
J. OPERATOR THEORY

48(2002), 273–314

c© Copyright by Theta, 2002

FRAMES IN HILBERT C∗-MODULES AND C∗-ALGEBRAS

MICHAEL FRANK and DAVID R. LARSON

Communicated by William B. Arveson

Abstract. We present a general approach to a module frame theory in C∗-
algebras and Hilbert C∗-modules. The investigations rely on the ideas of
geometric dilation to standard Hilbert C∗-modules over unital C∗-algebras
that possess orthonormal Hilbert bases, of reconstruction of the frames by
projections and by other bounded module operators with suitable ranges. We
obtain frame representation and decomposition theorems, as well as similarity
and equivalence results. Hilbert space frames and quasi-bases for conditional
expectations of finite index on C∗-algebras appear as special cases. Using
a canonical categorical equivalence of Hilbert C∗-modules over commutative
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in vector and (F)Hilbert bundles.
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0. INTRODUCTION

The purpose of this paper is to extend the theory of frames known for (separable)
Hilbert spaces to similar sets in C∗-algebras and (finitely and countably generated)
Hilbert C∗-modules. The concept “frame” may generalize the concept “Hilbert
basis” for Hilbert C∗-modules in a very efficient way, circumventing the ambigu-
ous condition of “C∗-linear independence” and emphasizing geometrical dilation
results and operator properties. This idea is natural in this context because, while
such a module may fail to have any reasonable type of basis, it turns out that
countably generated Hilbert C∗-modules over unital C∗-algebras always have an
abundance of frames of the strongest (and simplest) type. The considerations fol-
low the line of the geometrical and operator-theoretical approach worked out by
Deguang Han and David R. Larson ([31]) in the main. They include the standard
Hilbert space case in full as a special case, see also [13], [14], [30], [32], [35], [44],
[61]. However, proofs that generalize from the Hilbert space case, when attainable,
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are usually considerably more difficult for the module case for reasons that do not
occur in the simpler Hilbert space case. For example, Riesz bases of Hilbert spaces
with frame bounds equal to one are automatically orthonormal bases, a straight
consequence of the frame definition. A similar statement for standard Riesz bases
of certain Hilbert C∗-modules still holds, but the proof of the statement requires
incomparably more effort to be established, see Corollary 4.2. Generally speaking,
the known results and obstacles of Hilbert C∗-module theory in comparison to
Hilbert space and ideal theory would rather suggest the appearance of a number
of counterexamples and diversifications of situations when investigating classes of
Hilbert C∗-modules and of C∗-algebras of coefficients beyond the Hilbert space
situation. Surprisingly, almost the entire theory can be shown to survive these
significant changes. For complementary results to those explained in the present
paper we refer to [25] and [29].

We essentially use G.G. Kasparov’s Stabilization Theorem ([40], Theorem 1).
However, by no means every set of generators of countably generated Hilbert C∗-
modules admits the frame property, even in the particular situation of separable
Hilbert spaces. Our aim is to isolate this special class of generating sets and
to characterize them as powerful structures in countably generated Hilbert C∗-
modules that are capable of playing the role bases play for Hilbert spaces.

The areas of applications indicate a large potential of problems for the inves-
tigation of which our results could be applied. From the point of view of applied
frame theory, the advantage of the generalized setting of Hilbert C∗-modules may
consist in the additional degree of freedom coming from the C∗-algebra A of co-
efficients and its special inner structure, together with the handling of the basic
features of the generalized theory in almost the same manner as for Hilbert spaces.
For example, for commutative C∗-algebras A = C(X) over compact Hausdorff
spaces X, continuous (in some sense) fields of frames over X in the Hilbert space
H could be considered using the geometric analogues of Hilbert C(X)-modules —
the vector bundles or (F)-Hilbert bundles with base space X, cf. [54], [55], [18]. An
appropriate choice of the compact base space of the bundles allows the description
of parameterized and continuously varying families of classical frames in a given
Hilbert space.

By the commonly used definition of a (countable) frame in a (separable)
Hilbert space a set {xi : i ∈ J} ⊂ H is said to be a frame of the Hilbert space H
if there exist two constants C,D > 0 such that the inequality

C · ‖x‖2 6
∑

i

|〈x, xi〉|2 6 D · ‖x‖2

holds for every x ∈ H. To generalize this definition to the situation of Hilbert C∗-
modules we have to rephrase the inequality in a suitable way. Therefore, frames
of Hilbert A-modules {H, 〈 · , · 〉} over unital C∗-algebras A are sets of elements
{xi : i ∈ J} ⊂ H for which there exist constants C, D > 0 such that the inequality

(0.1) C · 〈x, x〉 6
∑

i

〈x, xi〉〈xi, x〉 6 D · 〈x, x〉

is satisfied for every x ∈ H. An additional restriction to the sum in the middle of
the inequality (0.1) to converge in norm for every x ∈ H guarantees the existence
and the adjointability of the frame transform θ : H → l2(A) and the orthogonal
comparability of its image inside l2(A), facts that are crucial and unexpected in
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the generality they hold. The restriction to countable frames is of minor technical
importance, whereas the restriction to unital C∗-algebras of coefficients refers to
the fact that approximative identities of non-unital C∗-algebras do not serve as
approximative identities of their unitizations. The investigation of arbitrary frames
with weakly converging sums in the middle of (0.1) requires Banach C∗-module
and operator module techniques and has to be postponed. Some remarks on this
problem are added in Section 8 of the present paper. We point out that frames exist
in abundance in finitely or countably generated Hilbert C∗-modules over unital
C∗-algebras A as well as in the C∗-algebras itself; see Example 3.5. This fact
allows us to rely on standard decompositions for elements of Hilbert C∗-modules
despite the general absence of orthogonal and orthonormal Riesz bases in them,
cf. Example 2.4.

The content of the present paper is structured as follows: Section 1 contains
the preliminary facts about Hilbert C∗-module theory needed to explain our con-
cept. Section 2 covers the definition of the different types of frames in C∗-algebras
and Hilbert C∗-modules and explains some of their basic properties. Section 3 is
devoted to a collection of representative examples showing the phenomena that
have to be taken into account for a generalization of the theory away from Hilbert
spaces to Hilbert C∗-modules. The existence of the frame transform θ, its prop-
erties and the reconstruction formula for standard normalized tight frames are
proved in Section 4, giving the key to a successful generalization process. In par-
ticular, standard normalized tight frames are shown to be sets of generators for the
corresponding Hilbert C∗-modules. In Section 5 geometrical dilation results and
similarity problems of frames are investigated and results are obtained covering
the general situation. The existence and the properties of canonical and alternate
dual frames are the goal of Section 6. As a consequence a reconstruction formula
for standard frames is established. The last section contains a classification re-
sult showing the strength of the similarity concept of frames. Some final remarks
complete our investigations.

In the present paper some results have been obtained for the theory of Hilbert
C∗-modules which are partially new to the literature and which use our frame tech-
nique in their proofs, see the Propositions 4.8, 4.7 and Theorem 5.9. In particular,
we prove that every set of algebraic generators of an algebraically finitely gener-
ated Hilbert C∗-module is automatically a module frame. We give a new short
proof that any finitely generated Hilbert C∗-module is projective. Beside this, a
new characterization of Hilbert-Schmidt operators on Hilbert spaces allows this
concept to be extended to certain classes of Hilbert C∗-modules over commutative
C∗-algebras.

At this point we would like to give more detailed references to the literature
to appreciate ideas and work related to our results that have been published by
other researchers. Most of the publications listed below were not known to us at
the time we worked out modular frame theory in 1997–1998. Some of the articles
mentioned have been written very recently.

Beside Kasparov’s Stabilization Theorem the inner structure of self-dual
Hilbert W ∗-modules as described by W.L. Paschke in [48] in 1973 has been an-
other source of inspiration. Rephrasing his description in the context of frames it
reads as the proof of the general existence of orthogonal normalized tight frames
{xj : j ∈ J} for self-dual Hilbert W ∗-modules, where additionally the values
{〈xj , xj〉 : j ∈ J} are projections. This point of view was already realized by
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Y. Denizeau and J.F. Havet in [16] in 1994, as pointed out to us by the referee.
They went one step further by taking a topologically weak reconstruction formula
for normalized tight frames as a cornerstone to characterize the concept of “quasi-
bases” for Hilbert W ∗-modules. The special frames appearing from W.L. Paschke’s
result are called “orthogonal bases” by these authors. The two concepts were
investigated by them to the extent of tensor product properties of quasi-bases
for C∗-correspondences of W ∗-algebras, cf. [16], Theorem 1.2.5, Corollary 1.2.6,
Lemma 2.1.5. A systematic investigation of the concept of quasi-bases was not
provided there. While these results are surely interesting from the point of view of
operator theory, they are only of limited use for wavelet theory. In our opinion the
main reason is the necessity of a number of weak completion processes to switch
from basic Hilbert space contexts to suitable self-dual Hilbert W ∗-module con-
texts. In this way, too much structural information generally gets lost or hidden.

Looking back into the literature for Y. Denizeau’s and J.-F. Havet’s motiva-
tion to introduce quasi-bases at a rather general level, the concept of “quasi-bases”
can be found to be worked out for the description of algebraically characterizable
conditional expectations of finite index on C∗-algebras by Y. Watatani in 1990
([57]). There quasi-bases are a special example of module frames in Hilbert C∗-
modules (more precisely, a pair consisting of a frame and a dual frame). For
normal conditional expectations of finite index on W ∗-algebras, generalized mod-
ule frames like Pimsner-Popa bases have been considered earlier by M. Pimsner
and S. Popa ([49]), by M. Baillet, Y. Denizeau and J.-F. Havet ([3], [16]), and
by E. Kirchberg and the author ([24]), among others (cf. [48], [20], [5] for tech-
nical background information). Recently, M. Izumi proved the general existence
of module frames for Hilbert C∗-modules that arise from simple C∗-algebras by a
conditional expectation of finite index onto one of their C∗-subalgebras, cf. [36].
We discovered the use of standard frames in part of E.C. Lance’s lecture notes
([43]) where he used this kind of sequences in one reasoning on page 66, without
investigating the concept itself. In Hilbert C∗-module theory and its applications
special generating sequences have been used to investigate a large class of gener-
alized Cuntz-Krieger-Pimsner C∗-algebras. These C∗-algebras arise from Hilbert
C∗-bimodules in categorical contexts by making use of existing canonical represen-
tations of elements ([17], p. 266 and [39], Section 2). The exploited sequences of
elements of the Hilbert C∗-modules under consideration have been called “bases”.
They admit the key frame properties. The authors make use of a reconstruction
formula for bases of that kind, but without any explicit statement.

We have learned from a communication from M.A. Rieffel that the idea to
use finitely generated projective C∗-modules over commutative C∗-algebras for the
investigation of multiresolution analysis wavelets was introduced by him in a talk
given at the Joint Mathematics Meeting at San Diego in January 1997 ([53]). He
considered module frames generated by images of a frame in a certain projective
C∗-submodule and canonical representations of elements related to them. In joint
work with J.A. Packer these ideas have been worked out and published as preprints
in 2001 ([46], [47]). P.J. Wood pointed out in [59], p. 10 that algebra-valued inner
products have been used before by C. de Boor, R. DeVore and A. Ron in 1992 ([6],
1.4, 1.12) and by A. Fischer in 1997 ([19]). In fact, L1-spaces serve as target spaces,
so the domains have to be reduced to dense subdomains to guarantee the ranges
to be contained in certain L∞-spaces. The authors used these structures in proofs
addressing vanishing moments and approximation properties of wavelets. However,
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the concept of a ∗-algebra-valued inner product has not been introduced by these
authors. Similar constructions have been exploited to examine Sobolev smoothness
properties of wavelets, see L.M. Villemoes in [56] (1992). For a contemporary
explanation of these ideas we refer to a 2001 publication by P.G. Casazza and
M.C. Lammers ([8]).

While the present paper has been circulating as a preprint the ideas and
results contained therein have been successfully applied to solve problems in both
operator and wavelet theory. We know of forthcoming publications by I. Rae-
burn and S. Thompson ([51]) who proved a generalized version of Kasparov’s
Stabilization Theorem for a kind of countably generated Hilbert C∗-modules over
non-σ-unital C∗-algebras, where the countable sets of generators consist of mul-
tipliers of the module. They generalize our concept of frames to the situation
of certain generating sets consisting of multipliers of Hilbert C∗-modules. Fol-
lowing the ideas by M.A. Rieffel explained in [53] M. Coco and M.C. Lammers
([12]) described a W ∗-algebra and a related self-dual Hilbert W ∗-module derived
from the analysis of Gabor frames. They showed how to apply these structures
to solve some problems of Gabor analysis. At the same time P.J. Wood analyzed
the ideas mentioned by M.A. Rieffel in a general framework of group C∗-algebras.
Using module frame techniques of Hilbert C∗-module theory he studied the di-
mension function of wavelets and classified wavelets by methods derived from
C∗-algebraic K-theory, see [59], [60]. Motivated by investigations into Hilbert H*-
modules D. Bakić and B. Guljaš introduced the concept of a “basis” of Hilbert
C∗-modules over C∗-algebras of compact operators explicitly (i.e. the concept of
normalized tight frames which are Riesz bases) in 2001, cf. [2], Theorem 2.

1. PRELIMINARIES

The theory of Hilbert C∗-modules generalizes the theory of Hilbert spaces, of one-
sided norm-closed ideals of C∗-algebras, of (locally trivial) vector bundles over
compact base spaces and of their noncommutative counterparts — the projective
C∗-modules over unital C∗-algebras, among others (see [43], [58]). Because of the
complexity of the theory and because of the different research fields interested
readers of our considerations may come from, we have felt the necessity to give
detailed explanations in places. We apologize to researchers familiar with the
basics of Hilbert C∗-module theory for details which may be skipped by more
experienced readers.

Let A be a C∗-algebra. A pre-Hilbert A-module is a linear space and algebraic
(left) A-module H together with an A-valued inner product 〈 · , · 〉 : H × H → A
that possesses the following properties:

(i) 〈x, x〉 > 0 for any x ∈ H;
(ii) 〈x, x〉 = 0 if and only if x = 0;
(iii) 〈x, y〉 = 〈y, x〉∗ for any x, y ∈ H;
(iv) 〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 for any a, b ∈ A, x, y, z ∈ H.
To circumvent complications with linearity of the A-valued inner product

with respect to imaginary complex numbers we assume that the linear operations
of A and H are comparable, i.e. λ(ax) = (λa)x = a(λx) for every λ ∈ C, a ∈ A

and x ∈ H. The map x ∈ H → ‖x‖ = ‖〈x, x〉‖1/2
A ∈ R+ defines a norm on H.

Throughout the present paper we suppose that H is complete with respect to that
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norm. So H becomes the structure of a Banach A-module. We refer to the pairing
{H, 〈 · , · 〉} as to a Hilbert A-module. Two Hilbert A-modules {H, 〈 · , · 〉H} and
{K, 〈 · , · 〉K} are unitarily isomorphic if there exists a bijective bounded A-linear
mapping T : H → K such that 〈x, y〉H = 〈T (x), T (y)〉K for x, y ∈ H.

If two Hilbert A-modules {H, 〈 · , · 〉H} and {K, 〈 · , · 〉K} over a C∗-algebra
A are given we define their direct sum H ⊕ K as the set of all ordered pairs
{(h, k) : h ∈ H, k ∈ K} equipped with coordinate-wise operations and with the
A-valued inner product 〈 · , · 〉H + 〈 · , · 〉K.

In the special case of A being the field of complex numbers C the defini-
tion above reproduces the definition of Hilbert spaces. However, by no means all
theorems of Hilbert space theory can be simply generalized to the situation of
Hilbert C∗-modules. To give an instructive example consider the C∗-algebra A of
all bounded linear operators B(H) on a separable Hilbert space H = l2 together
with its two-sided norm-closed ideal I = K(H) of all compact operators on H.
The C∗-algebra A equipped with the A-valued inner product 〈 · , · 〉 defined by the
formula 〈a, b〉A = ab∗ becomes a Hilbert A-module over itself. The restriction of
this A-valued inner product to the ideal I turns I into a Hilbert A-module, too.
So we can form the new Hilbert A-module H = A ⊕ I as defined in the previous
paragraph. Let us consider some properties of H.

First of all, the analogue of the Riesz representation theorem for bounded
(A-)linear mappings r : H → A is not valid for H. For example, the mapping
r((a, i)) = a + i, a ∈ A, i ∈ I, cannot be realized by applying the A-valued inner
product to H with one fixed entry of H in its second place since the necessary
entry (1A, 1A) does not belong to H. Secondly, the bounded A-linear operator
T on H defined by the rule T : (a, i) → (i, 0A), a ∈ A, i ∈ I, does not have
an adjoint operator T ∗ in the usual sense since the image of the formally defined
adjoint operator T ∗ is not completely contained in H. Furthermore, the Hilbert
A-submodule I of the Hilbert A-module A is not a direct summand, neither an
orthogonal nor a topological one. Considering the Hilbert A-submodule K ⊆
H defined as the set K = {(i, i) : i ∈ I} equipped with operations and an A-
valued inner product induced from H, we obtain the coincidence of K with its
biorthogonal complement inside H. However, even in this situation K is not an
orthogonal summand of H, but only a topological summand with complement
{(a, 0A) : a ∈ A}.

Hence the reader should be aware that every formally generalized formulation
of Hilbert space theorems has to be checked for any larger class of Hilbert C∗-
modules carefully and in each case separately. To provide a collection of facts
from Hilbert C∗-module theory used in forthcoming sections, the remaining part
of the present section is devoted to a short guide to parts of the theory.

Let J be a countable set of indices. If we need a (partial) ordering on J
we may choose to identify J with the set of integers N or with other countable,
partially ordered sets. A subset {xj : j ∈ J} of a Hilbert A-module {H, 〈 · , · 〉} is a
set of generators of H (as a Banach A-module) if the A-linear hull of {xj : j ∈ J}
is norm-dense in H. The subset {xj : j ∈ J} is orthogonal if 〈xi, xj〉 = 0 for all
i, j ∈ J whenever i 6= j. A set of generators {xj : j ∈ J} of H is a Hilbert basis of
H if
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(i) A-linear combinations
∑
j∈S

ajxj with coefficients {aj} in A and S ⊆ J are

equal to zero if and only if in particular every summand ajxj equals zero for j ∈ S,
and

(ii) ‖xj‖ = 1 for every j ∈ J.
This definition is consistent since every element of a C∗-algebra A possesses a

right and a left carrier projection in its bidual Banach space A∗∗, a von Neumann
algebra, and all the structural elements on Hilbert A-modules can be canonically
extended to the setting of Hilbert A∗∗-modules, see the appendix and [48], [20] for
details.

A subset {xj : j ∈ J} of H is said to be a generalized generating set of the
Hilbert A-module {H, 〈 · , · 〉} if the A-linear hull of {xj : j ∈ J} (i.e. the set of all
finite A-linear combinations of elements of this set) is dense with respect to the
topology induced by the semi-norms {|f(〈 · , · 〉)|1/2 : f ∈ A∗} in norm-bounded
subsets of H. A generalized generating set is a generalized Hilbert basis if its
elements fulfil conditions (i) and (ii) of the Hilbert basis definition. The choice of
the topology is motivated by its role in the characterization of self-dual Hilbert
C∗-modules (i.e. Hilbert C∗-modules H for which the Banach A-module H′ of all
bounded A-linear maps r : H → A coincides with H; [26], Theorem 6.4) and by
the role of the weak* topology for the characterization of Hilbert W ∗-modules
and their special properties (cf. [48], [20] and the appendix). In general, we have
to be very cautious with the use of a C∗-theoretical analogue of the concept of
linear independence for C∗-modules since subsets of C∗-algebras A may contain
zero-divisors.

We are especially interested in finitely and countably generated Hilbert C∗-
modules over unital C∗-algebras A. A Hilbert A-module {H, 〈 · , · 〉} is (alge-
braically) finitely generated if there exists a finite set {x1, . . . , xn} of elements
of H such that every element x ∈ H can be expressed as an A-linear combination

x =
n∑

j=1

ajxj , aj ∈ A. Note that topologically finitely generated Hilbert C∗-modules

form a larger class than algebraically finitely generated Hilbert C∗-modules, cf. Ex-
ample 2.4. We classify the non-algebraic topological case as belonging to the
countably generated case described below.

Algebraically finitely generated Hilbert A-modules over unital C∗-algebras
A are precisely the finitely generated projective A-modules in a pure algebraic
sense, cf. [58], Corollary 15.4.8. Therefore, any finitely generated Hilbert A-
module can be represented as an orthogonal summand of some finitely generated
free A-module AN = A(1) ⊕ · · · ⊕ A(N) consisting of all N -tuples with entries
from A, equipped with coordinate-wise operations and the A-valued inner product

〈(a1, . . . , aN ), (b1, . . . , bN )〉 =
N∑

j=1

ajb
∗
j . The finitely generated free A-modules AN

can be alternatively represented as the algebraic tensor product of the C∗-algebra
A by the Hilbert space CN .

Finitely generated Hilbert C∗-modules have analogous properties to Hilbert
spaces in many ways. For example, they are self-dual, any bounded C∗-linear
operator between two of them has an adjoint operator, and if they appear as a
Banach A-submodule of another Hilbert A-module we can always separate them
as an orthogonal summand therein.



280 Michael Frank and David R. Larson

The second and more delicate class of interest is the set of countably gen-
erated Hilbert C∗-modules over unital C∗-algebras A. A Hilbert A-module is
countably generated if there exists a countable set of generators. By G.G. Kas-
parov’s Stabilization Theorem ([40], Theorem 1) any countably generated Hilbert
A-module {H, 〈 · , · 〉} over a (σ-)unital C∗-algebra A can be represented as an
orthogonal summand of the standard Hilbert A-module l2(A) defined by

(1.1) l2(A)=
{
{aj : j ∈ N} :

∑
j

aja
∗
j converges in ‖·‖A

}
, 〈{aj}, {bj}〉=

∑
j

ajb
∗
j ,

such that its orthogonal complement is isomorphic to l2(A) again (in short: l2(A) ∼=
H ⊕ l2(A)). Often there also exist different more complicated embeddings of H
into l2(A).

As a matter of fact countably generated Hilbert C∗-modules still possess the
great advantage that they are unitarily isomorphic as Hilbert A-modules if and
only if they are isometrically isomorphic as Banach A-modules, if and only if they
are simply bicontinuously isomorphic as Banach A-modules ([26], Theorem 4.1).
Hence we can omit the indication of what kind of A-valued inner product on H will
be considered because any two A-valued inner products on H inducing equivalent
norms to the given one are automatically unitarily isomorphic.

Countably generated Hilbert A-modules H are self-dual in only a few cases.
A large class consists of (countably generated) Hilbert A-modules over finite-
dimensional C∗-algebras A (i.e. matrix algebras). However, l2(A) is self-dual if
and only if A is finite-dimensional ([20]), so further examples depend strongly on
the special structure of the module under consideration. In general, the A-dual
Banach A-module l2(A)′ of l2(A) can be identified with the set

l2(A)′ =
{
{aj : j ∈ N} : sup

N∈N

∥∥∥∥ N∑
j=1

aja
∗
j

∥∥∥∥
A

< ∞
}

.

Every Hilbert C∗-module possesses a standard isometric embedding into its C∗-
dual Banach A-module via the A-valued inner product 〈 · , · 〉 defined on it by
varying the second argument of 〈 · , · 〉 over all module elements. The A-valued
inner product on l2(A) can be continued to an A-valued inner product on l2(A)′
if and only if A is a monotone sequentially complete C∗-algebra (e.g. W ∗-algebra,
monotone complete C∗-algebra and little else). So, for general considerations we
have to accept that H 6≡ H′ is the standard situation.

As a consequence of the lack of a general analogue of Riesz’s theorem for
bounded module A-functionals on countably generated Hilbert A-modules, non-
adjointable operators on l2(A) may exist, and they exist in fact for every unital,
infinite-dimensional C∗-algebra A, cf. [20], Theorem 4.3 and [26], Corollary 5.6,
Theorem 6.6. Furthermore, Banach C∗-submodules can be either orthogonal sum-
mands, or direct summands in only a topological way, or they may even lack the
direct summand property in any sense, cf. [26] Proposition 5.3. There are some
further surprising situations in Hilbert C∗-module theory which cannot happen in
Hilbert space theory. Due to their minor importance for our considerations we re-
fer the interested reader to the standard reference sources on Hilbert C∗-modules
[48], [52], [40], [37], [43], [58], [50], [4], [23].
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If we consider finitely generated Hilbert C∗-modules we usually do not have
any concept of a dimension since generating sets of elements can be generating
and irreducible at the same time, yet may nevertheless contain different numbers
of elements.

Example 1.1. Let A be the W ∗-algebra of all bounded linear operators on
the separable Hilbert space l2. Since the direct orthogonal sum of two copies of
l2 is unitarily isomorphic to l2 itself, the projections p1, p2 to them are similar to
the identity operator. Denote by u1, u2 the isometries realizing this similarity, i.e.
uiu

∗
i = 1A, u∗i ui = pi for i = 1, 2. We claim that the Hilbert A-modules H1 = A

and H2 = A2 are canonically isomorphic.
Indeed, the mapping T : A → A2, T (a) = (au∗1, au∗2) (where T−1(c, d) =

cu1 + du2) with a, c, d ∈ A realize this unitary isomorphism. Consequently, H1

possesses two A-linearly independent sets of generators {1A} and {u1, u2} with
a different number of elements. Moreover, the “magic” formula ([31], Corollary
1.2 (iii))

∑
〈xj , xj〉 = dim(H) for frames {xj} in Hilbert spaces H no longer works:

1A · 1∗A = 1A and u1u
∗
1 + u2u

∗
2 = 2 · 1A.

In fact, for this C∗-algebra A the Hilbert A-module A is unitarily isomorphic
to AN for every N ∈ N, N > 0, and the sum realizes the values N · 1A for
appropriate bases consisting of partial isometries.

What seems bad from the viewpoint of dimension theory of Hilbert spaces
sounds good from the point of view of frames. Normalized tight frames of finitely
generated Hilbert spaces have a number of elements that is greater than or equal
to the dimension of the Hilbert space under consideration, cf. [31], Example A1.
The number of elements of a frame has never been an invariant of the Hilbert
space. Therefore, the phenomenon fits into the already known picture quite well.
What is more, concepts like equivalence or similarity always compare frames with
the same number of elements, i.e. are already restrictive in Hilbert space theory.

To conclude our introductory remarks about Hilbert C∗-modules we want
to fix two further denotations. The set of all bounded A-linear operators on H
is denoted by EndA(H), whereas the subset of all adjointable bounded A-linear
operators is denoted by End∗A(H).

2. BASIC DEFINITIONS

The theory presented in this section is built up from basic principles of functional
analysis. We adopt the geometric dilation point of view of Deguang Han and David
R. Larson in [31]. To circumvent uncountable sets we restrict ourself to countable
frames. Although uncountable frames cannot appear in finite-dimensional Hilbert
spaces (see Proposition 4.8) or in separable Hilbert spaces (because of spectral the-
ory), they may arise for e.g. Hilbert C(X)-modules since the underlying compact
Hausdorff space X may be very complicated.
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Definition 2.1. Let A be a unital C∗-algebra and J be a finite or countable
index subset of N. A sequence {xj : j ∈ J} of elements in a Hilbert A-module H
is said to be a frame if there are real constants C,D > 0 such that

(2.1) C · 〈x, x〉 6
∞∑

j=1

〈x, xj〉〈xj , x〉 6 D · 〈x, x〉

for every x ∈ H. The optimal constants (i.e. maximal for C and minimal for D) are
called frame bounds. The frame {xj : j ∈ J} is said to be a tight frame if C = D,
and said to be normalized if C = D = 1. We consider standard (normalized tight)
frames in the main for which the sum in the middle of the inequality (2.1) always
converges in norm.

A sequence {xj : j ∈ J} is said to be a (generalized) Riesz basis if {xj : j ∈ J}
is a frame and a generalized generating set with one additional property: A-linear
combinations

∑
j∈S

ajxj with coefficients {aj : j ∈ S} ∈ A and S ∈ J are equal to

zero if and only if in particular every summand ajxj equals zero, j ∈ S. We call
a sequence {xj : j ∈ J} in H a standard Riesz basis for H if {xj : j ∈ J} is a
frame and a generating set with the above mentioned uniqueness property for the
representation of the zero element. An inner summand of a standard Riesz basis
of a Hilbert A-module L is a sequence {xj : j ∈ J} in a Hilbert A-module H for
which there exists a second sequence {yj : j ∈ J} in another Hilbert A-module K
such that L ∼= H⊕K and the sequence consisting of the pairwise orthogonal sums
{xj ⊕ yj : j ∈ J} in the Hilbert A-module H ⊕ K is the original standard Riesz
basis of L.

Since the set of all positive elements of a C∗-algebra has the structure of a
cone, the property of a sequence being a frame does not depend on the sequential
order of its elements. Consequently, we can replace the ordered index set J ⊆ N
by any countable index set J without loss of generality. We do this for further
purposes.

In Hilbert space theory a Riesz basis is sometimes defined to be a basis arising
as the image of an orthonormal basis by an invertible linear operator. Since the
concept of orthonormality cannot be transfered one-to-one to the theory of Hilbert
C∗-modules, the suitable generalization of this statement needs to clarify this. In
particular, the more complicated inner structure of C∗-algebras A in comparison
to the field of complex numbers C has to be taken into account. We will formulate
an analogous result as Corollary 5.7 below. The other way around standard Riesz
bases can be characterized as frames {xi : i ∈ J} such that the A-module generated
by one single element xj of the frame always has only a trivial intersection with
the norm-closed A-linear span of the other elements {xi : i 6= j}.

The definition above has some simple consequences. A set {xj : j ∈ J} is a
normalized tight frame if and only if the equality

(2.2) 〈x, x〉 =
∑
j∈J
〈x, xj〉〈xj , x〉

holds for every x ∈ H. Note that this sum can fail to converge uniformly in A,
although the sum always converges in A with respect to the weak topology induced
by the dual space A∗ of A (cf. Example 3.3 below).
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Furthermore, the norms of the elements of a frame are always uniformly
bounded by the square root of the upper frame bound D. To appreciate this
consider the chain of inequalities

〈xk, xk〉2 6
∑
j∈J
〈xk, xj〉〈xj , xk〉 6 D · 〈xk, xk〉

that is valid for every k ∈ J. Taking the norms on both sides the inequality is
preserved.

Proposition 2.2. Let A be a C∗-algebra and H be a finitely or countably
generated Hilbert A-module.

(i) If an orthogonal Hilbert basis {xj : j ∈ J} of H is a standard normalized
tight frame then the values {〈xj , xj〉 : j ∈ J} are all non-zero projections.

(ii) Conversely, every standard normalized tight frame {xj : J ∈ J} of H
for which the values {〈xj , xj〉 : j ∈ J} are non-zero projections is an orthogonal
Hilbert basis of H.

In general, the inequality 〈xj , xj〉 6 1A holds for every element xj of nor-
malized tight frames {xj : J ∈ J} of H.

Proof. Fix an orthogonal Hilbert basis {xj : j ∈ J} of H. Consider norm-
convergent sums x =

∑
j

ajxj ∈ H for suitably selected sequences {aj : j ∈ J} ∈ A.

If the Hilbert basis of H is a normalized tight frame then the equality∑
j∈J

aj〈xj , xj〉a∗j =
〈 ∑

j∈J
ajxj ,

∑
k∈J

akxk

〉
= 〈x, x〉

=
∑
j∈J
〈x, xj〉〈xj , x〉 =

∑
j∈J

〈 ∑
k∈J

akxk, xj

〉〈
xj ,

∑
l∈J

alxl

〉
=

∑
j∈J
〈ajxj , xj〉〈xj , ajxj〉 =

∑
j∈J

aj〈xj , xj〉2a∗j

is valid for every admissible choice of the coefficients {aj : j ∈ J} ∈ A. In
particular, one admissible selection is ai = 1A and aj = 0A for each j 6= i, i ∈ J
fixed. For this setting we obtain 0 6= 〈xi, xi〉 = 〈xi, xi〉2 since xi 6= 0 by supposition.

The converse conclusion is also a simple calculation. If {xj : j ∈ J} is a
standard normalized tight frame, then (2.2) implies

0 6
∑
j 6=i

〈xi, xj〉〈xj , xi〉 = 〈xi, xi〉 − 〈xi, xi〉2.

Therefore, 〈xj , xj〉 6 1A for every j ∈ J by spectral theory. Now, if some element
xi 6= 0 happens to admit a projection as the inner product value 〈xi, xi〉, then
0 =

∑
j 6=i

〈xj , xi〉〈xi, xj〉, i.e. 〈xj , xi〉 for any j 6= i by the positivity of the summands.

In other words, the element xi must be orthogonal to all other elements xj , j 6= i,
of that normalized tight frame. Consider a decomposition of the zero element in
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the special form 0 =
∑
j

ajxj for suitably selected coefficients {aj : j ∈ J} ⊂ A.

Since

0 =
〈 ∑

j∈J
ajxj ,

∑
k∈J

akxk

〉
=

∑
j∈J
〈ajxj , ajxj〉

and since the sum on the right side is a sum of positive summands we arrive at
ajxj = 0 for every j ∈ J. Thus, a standard normalized tight frame {xj : j ∈ J}
for which the values {〈xj , xj〉 : j ∈ J} are non-zero projections is an orthogonal
Hilbert basis of H.

As in the Hilbert space situation, we would like to establish that standard
Riesz bases that are normalized tight frames have to be orthogonal Hilbert bases
with projections as the values of the inner products with equal basis element
entries. This requires some more work than expected and has to be postponed
until we derive the reconstruction formula, cf. Corollary 4.2.

Lemma 2.3. Let A be a unital C∗-algebra. For some element x of a Hilbert
C∗-module {H, 〈 · , · 〉} the elementary “compact” operator θx,x mapping y ∈ H to
〈y, x〉x is a projection if and only if x = 〈x, x〉x, if and only if 〈x, x〉 is a projection.
In this case the elements of Ax ⊆ H can be identified with the elements of the ideal
A〈x, x〉 ⊆ A. If for two orthogonal elements x, y ∈ H with x = 〈x, x〉x, y = 〈y, y〉y
the equality 〈x, x〉 = 〈y, y〉 holds additionally, then the projections θx,x and θy,y

are similar in the sense of Murray-von Neumann, where the connecting partial
isometry is θx,y.

As this statement can be verified by elementary calculations, a proof is omit-
ted.

Since there exist unital C∗-algebras A such that the monoid of all finitely
generated projective A-modules with respect to orthogonal sums does not possess
the cancellation property, in some situations orthogonal Hilbert or Riesz bases
may not exist. Examples can be found in sources about operator K-theory of
C∗-algebras, cf. [58].

Example 2.4. If A is a unital C∗-algebra and H is a countably generated
Hilbert A-module, then there may exist orthogonal Hilbert bases {xj} ofH without
the property 〈xi, xi〉 = 〈xi, xi〉2 for j ∈ N. By Proposition 2.2, these Hilbert bases
are not frames. The roots of the problem behind this phenomenon lie in the
difference between algebraically and topologically finite generatedness of Hilbert
C∗-modules.

For example, set A = C([0, 1]) to be the C∗-algebra of all continuous functions
on the unit interval and consider the set and Hilbert A-module H = C0((0, 1]),
i.e. the C∗-subalgebra of all functions on [0, 1] vanishing at zero. The function
f(t) = t for t ∈ [0, 1] is topologically a single generator of C0((0, 1]) by the Stone-
Weierstrass theorem. The Hilbert A-module H is generated by it topologically.
However, the inner product value of this element equals f2 which is not a projection
and the spectrum of which is not deleted away from zero. Therefore, the lower
frame bound has to be zero.

Looking for another orthogonal standard Riesz basis {fj : j ∈ J} of H we can
only consider bases with two or more elements. However, fi ⊥ fj always means
that there exists a point t0 ∈ (0, 1] such that fi ≡ 0 for small t 6 t0 and fj ≡ 0
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for small t > t0. Taking into account the orthogonality of these elements {fj},
every function in the norm-closed A-linear hull of them has to be zero at t0, which
contradicts our assumptions. The only possible conclusion is the non-existence of
any orthogonal standard Riesz basis of H. We will see at Corollary 5.7 that the
existence of a standard Riesz basis ofH would imply the existence of an orthogonal
Hilbert basis for it that is also a (standard) normalized tight frame at the same
time. Therefore, H does not even possess any standard Riesz basis.

Nevertheless, H = C0((0, 1]) has standard normalized tight frames as a
Hilbert C([0, 1])-module, see Example 3.4 below.

In this place we can state the following about standard Riesz bases of Hilbert
C∗-modules (cf. Corollary 5.7):

Proposition 2.5. Let A be a unital C∗-algebra and H be a countably or
finitely generated Hilbert A-module. If H possesses an orthogonal standard Riesz
basis then H possesses an orthogonal standard Riesz basis {xj : j ∈ J} with the
property 〈xj , xj〉 = 〈xj , xj〉2 for any j ∈ J, i.e. an orthogonal Hilbert basis that is
a standard normalized tight frame.

Proof. Suppose, H possesses an orthogonal standard Riesz basis {xj}. This
means there are two constants 0 < C, D such that the inequality C · 〈xj , xj〉 6
〈xj , xj〉2 6 D · 〈xj , xj〉 is fulfilled for every j ∈ J. Obviously, D = 1 since {xj} is
supposed to be a Hilbert basis and, therefore, ‖xj‖ = 1 by one of the properties of
Hilbert bases. Considering the lower estimate with the constant C, spectral theory
forces the spectra of the elements {〈xj , xj〉} to be uniformly bounded away from
zero by this constant C. Consequently, there are continuous positive functions
{fj} on the spectra of the elements {〈xj , xj〉} such that fj〈xj , xj〉 = (fj〈xj , xj〉)2
and the restriction of these functions to the bounded away from zero part of the
spectra of {〈xj , xj〉} equals one. The new frame {f1/2

i xj} is normalized tight and
orthogonal. Moreover, it is standard since the spectra of the inner product values
were uniformly bounded away from zero.

On the other hand, a frame may contain the zero element arbitrarily often.
Moreover, frames {xj : j ∈ J} may fail to meet the most important property of a
Hilbert basis of H even if they solely consist of non-zero elements. As is known
from examples of frames of two-dimensional Hilbert spacesH they may contain too
many elements to be a Hilbert basis of H since the uniqueness of decomposition
of elements x ∈ H as x =

∑
j

ajxj for elements {aj : j ∈ J} ⊂ A may not be

guaranteed any longer ([31], Example A1). In particular the representation of the
zero element can be realized as a sum of non-zero summands.

Definition 2.6. Frames {xj : j ∈ J} and {yj : j ∈ J} of Hilbert A-modules
H and K, respectively, are unitarily equivalent if there is an A-linear unitary op-
erator U : H → K such that U(xj) = yj for every j ∈ J. They are similar
(or isomorphic) if the operator U is merely bounded, adjointable, A-linear and
invertible.

We want to note that isomorphisms of frames are in general not invariant
under permutations, especially if the frames contain the zero element. Moreover,
frames of different size in finitely generated Hilbert C∗-modules cannot be related
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by these concepts. To achieve sufficiently strong statements we will not go into
further modifications of similarity and isomorphism concepts for frames.

3. EXAMPLES OF FRAMES

Example 3.1. Every sequence {xj : j ∈ J} of a finitely or countably gen-
erated Hilbert A-module for which every element x ∈ H can be represented as
x =

∑
j

〈x, xj〉xj (in a probably weaker sense of series convergence than norm-

convergence) is a normalized tight frame in H. The decomposition of elements of
H is norm-convergent if and only if {xj : j ∈ J} is a standard normalized tight
frame. Indeed,

〈x, x〉 = w-lim
n→∞

〈 n∑
k=1

〈x, xk〉xk, x

〉
= w-lim

n→∞

n∑
k=1

〈x, xk〉〈xk, x〉.

Example 3.2. Let B be a unital C∗-algebra and E : B → A ⊆ B be a
conditional expectation on B. By Y. Watatani E is said to be algebraically of
finite index if there exists a finite family {(u1, v1), . . . , (un, vn)} ⊆ B × B that is
called a quasi-basis such that

x =
∑

i

uiE(vix) =
∑

i

E(xui)vi

for every x ∈ B, cf. [57], Definition 1.2.2. These expressions can be translated as
decompositions of B as a right/left finitely generated projective A-module, and it
can be seen to be derived from an A-valued inner product on B setting 〈 · , · 〉 =
E(〈 · , · 〉B). We will see in Section 6 that the sets {u1, . . . , un} and {v1, . . . , vn} are
dual to one other frames of B as a finitely generated Hilbert A-module. Moreover,
the setting vi = u∗i is the choice for the canonical dual of a normalized tight
frame {u1, . . . , un}, and such a choice can be made in every situation (see [57],
Lemma 2.1.6). The concept survives an extension to faithful bounded A-bimodule
maps on B ([57], Definition 1.11.2). For explicit examples we refer to [57], [38],
[41], [49], [24].

Example 3.3. Let H be an infinite-dimensional Hilbert space and {pα :
α ∈ I} be a maximal set of pairwise orthogonal minimal orthogonal projections
on H. Consider the C∗-algebra A = B(H) of all bounded linear operators on H
and the Hilbert A-modules H1 = A and H2 = K(H), where the latter consists of
all compact operators on H. The set {pα} is a normalized tight frame for both H1

and H2, albeit non-standard one in the first case. Moreover, for this tight frame
we obtain 〈pj , pj〉 = 〈pj , pj〉2 and x =

∑
j

〈x, pj〉pj in the sense of w∗-convergence

in A. The frame is not a standard Riesz basis for H1 since it generates only
H2 by convergence in norm. Note that the frame can contain uncountably many
elements.

The structural obstacle behind this phenomenon is order convergence.
Infinite-dimensional C∗-algebras A can possess sequences of pairwise orthogonal
positive elements, the sum of which converges in order inside A, but not in norm.
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They may cause this kind of non-standard normalized tight frames. Since the
structure of the basic C∗-algebra A may be very complicated containing mono-
tone complete and non-complete blocks, we have to try to circumvent this kind
of situation in our first attempt to generalize the theory. Otherwise, Theorem 4.1
can only be formulated for self-dual Hilbert A-modules over monotone complete
C∗-algebras A since only for this class of Hilbert C∗-modules can the A-valued in-
ner product be canonically continued to an A-valued inner product on the A-dual
Banach A-module of a given Hilbert A-module. The disadvantage consists in the
small number of examples covered by this setting, most of them being far from
typical. The other way out of the situation would be a switch to general Banach
A-module theory without any inner product structures. This is certainly possible
but technically highly complicated, so we will restrict ourselves to standard frames
for the time being.

Example 3.4. Let A be the C∗-algebra of all continuous functions on the
unit interval. LetH be the set of all continuous functions on [0, 1] vanishing at zero.
The set H is a countably generated Hilbert A-module by the Stone-Weierstrass
theorem (take for example the functions {t, t2, t3, . . .} as a set of generators). The
A-valued inner product on H is defined by the formula 〈f, g〉 = fg∗. As already
discussed, this Hilbert A-module does not contain any orthogonal Riesz basis.

However, H possesses standard normalized tight frames. The following set
of elements of H forms one:

xj(t) =


√

j(j + 1)t− j t ∈ [(j + 1)−1, j−1],√
−j(j − 1)t + j t ∈ [j−1, (j − 1)−1],

0 elsewhere,

for j > 1;

x1(t) =
{√

2t− 1 t ∈ [1/2, 1] ,
0 t ∈ [0, 1/2].

It is not a frame for the (generated by a single element) Hilbert A-module A itself
since the constant C of inequality (3) has to be zero for this extended Hilbert
A-module (look at t = 0 for functions f with f(0) 6= 0). Adding a further element
x0 = f with f(0) 6= 0 to the sequence under consideration we obtain a frame
for the Hilbert A-module A, although not a tight one since maxC = |f(0)|2 and
minD = 1 + max |f(t)|2.

Example 3.5. After these unusual examples we want to indicate good classes
of frames for every finitely and countably generated Hilbert A-module H over a
unital C∗-algebra A. In fact, there is an abundance of standard normalized tight
frames in each finitely or countably generated Hilbert A-module: recall that the
standard Hilbert A-modules AN , N ∈ N, and l2(A) have unitarily isomorphic rep-
resentations as (normed linear space) tensor products of the C∗-algebra A and the
Hilbert spaces CN , N ∈ N, and l2(C), respectively. Simply set the A-valued inner
product to

〈a⊗ h, b⊗ g〉 = ab∗〈h, g〉H
for a, b ∈ A and g, h from the appropriate Hilbert space H. In fact, the algebraic
tensor product A � l2 needs completion with respect to the Hilbert norm arising
to establish the unitary isomorphism.
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Using this construction, every frame {xj} of the Hilbert space H induces a
corresponding frame {1A⊗xj} in AN , N ∈ N, or l2(A). The properties to be tight
or (standard) normalized tight transfer. Non-standard normalized tight frames in
Hilbert C∗-modules cannot arise this way.

To find frames in arbitrary finitely or countably generated Hilbert C∗-modules
over unital C∗-algebras A, recall that every such Hilbert A-module H is an or-
thogonal summand of AN , N ∈ N, or l2(A), respectively (see section one). Hence
there exists an orthogonal projection P of AN or l2(A) onto this embedding of H.
The next step is to show that any orthogonal projection of an orthonormal Riesz
basis of AN or l2(A) is a standard normalized frame of the range H of P .

Denote the standard Riesz basis of AN or l2(A) by {ej} and the elements of
the resulting sequence {P (ej)} by xj , j ∈ N. For every x ∈ H we have

〈x, x〉 =
∑

j

〈x, ej〉〈ej , x〉, x =
∑

j

〈x, ej〉ej .

Applying the projection P to the decomposition of x with respect to the or-
thonormal basis {ej} we obtain x =

∑
j

〈x, xj〉xj since x = P (x), xj = P (ej)

and 〈x, ej〉 = 〈x, xj〉 for j ∈ N. By Example 3.1 the sequence {xj} becomes a
standard normalized tight frame of H.

This formula x =
∑
j

〈x, xj〉xj is called the reconstruction formula of a frame

in Hilbert space theory. The remaining point is to show that every standard
normalized tight frame of finitely and countably generated Hilbert A-modules
over unital C∗-algebras A arises in this way, see Theorem 4.1 below (and even
non-standard ones, see section eight).

4. FRAME TRANSFORM AND RECONSTRUCTION FORMULA

This section is devoted to the key result that allows all the further developments
we could work out. We found that for unital C∗-algebras A the frame transform
operator related to a standard (normalized tight) frame in a finitely or count-
ably generated Hilbert A-module is adjointable in every situation, and that the
reconstruction formula holds. Moreover, the image of the frame transform is an
orthogonal summand of l2(A). The proof is in crucial points different from that
one for Hilbert spaces since these properties of the frame transform are not guar-
anteed by general operator and submodule theory. Quite the opposite, the results
are rather unexpected in their generality to hold and have to be established by
non-traditional arguments. For the Hilbert space situation we refer to [31], Propo-
sition 1.1 and [33], Theorem 2.1, 2.2.

Theorem 4.1. (frame transform and reconstruction formula) Let A be a
unital C∗-algebra, {H, 〈 · , · 〉} be a finitely or countably generated Hilbert A-module.
Suppose that {xn : n ∈ J} is a standard normalized tight frame for H. Then the
corresponding frame transform θ : H → l2(A) defined by θ(x) = {〈x, xn〉}n∈J
for x ∈ H possesses an adjoint operator and realizes an isometric embedding of
H onto an orthogonal summand of l2(A). The adjoint operator θ∗ is surjective
and fulfills θ∗(en) = xn for every n ∈ J. Moreover, the corresponding orthogonal
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projection P : l2(A) → θ(H) fulfills P (en) ≡ θ(xn) for the standard orthonormal
basis {en = (0A, . . . , 0A, 1A,(n), 0A, . . .) : n ∈ J} of l2(A). For every x ∈ H the
decomposition x =

∑
i

〈x, xi〉xi is valid, where the sum converges in norm.

The frame {xn} is a set of module generators of the Hilbert A-module H. If
the frame is not a Riesz basis then the frame elements do not form an A-linearly
independent set of elements. The operator equality idH =

∑
i

θxi,xi
is fulfilled in

the sense of norm-convergence of the series
∑
i

θxi,xi
(x) to x ∈ H.

Proof. Since the sequence {xj : j ∈ J} is a standard normalized tight frame
in H, the frame operator is correctly defined and the equality

〈θ(x), θ(x)〉l2 =
∑
j∈J
〈x, xj〉H〈xj , x〉H = 〈x, x〉H

holds for any x ∈ H. Moreover, the image of θ is closed because H is closed by
assumption. Thus, θ is an isometric A-linear embedding of H into l2(A) with
norm-closed image.

To calculate the values of the adjoint operator θ∗ of θ consider the equality

〈θ(x), ei〉l2(A) =
〈 ∑

k

〈x, xk〉Hek, ei

〉
l2(A)

=
∑

k

〈x, xk〉H〈ek, ei〉l2(A) = 〈x, xi〉H

which is satisfied for every x ∈ H, every i ∈ J. Consequently, θ∗ is at least defined
for the elements of the selected orthonormal Riesz basis {ej : j ∈ J} of l2(A) and
takes the values θ∗(ej) = xj for every j ∈ J. Since the operator θ∗ has to be
A-linear by definition we can extend this operator to the norm-dense subset of all
finite A-linear combinations of the elements of the selected basis of l2(A).

Furthermore, we are going to show that θ∗ is bounded. To see this, consider
the bounded A-linear mapping 〈θ(·), y〉 from l2(A) to A defined for any y ∈ l2(A).
The inequality

‖〈x, θ∗(y)〉H‖A = ‖〈θ(x), y〉l2(A)‖A 6 ‖θ‖ ‖x‖ ‖y‖

is valid for any y that is an element of the domain of θ∗ and for any x ∈ H by the
general Cauchy-Schwarz inequality for Hilbert C∗-modules. Taking the supremum
over the set {x ∈ H : ‖x‖ 6 1} of both the sides of the inequality we obtain

‖θ∗(y)‖H′ = ‖〈 · , θ∗(y)〉H‖ 6 ‖θ‖ ‖y‖

for any element y ∈ l2(A) which belongs to the dense in l2(A) domain of θ∗. Hence
the norm of θ∗ is bounded by the same constant as the norm of θ, and θ∗ can be
considered as a bounded A-linear map of H into H′.

Applying θ∗ to the dense in l2(A) subset of all finite A-linear combinations
of the elements {ej : j ∈ J} the corresponding range can be seen to be contained in
the standard copy of H inside H′. Hence, the entire image of θ∗ has to belong to
the norm-closed set H ↪→ H′. This shows the correctness of the definition and the
existence of θ∗ as an adjoint operator of θ. Finally, because θ is adjointable, injec-
tive and has a closed range the operator θ∗ is surjective, cf. [58], Theorem 15.3.8.

Since the operator θ is now shown to be adjointable, injective, bounded from
below and admitting a closed range, the Hilbert A-module l2(A) splits into the



290 Michael Frank and David R. Larson

orthogonal sum l2(A) = θ(H) ⊕ Ker(θ∗) by [58], Theorem 15.3.8. Denote the
resulting orthogonal projection of l2(A) onto θ(H) by P . We want to show that
P (ej) = θ(xj) for every j ∈ J. For every x ∈ H the following equality is valid:

(4.1) 〈θ(x), P (ej)〉θ(H)=〈P (θ(x)), ej〉l2=〈θ(x), ej〉l2=〈x, xj〉H=〈θ(x), θ(xj)〉θ(H).

In the third equality of the equation above, the fact was used that 〈θ(y), ej〉l2 =
〈y, xj〉H for every y ∈ H by the definition of θ. Since (P (ej)− θ(xj)) ∈ θ(H) and
x ∈ H is arbitrarily chosen, the identity P (ej) = θ(xj) follows for every j ∈ J.

Since θ(H) is generated by the set {θ(xj) : j ∈ J} and since θ is an isometry
the Hilbert A-moduleH is generated by the set {xj : j ∈ J} as a Banach A-module.
By [31], Example A1, a standard normalized tight frame in a finite-dimensional
Hilbert space H can contain more non-zero elements than the dimension of H.
Thus the zero element of H may admit a non-trivial decomposition 0 =

∑
j

ajxj

for some elements {aj : j ∈ J} ⊂ A in some situations.

Corollary 4.2. Let A be a unital C∗-algebra, {H, 〈 · , · 〉} be a finitely or
countably generated Hilbert A-module. Suppose that {xj : j ∈ J} is a standard
Riesz basis for H that is a normalized tight frame. Then {xj : j ∈ J} is an
orthogonal Hilbert basis with the additional property that 〈xj , xj〉 = 〈xj , xj〉2 for
any j ∈ J. The converse assertion holds too.

Proof. Since {xj : j ∈ J} is a normalized tight frame we obtain xj =∑
i

〈xj , xi〉xi for any j ∈ J by the reconstruction formula. The basis property

forces 〈xj , xi〉xi = 0 for any i 6= j and each fixed j. However, the right carrier
projection of 〈xj , xi〉 equals the carrier projection of xi for every i ∈ J if calculated
inside the bidual von Neumann algebra A∗∗. So 〈xj , xi〉 = 0 for any i 6= j. Propo-
sition 2.2 gives the second property of the Hilbert basis. The converse implication
is a simple calculation fixing an element x ∈ H and setting x =

∑
j

ajxj for some

elements {aj : j ∈ J} ⊂ A and the given orthonormal basis {xj : j ∈ J} of H:

〈x, x〉 =
〈 ∑

j∈J
ajxj ,

∑
k∈J

akxk

〉
=

∑
j∈J

aj〈xj , xj〉a∗j =
∑
j∈J

aj〈xj , xj〉2a∗j

=
∑
j∈J
〈ajxj , xj〉〈xj , ajxj〉 =

∑
j∈J

〈 ∑
k∈J

akxk, xj

〉〈
xj ,

∑
l∈J

alxl

〉
=

∑
j∈J
〈x, xj〉〈xj , x〉.

Note that we applied the supposed equality 〈xj , xj〉 = 〈xj , xj〉2, j ∈ J, as the third
transformation step. Since x ∈ H is arbitrarily selected, the special orthogonal
basis {xj : j ∈ J} turns out to be a normalized tight frame and hence, a Riesz
basis.

We have an easy proof of the uniqueness of the A-valued inner product with
respect to which a given frame is normalized tight, generalizing a fact known for
orthonormal Hilbert bases. Note that standard frames can be replaced by general
frames in Corollary 4.2 as additional investigations show in Section 8.
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Corollary 4.3. Let A be a unital C∗-algebra, H be a finitely or countably
generated Hilbert A-module, and {xj : j ∈ J} be a standard frame of H. Assume
that this frame is normalized tight with respect to two A-valued inner products
〈 · , · 〉1, 〈 · , · 〉2 on H that induce equivalent norms to the given one. Then 〈x, y〉1 =
〈x, y〉2 for any x, y ∈ H. In other words, the A-valued inner product with respect
to which a standard frame is normalized tight is unique.

Proof. By supposition and Theorem 4.1 we have the reconstruction formulae

(4.2) x =
∑
j∈J
〈x, xj〉1xj , y =

∑
j∈J
〈y, xj〉2xj

for any x, y ∈ H. Taking the A-valued inner product of x by y with respect to
〈 · , · 〉2 and the A-valued inner product of y by x with respect to 〈 · , · 〉1 simultane-
ously the right sides of (4.2) become adjoint to one another elements of A. Since
x, y are arbitrarily selected elements of H the coincidence of the inner products is
demonstrated.

Remarkably the frame transform of any standard frame preserves the crucial
operator properties known for frame transforms of Hilbert space theory.

Theorem 4.4. (Frame transform) Let A be a unital C∗-algebra, {H, 〈 · , · 〉}
be a finitely or countably generated Hilbert A-module. Suppose that {xj : j ∈ J} is
a standard frame for H. Then the corresponding frame transform θ : H → l2(A)
defined by θ(x) = {〈x, xj〉}j∈J, x ∈ H, possesses an adjoint operator and realizes an
embedding of H onto an orthogonal summand of l2(A). The formula θ∗(ej) = xj

holds for every j ∈ J.

Proof. The set {xj : j ∈ J} is supposed to be a standard frame for the Hilbert
A-module H. Refering to the definition of module frames we have the inequality

C · 〈x, x〉 6
∑
j∈J
〈x, xj〉〈xj , x〉 = 〈θ(x), θ(x)〉 6 D · 〈x, x〉

valid for every x ∈ H and two fixed numbers 0 < C,D. Hence the image of θ

inside l2(A) has to be closed since H is closed by assumption and the operator θ

is bounded from above and below.
The proof of the existence of an adjoint to θ operator θ∗ : l2(A) → H is

exactly the same as that given in the case of normalized tight frames, cf. proof
of Theorem 4.1. Also, the arguments for θ(H) being an orthogonal summand of
l2(A) can be repeated as given there.

For an extended reconstruction formula we refer to Theorem 6.1 below since
some more investigations are necessary to establish it.
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Corollary 4.5. (cf. [7], Proposition 2.8) If {xj : j ∈ J} is a standard
normalized tight frame in a Hilbert A-module H then {θ(xj) : j ∈ J} is the average
of two orthonormal Hilbert bases of the Hilbert A-module l2(A).

More precisely, let {ej : j ∈ J} be a fixed Riesz basis of H and at the same
time a standard normalized tight frame. Then θ(xj) = 1/2 · [(P (ej)+(1−P )(ej))+
(P (ej) − (1 − P )(ej))] for every j ∈ J and P : l2(A) → θ(H) the respective
orthogonal projection.

Since the short proof is straightforward we only mention that (2P − 1) is a
self-adjoint isometry forcing {(2P − 1)(ej) : j ∈ J} to be a Riesz basis of the same
kind as {ej : j ∈ J}.

Corollary 4.6. Let {xj : j ∈ J} be an orthogonal Hilbert basis of a finitely
or countably generated Hilbert A-module H with the property 〈xj , xj〉 = 〈xj , xj〉2.
For every partial isometry V ∈ End∗A(H) the sequence {V (xj) : j ∈ J} becomes a
standard normalized tight frame of V (H).

Proof. Since {xj : j ∈ J} is an orthogonal Hilbert basis of H with 〈xj , xj〉 =
〈xj , xj〉2, {xj : j ∈ J} has the property of a standard normalized tight frame.
Writing down this property for the special setting x = V ∗V (y) we obtain∑

n

〈V (y), V (ej)〉〈V (ej), V (y)〉=
∑

n

〈V ∗V (y), ej〉〈ej , V
∗V (y)〉=〈V ∗V (y), V ∗V (y)〉

=〈V ∗V (y), y〉 = 〈V (y), V (y)〉.

An interesting field of applications of frames are Hilbert-Schmidt operators
on finitely or countably generated Hilbert A-modules H over unital commutative
C∗-algebras A (cf. [16]). Since H contains a standard normalized tight frame
{xj : j ∈ J} by Kasparov’s theorem ([40], Theorem 1) and Corollary 4.6 we can
say the following: an adjointable bounded A-linear operator T on H is (weakly)
Hilbert-Schmidt if the sum

∑
j

〈T (xj), T (xj)〉 converges weakly. This definition is

justified by the following:

Proposition 4.7. Let A be a unital commutative C∗-algebra, H be a finitely
or countably generated Hilbert A-module, and {xj : j ∈ J} and {yj : j ∈ J}
be two standard normalized tight frames of H. Consider an adjointable bounded
A-linear operator T on H. If the sum

∑
j

〈T (xj), T (xj)〉 converges weakly then

the sum
∑
j

〈T (yj), T (yj)〉 also converges weakly and gives the same value in A∗∗.

Furthermore, if T is replaced by T ∗ then the value of this sum does not change.

Proof. We have only to check a chain of equalities in A∗∗ that is valid for
our standard normalized tight frames. For an arbitrary fixed standard normalized
tight frame {zk : k ∈ J} we have∑

j

〈T (xj), T (xj)〉=
∑

k

∑
j

〈T (xj), zk〉〈zk, T (xj)〉=
∑

k

∑
j

〈xj , T
∗(zk)〉〈T ∗(zk), xj〉

=
∑

j

∑
k

〈T ∗(zk), xj〉〈xj , T
∗(zk)〉=

∑
k

〈T ∗(zk), T ∗(zk)〉
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in case one of the sums at either ends converges weakly. Since we can repeat our
calculations for the other standard normalized tight frame {yj : j ∈ J} and since
we can choose zj = xj for all j ∈ J the statement of the proposition follows.

This proposition might be new even for Hilbert spaces and for the definition of
the Hilbert-Schmidt norm of Hilbert-Schmidt operators there. Unfortunately, the
commutativity of the C∗-algebra A cannot be omitted. Therefore for normalized
tight frames {yj : j ∈ J} in finite-dimensional Hilbert spaces H we have a “magic”
formula:

∑
j

〈yj , yj〉 = dim(H), without further requirements to the frame, cf. [31],

Corollary 1.2, (iii). Example 1.1 tells us that we cannot expect a full analogy of this
fact for finitely generated Hilbert C∗-modules over non-commutative C∗-algebras.
However, the formula does not survive in a weak sense either, for example giving
the same sum value for every frame with the same number of non-zero elements,
cf. Example 1.1 and a frame {1A ⊗

√
2
−1

, 1A ⊗
√

2
−1} for A = B(l2). However, if

the underlying C∗-algebra is commutative a similar “magic” formula can still be
obtained.

Proposition 4.8. (the “magic” formula) Let A = C(X) be a commutative
unital C∗-algebra, where X is the appropriate compact Hausdorff space. For any
finitely generated Hilbert A-module H and any standard normalized tight frame
{yj : j ∈ J} of H the (weakly converging) sum

∑
j

〈yj , yj〉 results in a continuous

function on X with constant non-negative integer values on closed-open subsets of
X. The limit does not depend on the choice of the normalized tight frame of H.

Proof. To understand the formula we have to use the categorical equivalence
between locally trivial vector bundles over X and finitely generated Hilbert C(X)-
modules known as Serre-Swan’s theorem ([54], [55]). Consider a normalized tight
frame {zj : j ∈ J} of H. For this normalized tight frame the sum exists as a weak
limit in A∗∗. Fixing a point x0 ∈ X and applying the Hilbert space formula to
the Hilbert space frame {zj(x0) : j ∈ J} we obtain

∑
j

〈zj(x0), zj(x0)〉 ∈ N, ([31],

Corollary 1.2 (iii)). Therefore, the sum is locally constant because the number
obtained is precisely the dimension of the fibre over x0 in the dual to H locally
trivial vector bundle over X, and the dimension of fibres is locally constant (cf.
[58], Section 13). Since closed-open subsets of X are compact we obtain the desired
properties of the resulting function on X in this particular case.

For an arbitrary standard normalized tight frame {yj : j ∈ J} for H we can
again fix a point x0 ∈ X. Comparing the sums

∑
j

〈zj(x0), zj(x0)〉 and∑
j

〈yj(x0), yj(x0)〉 we obtain their equality by [31], Corollary 1.2, (iii). Since

x0 ∈ X was arbitrarily chosen, the statement follows.
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5. COMPLEMENTARY FRAMES, UNITARY EQUIVALENCE AND SIMILARITY

In this section we consider geometrical dilation results for frames in Hilbert C∗-
modules. The central two concepts are: (i) the inner direct sum of frames with
respect to a suitable embedding of the original Hilbert C∗-module into a larger
one as an orthogonal summand and (ii) the existence of a complementary frame
in the orthogonal complement of this embedding. The description of the Hilbert
space results can be found in [31] as Corollary 1.3, Propositions 1.4–1.7 and 1.9.
A more detailed account of inner sum decompositions of module frames can be
found in [25].

Proposition 5.1. Let A be a unital C∗-algebra, H be a finitely (or count-
ably) generated Hilbert A-module and {xj : j ∈ J} be a standard normalized tight
frame in H. Then there exists another countably generated Hilbert A-module M
and a standard normalized tight frame {yj : j ∈ J} in M such that the sequence

{xj ⊕ yj : j ∈ J}
is an orthogonal Hilbert basis for the countably generated Hilbert A-module H⊕M
with the property 〈xj ⊕ yj , xj ⊕ yj〉 = 〈xj ⊕ yj , xj ⊕ yj〉2 for every j ∈ J. The
complement M can be selected in such a way that H ⊕M = l2(A) and hence,
1A = 〈xj ⊕ yj , xj ⊕ yj〉.

If H is finitely generated and the index set J is finite then M can be chosen
to be finitely generated, too, and H⊕M = AN for N = |J|.

If {xj : j ∈ J} is already an orthonormal basis then M = {0}, i.e. no addition
to the frame is needed. If J is finite and M is not finitely generated then 0H has
to be added to the frame {xj : j ∈ J} infinitely many times to make sense of the
statement.

Proof. By Theorem 4.1 there is a standard isometric embedding of H into
l2(A) induced by the frame transform θ. In the context of that embedding θ(H) is
an orthogonal summand of l2(A), and the A-valued inner products on H and on
θ(H) coincide. The corresponding projection P : l2(A) → θ(H) maps the standard
orthonormal Riesz basis {ej : j ∈ J} of l2(A) onto the frame {θ(xj) : j ∈ J}. Set
M = (I−P )(l2(A)) and consider yj = (I−P )(ej) for j ∈ J. These objects possess
the required properties.

If |J| is finite the frame transform θ can take its image in the standard Hilbert
A-submodule AN ⊂ l2(A) with N = |J|.

Proposition 5.2. Let A be a unital C∗-algebra, H be a countably generated
Hilbert A-module and {xj : j ∈ J} be a standard normalized tight frame for H,
where the index set J is countable or finite. Suppose there exist two countably
generated Hilbert A-modules M,N and two normalized tight frames {yj : j ∈ J},
{zj : j ∈ J} for them, respectively, such that

{xj ⊕ yj : j ∈ J}, {xj ⊕ zj : j ∈ J}
are orthogonal Hilbert bases for the countably generated Hilbert A-modules H⊕M,
H⊕N , respectively, where we have the value properties 〈xj ⊕ yj , xj ⊕ yj〉 = 〈xj ⊕
yj , xj ⊕ yj〉2 and 〈xj ⊕ zj , xj ⊕ zj〉 = 〈xj ⊕ zj , xj ⊕ zj〉2. If 〈yj , yj〉M = 〈zj , zj〉N
for every j ∈ J, then there exists a unitary transformation U : H⊕M → H⊕N
mapping M onto N and satisfying U(yj) = zj for every j ∈ J.
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The additional remarks of Proposition 5.1 apply correspondingly in the situ-
ation of finitely generated Hilbert A-modules.

Proof. Set ej = xj ⊕ yj and fj = xj ⊕ zj and define U ′(ej) = fj . By
assumption the A-valued inner products are preserved by U ′, and U ′ extends to
a unitary map between H⊕M and H⊕N by A-linearity. Fix x ∈ H. Then the
equality

〈x, xj〉H = 〈x⊕ 0M, ej〉 = 〈x⊕ 0N , fj〉, j ∈ J,

is valid. So x ⊕ 0M =
∑
j

〈x ⊕ 0M, ej〉ej =
∑
j

〈x, xj〉ej and x ⊕ 0N =
∑
j

〈x, xj〉fj

for j ∈ J. Applying U ′ the equality U ′(x ⊕ 0M) = x ⊕ 0N yields. Consequently,
U ′ splits into the direct sum of the identity mapping on the first component and
of a unitary operator U : M→N on the second component.

Theorem 5.3. Let {xj : j ∈ J} be a standard frame of a finitely or countably
generated Hilbert A-module H. Then {xj : j ∈ J} is the image of a standard
normalized tight frame {yj : j ∈ J} of H under an invertible adjointable bounded
A-linear operator T on H. The operator T can be chosen to be positive and equal
to the square root of θ∗θ, where θ is the frame transform corresponding to {xj}.

Conversely, the image of a standard normalized tight frame {yj : j ∈ J} of
H under an invertible adjointable bounded A-linear operator T on H is a standard
frame of H.

The frame {xj} is a set of generators of H as an Hilbert A-module. The
frame elements do not form a Hilbert basis in general.

Proof. If T is an invertible adjointable bounded A-linear operator on H and
{yj : j ∈ J} is a standard normalized tight frame of H, then the sequence {xj =
T (yj) : j ∈ J} fulfills the equality

(5.1)

∑
j

〈x, xj〉〈xj , x〉 =
∑

j

〈x, T (yj)〉〈T (yj), x〉 =
∑

j

〈T ∗(x), yj〉〈yj , T
∗(x)〉

= 〈T ∗(x), T ∗(x)〉

for every x ∈ H. Since ‖T−1‖−2〈x, x〉 6 〈T ∗(x), T ∗(x)〉 6 ‖T‖2〈x, x〉 for every
x ∈ H (cf. [48]) and since the sum in (5.1) converges in norm, the sequence
{xj : j ∈ J} is a standard frame of H with frame bounds C > ‖T−1‖−2 and
D 6 ‖T‖2.

Conversely, for an arbitrary standard frame {xj : j ∈ J} of a countably gen-
erated Hilbert A-module H, the frame transform θ : H → l2(A), θ(x) = {〈x, xj〉 :
j ∈ J} is adjointable by Theorem 4.4. Moreover, θ∗ restricted to the orthogonal
summand θ(H) of l2(A) is an invertible operator as θ∗ is the adjoint operator of
θ, where θ has to be regarded as an invertible operator from H to θ(H). Hence
the mapping θ∗θ becomes an invertible positive bounded A-linear operator onto
H, and the equality

〈θ(x), θ(x)〉l2 =
∑

j

〈x, xj〉H〈xj , x〉H
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holds for every x ∈ H. Set yx = (θ∗θ)1/2(x) for each x ∈ H, yj = (θ∗θ)−1/2(xj)
for j ∈ J. Then the equality

〈yx, yx〉H = 〈θ(x), θ(x)〉l2 =
∑

j

〈x, xj〉H〈xj , x〉H =
∑

j

〈yx, yj〉H〈yj , yx〉H

is valid since x ∈ H was arbitrarily chosen and the sum on the right side converges
in norm by supposition. The sequence {yj = (θ∗θ)−1/2(xj) : j ∈ J} has thus
been characterized as a standard normalized tight frame of H. The operator
T = (θ∗θ)1/2 is the sought operator mapping the standard normalized frame {yj}
onto the standard frame {xj}.

The property of a standard frame to be a set of generators for H as a Hilbert
A-module can be derived from the analogous property of standard normalized tight
frames which is preserved under adjointable invertible mappings, cf. Theorem 4.1.

Remark 5.4. Applying the techniques described in the appendix, we can
show that the image of a standard normalized tight frame under a non-adjointable
invertible bounded A-linear operator T on H is still a frame of H with C >
‖T−1‖−2, D 6 ‖T‖2. However, the adjoint operator T ∗ needed for calculations
only exists as an element of the W ∗-algebra End∗A((H#)′). In other words, there
exists an element x ∈ H such that the left-hand side sum in (5.1) does not converge
in norm since T ∗(x) 6∈ H. The resulting frame {xj = T (yj)} turns out to be non-
standard.

Corollary 5.5. (cf. [7], Proposition 2.9) Every standard frame in a Hilbert
A-module H is similar to another standard frame in H which is mapped to the
average of two orthonormal bases of l2(A) by its frame transform.

For proof arguments we refer to the Theorems 4.1, 5.3 and Corollary 4.5.

Proposition 5.6. Let {xj : j ∈ J} be a standard frame of a finitely or
countably generated Hilbert A-module H. There exists a Hilbert A-module M and a
normalized tight frame {yj : j ∈ J} in M such that the sequence {xj⊕yj : j ∈ J} is
a standard Riesz basis in H⊕M with the same frame bounds for {xj} and {xj⊕yj}.
The Hilbert A-module M can be chosen in such a way that H ⊕M = l2(A). If
H is finitely generated and the index set J is finite, then M can be chosen to be
finitely generated, too, and H⊕M = AN for N = |J|.

In general, M cannot be chosen as a submodule of H, and the resulting stan-
dard Riesz basis may be non-orthogonal. A uniqueness result like that in Proposi-
tion 5.2 fails to be true in general.

Proof. By Theorem 5.3 there exists a standard normalized tight frame {zj :
j ∈ J} for H and an adjointable invertible operator T on H such that xj = T (zj)
for any j ∈ J. Moreover, there is another Hilbert A-module M and a standard
normalized tight frame {yj : j ∈ J} for M such that the sequence {zj ⊕ yj : j ∈ J}
is an orthogonal Hilbert basis in H ⊕M, see Proposition 5.1. Then T ⊕ id is an
adjointable invertible operator on H⊕M mapping the sequence {zj ⊕ yj : j ∈ J}
onto the sequence {xj ⊕ yj : j ∈ J}. Hence, the latter is a standard Riesz basis for
H ⊕M according to Theorem 5.3. The statement regarding bounds is obvious,
the special choices for M can be derived from the reconstruction formula. The
additional remarks have already been shown to be true for particular Hilbert space
situations in [31], Proposition 1.6, Example B.
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Corollary 5.7. Let {xj : j ∈ J} be a standard Riesz basis of a finitely
or countably generated Hilbert A-module H. Then {xj : j ∈ J} is the image of
a standard normalized tight frame and Hilbert basis {yj : j ∈ J} of H under an
invertible adjointable bounded A-linear operator T on H, i.e. of an orthogonal
Hilbert basis {yj : j ∈ J} with the property 〈yj , yj〉 = 〈yj , yj〉2 for any j ∈ J.

Conversely, the image of a standard normalized tight frame and Hilbert basis
{yj : j ∈ J} of H under an invertible adjointable bounded A-linear operator T on
H is a standard Riesz basis of H.

If a Hilbert A-module H contains a standard Riesz basis, then H contains an
orthogonal Hilbert basis {xj : j ∈ J} with the frame property x =

∑
j

〈x, xj〉xj for

every element x ∈ H.

Let H1 and H2 be Hilbert C∗-modules over a fixed C∗-algebra A. Let {xj :
j ∈ J} and {yj : j ∈ J} be frames for these Hilbert C∗-modules, respectively,
where the possibility to select the same index set J is essential for our purposes
in the sequel. We call the sequence {xj ⊕ yj : j ∈ J} of the Hilbert A-module
H1⊕H2 the inner direct sum of the frames {xj : j ∈ J} and {yj : j ∈ J}. The two
component-frames {xj : j ∈ J} and {yj : j ∈ J} are called inner direct summands
of the sequence {xj ⊕ yj : j ∈ J}, especially if the latter is a frame for H1 ⊕H2.
With these denotations we can reformulate a main result of our investigations in
the following way, cf. [31], Theorem 1.7:

Theorem 5.8. Standard frames are precisely the inner direct summands
of standard Riesz bases of AN or l2(A). Standard normalized tight frames are
precisely the inner direct summands of orthonormal Hilbert bases of AN or l2(A).

The problem of whether non-standard frames can be realized as inner direct
summands of generalized Riesz bases of certain canonical Hilbert C∗-modules is
still open. The problem is closely connected to the existence problem of a well-
behaved frame transform for non-standard frames and corresponding codomain
Banach C∗-modules.

Proposition 5.6 has immediate consequences for the characterization of alge-
braically generating sets of (algebraically) finitely generated Hilbert C∗-modules
over unital C∗-algebras as frames. Below we give a transparent proof of the fact
that finitely generated Hilbert A-modules over unital C∗-algebras A are projective
A-modules. Usually, this fact can only be derived from Kasparov’s stabilization
theorem for countably generated Hilbert A-modules, cf. [58], Corollary 15.4.8. The
smallest appearing number n ∈ N for which a given finitely generated Hilbert A-
module is embeddable into the Hilbert A-module An as an orthogonal summand
equals the number of elements of the shortest frame of the Hilbert A-module con-
sidered. Also, the general validity of the lower bound inequality in the chain of
inequalities below is a fact possibly not sufficiently recognized before.
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Theorem 5.9. Every algebraically finitely generated Hilbert A-module H
over a unital C∗-algebra A is projective, i.e. an orthogonal summand of some free
A-module An for a finite integer n ∈ N. Furthermore, any algebraically generating
set {xi : i = 1, . . . , n} of H is a frame, and the inequality

C · 〈x, x〉 6
n∑

i=1

〈x, xi〉〈xi, x〉 6 D · 〈x, x〉

holds for every element x ∈ H and some constants 0 < C, D < +∞. In other
words, the positive bounded module operator

∑
j

θxj ,xj
is invertible.

Proof. Consider the operator F : An → H defined by F (ei) = xi for
i = 1, . . . , n and for an orthonormal basis {ei}n

i=1 of An. The operator F is a
bounded A-linear, surjective and adjointable operator since H is supposed to be
algebraically generated by {xi : i = 1, . . . , n} and the Hilbert A-module An is
self-dual, cf. [48], Proposition 3.4. By [58], Theorem 15.3.8 the operator F ∗ has
to be bounded A-linear, injective with closed range. Furthermore, F possesses a
polar decomposition F = V |F |, where An = ker(F ) ⊕ F ∗(H), ker(V ) = ker(F )
and V ∗(H) = F ∗(H), see [58], Theorem 15.3.8. The set {V (ei) : i = 1, . . . , n} is
a normalized tight frame of H by Corollary 4.6, and xi = (FV ∗)(V (ei)) for every
i = 1, . . . , n by construction. However, the operator FV ∗ is invertible on H. Thus
the set {xi : i = 1, . . . , n} is a frame by Proposition 5.6. The inequality can be
obtained from the definition of a frame.

D.P. Blecher pointed out to us that the operator T =
∑
i

θxi,xi
is strictly

positive by [37], Corollary 1.1.25. Since the set of all “compact” module operators
on finitely generated Hilbert C∗-modules is a unital C∗-algebra, T has to be in-
vertible, cf. [58], 15.O. This establishes the upper and lower frame bounds as ‖T‖2
and ‖T−1‖−2.

We close this subsection with some observations on inner direct sums of
frames. Our interest centres on frame property preserving exchanges of the second
inner direct summand to unitarily equivalent ones.

Proposition 5.10. Let A be a unital C∗-algebra.
(i) If {xj : j ∈ J} is a standard (normalized tight) frame for a Hilbert A-

module H and T is a co-isometry on H (i.e. T is an adjointable operator such that
T ∗ is an isometry), then {T (xj) : j ∈ J} is a standard (normalized tight) frame.

(ii) Let {xj : j ∈ J} and {yj : j ∈ J} be standard normalized tight frames
for Hilbert A-modules H and K, respectively, that are connected by an adjointable
bounded operator T obeying the formula T (xj) = yj for j ∈ J. Then T is a
co-isometry. If T is invertible then it is a unitary.

(iii) Let {xj : j ∈ J} and {yj : j ∈ J} be standard normalized tight frames for
Hilbert A-modules H and K, respectively, with the property that {xj⊕yj : j ∈ J} is
a standard normalized tight frame for H⊕K. Then for every standard normalized
tight frame {zj : j ∈ J} of the Hilbert A-module K that is unitarily equivalent to
{yj : j ∈ J}, the sequence {xj ⊕ zj : j ∈ J} again forms a standard normalized
tight frame of H⊕K.

(iv) Let {xj : j ∈ J} and {yj : j ∈ J} be standard normalized tight frames in
Hilbert A-modules H and K, respectively, with the property that {xj⊕yj : j ∈ J} is
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a standard normalized tight frame in H⊕K. For every standard frame {zj : j ∈ J}
of the Hilbert A-module K that is similar to {yj : j ∈ J} the sequence {xj ⊕ zj :
j ∈ J} again forms a standard frame of H⊕K.

Proof. Let C and D be the frame bounds for the standard frame {xj : j ∈ J}.
Then for x ∈ H we obtain the inequality

C · 〈x, x〉 = C · 〈T ∗(x), T ∗(x)〉 6
∑

j

〈T ∗(x), xj〉〈xj , T
∗(x)〉

=
∑

j

〈x, T (xj)〉〈T (xj), x〉 6 D · 〈T ∗(x), T ∗(x)〉 = D · 〈x, x〉

by E.C. Lance’s theorem ([42]) and the frame property. The additional equality
in the middle of this chain of two inequalities introduces a certain expression,
the comparison of which to both the ends of the chain of inequalities establishes
assertion (i).

Let {xj : j ∈ J} and {yj : j ∈ J} be standard normalized tight frames for
Hilbert A-modules H and K, respectively. Suppose there exists an adjointable
bounded operator T such that T (xj) = yj for every j ∈ J. For y ∈ K the equality

〈T ∗(y)T ∗(y)〉 =
∑

j

〈T ∗(y), xj〉〈xj , T
∗(y)〉 =

∑
j

〈y, T (xj)〉〈T (xj), y〉 = 〈y, y〉

is valid. Thus T ∗ is an isometry of the Hilbert A-module K into the Hilbert A-
module H. If T is invertible then H and K are unitarily isomorphic by [42]. This
shows (ii).

To give some argument for (iii) fix a unitary operator U ∈ EndA(K) with the
property U(yj) = zj , j ∈ J. Then V = id⊕U ∈ EndA(H⊕K) is a unitary with the
property V (xj ⊕ yj) = xj ⊕ zj . Hence, the sequence {xj ⊕ zj : j ∈ J} is a standard
normalized tight frame for H⊕K. Replacing U by a merely invertible adjointable
bounded operator T and repeating the considerations we obtain assertion (iv).

6. THE CANONICAL DUAL FRAME AND ALTERNATE DUAL FRAMES

The purpose of this section is to establish the existence of canonical and alter-
nate dual frames of standard frames and to prove fundamental properties of them.
Theorem 6.1 states the general reconstruction formula for standard frames, the
existence of both the frame operator and of the canonical dual frame. Proposi-
tions 6.2, 6.3, 6.5, 6.6, 6.7 show relations between canonical dual and alternative
dual frames of a given standard frame. Example 6.4 below demonstrates one of
the differences of generalized module frame theory for Hilbert C∗-modules in com-
parison to classical Hilbert space frame theory: the appearance of zero-divisors in
most C∗-algebras may cause the non-uniqueness of the dual frame of a standard
Riesz basis.

Let us consider the sequence {(θ∗θ)−1(xj) : j ∈ J} for a standard frame
{xj : j ∈ J} for a finitely or countably generated Hilbert C∗-module H. Denote
the map that assigns to every x ∈ H the corresponding unique pre-image in θ(H)
under θ∗ by (θ∗)−1. This map is well-defined since θ∗ is injective with image H.
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Thus (θ∗)−1 is an invertible bounded A-linear operator mapping H onto θ(H).
Referring to the proof of Theorem 4.1 and to Theorem 4.4 we have the following
chain of equalities

θ(x) =
∑

j

〈θ(x), ej〉l2ej =
∑

j

〈x, θ∗(ej)〉ej =
∑

j

〈x, θ∗(ej)〉P (ej)

=
∑

j

〈x, xj〉(θ∗)−1(xj) =
∑

j

〈θ(x), (θ∗)−1(xj)〉l2(θ∗)−1(xj)

= θ

( ∑
j

〈x, xj〉(θ∗θ)−1(xj)
)

which holds for every x ∈ H and for the standard orthonormal Hilbert basis
{ej : j ∈ J} of l2(A). The penultimate line of the established equality shows
that the sequence {(θ∗)−1(xj) : j ∈ J} is a standard normalized tight frame of
θ(H). Since θ is injective the last line gives a remarkable property of the sequence
{(θ∗θ)−1(xj) : j ∈ J}:

x =
∑

j

〈x, xj〉(θ∗θ)−1(xj)

for every x ∈ H. Applying θ∗ to this equality and replacing x by (θ∗θ)−1(x) we
obtain another equality dual to the former one:

x =
∑

j

〈x, (θ∗θ)−1(xj)〉xj

being valid for every x ∈ H. We take these two equalities as a justification to
introduce a new notion. The frame {(θ∗θ)−1(xj) : j ∈ J} is said to be the canonical
dual frame of the frame {xj : j ∈ J}, and the operator S = (θ∗θ)−1 is said to be the
frame operator of the frame {xj : j ∈ J}. In case the standard frame {xj : j ∈ J}
of H is already normalized tight the operator S is just the identity operator, and
the dual frame coincides with the frame itself.

More generally, we have an existence and uniqueness result (see theorem
below) that provides us with a reconstruction formula for standard frames. The
proof is only slightly more complicated than in the Hilbert space case (cf. [31],
Proposition 1.10, Remark 1.12) since most difficulties were already overcome while
establishing the properties of the frame transform.

Theorem 6.1. (Reconstruction formula) Let {xj : j ∈ J} be a standard
frame in a finitely or countably generated Hilbert A-module H over a unital C∗-
algebra A. Then there exists a unique operator S ∈ End∗A(H) such that

x =
∑

j

〈x, S(xj)〉xj

for every x ∈ H. The operator can be explicitly given by the formula S = G∗G for
any adjointable invertible bounded operator G mapping H onto some other Hilbert
A-module K and realizing {G(xj) : j ∈ J} to be a standard normalized tight frame
in K. In particular, S = θ−1(θ∗)−1 = (θ∗θ)−1 for the frame transform θ with
codomain θ(H). So S is positive and invertible. Finally, the canonical dual frame
is a standard frame for H again.
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Proof. Let G ∈ End∗A(H,K) be any invertible operator onto some Hilbert
A-module K with the property that the sequence {G(xj) : j ∈ J} is a standard
normalized tight frame of K. The existence of such an operator is guaranteed by
Theorem 4.1 setting K = θ(H) and G = (θ∗)−1 (cf. the introductory considerations
of the present section), or by Theorem 5.3. Set S = G∗G and check the frame
properties of the sequence {S(xj) : j ∈ J}:∑

j

〈x, G∗G(xj)〉xj =
∑

j

〈G(x), G(xj)〉xj =
∑

j

〈G(x), G(xn)〉G−1(G(xj))

= G−1

( ∑
j

〈G(x), G(xj)〉G(xj)
)

= G−1G(x) = x.

The equality implies 〈S(x), x〉 =
∑
j

〈x, S(x)〉〈S(x), x〉 for any x ∈ H. Since G

is invertible and S is positive there exist two constants 0 < C, D such that the
inequality

C · 〈x, x〉 6 〈S(x), x〉 =
∑

j

〈x, S(x)〉〈S(x), x〉 6 D · 〈x, x〉

is fulfilled for every x ∈ H. Hence the sequence {S(xj) : j ∈ J} is a standard frame
of H and a dual frame of the frame {xj : j ∈ J}.

To show the uniqueness of S in End∗A(H) and the coincidence of the dual
frame found with the canonical dual frame, suppose the existence of a second
operator T ∈ End∗A(H) realizing the equality x =

∑
j

〈x, T (xj)〉xj for every x ∈ H.

Then we obtain

x =
∑

j

〈x, T (xj)〉xj =
∑

j

〈x, TG−1G(xj)〉G−1G(xj)

= G−1

( ∑
j

〈(G∗)−1T ∗(x), G(xj)〉G(xj)
)

= G−1((G∗)−1T ∗(x)) = (G∗G)−1T ∗(x)

for every x ∈ H. Consequently, T = G∗G as required.

If {xj : j ∈ J} is a standard frame of a Hilbert A-module H which is not a
Hilbert basis, then there may in general exist many standard frames {yj : j ∈ J}
of H for which the formula

(6.1) x =
∑

j

〈x, yj〉xj

is valid. For examples in one- and two-dimensional complex Hilbert spaces we refer
the reader to [31], Section 1.3. We add another example from C∗-theory which
is reminiscent of the Cuntz algebras On: let A be a C∗-algebra with n elements
{x1, . . . , xn} such that

∑
i

x∗i xi = 1A. Then this set is a standard normalized

tight frame of A by way of its setting (where A is considered as a left Hilbert A-
module). However, any other set {y1, . . . , yn} of A satisfying

∑
i

y∗i xi = 1A fulfills
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the analogue of equality (6.1) as well. The choice yi = xi is only the one that
corresponds to the canonical dual frame of the initial frame. Other frames can be
obtained, for example, setting x1 = x2 =

√
2
−1 · 1A and y1 =

√
2 · 1A, y2 = 0A.

We call the other frames satisfying the equality (6.1) the alternate dual frames of
a given standard frame. Note that the frame property of these alternate sequences
has to be supposed since there are examples of non-frame sequences {yj : j ∈ J}
fulfilling the equality (6.1) in some situations ([31], Section 1.3). The following
proposition characterizes the operation of taking the canonical dual frame as an
involutive mapping on the set of standard frames, cf. [31], Corollary 1.11.

Proposition 6.2. Let {xj : j ∈ J} be a standard frame of a Hilbert A-
module H. Then the canonical dual frame {(θ∗θ)−1(xj) : j ∈ J} fulfills the equality

x =
∑

j

〈x, (θ∗θ)−1(xj)〉xj =
∑

j

〈x, xj〉(θ∗θ)−1(xj) for x ∈ H.

In other words, the canonical bi-dual frame of a standard frame is the frame itself
again. The frame transform θ′ of the canonical dual frame {(θ∗θ)−1(xj) : j ∈ J}
equals (θ∗)−1, i.e. the frame transform of the canonical dual frame maps H onto
θ(H) ⊆ l2(A) acting like this operator.

Proof. By the definition of a canonical dual frame and by the results of
Theorem 6.1 above we have the equality

x =
∑

j

〈x, (θ∗θ)−1(xj)〉xj

for every x ∈ H. Applying the invertible positive operator (θ∗θ)−1 to this equality
we obtain the identity

(θ∗θ)−1(x) =
∑

j

〈x, (θ∗θ)−1(xj)〉(θ∗θ)−1(xj) =
∑

j

〈(θ∗θ)−1(x), xj〉(θ∗θ)−1(xj)

for x ∈ H. Since the operator (θ∗θ)−1 is invertible on H we can replace (θ∗θ)−1(x)
by x, and the sought equality turns out. Owing to the uniqueness result of
Theorem 6.1 for the calculation of canonical dual frames and the trivial equal-
ity idH = id∗HidH the canonical bi-dual frame of a given standard frame equals
the frame itself. To calculate the frame transform θ′ of the canonical dual frame,
consider the special description of the identity map on H

x
θ′−→ {〈x, (θ∗θ)−1(xj)〉}j∈J

θ∗−→
∑

j

〈x, (θ∗θ)−1(xj)〉xj = x

(x ∈ H), cf. Theorem 4.1. Note that {〈x, (θ∗θ)−1(xj)〉}j∈J belongs to P (l2(A))
since the operator (θ∗θ)−1 is positive. The equality shows θ′ = (θ∗)−1 as operators
from H onto θ(H).

The next proposition gives us the certainty that the relation between a frame
and its dual is symmetric. The equality tells us something about the relation of
the associated frame transforms. (cf. [31], Proposition 1.13, 1.17.)
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Proposition 6.3. Let {xj : j ∈ J} and {yj : j ∈ J} be standard frames in a
Hilbert A-module H with the property that they fulfil the equality x =

∑
j

〈x, yj〉xj

for every x ∈ H. Then the equality x =
∑
j

〈x, xj〉yj holds for every x ∈ H, too.

Let θ1 and θ2 be the associated frame transforms of two frames {xj : j ∈ J}
and {yj : j ∈ J} of H, respectively. Then these two frames are duals to each other
if and only if θ∗2θ1 = idH.

Proof. By Proposition 5.6 there exists a standard Riesz basis {fj : j ∈ J}
of a Hilbert A-module K and an orthogonal projection P such that yj = P (fj)
for j ∈ J. Since the sum

∑
j

〈x, xj〉〈xj , x〉 is norm-bounded we can define another

adjointable operator T : H → K by the formula T (x) =
∑
j

〈x, xj〉fj for x ∈ H.

Then PT ∈ End∗A(H) and PT (x) =
∑
j

〈x, xj〉yj for x ∈ H. The following equality

holds for any x ∈ H:

〈x, x〉 =
〈 ∑

j

〈x, yj〉xj , x

〉
=

∑
n

〈x, yj〉〈xj , x〉 =
∑

j

〈x, xj〉〈yj , x〉

=
〈 ∑

j

〈x, xj〉yj , x

〉
= 〈PT (x), x〉.

In the middle step we used the self-adjointness of 〈x, x〉. As a result PT is shown
to be positive, and its square root to be an isometry (cf. [43], Lemma 4.1). Since
PT = (PT )1/2((PT )1/2)∗ = ((PT )1/2)∗(PT )1/2 = idH the operator (PT )1/2 is at
the same time a unitary, and PT = idH. This demonstrates the first assertion.

Now, let x, y ∈ H, {ej : j ∈ J} be the standard orthonormal Hilbert basis of
l2(A) and {xj : j ∈ J} and {yj : j ∈ J} be two frames of H with their associated
frame transforms θ1, θ2. We have the equality:

〈θ∗1θ2(x), y〉 = 〈θ2(x), θ1(y)〉l2(A) =
〈 ∑

j

〈x, yj〉ej ,
∑

i

〈y, xi〉ei

〉
l2(A)

=
∑

j

〈x, yj〉〈xj , x〉 =
〈 ∑

j

〈x, yj〉xj , y

〉
.

Since y ∈ H is arbitrarily chosen, the equality θ∗1θ2(x) =
∑
j

〈x, yj〉xj turns out to

hold for every x ∈ H. Therefore, x =
∑
j

〈x, yj〉xj for every x ∈ H if and only

if θ∗2θ1 = idH. We finish with a reference to the definition of a dual frame (see
equation (6.1)).

In contrast to the Hilbert space situation, Riesz bases of Hilbert C∗-modules
may possess infinitely many alternative dual frames due to the existence of zero-
divisors in the C∗-algebra of coefficients, cf. [31], Corollary 2.26.
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Example 6.4. Let A = l∞ be the C∗-algebra of all bounded complex-valued
sequences and let H = c0 be the Hilbert A-module and two-sided ideal in A of all
sequences converging to zero. The A-valued inner product on H is that inherited
from A. Consider a maximal set of pairwise orthogonal minimal projections {pi :
i ∈ Z} of H. Since x =

∑
i

xpi =
∑
i

〈x, pi〉Api for any x ∈ H and since the zero

element admits a unique decomposition of this kind, this set is a standard Riesz
basis of H, even an orthogonal Hilbert basis and a standard normalized tight frame
at the same time. However, the Riesz basis {pi : i ∈ Z} possesses infinitely many
alternate dual frames, for example {pi + pi+m : i ∈ Z} for a fixed non-zero integer
m.

Proposition 6.5. Let {xj : j ∈ J} be a standard frame of a finitely or
countably generated Hilbert A-module H over a unital C∗-algebra A that possesses
more than one dual frame. Then for the canonical dual frame {S(xj) : j ∈ J} and
for any other alternative dual frame {yj : j ∈ J} of the frame {xj : j ∈ J} the
inequality ∑

j

〈x, S(xj)〉〈S(xj), x〉 6
∑

j

〈x, yj〉〈yj , x〉

is valid for every x ∈ H. Besides this, the equality holds precisely if S(xj) = yj

for every j ∈ J.
More generally, whenever x =

∑
j∈J

ajxj for certain elements aj ∈ A and∑
j∈J

aja
∗
j is bounded in norm we have∑

j

aja
∗
j =

∑
j

〈x, S(xj)〉〈S(xj), x〉+
∑

j

(aj − 〈x, S(xj)〉)(aj − 〈x, S(xj)〉)∗

with equality in case aj = 〈x, S(xj)〉 for every j ∈ J. Moreover, the minimal value
of the summands a∗jaj is admitted for aj = 〈x, S(xj)〉 for each j ∈ J separately.
(Cf. Example 6.4.)

Proof. We begin with the proof of the first statement. The convergence of the
sums in the inequality above follows from the properties of the frame transforms
and of the frame operators. If the standard frames {S(xj) : j ∈ J} and {yj : j ∈ J}
are both dual frames of {xj : j ∈ J} then the equalities

x =
∑

j

〈x, S(xj)〉xj =
∑

j

〈x, yj〉xj

are valid for every x ∈ H. Subtracting one sum from the other, applying the
operator S to the result and taking the A-valued inner product with x from the
right, we obtain

0 =
∑

j

〈x, yj − S(xj)〉〈S(xj), x〉

for every x ∈ H. Therefore,∑
j

〈x, yj〉〈yj , x〉 =
∑

j

〈x, yj − S(xj) + S(xj)〉〈yj − S(xj) + S(xj), x〉

=
∑

j

〈x, S(xj)〉〈S(xj), x〉+
∑

j

〈x, yj − S(xj)〉〈yj − S(xj), x〉,
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demonstrating the first part of the stressed for assertion since every summand is
a positive element of A.

Now suppose x ∈ H has two decompositions x =
∑
j

〈x, S(xj)〉xj =
∑

ajxj

with coefficients {aj}j ∈ l2(A), where the index set J has to be identified with N to
circumvent extra discussions about the conditional and unconditional convergence
of series. Then the equality

0 =
∑

j

(〈x, S(xj)〉 − aj)〈xj , S(x)〉 =
∑

j

(〈x, S(xj)〉 − aj)〈S(xj), x〉

holds by the self-adjointness of S. Consequently,
〈{aj}j , {aj}j〉l2(A) = 〈{〈x, S(xj)〉}j , {〈x, S(xj)〉}j〉l2(A)+

+ 〈{〈x, S(xj)〉 − aj}j , {〈x, S(xj)〉 − aj}j〉l2(A),

and by the positivity of the summands the minimal value of aja
∗
j is admitted for

aj = 〈x, S(xj)〉 for each j ∈ J separately.

The optimality principle allows the stability of the frame property to be stan-
dard under changes of the A-valued inner product on Hilbert C∗-modules to be in-
vestigated. The result is important since countably generated Hilbert C∗-modules
may possess non-adjointable bounded module isomorphisms and, consequently, a
much wider variety of C∗-valued inner products inducing equivalent norms to that
given than Hilbert spaces use to admit, cf. [26].

Corollary 6.6. Let A be a unital C∗-algebra, H be a finitely or countably
generated Hilbert A-module with A-valued inner product 〈 · , · 〉1 and {xj : j ∈ J} ⊂
H be a standard frame. Then {xj : j ∈ J} is a standard frame with respect to
another A-valued inner product 〈 · , · 〉2 on H that induces an equivalent norm to
that given, if and only if there exists an adjointable invertible bounded operator T
on H such that 〈 · , · 〉1 ≡ 〈T (·), T (·)〉2. In this situation the frame operator S2 of
{xj : j ∈ J} with respect to 〈 · , · 〉2 commutes with the inverse of the frame operator
S1 of {xj : j ∈ J} with respect to 〈 · , · 〉1.

Proof. Suppose the frame {xj}j∈J is standard with respect to both the
inner products on H. For x ∈ H we have two reconstruction formulae x =∑
j

〈x, S1(xj)〉1xj and x =
∑
j

〈x, S2(xj)〉2xj . By the optimality principle we ob-

tain the equality 〈S1(x), xj〉1 = 〈x, S1(xj)〉1 = 〈x, S2(xj)〉2 = 〈S2(x), xj〉2 that is
satisfied for any x ∈ H and j ∈ J, see Proposition 6.5. Let y ∈ H. Multiply-
ing by 〈S1(xj), y〉1 from the right and summing up over j ∈ J we arrive at the
equality 〈S1(x), y〉1 = 〈S2(x), y〉2 that has to be valid for any x, y ∈ H. Therefore,
0 6 〈z, z〉1 = 〈z, (S2S

−1
1 )(z)〉2 for any z ∈ H forcing (S2S

−1
1 ) to be self-adjoint and

positive by [43], Lemma 4.1. In particular, the operators commute since S2 itself
is positive with respect to the second inner product by construction. Therefore
we can take the square root of this operator in the C∗-algebra of all adjointable
bounded module operators on H as the particular operator T that relates the
A-valued inner products to one another by 〈 · , · 〉1 ≡ 〈T (·), T (·)〉2.

Conversely, if both the A-valued inner products on H are related as 〈 · , · 〉1 ≡
〈T (·), T (·)〉2 for some adjointable invertible bounded operator T on H then the
frame operators fulfil the equality S1 = T ∗S2T , and the frame {xj : j ∈ J} is
standard with respect to both the inner products.
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Different alternate duals of a standard frame cannot be similar or unitarily
equivalent in any situation, so we reproduce a Hilbert space result ([31], Proposi-
tion 1.14).

Proposition 6.7. Suppose for a given standard frame {xj : j ∈ J} of a
Hilbert A-module H over a unital C∗-algebra A there exist two standard alternate
dual frames {yj : j ∈ J} and {zj : j ∈ J} which are connected by an invertible
adjointable operator T ∈ EndA(H) via zj = T (yj), j ∈ J. Then T = idH.

In other words, two different standard alternate dual frames of a given frame
are not similar or unitarily equivalent.

Proof. Suppose zj = T (yj) for j ∈ J and an adjointable invertible operator
T . Let us count the values of the adjoint operator T ∗ of T . We have T ∗(x) =∑
j

〈T ∗(x), yj〉xj =
∑
j

〈x, T (yj)〉xj = x for every x ∈ H by the dual frame property.

Consequently, T equals the identity operator on H.

We conjecture that the restriction to T to be adjointable may be dropped
while preserving the assertion of the proposition. To check this, techniques de-
scribed in the appendix of the present paper might be helpful.

Since for every orthogonal projection P on a Hilbert C∗-module H and every
standard frame {xj : j ∈ J} of H the sequence {P (xj) : j ∈ J} is a standard frame
for the Hilbert C∗-submodule P (H), the natural question is whether the canonical
dual frame of this frame {P (xj) : j ∈ J} would be equal to the projected canonical
dual frame of {xj : j ∈ J}, or not. If the frame {xj : j ∈ J} is tight then we
obtain a global affirmative answer. However, if {xj : j ∈ J} is not tight then
the projection P has to commute with the frame operator S related to the frame
{xn} to guarantee the square of these mappings to commute. However, every
orthogonal projection of the canonical dual frame is still a standard alternate dual
frame because

x = P (x) =
∑

j

〈P (x), S(xj)〉P (xj) =
∑

j

〈x, PS(xj)〉P (xj)

for every x ∈ P (H). Unfortunately, the set of orthogonal projections on a Hilbert
C∗-module may be very small, in extreme cases reducing to the zero and the
identity operator. Nevertheless, for existing projection operators the analogous to
[31], Proposition 1.15, Corollary 1.16 facts hold:

Proposition 6.8. Let {xj : j ∈ J} be a standard frame of a Hilbert C∗-
module H and Sx > 0 be its frame operator. If P is an orthogonal projection on
H then the frame operator of the projected frame {P (xj) : j ∈ J} is SP (x) = PSx

if and only if PSx = SxP .
The standard frame {xj : j ∈ J} is tight if and only if Sx equals the identity

operator multiplied by the inverse of the frame bound. In this situation the equality
SP (x) = PSx is fulfilled for every orthogonal projection on H. Conversely, the
latter condition alone does not imply the frame {xj : j ∈ J} to be tight in general.

Proof. Considering the first pair of equivalent conditions, the product of the
two positive elements Sx and P of the C∗-algebra End∗A(H) can only be positive
if they commute. Consequently, SP (x) = PSx forces them to commute since
SP (x) > 0 by construction, cf. Theorem 6.1.
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Conversely, if PSx = SxP then by the equality x =
∑
n
〈x, Sx(xn)〉xn for

x ∈ H we obtain

P (x) =
∑

n

〈P (x), Sx(xn)〉P (xn) =
∑

n

〈P (x), PSx(xn)〉P (xn)

=
∑

n

〈P (x), SxP (xn)〉P (xn) =
∑

n

〈P (x), (SxP )(P (xn))〉P (xn).

Owing to the positivity of PSx = SxP , the free choice of x ∈ H, Theorem 6.1 and
Proposition 6.7, the equality SP (x) = PSx turns out to hold.

The second statement is nearly obvious. Since there are C∗-algebras with
very small sets of projections, like A = C([0, 1]), the property of the frame operator
Sx of a one-element frame {x = a} ∈ A to commute with any projection P ∈
End∗A(A) does certainly not imply the frame to be tight. In our example any
invertible element a ∈ A has this property despite its possibly unequal to one
norm or frame bounds.

We add a few more remarks on the properties of the frame transform θ and of
the operator (θ∗)−1 : H → θ(H). For this aim consider the operator R = θS. This
operator R has the property that R∗θ = idH = θ∗R by the definition of S and θ,
cf. Theorem 6.1. Moreover, the equality θ(R∗θ) = (θR∗)θ = θ and the injectivity
of θ imply θR∗ = P on l2(A). Also, θR∗ = Rθ∗ as can be easily verified. Therefore,
R∗ restricted to θ(H) is an inverse to the operator θ, and R is an inverse of the
operator θ∗ if θ∗ has been restricted to θ(H). Hence, alternative descriptions of
the situation can be given in terms of a quasi-inverse operators for the extension
of the frame transform θ to an operator on H⊕ l2(A).

7. A CLASSIFICATION RESULT

We would like to obtain a better understanding of the unitary and similarity equiv-
alence classes of frames in a Hilbert C∗-module with orthogonal basis. Comparing
the result with the results of Section 5 we receive general insights into necessary
conditions for frame equivalence in Hilbert C∗-modules, even in the absence of an
orthogonal Riesz basis for them. For the Hilbert space situation we refer to [31],
Proposition 2.6.

Proposition 7.1. Let A be a C∗-algebra and H be a countably generated
Hilbert A-module with orthogonal Hilbert basis {fj : j ∈ J}. For two orthogonal
projections P,Q ∈ End∗A(H) set M = P (H) and N = Q(H). Let the sequences
{xj = P (fj) : j ∈ J} and {yj = Q(fj) : j ∈ J} be the derived standard normalized
tight frames for M and N , respectively. Then the frames {xj : j ∈ J} and {yj :
j ∈ J} are similar if and only if they are unitarily equivalent, if and only if P = Q
and the frames coincide elementwise.

Proof. Suppose there exists an adjointable invertible bounded A-linear op-
erator T : M → N with T (xj) = yj for every j ∈ J. Continuing the operator T
and its adjoint on the orthogonal complements of M and N , respectively, as the
zero operator we obtain an adjointable bounded A-linear operator T on H that
possesses a polar decomposition in End∗A(H), T = V ·|T | (cf. [58], Theorem 15.3.7).
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The partial isometry V has the property V V ∗ = Q, V ∗V = P by construction.
Furthermore, yj = T (xj) = V · |T |(xj). Since {yj : j ∈ J} is normalized tight,
since V is an isometry of M with N and because T is invertible, the standard
frame {|T |(xj) : j ∈ J} has to be a standard normalized tight frame for M. Also,
|T | = idM. Thus similarity implies unitary equivalence.

Let us continue with the partial isometry V obtained above. The operator
V canonically arises if we suppose the frames {xj : j ∈ J} and {yj : j ∈ J} to be
unitarily equivalent. Since V = V P we obtain V (fj) = V P (fj) = Q(fj) for every
j ∈ J. Since {fj : j ∈ J} is an (orthogonal) Hilbert basis of H we find V = Q and
hence, P = Q and xj = yj for every j ∈ J.

The next theorem and the corollary derived from it give us a criterion of sim-
ilarity and unitary equivalence of frames in Hilbert C∗-modules. They generalize
[31], Corollary 2.8, 2.7 and [34], Theorem B, and tie these observations together.

Theorem 7.2. Let A be a unital C∗-algebra and {xj : j ∈ J} and {yj : j ∈ J}
be standard normalized tight frames of Hilbert A-modules H1 and H2, respectively.
Then the frames {xj : j ∈ J} and {yj : j ∈ J} are unitarily equivalent if and only
if their frame transforms θ1 and θ2 have the same range in l2(A), if and only if
the sums

∑
j

ajxj and
∑
j

ajyj equal zero for exactly the same Banach A-submodule

of sequences {aj : j ∈ J} of l2(A)′.
Similarly, two standard frames {xj : j ∈ J} and {yj : j ∈ J} of Hilbert A-

modules H1 and H2, respectively, are similar if and only if their frame transforms
θ1 and θ2 have the same range in l2(A), if and only if the sums

∑
j

ajxj and
∑
j

ajyj

equal zero for exactly the same Banach A-submodule of sequences {aj : j ∈ J} of
l2(A)′.

Proof. If we assume that the frame transforms θ1, θ2 corresponding to the
two initial standard normalized tight frames have the same range in l2(A), then
the orthonormal projection P of l2(A) onto this range θ1(H1) ≡ θ2(H2) maps
the elements of the standard orthonormal basis {ej : j ∈ J} of l2(A) to both
θ1(xj) = θ2(yj), j ∈ J, by the construction of a frame transform, cf. Proposition 5.1
and Theorem 4.1. Then

〈xj , xj〉1 = 〈θ1(xj), θ1(xj)〉l2 = 〈θ2(yj), θ2(yj)〉l2 = 〈yj , yj〉2
for every j ∈ J, and the mapping U : H1 → H2 induced by the formula U(xj) = yj

for j ∈ J is a unitary isomorphism since the sets {xj} and {yj} are sets of generators
of H1 and H2, respectively. Moreover, the set of bounded A-linear functionals on
l2(A) annihilating the ranges of the frame transforms θ1, θ2 are exactly the same
and can be identified with a Banach A-submodule of l2(A)′.

The converse statement for standard normalized tight frames follows directly
from Proposition 7.1.

If we suppose merely {xj : j ∈ J} and {yj : j ∈ J} to be standard
frames in H1 and H2, respectively, then the assumption θ1(H1) ≡ θ2(H2) yields
P (ej) = θ1(xj) = θ2(yj) again, cf. Theorems 4.1 and 4.4. Consequently, there is
an adjointable invertible bounded operator T ∈ EndA(H1,H2) with T (xj) = yj

for j ∈ J by the injectivity of frame transforms.
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Corollary 7.3. Let A be a unital C∗-algebra. Let J be a countable (or
finite, respectively) index set. The set of unitary equivalence classes of all standard
normalized tight frames indexed by J is in one-to-one correspondence with the set
of all orthogonal projections on the Hilbert A-module l2(A) (or A|J|, respectively).
Analogously, the set of similarity equivalence classes of all frames indexed by J
is in one-to-one correspondence with the set of all orthogonal projections on the
Hilbert A-module l2(A) (or A|J|, respectively). The one-to-one correspondence can
be arranged by fixing an orthonormal Hilbert basis of A|J| or l2(A), respectively.

The established interrelation allows the partial order structure of projections
as well as homotopy and other topological properties of the set of projections to be
transferred to properties of equivalence classes of standard frames. The resulting
structures may strongly depend on the choice of some orthonormal Hilbert basis
realizing the correspondence. However, the partial order does not depend on the
choice of the orthonormal Hilbert basis since orthonormal Hilbert bases of l2(A)
(or of A|J|) are unitarily equivalent. Despite the special situation for Hilbert spaces
H, the C∗-algebra End∗A(l2(A)) has a partial ordered subset of projections which
lacks the lattice property for many C∗-algebras A.

8. FINAL REMARKS

We would like to add some remarks on non-standard frames in C∗-algebras and
Hilbert C∗-modules. As we mentioned in the introduction, a good theory can
be developed for non-standard frames in self-dual Hilbert C∗-modules over von
Neumann algebras or monotone complete C∗-algebras since a well-defined concept
of a generalized Hilbert basis exists for this class of Hilbert C∗-modules, cf. [48], [3],
[23], [16], [21]. However, because of numerous Hilbert C∗-module isomorphisms in
this class, non-trivial examples may be only obtained, first, in the case of finite W ∗-
algebras of coefficients, or secondly, for cardinalities of the index set of the frame
greater than the cardinality of every decomposition of the identity into a sum of
pairwise orthogonal and equivalent to one projections in the complementary case
of infinite W ∗-algebras of coefficients. The target space for the frame transform is
always l2(A, I)′ for an index set I of the same cardinality as the index set J of the
frame under consideration. The first steps towards a frame theory for self-daual
Hilbert W ∗-modules can be found in a paper by Y. Denizeau and J.-F. Havet ([16])
where a weak reconstruction formula appears.

In the case of non-standard frames for Hilbert C∗-modules over general C∗-
algebras A, we have the difficulty of defining a proper target space for the frame
transform where the image of the frame transform becomes a direct summand. The
choice of the C∗-dual Banach A-module l2(A, I)′ for a suitable index set I of the
same cardinality as the index set of the frame may not always be the right choice
since the C∗-dual Banach A-module of the initial Hilbert C∗-module carrying the
frame set may not fit into l2(A, I)′. The latter phenomenon is mainly caused by the
sometimes complicated multiplier theory of ideals of A. A better candidate for the
target space seems to be l2(A∗∗, I)′ where A∗∗ denotes the bidual von Neumann
algebra of A. To embed the original Hilbert A-module H into l2(A∗∗, I)′ by a
frame transform, we have to enlarge H to an Hilbert A∗∗-module by the techniques
described in the appendix and afterwards to “self-dualize” it as described in [48].
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The frame will preserve its properties, i.e. the frame will still be a frame for the
larger Hilbert A∗∗-module with the same frame bounds. For tight frames we obtain
a proper reconstruction formula with weak convergence of the occurring sum that
can be restricted to the original module H in such a way that any trace of the
extensions made vanishes. In particular, non-standard tight frames are always
generator sets in a weak sense. However, the frame transform is only a modified
one and does not map H to a direct summand of l2(A∗∗, I)′. (An alternative view
on these aspects can be given using linking C∗-algebra techniques.)

To make use of the complete boundedness of bounded C∗-module maps be-
tween Hilbert C∗-modules and of injectivity properties of objects, one could also
consider taking the atomic part of A∗∗ or the injective envelope I(A) of A instead of
A∗∗ and repeating the construction presented in the appendix accordingly. This
would lead to operator space and operator module methods. All in all we can
say that a general theory of non-standard frames in Hilbert C∗-modules and C∗-
algebras does not exist at present. Steps towards such a theory have to involve
results from Banach space and operator space theory, as well as from operator and
operator algebra theory.

Problem 8.1. Does every Hilbert C∗-module over a unital C∗-algebra ad-
mit a normalized tight frame?

9. APPENDIX

In proofs we need a canonical construction for a canonical switch from a given
Hilbert A-module M to a bigger Hilbert A∗∗-module M# while preserving many
useful properties and guaranteeing the existence and uniqueness of extended op-
erators and A-(A∗∗-)valued inner products. The much better properties of Hilbert
W ∗-modules in comparison to general Hilbert C∗-modules (cf. [48]) and facts from
non-commutative topology form the background for such a manner of changing
objects.

Remark 9.1. (cf. H. Lin [45], Definition 1.3; [48], Section 4) Let {M, 〈 · , · 〉}
be a left pre-Hilbert A-module over a fixed C∗-algebra A. The algebraic tensor
product A∗∗ �M becomes a left A∗∗-module defining the action of A∗∗ on its
elementary tensors by the formula a(b ⊗ h) = ab ⊗ h for a, b ∈ A∗∗, h ∈ M.
Setting [∑

i

ai ⊗ hi,
∑

j

bj ⊗ gj

]
=

∑
i,j

ai〈hi, gj〉b∗j

on finite sums of elementary tensors we obtain a degenerate A∗∗-valued inner pre-
product. Factorizing A∗∗ �M by N = {z ∈ A∗∗ �M : [z, z] = 0} we obtain
a pre-Hilbert A∗∗-module subsequently denoted by M#. The pre-Hilbert A∗∗-
module M# contains M as a A-submodule. If M is Hilbert, then M# is Hilbert,
and vice versa. The transfer of self-duality is more difficult. If M is self-dual, then
M# is also self-dual by [26], Theorem 6.4, and [48], [20].
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Problem 9.2. Suppose the underlying C∗-algebra A is unital. Does the
property of M# of being self-dual imply that M was already self-dual?

A bounded A-linear operator T on M has a unique extension to a bounded
A∗∗-linear operator on M# preserving the operator norm, cf. [45], Definition 1.3.
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