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Abstract. Let A, B, C be C∗-algebras. Given A-B and B-C normed bi-
modules V and W respectively, whose unit ball is convex with respect to
the actions of the C∗-algebras, we study the reasonable seminorms on the
relative tensor product V ⊗B W , having the same convexity property. This
kind of bimodule is often encountered and retains many features of the usual
normed space. We show that the classical Grothendieck program extends
nicely in this setting. Fixing B, we then establish that there exists an unique
such seminorm on V ⊗B W for any V, W if and only if B is infinite in a
weaker sense than proper infiniteness and stronger than the non existence
of tracial states (the equivalence of these two latter notions still remaining
open). Applying this result when B is a stable C∗-algebra, we show that the
relative Haagerup tensor product of operator bimodules is both injective and
projective.
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0. INTRODUCTION

Several fundamental problems in functional analysis involve normed spaces V en-
dowed with contractive commuting left and right actions of C∗-algebras A and
B respectively. Let us mention for instance the higher dimensional cohomology
problem ([5], [19]) or the Morita theory of operator algebras ([3]). In view of the
Gelfand representation theorem for C∗-algebras, it is natural to seek for concrete
representation theorems for such A-B normed bimodules.

Assume that A and B are C∗-subalgebras of the algebra B(H) of all bounded
operators on a Hilbert space H and that V is a normed A-B submodule of B(H).
Then each of the matrix spaces Mn(V ) can be provided with the relative operator
norm ‖ · ‖n determined by the inclusion Mn(V ) ⊂Mn(B(H)) = B(Hn). Equipped
with this canonical matrix normed structure (‖ · ‖n)n>1, this space V is called
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a concrete A,B operator bimodule ([6]). These operator bimodules have been
abstractly characterized in [5] (see also [6]) as the L∞-matricially normed spaces
(in the sense of [17] and [7]) for which the actions of A and B are completely
contractive.

Another natural question is the following one: characterize those abstract
(only) normed A-B bimodules (V, ‖ · ‖) such that there exist faithful representa-
tions (π,H), (ρ,K) ofA andB respectively and an isometric map J : V → B(K,H)
with J(avb) = π(a)J(v)ρ(b) for a ∈ A, b ∈ B, v ∈ V . This problem has been
solved independently by B. Magajna in [13] and by the second author in [16].
These bimodules, distinguished by a very simple axiom, namely the A-B convex-
ity of their unit ball (see Theorem 1.5), are called representables. Of course, when
A = B = C, every normed space is representable, being isometric to a subspace of
the C∗-algebra of continuous functions on the unit ball of its dual.

As expected, there are remarkable parallels between normed spaces and rep-
resentable bimodules. In this paper, we show that the elementary theory of tensor
products of normed spaces carries over to the category of representables bimod-
ules. Given a representable A-B bimodule V and a representable B-C bimodule
W , we define in Section 2 the relative projective tensor product AV ⊗Γ

B WC , and
in Section 3 the relative injective tensor product AV ⊗Λ

B WC . They are repre-
sentable A-C bimodules and behave exactly as the corresponding classical tensor
products V ⊗γ W and V ⊗λ W that we get back when A,B and C are reduced to
the complex numbers. We remark in Section 4 that these relative tensor products
can degenerate into the zero space even when V and W are not so. However, this
cannot occur when B is any C∗-subalgebra of the algebra of all compact operators
in a Hilbert space.

The classical H and H′ Hilbertian tensor products of Grothendieck have also
their counterpart in our setting, as shown in Section 5.

A duality theory can also be developed, but at present we do not see how it
can be used to extend the famous result of Grothendieck: a normed space V has
the approximation property if and only if, for every normed space W , the natural
map ι : V ⊗γ W → V ⊗λ W is injective. Instead, we concentrate on B. We show
that AV ⊗Γ

B WC = AV ⊗Λ
B WC isometrically for all representable A-B bimodule

V and all representable B-C bimodule W if and only if B is infinite in a certain
sense that we call condition (I) (see Definition 6.1). This property is intermediate
between the properties for M(B) and B′′ to be properly infinite, where M(B)
denotes the multiplier algebra of B and B′′ its enveloping von Neumann algebra.
Recall that a unital C∗-algebra is properly infinite if it contains two orthogonal
projections equivalent to its unit. Of course, B′′ is properly infinite if and only if B
has no tracial states, but it is a very difficult outstanding problem to show whether
this implies that M(B) is properly infinite. Let us mention in this direction the
remarkable result of Haagerup stating that for every unital exact C∗-algebra B
without any tracial state there exists an integer n such that Mn(B) is properly
infinite ([10]).

As a consequence of our study, for every stable C∗-algebra B we have
AV ⊗Γ

B WC = AV ⊗Λ
B WC isometrically. In the last section, this result is ap-

plied in the following context. Let V be a right B operator module, and W a left
B operator module. We denote by V ⊗h

B W the relative Haagerup operator space



Relative tensor products and infinite C∗-algebras 391

tensor product (that is the operator space quotient of the usual Haagerup opera-
tor space tensor product V ⊗h W by the closed subspace spanned by the tensors
vb⊗w− v⊗ bw). Let K be the C∗-algebra of all compact operators in a separable
infinite dimensional Hilbert space. Then the spatial tensor products K ⊗min V ,
K⊗min W are respectively representable K-K⊗min B and K⊗min B-K bimodules,
and the normed space K⊗min (V ⊗h

BW ) is naturally isometric to their unique ten-
sor product in the category of representables bimodules. It follows immediately
that the relative Haagerup tensor product is both injective and projective. This is
well known when B = C but we have not found this result for a general C∗-algebra
B in the very rich literature on the subject.

1. PRELIMINARIES AND NOTATIONS

For the reader’s convenience, we recall in this section some definitions and results
whose details are mostly contained in [15] (see also [16]). Given a C∗-algebra A,
we denote by RepA the class of its non degenerated representations (π,H). It
is often convenient to write H instead of (π,H). We first introduce a class of
representations which plays an important role in our study.

Definition A representation (π,H) of A is called locally cyclic if for any
h1, h2, . . . , hn ∈ H there exists h ∈ H such that hi ∈ π(A)h for i = 1, 2, . . . , n.

Every cyclic representation is locally cyclic. The standard form of the en-
veloping von Neumann algebra A∗∗ of A defines a locally cyclic representation of
A, as a consequence of Lemma 2.3 from [20]. We call it the standard representation
of A. Let us recall the following useful characterization.

Proposition ([16], [15]) Every representation of A is locally cyclic if and
only if A has no tracial states (or equivalently, A∗∗ is properly infinite).

This applies for instance to stable C∗-algebras. On the other hand, it is easily
checked that the only locally cyclic representations of the C∗-algebra Mn(C) are
those of the form p times the fundamental one, with 1 6 p 6 n. In particular, the
one dimensional representation of C is its only locally cyclic representation.

Let us consider now two C∗-algebras A and B. A normed A-B bimodule is
a normed space V equipped with structures of left A-module and right B-module,
such that

a(vb) = (av)b, ‖avb‖ 6 ‖a‖ ‖v‖ ‖b‖

for all v ∈ V , a ∈ A, b ∈ B. In addition, we always assume that V is essential
in the sense that AV = V = V B. Without loss of generality we can also assume
that V is complete. We shall denote by V ∗ the dual of V .

Note that, given representations HA and HB of A and B respectively, the
space B(HB ,HA) of all bounded linear operators from HB into HA is in a natural
way a normed A-B bimodule.
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Definition Let V be a normed A-B bimodule. A bounded A-B-linear
map from V into B(HB ,HA) is called a representation of V . We say that the
representation is locally cyclic (respectively cyclic) when HA and HB are so.

We denote by HomA,B(V,B(HB ,HA)) the Banach space of all representations
of V into B(HB ,HA). The A-B bimodules admitting an isometric representation
have a nice characterization as follows.

Definition Let V be an algebraic A-B bimodule. We say that a seminorm
N on V has property (R) (or is a R-seminorm) if

(R) N(a1v1b1 + a2v2b2) 6 ‖a1a
∗
1 + a2a

∗
2‖1/2 max{N(v1), N(v2)}‖b∗1b1 + b∗2b2‖1/2

for all a1, a2 ∈ A, b1, b2 ∈ B and v1, v2 ∈ V .

Observe that this condition says that the unit ball of V is A-B convex in an
obvious sense.

Theorem ([16], [15] and [13]) Let V be a normed A-B bimodule. The
following conditions are equivalent:

(i) the norm of V has property (R);
(ii) there exist faithful representations (πA,HA), (πB ,HB) of A and B re-

spectively and a linear isometric map J : V → B(HB ,HA) such that

J(avb) = πA(a)J(v)πB(b), ∀a ∈ A, b ∈ B, v ∈ V.

Obviously, we have (ii) ⇒ (i). The converse is based on the following crucial
lemma.

Lemma Assume that the norm of V has property (R) and let F ∈ V ∗. Then
there exist states ϕ and ψ of A and B respectively such that

|F (avb)| 6 ϕ(aa∗)1/2ψ(b∗b)1/2‖v‖ ‖F‖, ∀a ∈ A, b ∈ B, v ∈ V.

Given F ∈ V ∗, this lemma ensures the existence of a cyclic representation
R : V → B(HB ,HA) with ‖R‖ = ‖F‖ and of unit vectors ξA ∈ HA, ξB ∈ HB such
that

F (v) = 〈R(v)ξB , ξA〉, ∀v ∈ V.

As an immediate consequence we get

Proposition Let V be a normed A-B bimodule with property (R). Then for
any v ∈ V we have

‖v‖ = sup ‖R(v)‖ = max ‖R(v)‖,

where R runs over all the contractive cyclic representations of V .

The desired isometric representation of V is obtained in an obvious way, by
taking the direct sum of all cyclic contractive representations of V .
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Definition An A-B bimodule V satisfying the equivalent conditions from
Theorem 1.5 is called representable.

For the general study of these objects, we refer to [16]. By replacing the
algebra of complex numbers with arbitrary C∗-algebras A and B, most of the basic
facts from the theory of normed spaces extend to the category of representable A-
B bimodules. In this framework the bounded linear forms have to be replaced
by the locally cyclic representations. Indeed, the Hahn-Banach extension theorem
becomes:

Theorem ([16] and [15]) Let W be a representable A-B bimodule and V ⊂
W a submodule. Then every locally cyclic representation R : V → B(HB ,HA)
extends to a representation R̃ : W → B(HB ,HA) with ‖R̃‖ = ‖R‖.

Note that since C has only one locally cyclic representation, Proposition 1.7
and Theorem 1.9 are basic results in classical functional analysis, when A = B = C.

We now turn to operator bimodules in the sense of [6], which are important
particular cases of representable bimodules.

Throughout this paper, given two integers p, q and a vector space V , we
denote by Mp,q(V ) the vector space of p× q matrices with entries in V . Also, we
set Mp = Mp,p. If W is another linear space and R : V → W is a linear map, we
denote as usual by Rp,q the map [vij ] 7→ [R(vij)] from Mp,q(V ) to Mp,q(W ), and
we write Rp = Rp,p. When p < q, we have a natural embedding Mp(V ) ⊂ Mq(V ).

Let us set M∞(V ) =
∞⋃

n=1
Mn(V ).

Definition An operator A-B bimodule is an A-B bimodule together with
a norm ‖ · ‖n on each matrix space Mn(V ), n > 1, satisfying:

‖avb‖n 6 ‖a‖n‖v‖n‖b‖n;(R1) ∥∥∥∥[
v 0
0 w

]∥∥∥∥
n+m

= max{‖v‖n, ‖w‖m},(R2)

for all n,m > 1, a ∈ Mn(A), b ∈ Mn(B), v ∈ Mn(V ) and w ∈ Mm(W ). When
A = C (respectively B = C), V is called a right operator B-module (respectively
a left operator A-module).

If A = B = C, then V is an operator space in the usual sense. For simplicity,
given v ∈ Mn(V ), we often write ‖v‖ instead of ‖v‖n.

Recall that a linear map R : V → W between operator spaces is completely
bounded if ‖R‖cb = sup

n>1

‖Rn‖ <∞. When ‖R‖cb 6 1 we say that R is completely

contractive. If Rn is isometric for all n > 1 then R is completely isometric.
For any representationsHA∈RepA,HB ∈ RepB, the linear space B(HB ,HA)

is canonically viewed as an operator A-B bimodule. Christensen, Effros and Sin-
clair have shown that every operator bimodule can be represented completely
isometrically in some B(HB ,HA).
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Theorem ([5]) Let V be an operator A-B bimodule. There exist faith-
ful representations (πA,HA), (πB ,HB) of A and B respectively and a completely
isometric map J : V → B(HB ,HA) such that

J(avb) = πA(a)J(v)πB(b), ∀a ∈ A, b ∈ B, v ∈ V.

In fact, this result can be obtained as a consequence of Theorem 1.5, as
follows. Let us first introduce some notations: K will be the C∗-algebra of compact
operators on a separable Hilbert space, and for any closed subspace F of B(H) we
denote by K ⊗min F the spatial tensor product. Consider now an operator A-B
bimodule V . By Axiom (R2), there is a natural norm on M∞(V ). The axioms (R1)
and (R2) mean exactly that the completion W of M∞(V ) is a representable K⊗min

A-K⊗minB bimodule. Then Theorem 1.5 suitably interpreted gives Theorem 1.11.
Let us recall the following useful result of R.R. Smith (Theorem 2.1 and

Lemma 2.3 from [20]).

Theorem Let V be an operator A-B bimodule. Every locally cyclic repre-
sentation R : V → B(HB ,HA) is completely bounded and ‖R‖cb = ‖R‖.

Definition Let (V, ‖ · ‖) be a normed space. A system of matrix norms
‖ · ‖n on Mn(V ) is said to be compatible with (V, ‖ · ‖) if ‖ · ‖1 = ‖ · ‖. We say that
(‖ · ‖n)n>1 is smaller than another matrix normed structure (‖ · ‖′n)n>1 if for all
n > 1

‖[vij ]‖ 6 ‖[vij ]‖′, ∀[vij ] ∈ Mn(V ).

Let V be a representable A-B bimodule. Obviously on V there exist struc-
tures of operator A-B bimodule compatible with (V, ‖ ·‖). It was noted in [16] and
[13] that among such matrix normed structures there is a minimal one MINA,B and
a maximal one MAXA,B . We recall now how these structures are characterized.

Proposition ([16] and [15]) Let V be a representable A-B bimodule. Given
v = [vij ] ∈ Mn(V ), we have the following expressions for the norm ‖v‖MIN induced
by MINA,B(V ):

(i) ‖v‖MIN = sup ‖[R(vij)]‖ where R runs over the cyclic contractive repre-
sentations of V ;

(ii) ‖v‖MIN = sup ‖[R(vij)]‖ where R runs over the locally cyclic contractive
representations of V ;

(iii) ‖v‖MIN = sup
{∥∥∥ n∑

k=1

n∑
l=1

akvklbl

∥∥∥;
∥∥∥ n∑

k=1

aka
∗
k

∥∥∥ 6 1,
∥∥∥ n∑

l=1

b∗l bl

∥∥∥ 6 1
}
.

Proposition ([16] and [15]) Let V be a representable A-B bimodule. Given
v = [vij ] ∈ Mn(V ), we have the following expressions for the norm ‖v‖MAX

induced by MAXA,B(V ):
(i) ‖v‖MAX = sup ‖[R(vij)]‖ where R runs over all the contractive represen-

tations of V ;
(ii) ‖v‖MAX = inf{‖a‖ max

k
‖vk‖ ‖b‖; v = adiag(vk) b} with a ∈ Mn,p(A),

b ∈ Mp,n(B) and where diag(vk) denotes the diagonal matrix with diagonal entries
v1, v2, . . . , vp.

Finally, let us give the following consequence of Proposition 1.14, which is
certainly known.



Relative tensor products and infinite C∗-algebras 395

Lemma Let K be a Hilbert space and (π,H) be a locally cyclic representation
of a C∗-algebra A. Then for T1, T2, . . . , Tn ∈ B(K,H) we have∥∥∥∑

TiT
∗
i

∥∥∥1/2

= sup
{∥∥∥∑

aiTi

∥∥∥; ai ∈ A,
∥∥∥∑

aia
∗
i

∥∥∥ 6 1
}
.

In particular, for ξ1, ξ2, . . . , ξn ∈ H,( ∑
‖ξi‖2

)1/2

= sup
{∥∥∥∑

aiξi

∥∥∥
H
, ai ∈ A,

∥∥∥∑
aia

∗
i

∥∥∥ 6 1
}
.

Proof. By Proposition 1.14 (ii), we see that the natural operator space struc-
ture of B(K,H) is the minimal compatible one with respect to its A-B(K) bimodule
structure.

The norm of t[T1 · · ·Tn] ∈ Mn,1(B(K,H)) can be computed by the formula
given in Proposition 1.14 (iii). We get easily∥∥∥∑

T ∗i Ti

∥∥∥ = sup
{∥∥∥ n∑

i=1

aiTim
∥∥∥;

∥∥∥∑
aia

∗
i

∥∥∥ 6 1, ‖m‖ 6 1
}

= sup
{∥∥∥ n∑

i=1

aiTi

∥∥∥;
∥∥∥∑

aia
∗
i

∥∥∥ 6 1
}
.

2. THE PROJECTIVE TENSOR PRODUCT

Let A,B,C be C∗-algebras, V a representable A-B bimodule and W a repre-
sentable B-C bimodule. We denote by V ⊗B W the algebraic tensor product over
B. By definition, it is the quotient of V ⊗W by the vector space spanned by the
elements of the form

vb⊗ w − v ⊗ bw, v ∈ V,w ∈W, b ∈ B.

We write v ⊗B w for the equivalence class of v ⊗ w in V ⊗B W .
The space V ⊗B W has a natural structure of A-C bimodule. Our aim is

the study of the possible R-seminorms on V ⊗B W which are compatible with the
norms of V and W as follows.

Definition A seminorm N on V ⊗B W is called a subcross seminorm if
N(v ⊗B w) 6 ‖v‖ ‖w‖ for all v ∈ V , w ∈W .

For u ∈ V ⊗B W we set

ΓA,C(u) = inf
u=a diag(vk⊗Bwk)b

‖a‖
(

max
16k6n

‖vk‖
)(

max
16k6n

‖wk‖
)
‖b‖

with a ∈ M1,n(A), b ∈ Mn,1(B). When there is no risk of confusion we write Γ(u)
instead of ΓA,C(u).
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Proposition The functional ΓA,C is the largest subcross R-seminorm on
V ⊗B W .

Proof. The only non completely obvious point is that Γ has property (R).
Consider a1, . . . , an ∈ A, c1, . . . , cn ∈ B and u1, . . . , un ∈ V ⊗B W with Γ(u1) <
1, . . . ,Γ(un) < 1. By definition of Γ, for k = 1, . . . , n, we can write

uk =
∑

r

akrvkr ⊗B wkrckr

with
∥∥∥∑

r
akra

∗
kr

∥∥∥, ∥∥∥∑
r
c∗krckr

∥∥∥,max
r

‖vkr‖,max
r

‖wkr‖ < 1. Then

u =
∑
k,r

akakrvkr ⊗B wkrckrck

and since ∑
k,r

akakra
∗
kra

∗
k 6

∑
k

aka
∗
k,∑

k,r

c∗kc
∗
krckrck 6

∑
k

c∗kck

we deduce from the definition of Γ that

Γ(u) <
∥∥∥∑

k

aka
∗
k

∥∥∥1/2∥∥∥∑
k

c∗kck

∥∥∥1/2

.

We denote by AV ⊗Γ
B WC the completion of the quotient of V ⊗B W by

the null space of Γ. Let [u] be the equivalence class of u ∈ V ⊗B W and set
‖[u]‖Γ = Γ(u).

Recall that a map ϕ from a normed space X onto a normed space Y is a
quotient map if the image of the open unit ball of X is the unit ball of Y .

The tensor product ⊗Γ
B is projective in the following sense:

Theorem Let V, V ′ and W,W ′ be two representable A-B and B-C bimodules
respectively. Let Φ : V → V ′ be a A-B bimodule quotient map and Ψ : W → W ′

be a B-C bimodule quotient map. Then Φ ⊗B Ψ : V ⊗B W → V ′ ⊗B W ′ induces
a A-C bimodule quotient map from AV ⊗Γ

B WC onto AV
′ ⊗Γ

B W ′
C .

Proof. For u ∈ V ⊗B W one obviously has

Γ(Φ⊗B Ψ(u)) 6 Γ(u),

and therefore Φ⊗B Ψ induces a contractive A-C bimodule map from AV ⊗Γ
B WC

into AV
′ ⊗Γ

B W ′
C , that we still denote by Φ ⊗B Ψ. It remains to show that every

y ∈ AV
′ ⊗Γ

B W ′
C with ‖y‖ < 1 belongs to the image of the open unit ball of

AV ⊗Γ
B WC .
Let us assume first that y = [u′] with u′ ∈ V ′⊗BW

′. Then u′ can be written
as

u′ =
n∑

k=1

akv
′
k ⊗B w′kck
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where ak ∈ A, ck ∈ C, v′k ∈ V ′ and w′k ∈W ′ satisfy

‖v′k‖ < 1, ‖w′k‖ < 1, ∀k = 1, . . . , n∥∥∥ n∑
k=1

aka
∗
k

∥∥∥ 6 1,
∥∥∥ n∑

k=1

c∗kck

∥∥∥ 6 1.

Since Φ and Ψ are quotient maps, for k = 1, . . . , n there exist vk ∈ V , wk ∈W with

‖vk‖ < 1, ‖wk‖ < 1 and Φ(vk) = v′k, Ψ(wk) = w′k. By setting u =
n∑

k=1

akvk ⊗B

wkck, we have obviously ‖[u]‖Γ < 1 and (Φ⊗B Ψ)[u] = [u′].
In the general case, we choose η such that ‖y‖ < 1−η and a sequence (u′n)n>0

in V ′ ⊗B W ′ such that Γ(u′0) < 1 − η, Γ(u′n) < η
2n , ∀n > 1 and y =

∞∑
n=0

[u′n].

By the first part of the proof, we can find a sequence (un)n>0 in V ⊗B W with

Γ(u0) < 1− η, Γ(un) <
η

2n
, ∀n > 1

(Φ⊗B Ψ)([un]) = [u′n], ∀n > 0.

Letting x =
∞∑

n=1
[un] ∈ AV ⊗Γ

B WC , we have ‖x‖Γ < 1 and Φ⊗B Ψ(x) = y.

Definition The tensor product ⊗Γ
B is called the projective tensor product

of representable bimodules.

Given a representable A-C bimodule Z, denote by BilBA,C(V,W ;Z) the Ba-
nach space of all B-balanced, A-C linear bounded maps from V ×W into Z. By
definition, for Q ∈ BilBA,C(V,W ;Z) we have

Q(avb, wc) = aQ(v, bw)c, ∀a ∈ A, b ∈ B, c ∈ C, v ∈ V, w ∈W.
The projective tensor product ⊗Γ

B linearizes such maps.

Proposition (i) For any Q ∈ BilBA,C(V,W ;Z) there exists a unique A-C
bimodule morphism Q̃ : AV ⊗Γ

B WC → Z such that for all v ∈ V , w ∈W we have

Q̃([v ⊗B w]) = Q(v, w).

Moreover, we have ‖Q̃‖ = ‖Q‖.
(ii) For u =

∑
vk ⊗B wk ∈ V ⊗B W we have

Γ(u) = sup
Q

∥∥∥∑
Q(vk, wk)

∥∥∥,
where the supremum is taken over all contractive bilinear maps Q ∈
BilBA,C(V,W ;B(HC ,HA)) and HA,HC ranges over the set of cyclic (or locally
cyclic, or all) representations of A and C respectively.

Proof. (i) For u =
∑
akvk ⊗B wkck we have∥∥∥∑

k

akQ(vk, wk)ck
∥∥∥ 6

‖Q‖
∥∥∥∑

k

aka
∗
k

∥∥∥1/2

max
k

‖vk‖ max
k

‖wk‖
∥∥∥∑

k

b∗kbk

∥∥∥1/2

,
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since Z is representable. Therefore Q induces an A-C linear bounded map Q̃ :
AV ⊗Γ

B WC → Z such that ‖Q̃‖ 6 ‖Q‖. The reverse inequality is obvious.
(ii) follows immediately from (i) and Proposition 1.7.

Remark that when A = B = C = C, the tensor product ⊗Γ
B is just the usual

projective tensor product ⊗γ in the category of normed spaces.

3. THE INJECTIVE TENSOR PRODUCT

Recall that when V and W are ordinary Banach spaces, the injective cross norm
λ is the minimal cross norm α such that the functional α∗ on V ∗⊗W ∗ defined by

α∗(f) = sup
α(u)61

|f(u)|

is also a cross norm.
Assume now that V and W are representable bimodules as in Section 2. As

already mentioned, the role of V ∗ andW ∗ is now played by HomA,B(V,B(HB ,HA))
and HomB,C(W,B(HC ,HB)) where HA,HB and HC range over the locally cyclic
representations of the corresponding C∗-algebras (or even only on their cyclic rep-
resentations).

For R ∈ HomA,B(V,B(HB ,HA)), S ∈ HomB,C(W,B(HC ,HB)), we define
RS ∈ BilBA,C(V,W ;B(HC ,HA)) by

RS(v, w) = R(v)S(w).

We still denote by RS the corresponding A-C linear map from V ⊗B W into
B(HC ,HA).

Lemma For u ∈ V ⊗B W let us define:
(i) α1(u) = sup ‖RS(u)‖, the supremum being taken over all contractive,

locally cyclic representations

R ∈ HomA,B(V,B(HA,HB)) and S ∈ HomB,C(W,B(HC ,HB))

and HA,HB ,HC range over the locally cyclic representations of the corresponding
C∗-algebras;

(ii) α2(u) = sup ‖RS(u)‖ where we only consider cyclic representations;
(iii) α3(u) = sup ‖RS(u)‖ where we consider only the standard representa-

tions Hs(A),Hs(B),Hs(C) of the corresponding C∗-algebras.
Then

α1(u) = α2(u) = α3(u).

Proof. Obviously we have α3(u) 6 α1(u) and α2(u) 6 α1(u).
Let us consider now contractive locally cyclic representations R : V →

B(HB ,HA), S : W → B(HC ,HB). Put u =
n∑

k=1

vk⊗Bwk. Given ε > 0, there exist

unit vectors ξ ∈ HA, ζ ∈ HC such that∥∥∥∑
R(vk)S(wk)

∥∥∥ < ∣∣∣〈 ∑
R(vk)S(wk)ζ, ξ

〉∣∣∣ + ε.
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Since (πB ,HB) is locally cyclic, there exists η ∈ HB such that

S(wk)ζ,R(vk)∗ξ ∈ πB(B)η, ∀k = 1, . . . , n.

Let us define
p = [πB(B)η] ∈ πB(B)′ ⊂ B(HB)

q = [πA(A)ξ] ∈ πA(A)′ ⊂ B(HA)

r = [πC(C)ζ] ∈ πC(C)′ ⊂ B(HC)

to be the cyclic projections associated with η, ξ and ζ. We have〈 n∑
k=1

R(vk)S(wk)ζ, ξ
〉

=
n∑

k=1

〈S(wk)ζ,R(vk)∗ξ〉

=
n∑

k=1

〈pS(wk)rζ, pR(vk)∗qξ〉

=
n∑

k=1

〈qR(vk)ppS(wk)rζ, ξ〉.

The representation πA reduced to qHA is cyclic and therefore unitarily equivalent
to a subrepresentation of the standard representation of A. The same observation
applies to πB reduced to pHB and to πC reduced to rHC . It follows that we
may view the map v 7→ qR(v)p as a contractive representation with values into
B(Hs(B),Hs(A)) and w 7→ pS(w)r as a contractive representation with values in
B(Hs(C),Hs(B)). Therefore we have∥∥∥∑

R(vk)S(wk)
∥∥∥ < α3(u) + ε

from which we can conclude that α1(u) 6 α3(u). By the same argument we also
get that α1(u) 6 α2(u).

We set ΛA,C(u) = α1(u) and for simplicity we often write Λ(u) instead of
ΛA,C(u).

Proposition ΛA,C is a subcross seminorm having property (R).

Proof. Clearly, given locally cyclic representations R,S, we have

‖R(v)S(w)‖ 6 ‖v‖ ‖w‖, ∀v ∈ V,w ∈W
and hence Λ is a subcross seminorm.

Moreover, for ui ∈ V ⊗B W , ai ∈ A, ci ∈ C, i = 1, 2, we have

RS
( 2∑

k=1

akukck

)
=

2∑
k=1

akRS(uk)ck,

and therefore∥∥∥RS( 2∑
k=1

akukck

)∥∥∥ 6
∥∥∥ 2∑

k=1

aka
∗
k

∥∥∥1/2∥∥∥ 2∑
k=1

c∗kck

∥∥∥1/2

max{Λ(u1),Λ(u2)},

and we conclude that Λ has property (R).
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Let us show now that Λ is minimal in a reasonable sense.

Proposition Let α be a subcross R-seminorm on V ⊗B W . Then the fol-
lowing conditions are equivalent:

(i) ΛA,C 6 α;
(ii) For every u ∈ V ⊗B W and every locally cyclic representations R ∈

HomA,B(V,B(HB ,HA)), S ∈ HomB,C(W,B(HC ,HB)), we have

‖RS(u)‖ 6 ‖R‖ ‖S‖α(u).

The proof is immediate.

It follows that the reasonable R-seminorms on V ⊗B W stay between ΛA,C

and ΓA,C .
Denote by AV ⊗Λ

B WC the completion of the quotient of V ⊗B W by the null
space of ΛA,C . We define [u] to be the equivalence class of u ∈ V ⊗B W and set
‖[u]‖Λ = Λ(u). We now show that the tensor product ⊗Λ

B is injective.

Theorem Let V, V ′ and W,W ′ be two representable A-B and B-C bimodules
respectively. Let Φ : V → V ′ be an isometric A-B bimodule map and Ψ : W →W ′

be an isometric B-C bimodule map. Then Φ⊗B Ψ : V ⊗B W → V ′⊗B W
′ induces

an isometric A-C bimodule map from AV ⊗Λ
B WC into AV

′ ⊗Λ
B W ′

C .

Proof. It is enough to show that for u =
∑
vk ⊗B wk ∈ V ⊗B W , we have

Λ(Φ⊗B Ψ(u)) = Λ(u). The inequality

Λ(Φ⊗B Ψ(u)) 6 Λ(u)

is obvious. To show the reverse inequality, consider two contractive locally cyclic
representations R ∈ HomA,B(V,B(HB ,HA)) and S ∈ HomB,C(W,B(HC ,HB)).
Owing to Theorem 1.9, we can find contractive, locally cyclic representations R′
and S′ of V ′ and W ′ respectively, such that R′ ◦Φ = R and S′ ◦Ψ = S. It follows
that

‖RS(u)‖ = ‖R′S′(Φ⊗B Ψ(u))‖ 6 Λ(Φ⊗B Ψ(u)).

The theorem is proved.

Remark (a) In the definition

ΛA,C(u) = sup ‖RS(u)‖
we may relax the conditions on the representations of A and C, and allow any
representation instead of the locally cyclic ones. This comes immediately from the
proof of Lemma 3.1. On the other hand, it is very important to impose the local
cyclicity condition for the representations of B. Otherwise, we get the H′-tensor
product to be introduced in Section 5.

(b) Let A1 be a C∗-subalgebra of A with A1A = A, and C1 be a C∗-
subalgebra of C with C1C = C. Every representable A-B bimodule V is a repre-
sentable A1 −B bimodule, and the same remark applies for W when replacing C
by C1. It is obvious that on V ⊗B W we have

ΛA1,C1 6 ΛA,C 6 ΓA,C 6 ΓA1,C1 .

(c) When A = B = C = C, V ⊗Λ
B W is just the usual injective Banach space

tensor product V ⊗λ W , since C has only one locally cyclic representation.
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Let us emphasize that in this paper we use the original notations λ and
γ of Schatten for the injective and projective Banach tensor space products re-
spectively ([18]). Their analogues for representable bimodules are consequently
denoted by Λ and Γ. We warn the reader that the symbol Λ should not be con-
fused with the symbol ̂ , which is Grothendieck’s notation for γ.

4. ARE Λ AND Γ NORMS?

The following example, due to E. Blanchard, shows that in general the semi-
norm Γ (and a fortiori the other subcross seminorms) on V ⊗B W is not a norm.
Specifically, let us consider two countable disjoint and dense subsets {an, n ∈ N},
{bn, n ∈ N} in [0, 1], and define

V = W = c0

to be the space of sequences converging to zero. We take A = C = C and
B = C[0, 1], the C∗-algebra of continuous functions on [0, 1]. Let B act on V
and W by

(vf)n = f(an)vn, (fw)n = f(bn)wn, ∀f ∈ C[0, 1], v ∈ V,w ∈W.
In [2], E. Blanchard shows that if α ∈ V and β ∈W have all their coefficients non
zero, then α⊗B β 6= 0. However, we prove now that BilB(V,W ; C) = 0. This will
imply, as a consequence of Proposition 2.5, that Γ(u) = 0 for all u ∈ V ⊗B W .

Let α ∈ V , β ∈ W and Q ∈ BilB(V,W ; C). Given ε > 0, we fix integers N
and M such that

|αn| 6 ε, |βm| 6 ε, ∀n > N,m > M,

and we define α′ ∈ V , β′ ∈W by

α′n =
{
αn, n 6 N ,
0, n > N ; β′m =

{
βm, m 6 M ,
0, m > M .

Setting α′′ = α− α′, β′′ = β − β′, we have obviously ‖α′′‖ 6 ε, ‖β′′‖ 6 ε.
On the other hand, there exists f ∈ C[0, 1] such that f(an) = 1 for n 6 N ,

f(bm) = 0 for m 6 M . It follows that α′ = α′f and 0 = β′f , and therefore

Q(α′, β′) = 0.

Finally, we have

|Q(α, β)| = |Q(α′ + α′′, β′ + β′′)|
= |Q(α′, β′) +Q(α′, β′′) +Q(α′′, β′) +Q(α′′, β′′)|
6 ‖Q‖(ε‖α‖+ ε‖β‖+ ε2).

Since ε is arbitrary, Q(α, β) = 0.

However, when B is finite dimensional, or more generally when B is a C∗-
subalgebra of the C∗-algebra K(H) of all compact operators in a Hilbert space H,
we will see that Λ is a norm on V ⊗B W . Observe first that this property of B is
equivalent to the fact that B is a restricted product of C∗-algebras K(Hi), or to
the property of B of being an ideal in its enveloping von Neumann algebra B∗∗
(see [11]).
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Proposition Let A,B,C be C∗-algebras and assume that B is an ideal
in B∗∗. Let V be a representable A-B bimodule and W be a representable B-C
bimodule. Then ΛA,C is a norm on V ⊗B W .

Proof. Following Remark 3.5 it suffices to consider the case A = C = C.
Denote by Hs(B) the standard (locally cyclic) representation of B. We identify
HomB,C(W,B(C,Hs(B))) with the space HomB(W,Hs(B)) of bounded linear maps
S : W → Hs(B) such that S(bw) = bS(w) for b ∈ B and w ∈ W . Similarly we
identify HomC,B(V,B(Hs(B),C)) with the space HomB(V,Hs(B)∗) of all bounded
linear maps R : V → Hs(B)∗ such that R(vb) = R(v)b, where the dual of Hs(B) is
endowed with its usual structure of right B-module. Denoting by j the antilinear
isomorphism from Hs(B)∗ onto Hs(B) we have j(ϕb) = b∗j(ϕ) for all ϕ ∈ Hs(B)∗
and b ∈ B.

Let u =
n∑

k=1

vk ⊗B wk ∈ V ⊗B W such that Λ(u) = 0. Then for R ∈

HomB(V,Hs(B)∗) and S ∈ HomB(W,Hs(B)) we have

(4.1)
∑

〈S(wk), jR(vk)〉 = 0.

Let p ∈ B(Cn ⊗Hs(B)) be the projection on the closed span of
{(jR(vk))16k6n;R ∈ HomB(V,Hs(B)∗)}.

Similarly, q ∈ B(Cn ⊗Hs(B)) is defined as the projection onto the closed span of
{(S(wk))16k6n;S ∈ HomB(W,Hs(B))}.

Using (4.1), we get pq = 0.
Denote by B′ the commutant of B in B(Hs(B)). Obviously, for any b′ ∈ B′

we have Rb′ ∈ HomB(V,Hs(B)∗). It follows that p commutes with 1n ⊗ B′, that
is p ∈ Mn(B′′). In the same way we get q ∈ Mn(B′′).

Let p = [pij ] and q = [qij ]. Then

R(vk) =
∑

i

R(vi)pik, S(wk) =
∑

j

qkjS(wj)

for k = 1, . . . , n. On the other hand, by Cohen’s factorization theorem, there exist
bk ∈ B and v′k ∈ V such that vk = v′kbk and since B is an ideal in B′′ we get

R(vk) =
∑

i

R(v′i)bipik = R
( ∑

i

v′i(bipik)
)

for all R ∈ HomB(V,Hs(B)∗). As every cyclic representation is equivalent to a
subrepresentation of its standard one, Proposition 1.7 yields vk =

∑
i

v′i(bipik).

Finally, let us define w′k =
∑
i

(bkpki)wi, k = 1, . . . , n. We have
∑
vk ⊗B wk =∑

v′k ⊗B w′k. But, for any S ∈ HomB(W,Hs(B)), observe that

S(w′k) =
∑

i

(bkpki)S(wi) =
∑

i

∑
j

bkpkiqijS(wj)

=
∑

j

bk

( ∑
i

pkiqij

)
S(wj) = 0.

Using again Proposition 1.7, we find w′k = 0 for k = 1, . . . , n, thus

u =
∑

v′k ⊗B w′k = 0.
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5. THE HAAGERUP AND GROTHENDIECK TENSOR PRODUCTS

In the beginning of this section, we consider a right operator B-module W and
a left operator B-module V . The relative Haagerup tensor product V ⊗h

B W has
been considered by several authors ([4], [12] and [3]) in relation with the study
of spaces of completely bounded multilinear maps. Let us recall first a few basic
facts. For more details we refer to [3].

Definition Let Z be an operator space. A B-balanced bilinear map Q :
V ×W → Z is said to be completely bounded if there exists a constant K such that∥∥∥[ n∑

k=1

Q(vik, wkj)
]∥∥∥ 6 K ‖[vij ]‖ ‖[wij ]‖

for all [vij ] ∈ Mn(V ), [wij ] ∈ Mn(W ), n > 1.

The best constant K will be denoted by ‖Q‖cb and CbB(V,W ;Z) will be
the Banach space of all the completely bounded B-balanced bilinear maps.

The operator space V ⊗h
B W is designed to linearize these bilinear maps. It

is the quotient of the Haagerup tensor product by its closed subspace spanned by
the elementary tensors vb ⊗ w − v ⊗ bw. For u ∈ V ⊗B W we denote by [u] its
equivalence class in V ⊗h

B W . We denote by ‖ · ‖h the Haagerup norm and we
set h(u) = ‖[u]‖h. The operator space structure of V ⊗h

B W is defined globally on
K ⊗min (V ⊗h

B W ) by

(5.1)
∥∥∥∑

ki ⊗ [vi ⊗B wi]
∥∥∥ = sup

∥∥∥∑
ki ⊗Q(vi, wi)

∥∥∥
where Q ranges over the completely contractive elements of CbB(V,W ;B(H)) and
H runs over all possible choices of Hilbert spaces.

Recall also (see Remark 2.7 from [3]) that for u ∈ V ⊗B W we have h(u) < 1
if and only if u can be expressed as

(5.2) u =
n∑

k=1

vk ⊗B wk

with ‖[v1 · · · vn]‖ < 1 and ‖t[w1 · · ·wn]‖ < 1.
If, in addition, V carries a structure of operator A-B bimodule and W a

structure of operator B-C bimodule, then V ⊗h
B W is an operator A-C bimod-

ule (see Lemma 2.4 from [3]). In particular, V ⊗h
B W is a representable A-C

bimodule. Therefore, the canonical morphism V ⊗B W → V ⊗h
B W yields an R-

seminorm h on V ⊗B W . Clearly, given locally cyclic contractive representations
R : V → B(HB ,HA), S : W → B(HC ,HB), then RS ∈ CbB(V,W ;B(HC ,HA))
with ‖RS‖cb 6 1, since R and S are automatically completely bounded, with
‖R‖ = ‖R‖cb, ‖S‖ = ‖S‖cb. Then, it follows from Propositions 2.2 and 3.3 that

ΛA,C 6 h 6 ΓA,C .

The following representation theorem, due to Paulsen and Smith, gives a very
useful description of the B-balanced A-C bilinear completely contractive maps
on V ×W .
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Theorem ([14]) Let (πA,HA) and (πC ,HC) be two representations of A
and C. If Q ∈ BilBA,C(V,W,B(HC ,HA)) is completely contractive, then there exist
a representation (πB ,HB) of B and two completely contractive representations
R ∈ HomA,B(V,B(HB ,HA)), S ∈ HomB,C(W,B(HC ,HB)) such that Q = RS.
Moreover, R and S can be chosen such that ‖Q‖cb = ‖R‖cb‖S‖cb.

Proof. Knowing that V and W can be isometrically concretely represented,
as bimodules, this theorem follows easily from Theorem 2.9 of [14], as already
pointed out in Remark 2.13 from [14].

Corollary Let V and W be two operator A-B and B-C bimodules respec-
tively. Then for u =

∑
vk ⊗B wk ∈ V ⊗B W we have

h(u) = sup
∥∥∥∑

R(vk)S(wk)
∥∥∥

where the supremum runs over all the completely contractive representations R ∈
HomA,B(V,B(HB ,HA)), S ∈ HomB,C(W,B(HC ,HB)) and HA,HB and HC range
over the representations of the corresponding algebras.

Proof. Obviously we have sup ‖
∑
R(vk)S(wk)‖ 6 h(u). Conversely, by

Proposition 1.7 there exists a cyclic contractive representation T : V ⊗h
B W →

B(HC ,HA) such that h(u) = ‖[u]‖h = ‖T [u]‖. Then we conclude by observing
that T comes from a completely contractive element in BilBA,C(V,W ;B(HC ,HA))
and by applying Theorem 5.2.

In the rest of this section we assume that V and W are only representable bi-
modules. Then to every possible choice of compatible operator bimodule structure
on V and W , the associated Haagerup tensor product gives a reasonable subcross
seminorm on V ⊗B W . We denote by HA,C and H′A,C the seminorms defined by
choosing as compatible structures MIN and MAX respectively. Note that we have

ΛA,C 6 HA,C 6 H′A,C 6 ΓA,C .

Theorem Let V and W be two representable A-B and B-C operator bimod-
ules respectively. Given u ∈ V ⊗B W , we have:

(i) H′A,C(u) = sup ‖RS(u)‖, where the supremum is taken over all contrac-
tive representations R∈HomA,B(V,B(HB ,HA)) and S∈HomB,C(W,B(HC ,HB)).

(ii) H′A,C(u) = inf ‖a‖ ‖b‖ ‖c‖ maxk ‖v′k‖ maxk ‖w′k‖, where the infimum is
taken over all possible expressions of u as

u =
∑
k,l

akv
′
k ⊗B bklw

′
lcl

with v′k ∈ V , w′k ∈ W , a = [a1 · · · ap] ∈ M1,p(A), b = [bij ] ∈ Mp,q(B), c =
t[c1 · · · cq] ∈ Mq,1(C).

Proof. Each representation R : MAXA,B(V ) → B(HB ,HA) is completely
bounded and ‖R‖ = ‖R‖cb. The same argument applies to MAXB,C(W ). Then
(i) is a consequence of Corollary 5.3.

Let us now prove (ii). Assuming that H′(u) < 1, it follows from (5.2) that u
can be written as

u =
∑

vk ⊗B wk
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with ‖[v1 · · · vn]‖MAX < 1, ‖t[w1 · · ·wn]‖MAX < 1. Then by Proposition 1.15, there
exist an integer p > 1, a ∈ M1,p(A), b′ ∈ Mp,n(B), v′1, . . . , v

′
n ∈ V , all with norm

< 1, such that

vi =
p∑

k=1

akv
′
kb
′
ki, ∀i = 1, . . . , n.

Similarly, there exist an integer q > 1, b′′ ∈ Mn,q, c ∈ Mq,1 and w′1, . . . , w
′
q ∈ W ,

all with norm < 1, such that

wi =
q∑

l=1

b′′ilw
′
lcl, ∀i = 1, . . . , n.

Set b = b′b′′. We have

u =
∑

i

vi ⊗B wi =
∑
i,k,l

akv
′
kb
′
ki ⊗B b′′ilw

′
lcl =

∑
k,l

akv
′
k ⊗B bklw

′
lcl.

Since ‖b‖ < 1, the infimum in the statement is strictly less than 1.
Conversely, assume that u has an expression of the form

u =
∑
k,l

akv
′
k ⊗B bklw

′
lcl

with a, b, c, v′k and w′l as in (ii). Then, given two contractive representations R :
V → B(HB ,HA), S : W → B(HC ,HB), we have

‖RS(u)‖ =
∥∥∥∑

k,l

R(akv
′
k)S(bklw

′
lcl)

∥∥∥
= ‖π1,p(a) diag{R(v′k)} ρp,q(b) diag{S(w′k)}σq,1(c)‖ < 1,

where (π,HA), (ρ,HB) and (σ,HC) denote here the C∗-algebras representations.

Theorem Let V and W be two representable bimodules as above. For u ∈
V ⊗B W we have

HA,C(u) = inf sup
R,S

∥∥∥∑
R(vk)R(vk)∗

∥∥∥1/2∥∥∥∑
S(wk)∗S(wk)

∥∥∥1/2

where R and S range over all cyclic (or locally cyclic) representations of V and
W respectively, and the infimum is taken over all possible expressions of u in the
form u =

∑
vk ⊗B wk.

Proof. By definition,

H(u) = inf
{
‖v‖MIN‖w‖MIN; u =

∑
vk ⊗B wk

}
,

where v = [v1 · · · vn] runs over M1,n(V ) and w = t[w1 · · ·wn] runs over Mn,1(W )
for n > 1. Now we conclude by using Proposition 1.14.
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Remark We define AV ⊗H′

B WC to be the completion of the quotient of
V ⊗B W by the null space of H′A,C , and AV ⊗H

B WC is defined similarly.
Using the expression of H′A,C given in Theorem 5.4 (ii), it is easily checked

that the tensor product ⊗H′

B is projective. An application of Theorem 1.9 shows
that ⊗H

B is injective.
When A = B = C = C we recover the Hilbertian norms ⊗H and ⊗H′

introduced by Grothendieck in [8]. Recall that in this case, the dual of V ⊗H′
W

is naturally identified with the space of all bilinear hilbertian forms on V ×W .

They are precisely those bilinear forms Q on V ×W for which there exist a Hilbert

space H and bounded linear operators R : V → H, S : W → H∗ such that

(5.3) Q(v, w) = 〈R(v), S(v)〉, ∀ v ∈ V,w ∈W.

Moreover ‖Q‖ = inf ‖R‖ ‖S‖, the infimum being taken over all Hilbert spaces H

and factorizations (5.3).

For representable bimodules, given two representations (πA,HA) and

(πC ,HC) of A and C respectively, we have

HomA,C(AV ⊗Γ
B WC ,B(HC ,HA)) = BilBA,C(V,W ;B(HC ,HA)).

The space of representations T : AV ⊗H′

B WC → B(HC ,HA) is contained in
BilBA,C(V,W ;B(HC ,HA)) and has the following characterization, similar to the
scalar case:

Proposition Let Q ∈ BilBA,C(V,W ;B(HC ,HA)). The following conditions
are equivalent:

(i) There exists c > 0 such that ‖Q(u)‖ 6 c‖[u]‖H′ for all u ∈ V ⊗B W ;

(ii) There exist a representation (π,H) of B and representations R : V →
B(H,HA), S : W → B(HC ,H) such that

Q(v, w) = R(v)S(w), ∀ v ∈ V,w ∈W.

and ‖R‖ ‖S‖ 6 c.

Proof. This follows from Theorem 5.2 and from the automatic complete

boundedness of representations on a MAX operator bimodule.
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6. THE CASE Λ = Γ

Definition Let B be a C∗-algebra and n > 2. We say that B has property
(In) if every matrix [bij ] ∈ Mn(B) with norm < 1 has a decomposition

[bij ] =
p∑

k=1

ckrk

where ck ∈ Mn,1(B), rk ∈ M1,n(B) for k = 1, . . . , n and
p∑

k=1

‖ck‖ ‖rk‖ < 1.

When the decomposition can be achieved with p = 1 we say that B has prop-
erty (I′n).

We say that B has property (I) if it has property (In) for every n > 2.
Property (I′) is defined similarly.

These conditions are related to the non-existence of tracial states on B. Their
equivalence is an open problem. Let us give the following relations between these
various notions of infiniteness.

Proposition Let us consider the following conditions:
(i) the unit of the multiplier algebra M(B) of B is a properly infinite pro-

jection;
(ii) (respectively (ii′)) B has property (I) (respectively (I′));
(iii) (respectively (iii′)) B has property (I2) (respectively (I′2));
(iv) B has no tracial states.

Then:
(i) ⇒ (ii′) ⇒ (ii) ⇒ (iii) ⇒ (iv);
(ii′) ⇒ (iii′);
(iii′) ⇒ (i) when B is unital.

Proof. Assume (i) and let n > 2. There exist n isometries s1, . . . , sn in M(B)
such that s∗i sj = 0 for i 6= j. Consider b = [bij ] ∈ Mn(B) with norm < 1. We
write b = αβ with α, β ∈ Mn(B) of norm < 1 and we set for i = 1, . . . , n

ci =
n∑

k=1

αiks
∗
k ∈ B, ri =

n∑
k=1

skβki ∈ B, r = [r1 · · · rn], c = t[c1 · · · cn].

Then we have b = cr with

‖c‖2 =
∥∥∥∑

c∗i ci

∥∥∥ = ‖[s1 · · · sn]α∗αt[s∗1 · · · s∗n]‖ <
∥∥∥∑

sis
∗
i

∥∥∥ 6 1

and similarly ‖r‖ < 1. Therefore (i) ⇒ (ii′).
The implications (ii′)⇒ (ii) ⇒(iii) and (ii′)⇒(iii′) are obvious. Let us show

that (iii)⇒(iv). Assume that B has a tracial state τ . Given ε > 0 we choose b ∈ B
such that ‖b‖ < 1 and |τ(b)| > 1/2. If the condition (iii) is fulfilled, we have a
decomposition [

b 0
0 b

]
=

p∑
k=1

ckrk
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with ck = t[ ck1 ck2 ], rk = [rk
1 r

k
2 ] and

p∑
k=1

‖ck‖ ‖rk‖ < 1.

Using the Cauchy-Schwarz inequality and the fact that τ is a tracial state, we get

2|τ(b)| =
∣∣∣ ∑

k

τ(ck1r
k
1 + ck2r

k
2 )

∣∣∣
6

∑
k

τ(ck1c
k∗
1 + ck2c

k∗
2 )1/2τ(rk∗

1 rk
1 + rk∗

2 rk
2 )1/2

=
∑

k

τ(ck∗1 ck1 + ck∗2 ck2)1/2τ(rk
1r

k∗
1 + rk

2r
k∗
2 )1/2

6
∑

k

‖ck‖ ‖rk‖ < 1,

which is a contradiction.
For (iii′)⇒(i) when B is unital, let us assume that[

1 0
0 1

]
=

[
c1
c2

]
[r1 r2].

We construct two orthogonal self-adjoint idempotents in B, equivalent to 1, as
follows (see Proposition 4.6.2 from [1]).

Denote by p1 the idempotent r1c1 and put z1 = 1+(p1− p∗1)(p∗1− p1). Then
z1 commutes with p1 and q1 = p1p

∗
1z
−1
1 is a self-adjoint idempotent such that

p1q1 = q1 and q1p1 = p1.
Similarly, we define p2 = r2c2 and z2, but we set q2 = p∗2p2z

−1
2 . Now we have

p2q2 = p2 and q2p2 = q2 and therefore

q2q1 = q2p2p1q1 = q2r2c2r1c1q1 = 0.

Since q1 and q2 are both equivalent to 1, we obtain that 1 is properly infinite.

Theorem Let B be a C∗-algebra. Then the following conditions are equiv-
alent:

(i) Λ = Γ on V ⊗B W for every representable A-B bimodule V and every
representable B-C bimodule W ;

(ii) B has property (I).

Proof. We show first that (ii)⇒(i). Since by Proposition 1.2 every nondegen-
erate representation of B is locally cyclic when B has no tracial states, it follows
from the definition of Λ and Theorem 5.4 that Λ = H′. It remains to show that
Γ 6 H′.

Let u ∈ V ⊗B W with H′(u) < 1. By Theorem 5.4, u may be written

u =
∑
k,l

αkvk ⊗B bklwlγl
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where α = [α1 · · ·αn] ∈ M1,n(A), b = [bij ] ∈ Mn(B), γ = t[γ1 · · · γn] ∈ Mn,1(C),
vk ∈ V and wk ∈W are of norm < 1. Decomposing b as in Definition 6.1 we get

u =
p∑

j=1

( n∑
k=1

αkvkc
j
k

)
⊗B

( n∑
l=1

rj
lwlγl

)
and therefore

Γ(u) 6
p∑

j=1

∥∥∥ n∑
k=1

αkvkc
j
k

∥∥∥∥∥∥ n∑
l=1

rj
lwlγl

∥∥∥
6

p∑
j=1

∥∥∥∑
k

αkα
∗
k

∥∥∥1/2

max
k

‖vk‖
∥∥∥∑

k

cj∗k c
j
k

∥∥∥1/2

·
∥∥∥∑

l

rj
l r

j∗
l

∥∥∥1/2

max
l
‖wl‖

∥∥∥∑
l

γ∗l γl

∥∥∥1/2

6
p∑

j=1

‖cj‖ ‖rj‖ < 1.

Let us show now that (i)⇒(ii). Fix n > 1 and let V be the representable
C-B bimodule Mn,1(B). By definition we have

t[b1 · · · bn]b = t[b1b · · · bnb], ‖t[b1 · · · bn]‖ =
∥∥∥∑

b∗i bi

∥∥∥1/2

.

Similarly, let W the representable B-C bimodule M1,n(B) with its natural struc-
ture. The map

(t[b1 · · · bn], [b′1 · · · b′n]) 7→ [bib′j ] ∈ Mn(B)

defines a C-linear isomorphism from V ⊗BW onto Mn(B), by which we identify the
two spaces. On Mn(B) the norm Λ is the usual C∗-algebra norm (see Lemma 6.4
below). Assume that Λ = Γ on V ⊗B W and consider b ∈ Mn(B) with ‖b‖ < 1.
By definition of Γ we can write b as

b =
p∑

k=1

λkvk ⊗B wkµk

with
∑
|λk|2

∑
|µk|2 < 1 and ‖vk‖ 6 1, ‖wk‖ 6 1 for all k. To conclude, it

suffices to set ck = λkvk and rk = µkwk, since b =
∑
ckrk and

∑
‖ck‖ ‖rk‖ 6∑

|λk| |µk| < 1.

Lemma Let V be the representable C-B bimodule Mn,1(B) and W be the
representable B-C bimodule M1,n(B). Then AV ⊗Λ

B WC is canonically isometric
with Mn(B) with its C∗-algebra norm.

Proof. By Lemma 3.1, we have, for u ∈ V ⊗B W ,

Λ(u) = sup ‖RS(u)‖,
the supremum being taken over the contractive representations of the form R ∈
HomB(V,B(Hs(B),C)) and S ∈ HomB(W,B(C,Hs(B))), where Hs(B) is the stan-
dard representation of B.
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For every S∈HomB(W,B(C,Hs(B))) there exists a unique vector (ξ1, . . . , ξn)
∈ Hs(B)n such that

S([b1 · · · bn]) = (b1ξ1, . . . , bnξn), ∀[b1 · · · bn] ∈ M1,n(B).

Using Lemma 1.16 we see that

‖S‖ = sup
{
‖S([b1 · · · bn])‖;

∥∥∥∑
bkb

∗
k

∥∥∥ 6 1
}

=
( ∑

‖ξk‖2
)1/2

.

Therefore, HomB(W,Hs(B)) is canonically isometric to the Hilbert space Hs(B)n.
Similarly, the space HomB(V,Hs(B)∗) is canonically isometric to Hs(B)

n
,

where Hs(B) is the conjugate Hilbert space of Hs(B).
Let us compute now the Λ-seminorm of the matrix [bij ] ∈ Mn(B), viewed as

an element of V ⊗B W . We have

‖[bij ]‖ = sup ‖RS([bij ])‖ = sup
{∣∣∣ ∑

i,j

〈bijξj , µi〉
∣∣∣; ∑

‖ξi‖2 6 1,
∑

‖µi‖2 6 1
}

from the above observation, and this concludes the proof.

7. APPLICATION TO THE RELATIVE HAAGERUP TENSOR PRODUCT

In this last section we consider a C∗-algebra B, a right operator B-module V and
a left operator B-module W . Then V1 = K⊗min V is a representable K-K⊗min B
bimodule and W1 = K ⊗min W is a representable K ⊗min B-K bimodule. Note
that K⊗minB satisfies the condition (I) and therefore the results of the preceding
section apply.

Theorem The map (k⊗v, k′⊗w) 7→ kk′⊗v⊗B w induces in a natural way
an isometric K-K bimodule map ϕ from V1 ⊗Γ

K⊗minB W1 onto K ⊗min (V ⊗h
B W ).

Proof. Recall that V1 and W1 are defined as completions of M∞(V ) and
M∞(W ) respectively. We first define

ϕ : M∞(V )⊗M∞(W ) → M∞(V ⊗h
B W )

by
ϕ([vij ], [wij ]) =

[ ∑
k

vik ⊗B wkj

]
.

Clearly we have
ϕ(avb, wc) = aϕ(v, bw)c

for any a, c ∈ M∞(C), b ∈ M∞(B), v ∈ M∞(V ), w ∈ M∞(W ). Also

‖ϕ(v, w)‖h 6 ‖v‖ ‖w‖, ∀v ∈ M∞(V ), w ∈ M∞(W ).

In particular, ϕ extends to a bounded bilinear map

ϕ : V1 ×W1 → K⊗min (V ⊗h
B W ).

Let us show that ϕ is K ⊗min B-balanced. It is sufficient to check that

ϕ(v(k ⊗ b), w) = ϕ(v, (k ⊗ b)w), ∀k ∈ K, v ∈ V1, w ∈W1.
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Consider (v, w) ∈ V1 ×W1 and choose an approximate unit pn of K made of finite
rank operators. Then

ϕ(v(k ⊗ b), w) = lim
n
ϕ(v(kpn ⊗ b), w) = lim

n
ϕ(v, (kpn ⊗ b)w) = ϕ(v, (k ⊗ b)w).

The same argument shows that ϕ is K-K-linear.
The norm on K ⊗min (V ⊗h

B W ) induces, via the map ϕ, a reasonable R-
seminorm on V1 ⊗Γ

K⊗minB W1. By the preceding section, the latter seminorm is
unique, and the result follows.

Corollary The relative Haagerup tensor product is both injective and pro-
jective. In other words, given two right operator B-modules V and V ′, two left
operator B-modules W and W ′, a completely isometric (respectively quotient) B-
linear map ϕ : V → V ′ and a completely isometric (respectively quotient) B-
linear map ψ : W → W ′, then ϕ ⊗B ψ : V ⊗B W → V ′ ⊗B W ′ induces a com-
pletely isometric (respectively quotient) map from V ⊗h

BW into (respectively onto)
V ′ ⊗h

B W ′.

The injectivity of the relative Haagerup tensor product in some particular
cases has been proved by Magajna in Theorem 2.2 from [12].
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