ)Y, Y ) for fixed Y = (y, z)t with y ∈ D(A),
z ∈ D(A), ‖y‖2 + ‖z‖2 = 1. The roots of (L1(λ)Y, Y ) = 0 are the roots of the
equation

(4.3)
λ2 + λ

(
− 4

α
+ α(Ay, y) + α(Az, z) + (K1y, y) + (K2z, z)

)
+

4
α2
−(Ay, y)−(Az, z)− 2

α
(K1y, y)− 2

α
(K2z, z)+2iβ Im (Az, y) = 0.

Due to assumption (4.1) the quadratic equation

(4.4) λ2 + λ

(
αδ − 4

α

)
+

4
α2

− δ = 0

possesses exactly one solution on the positive half axis and exactly one on the neg-
ative half axis (excluding 0). Now we consider A and Ki, i = 1, 2, as perturbations
of δI and 0, respectively, i.e., we consider

A(η) := η(A− δI) + δI, Ki(η) = ηKi, i = 1, 2,

for η ∈ [0, 1] and the pencil L1(η, λ) which arises if we substitute A and Ki, i = 1, 2,
in L1(λ) by A(η) and Ki(η), i = 1, 2, i.e.,

L1(η, λ) := λ2

(
I 0
0 I

)
+ λ

(
αA(η) + K1(η)− 4

α 0
0 αA(η) + K2(η)− 4

α

)

+
(
−A(η)− 2

αK1(η) + 4
α2 βA

−βA −A(η)− 2
αK2(η) + 4

α2

)
,

η ∈ [0, 1], λ ∈ C. Then L1(1, λ) = L1(λ) and the equation (L1(0, λ)Y, Y ) = 0
is just the equation (4.4). The quadratic form (L1(η, λ)Y, Y ) is analytic with
respect to η and λ. The roots λ1(η) and λ2(η) of (L1(η, λ)Y, Y ) = 0 are piecewise
analytic, they may fail to be analytic in [0, 1] only if for some η ∈ [0, 1], we have
λ1(η) = λ2(η). Since λ1(0) and λ2(0) are the roots of (4.4), one of them, say
λ1(0), lies in the open left half plane and the other in the open right half plane.
According to Lemmas 4.1, 4.2 and 4.3, we have

inf
λ∈Γ̂

Y ∈D(A)×D(A), ‖Y ‖=1

|L1(λ)Y, Y )| > 0,

where Γ̂ ⊂ {λ ∈ C : Re (λ) > 0} is the rectangle Γ̂ := {λ + 2
α : λ ∈ Γ}. Now

we choose ρ1 > ρ such that ρ1 > λ2(0). Then λ2(η) remains inside Γ̂ and λ1(η)
outside Γ̂ for all η ∈ [0, 1]. The roots of (L(λ)Y, Y ) are given by λ1(1) − 2

α and
λ2(1)− 2

α . Hence the first one lies outside Γ and the second one inside Γ.

In order to prove results about the eigenvectors and associated vectors corre-
sponding to the branches of eigenvalues possibly accumulating at ∞, we introduce

Ã−1 :=
1
α

(
A−1 0
0 A−1

)
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and consider the pencil

L2(λ) :=
λ2

α
Ã−1/2L

(
1
λ

)
Ã−1/2

= λ2 1
α

(
I β
−β I

)
+ λ

(
I + 1

αA−1/2K1A
−1/2 0

0 I + 1
αA−1/2K2A

−1/2

)
+

1
α

(
A−1 0
0 A−1

)
for λ ∈ C.

By Γ̃ we denote the closed simple curve obtained from the rectangle Γ after
the transformation λ 7→ 1

λ . Let G̃+ (G̃−) denote the interior (exterior) of Γ̃.

Theorem 4.5. (i) The set of eigenvectors and associated vectors correspond-
ing to the eigenvalues of L2 in G̃+ is minimal in H×H.

(ii) If A−1 ∈ Sp for some p < ∞, then the set of eigenvectors and associated
vectors corresponding to the eigenvalues of L2 in G̃+ is complete in H × H. If,
in addition, n(τ, 1

αA−1) ∼ c1τ
c2 as τ → ∞ with some 0 < c1, c2 < ∞, then

n(τ, G̃+,L2) ∼ 2c1τ
c2 .

(iii) If n(τ,A−1) = O(τγ) for some γ ∈ (0, 1
2 ], then the set of eigenvectors

and associated vectors corresponding to the eigenvalues of L2 in G̃+ is a Riesz
basis with parentheses in H×H. If, in addition, n(τ, 1

αA−1) = c1τ
c2 + O(τβ) for

some 0 < c1, c2 < ∞, 0 6 β < α 6 β+γ, then also n(τ, G̃+,L2) = 2c1τ
c2 +O(τβ).

Proof. Again we invoke the results contained in [10], Theorem 22.13 and
Corollary 26.20, and apply them with

H =
1
α

(
A−1 0
0 A−1

)
, T = 0

for (ii) and

H =
1
α

(
A−1 0
0 A−1

)
,

D0 = 0, D1 =
1
α

(
A−1/2K1A

−1/2+γ 0
0 A−1/2K2A

−1/2+γ

)
where γ ∈ (0, 1

2 ] for (iii).

Theorem 4.6. The set of eigenvectors and associated vectors of L corre-
sponding to the eigenvalues in the half plane {λ ∈ C : Re (λ) < − 2

α}) is minimal
in the space HA−1 × HA−1 where HA−1 = (H, (A−1 · , A−1 · )). It is complete in
HA−1 × HA−1 if A−1 ∈ Sp for some p < ∞, and a Riesz basis with parentheses
in HA−1 × HA−1 if n(τ,A−1) = O(τγ) for some γ ∈ (0, 1

2 ]. In particular, the
eigenvalues in {λ ∈ C : Re (λ) < − 2

α}) accumulate at ∞ if A−1 ∈ Sp for some
p < ∞.

Proof. The statements of the theorem follow from Theorem 4.5 and Theo-
rem 2.1.
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5. APPLICATION TO THE PROBLEM OF VIBRATIONS OF A ROTATING BEAM

In this section we are going to apply the results of the previous sections to the
system (1.2), (1.3) of partial differential equations with boundary conditions (1.4).
After the separation of variables (1.5) (and assuming m ≡ 1 for simplicity), it takes
the form

EI y
(4)
1 + ωκEI y

(4)
2 + λ

(
κEI y

(4)
1 + ε1 y1

)
+ λ2 y1 = 0,(5.1)

EI y
(4)
2 − ωκEI y

(4)
1 + λ

(
κEI y

(4)
2 + ε2 y2

)
+ λ2 y2 = 0(5.2)

with boundary conditions

(5.3) y1(0) = y1(l) = y′′1 (0) = y′′1 (l) = 0, y2(0) = y2(l) = y′′2 (0) = y′′2 (l) = 0.

Here the operators A and K1,K2 are determined by (1.6) and (1.7), and the
constants α, β by α = κ (the coefficient of inner damping) and β = ωκ (where ω
is the angular frequency of the rotation of the beam).

Obviously, the operator A has compact resolvent, and it is not difficult to
see that the eigenvalues λk, k = 1, 2, . . . , of A are all simple and given by

λk = EI

(
kπ

l

)4

, k = 1, 2, . . . .

Hence the lower bound δ of A is its least eigenvalue,

δ = EI
(π

l

)4

.

It is also easy to see that the number n(τ,A−1) of eigenvalues of A−1 greater than
τ−1, i.e., the number of eigenvalues of A less than τ satisfies

(5.4) n(τ,A−1) ∼ l

π

(
1

EI

)1/4

τ1/4.

An immediate consequence of Theorem 2.1 is the following statement.

Theorem 5.1. The essential spectrum of the problem (5.1)–(5.3) consists of
the two points

− 1
κ
− iω, − 1

κ
+ iω.

The other points of the spectrum of the problem (5.1)–(5.3) are normal eigenvalues
which accumulate at most at the points − 1

κ − iω, − 1
κ + iω, and at ∞.

From Theorem 2.3 we immediately get the following stability result.

Theorem 5.2. Set µ := min
i=1,2

min
x∈[0,l]

{εi(x)}. Then the spectrum of the prob-

lem (5.1)–(5.3) lies in the open left half plane if

µ > κEI
(π

l

)4

and µ >
ω2κ

4
,

or if

µ < κEI
(π

l

)4

and
(

κEI
(π

l

)4

+ µ

)2

> ω2κ2EI
(π

l

)4

.
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Concerning results about the minimality, completeness and basis properties
of the eigenvectors of the problem (5.1)–(5.3) corresponding to certain branches
of eigenvalues, we have to distinguish the case when the outer medium is homoge-
neous, i.e., ε1 ≡ ε2 ≡: ε and hence K1 = K2, and the case when the outer medium
is inhomogeneous, i.e., ε1 6≡ ε2 and hence K1 6= K2.

In the case of a homogeneous outer medium, according to Section 3, the
eigenvalues of the given problem (5.1)–(5.3) split into 4 branches {λ1

k} ∪ {λ2
k} ∪

{λ1
k} ∪ {λ2

k} where λ1
k and λ2

k, k = 1, 2, . . . , are the eigenvalues of the problem

(5.5)
(1 + iωκ)EIy(4) + λ(κEIy(4) + εy) + λ2y = 0,

y(0) = y(l) = y′′(0) = y′′(l) = 0,

located in the upper and lower half plane, respectively (counted according to their
algebraic multiplicities). The respective eigenfunctions and associated functions of
the problem of (5.1)–(5.3) can be obtained from the eigenfunctions and associated
functions y1

k and y2
k of the problem (5.5) and from the eigenfunctions and associated

functions y1
k and y2

k of the problem

(5.6)
(1− iωκ)EIy(4) + λ(κEIy(4) + εy) + λ2y = 0,

y(0) = y(l) = y′′(0) = y′′(l) = 0.

For instance, the eigenfunctions of (5.1)–(5.3) are given by the formulas

(y1
k, iy1

k)t, (y2
k, iy2

k)t, (iy1
k, y1

k)t, (iy2
k, y2

k)t.
In the following we denote by W 4

2 (0, l) the Sobolev space of order 4 associated
with L2(0, l).

Theorem 5.3. (i) The set of eigenfunctions and associated functions of
problem (5.1)–(5.3) corresponding to the eigenvalues λ1

k and λ1
k, k = 1, 2, . . . ,

forms a Riesz basis with parentheses in the space W 4
2 (0, l)×W 4

2 (0, l).
(ii) The eigenvalues λ1

k (and hence λ1
k) accumulate at ∞; if enumerated such

that |λ1
k| 6 |λ1

k+1|, they satisfy the asymptotics

λ1
k = −κEI

(
kπ

l

)4

+ iω + ξ1
k + iη1

k, k →∞,

where ξ1
k, η1

k are real and ξ1
k = o(k4), η1

k = o(1).

Proof. The assertion in (i) and the first assertion in (ii) follow from Theo-
rem 3.10 which we can apply due to (5.4) with γ = 1

4 . From Theorem 3.10 we also
obtain that

(5.7) |λ1
k| ∼ κEI

(
kπ

l

)4

, k →∞.

Now let y1
k, ‖y1

k‖ = 1, be an eigenfunction of (5.5) (i.e., of L+) at λ1
k. Then

(5.8)
(
λ1

k

)2
+ λ1

k

(
α(Ay1

k, y1
k) + (Ky1

k, y1
k)

)
+ (1 + iβ)(Ay1

k, y1
k) = 0.

From this it follows that |(Ay1
k, y1

k)| → ∞, k →∞, because otherwise∣∣λ1
k

(
λ1

k + α(Ay1
k, y1

k) + (Ky1
k, y1

k)
)∣∣

would also be bounded, a contradiction to (5.7). Then the assertion follows
from the formula for the solutions of the quadratic equation (5.8) (see (3.2)) and
from (5.7).
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Theorem 5.4. The set of eigenfunctions and associated functions of problem
(5.1)–(5.3) corresponding to the eigenvalues λ2

k and λ2
k, k = 1, 2, . . . , is minimal

and complete in the space W 4
2 (0, l) × W 4

2 (0, l). In particular, λ2
k → − 1

κ − iω,
λ2

k → − 1
κ + iω for k →∞.

Proof. The statements are immediate from Theorem 3.10.

In the case of an inhomogeneous outer medium we obtain:

Theorem 5.5. Assume that EI
(

π
l

)4
> 4

κ2 . Then:
(i) The set of eigenfunctions and associated functions of problem (5.1)–(5.3)

corresponding to the eigenvalues located in the half plane {λ ∈ C : Re (λ) < − 2
κ}

forms a Riesz basis with parentheses in the space W 4
2 (0, l)×W 4

2 (0, l).
(ii) The eigenvalues λk of problem (5.1)–(5.3) in {λ ∈ C : Re (λ) < − 2

κ} ac-
cumulate at ∞; if enumerated such that |λk| 6 |λk+1|, they satisfy the asymptotics

λk = −κEI

(
kπ

2l

)4

+ o(k4), k →∞.

Proof. The first assertion follows immediately from Theorem 4.6. The proof
of the second statement is similar to the proof of Theorem 5.3 (ii).
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