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Abstract. An entropical invariant is defined for automorphisms of count-
able discrete amenable groups, and relations are shown between two en-
tropies for an automorphism on the C∗-crossed product algebra and for its
restriction to the original algebra. As an application, given an automor-
phism β and an amenable group G, we have the equality for entropy that
ht(β ∗ · · · ∗ β| {z }

|G|

) = ht(β ∗ id).
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1. INTRODUCTION

A non-commutative version of the Kolmogorov-Sinai entropy was introduced by
Connes and Størmer in [6] for a trace preserving automorphism of a finite von
Neumann algebra, and by Connes, Narnhofer and Thirring in [5], the notion is
extended to the CNT-entropy hφ(α) for an automorphism α of a C∗-algebra A
preserving a given state φ of A.

Topological entropies for automorphisms of C∗-algebras were invented by
Hudetz ([11]), Thomsen ([16]) and Voiculescu ([18]). Voiculescu’s topological en-
tropy ht(α) for an automorphism α of a nuclear C∗-algebra A was extended by
Brown ([2]) to automorphisms of exact C∗-algebras. In general, ht(α) > hφ(α),
by Voiculescu ([18]) and Dykema ([9]).

In this paper, we show some results on relations between the topological en-
tropy and the free products of automorphisms. We have our results by considering
the free product of some automorphisms as automorphisms on the crossed product
satisfying some conditions.
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To compute topological entropy of such automorphisms, in Section 2, we
define an invariant h(α) for an automorphism α of a discrete countable amenable
group G, and we show that h(·) enjoys properties one would expect of entropy.

In Section 3, we consider an automorphism γ of the crossed product AoαG
of an exact C∗-algebra A by a discrete amenable group G (with respect to an action
α) such that bothA and the unitary groupG inAoαG are globally invariant under
γ. Such automorphisms on AoαG arise naturally when we consider free products
of automorphisms (cf. Lemma 4.2). We show some relations among ht(γ), h(γG)
and ht(γA) for the restrictions γG and γA of γ to G and A respectively.

In Section 4, we apply our result in Section 3 to automorphisms on the
reduced free product C∗-algebras. For every automorphism β of an exact C∗-
algebra, the topological entropy for the free product ∗

g∈G
βg of {βg}g∈G equals to

that for the free product β∗id of β and the identity on C∗r (G) (Theorem 4.3). Here
βg = β for all g in an amenable group G. Furthermore, if θ is an automorphism of
G with h(θ) = 0, then ht(θ̂ ∗ σ∗) = 0 (Corollary 4.4). Here θ̂ is the automorphism
of the reduced group C∗-algebra C∗r (G) induced by θ, and σ∗ is the automorphism
of the Cuntz algebra O∞ (respectively C∗r (F∞) of the free group F∞) which is a
permutation of generators.

2. AUTOMORPHISMS OF AMENABLE GROUPS

Let G be a discrete countable group. We denote by F(G) the set of all finite
subsets of G. Remark that a discrete countable group G is amenable ([13]) if and
only if G satisfies Følner’s condition, that is, for a given K ∈ F(G) and δ > 0,
there exists a non-empty F ∈ F(G) such that

|gF 4 F |
|F |

< δ for all g ∈ K.

Here |S| means the cardinality of S ∈ F(G).
We call such a set F a Følner’s set for (K, δ).

2.1. Definition. Let G be a discrete countable amenable group and let
α ∈ Aut(G) (the group of automorphisms of G). For a K ∈ F(G), we put

c(K, δ) = inf
{
|F | : F 6= ∅, |gF 4 F |

|F |
< δ for all g ∈ K

}
,

h(α,K, δ) = lim sup
n→∞

1
n

log c
( n−1⋃

i=0

αi(K), δ
)
,

and
h(α,K) = sup

δ>0
h(α,K, δ).

Then we define h(α) for α by

h(α) = sup
K∈F(G)

h(α,K).
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Remark. If G is generated by an increasing sequence of finite subgroups of
G, then h(α) is given as the supremum of h(α,K) for all finite subgroups K of G.

The following proposition shows that h(·) satisfies the basic properties of
“entropy”.

2.2. Proposition. Let G be a discrete countable amenable group. Then:
(i) h(αk) = |k|h(α), for all α ∈ Aut(G) and all k ∈ Z;

and
(ii) h(α) = h(β), for α, β ∈ Aut(G) which are conjugate in Aut(G).

Proof. (i) It is clear that h(id) = 0 for the identity automorphism id of G.
Assume that k is a positive integer. Since for any finite subset K of G and

δ > 0,

lim sup
n→∞

1
n

log c
( n−1⋃

j=0

αkj(K), δ
)

6 lim sup
n→∞

1
n

log c
( (n−1)k⋃

j=0

αj(K), δ
)

= k lim sup
n→∞

1
nk

log c
( (n−1)k⋃

j=0

αj(K), δ
)

6 k lim sup
n→∞

1
nk

log c
( nk−1⋃

j=0

αj(K), δ
)
,

we have that h(αk) 6 kh(α).
Conversely, let [n

k ] be the Gauss symbol, that is, the integer m with m 6

n
k < m+ 1. For a given finite subset K of G, we denote the set

k−1⋃
i=0

αi(K) by K ′.

Then

kh(α,K, δ) = lim sup
n→∞

k

n
log c

( n−1⋃
j=0

αj(K), δ
)

6 lim sup
n→∞

1
[n
k ]

log c
( n−1⋃

j=0

αj(K), δ
)

6 lim sup
n→∞

1
[n
k ]

log c
( [ n

k ]⋃
j=0

αkj(K ′), δ
)

= h(αk,K ′, δ).

This implies that kh(α) 6 h(αk) so that kh(α) = h(αk) for all positive
integers k. It is obvious for finite subsets K and F of G that |F 4 sF |/|F | < δ for
all s ∈ K if and only if |αF 4 sαF |/|αF | < δ for all s ∈ α(K). Hence

c

( n−1⋃
j=0

α−j(K), δ
)

= c

(
α−n+1

( n−1⋃
j=0

αj(K)
)
, δ

)
= c

( n−1⋃
j=0

αj(K), δ
)

which implies that
h(α) = h(α−1).

Therefore (i) holds.
(ii) Assume that α = γβγ−1 for some γ ∈ Aut(G). Then |F4sF |/|F | < δ for

all s ∈
n−1⋃
j=0

βj(K) if and only if |γ(F )4sγ(F )|/|γ(F )| < δ for all s ∈
n−1⋃
j=0

αj(γ(K)),

and h(α) = h(β).
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2.3. The restricted direct product
∐
i∈I

Gi of discrete groups (Gi)i∈I is the

subgroup of the cartesian product
∏
i∈I

Gi formed by the elements (gi)i∈I such that

gi ∈ Gi is the unit ei of Gi for all but a finite number of indices. It is well known
that if all Gi are amenable, then

∐
i∈I

Gi is amenable.

Proposition. Let G0 be a finite group, and let G =
∐
i∈Z

Gi. Here Gi is

a copy of G0 for all i ∈ Z. If α is the automorphism of G induced by the map
i ∈ Z → i+ 1, then

h(α) 6 log |G0|.

Proof. Given K ∈ F(G), there exists a k ∈ N such that

K ⊂ {(gi)i ∈ G : gi = ei, if i /∈ [−k, k]}.

For n ∈ N, let

F (n) = {(gi)i ∈ G : gi = ei, if i /∈ [−k, k + n]}.

If g ∈
n−1⋃
i=0

αi(K) and h ∈ F (n), then gh ∈ F (n) and g−1h ∈ F (n). Hence

gF (n)4F (n) = ∅ for all g ∈
n−1⋃
i=0

αi(K) so that for any δ > 0 we have

c

( n−1⋃
i=0

αi(K), δ
)

6 |F (n)| = |G0|2k+n+1.

This implies that h(α,K, δ) 6 log |G0| for all K ∈ F(G) and δ > 0 and we have
h(α) 6 log |G0|.

2.4. An automorphism α of a group G induces an automorphism α̂ of the
C∗-algebra C∗r (G) generated by the left regular representation λ:

α̂(λg) = λα(g), g ∈ G.

Corollary. Let G and α be the same as in Proposition 2.3. If G is abelian
(that is, G0 is abelian), then ht(α̂) = h(α) = log |G0|.

Proof. We show in Corollary 3.6 that in general ht(α̂) 6 h(α). The C∗-
algebra C∗r (G) is represented as

⊗
i∈Z

C∗r (Gi), and the shift automorphism α̂ has

ht(α̂) > log(rank (C∗r (G0))) ([19]). If G0 is abelian, then rank (C∗r (G0)) = |G0|.
Hence ht(α̂) = log |G0|.
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3. ENTROPY OF CROSSED PRODUCTS

To fix our notations, we first review the definitions of ht(·). For a C∗-algebra A,
let π : A → B(H) be a faithful ∗-representation of A and let ω ⊂ A be a finite
set. For a δ > 0, rcp(π, ω, δ) = inf{rank (B) : B is a finite dimensional C∗-algebra
which has contractive completely positive maps ϕ : A → B,ψ : B → B(H) such
that ‖ψ · ϕ(a) − π(a)‖ < δ, (a ∈ ω)}. Here rank (B) means the dimension of a
maximal abelian subalgebra of B. Let α ∈ Aut(A). Then

ht(π, α, ω, δ) = lim sup
n→∞

1
n

log
(
rcp

(
π,

n−1⋃
i=0

αi(ω), δ
))

and the topological entropy is defined as ht(α) = sup
ω

sup
δ>0

ht(π, α, ω, δ), which does

not depend on representations π ([2]).
In this section, we study relations among entropies ht(γ), ht(γA) and h(γG)

for an automorphism γ on the reduced C∗-crossed product AoαG.
Let A be a C∗-algebra acting on a Hilbert space H, and let α be an action

of a discrete countable group G on A, that is, α is a homomorphism from G to the
group Aut(A) of ∗-automorphisms on A. The representation π of A on l2(G,H)
is given by (π(a)ξ)(g) = α−1

g (a)ξ(g) for all a ∈ A, g ∈ G, ξ ∈ l2(G,H) and the
unitary representation λ of G on l2(G,H) is given by (λgξ)(h) = ξ(g−1h) for all
g, h ∈ G, ξ ∈ l2(G,H). The reduced crossed product AoαG is the C∗-algebra on
l2(G,H) which is generated by π(A) and the unitary group λG = {λg : g ∈ G}.
Assume that a γ ∈ Aut(AoαG) satisfies the following condition:

(3.1) γ(λG) = λG and γ(π(A)) = π(A).

Then we have γG ∈ Aut(G) and γA ∈ Aut(A) such that

λγG(g) = γ(λg) and π(γA(a)) = γ(π(a)) g ∈ G, a ∈ A.

3.2. Example. An automorphism γ of AoαG which satisfies condition
(3.1) is obtained from an automorphism of A and an automorphism of G. Let
θ ∈ Aut(G) and let α be an action of the group G on a C∗-algebra A such that
αg = αθ(g) for all g ∈ G. (Such a pair (α, θ) is given for an example as follows:
Assume that a group G1 acts trivially on A and let α′ be an action of a group
G2 on A. Let G be the semidirect product G1 oG2. For g = g1g2, gi ∈ Gi, we
define the action α of G on A by αg(a) = α′g2

(a). Let θ′ ∈ Aut(G1) be such that
θ′(g2g1g−1

2 ) = g2θ
′(g1)g−1

2 for gi ∈ Gi, i = 1, 2. Then we have θ ∈ Aut(G) defined
by θ(g1g2) = θ′(g1)g2 for g1, g2 ∈ G, and αg = αθ(g) for all g ∈ G.)

If σ ∈ Aut(A) satisfies that αgσ = σαg for all g ∈ G, then there exists
γ ∈ Aut(AoαG) such that γ(π(a)) = π(σ(a)) for all a ∈ A and γ(λg) = λθ(g) for
all g ∈ G.

In fact, we may assume that there exists a unitary v ∈ B(H) with σ(a) =
vav∗ for all a ∈ A. Let U be the unitary defined by

(Uξ)(g) = v∗(ξ(θ(g)), ξ ∈ l2(G,H), g ∈ G.

Then we have
U∗π(x)λgU = π(σ(x))λθ(g), x ∈ A, g ∈ G
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and the restriction γ of AdU∗ to AoαG satisfies the condition (3.1).

We give in Section 4 other kind of examples of γ ∈ AoαG with the prop-
erty (3.1).

3.3. Assume that an exact C∗-algebra A is represented on a Hilbert space
H. Let G be a discrete amenable countable group, and let α be an action of G on
A. Remark that AoαG is exact by [12]. For a finite subset K of G and a finite
subset ω of A, we put

ωK = {π(a)λg : a ∈ ω, g ∈ K}.
Under these conditions, we have the following inequality.

Proposition. Assume that an automorphism γ of the crossed product
AoαG satisfies the condition (3.1). Let K be a finite subset of G and let ω
be a finite subset of the unit ball of A. Then we have

ht(idA oα G, γ, ωK , δ) 6 h(γG)+lim sup
n→∞

1
n

log rcp
(

idA,
⋃

h∈F

αh−1

( n−1⋃
i=0

γi
A(ω)

)
,
δ

2

)
.

Here F is a Følner’s set for
(

n−1⋃
i=0

γi
G(K), δ/2

)
with |F | = c

(
n−1⋃
i=0

γi
G(K), δ/2

)
.

Proof. We may assume that K contains the unit e of G. Given δ > 0 and
n ∈ N, choose a non-empty F ∈ F(G) such that

|F | = c

( n−1⋃
i=0

γi
G(K),

δ

2

)
,

|gF 4 F |
|F |

<
δ

2
for all g ∈

n−1⋃
i=0

γi
G(K).

We choose a triple (ψ,ϕ,B) of a finite dimensional C∗-algebra B and completely
positive maps ϕ : A→ B,ψ : B → B(H) such that

‖ψ · ϕ(z)− z‖ < δ

2
, for all z ∈

⋃
h∈F

α−1
h

( n−1⋃
i=0

γi
A(ω)

)
and that

rank (B) = rcp

(
idA,

⋃
h∈F

α−1
h

( n−1⋃
i=0

γi
A(ω)

)
,
δ

2

)
.

Let f = |F |−1/2χF , where χF is the characteristic function of F . Then∣∣∣∣ ∑
t∈G

f(t)f(g−1t)− 1
∣∣∣∣ 6

δ

2
, g ∈

n−1⋃
i=0

γi
G(K).

We denote by PF the orthogonal projection of l2(G) onto l2(F ). As in [3] following
after [14], we define completely positive maps Φ and Ψ with

Ao
α
G

Φ−→PFB(l2(G))PF ⊗B
Ψ−→B(l2(G,H))

by
Φ(x) = (1⊗ ϕ)((PF ⊗ 1)x(PF ⊗ 1)), x ∈ Ao

α
G
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and
Ψ(y) = Tf ((1⊗ ψ)(y)), y ∈ PFB(l2(G))PF ⊗B,

where
Tf (x) =

∑
t∈G

νt(mf ⊗ 1)x(m∗
f ⊗ 1)ν∗t

and ν is the right regular representation ofG, andmf is the multiplication operator

of f . By [3], Propositions 2.5 and 2.6, we have for all a ∈
n−1⋃
i=0

γi
A(ω) and g ∈

n−1⋃
i=0

γi
G(K) that

‖Ψ · Φ(π(a)λg)− π(a)λg‖ <
∥∥∥∥ ∑

t∈F∩gF

et,g−1t ⊗ (ψ · φ(αt−1(a))− αt−1(a))
∥∥∥∥

+
∣∣∣∣ ∑

t∈F∩gF

f(t)f(g−1t)− 1
∣∣∣∣ < δ,

where {et,s : t, s ∈ G} is the standard matrix units of B(l2(G)). Hence

rcp

(
idA oα G,

n−1⋃
i=0

γi(ωK), δ
)
< |F | · rank (B).

This implies the inequality.

3.4. Let G be a discrete amenable group and let θ ∈ Aut(G).

Condition (†) for (G, θ): Given a finite set K ⊂ G and δ > 0, there exists
a finite subgroup L such that for all n ∈ N we can choose a Følner’s set F (n) for(

n−1⋃
i=0

θi(K), δ
)

which satisfies that |F (n)| = c

(
n−1⋃
i=0

θi(K), δ
)

and is a subset of

the product set Lθ(L) · · · θn−1(L).

Corollary. Let A,G, α and γ be the same as in Proposition 3.3.
(i) Assume that (G, γG) satisfies (†). If γA commutes with αg for all g ∈ G,

then

(‡) ht(γ) 6 h(γG) + ht(γA).

(ii) In particular, if (G, γG) is the pair in Proposition 2.3 and if γA commutes
with αg for all g ∈ G, then we have (‡).

(iii) Let (G, θ) be the pair in Proposition 2.3, and let γ be the automorphism
given in 3.2. Then we have (‡).

Proof. First we remark that γA commutes with αg for all g ∈ G if and only
if αg = αγG(g) for all g ∈ G. In fact, if γA commutes with αg for all g ∈ G,
then π(αγG(g)γA(a)) = λγG(g)γ(π(a))λ∗γG(g) = γ(λgπ(a)λ∗g) = γ(π(αg(a))) =
π(γA(αg(a))) = π(αg(γA(a))) for all g ∈ G and a ∈ A which implies that αg =
αγG(g) for all g ∈ G. The converse relation is obtained by a similar calculation.
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(i) Given K ∈ F(G) and δ > 0, we choose a finite subgroup L of G as in (†).
If h ∈ F (n), then h = h1γG(h2) · · · γn−1

G (hn) for some hi ∈ L, i = 1, 2, . . . , hn. Let
h′ = h1h2 · · ·hn, then h′ ∈ L and α−1

h = α−1
h′ . Hence we have that⋃

h∈F (n)

αh−1(ω) ⊂
⋃
h∈L

αh−1(ω),

so that

lim sup
n→∞

1
n

log rcp

(
idA,

⋃
h∈F (n)

αh−1

( n−1⋃
i=0

γi
A(ω)

)
,
δ

2

)

6 lim sup
n→∞

1
n

log rcp

(
idA,

n−1⋃
i=0

γi
A

( ⋃
h∈L

αh−1(ω)
)
,
δ

2

)
6 ht(γA).

Since ht(idA oα G, γ, ωK , δ) 6 h(γG) + ht(γA) for all K and δ by Proposition 3.3,
we have that (‡).

(ii) Let (G, θ) be the pair in Proposition 2.3. For a finite set K ⊂ G, let L
be the smallest subgroup of G which contains K. Then L satisfies the condition
(†), and we have (‡) by (i).

(iii) The automorphism γ in 3.2 arises from θ ∈ Aut(G) and an action α of G
on A such that αg = αθ(g) for all g ∈ G. This condition implies that γA commutes
with αg for all g ∈ G. Hence we have (‡) by (ii).

3.5. Corollary. Let A,G, α be the same as in Proposition 3.3. If γ ∈
Aut(AoαG) satisfies

γ(π(A)) = π(A) and γ(λg) = λg, for all g ∈ G,
then

ht(γ) = ht(γA).

Proof. By the monotonicity of ht ([2], Proposition 2.1), ht(γ) > ht(γA). Let
K be a finite subset of G. If γ(λg) = λg for all g ∈ G, then we can choose the

same Følner’s set for
(

n−1⋃
i=0

γi
G(K), δ/2

)
as for (K, δ/2). Let ω be a finite subset

of A. If γ(λg) = λg for all g ∈ G, then γA commutes with αg for all g ∈ G. Hence
by Proposition 3.3 we have

ht(idA oα G, γ, ωK , δ) 6 ht

(
idA, γ,

⋃
h∈F

α−1
h (ω),

δ

2

)
so that ht(γ) 6 ht(γA).

Remark. Corollary 3.5 was shown independently by Dykema and Shlyakht-
enko ([11], Proposition 1.2) for the automorphism γ on the crossed product AoαG
which arises from a σ ∈ Aut(A) and the identity on G.

3.6. Corollary. Let α be an automorphism of a discrete amenable group
G and let α̂ be the automorphism of C∗r (G) induced by α as in 2.4. Then

ht(α̂) 6 h(α).
Proof. In Proposition 3.3, let A be the trivial algebra C. Then AoαG is

nothing but C∗r (G). Applying Proposition 3.3 to γ = α̂, we have ht(α̂) 6 h(α).
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4. ENTROPY OF FREE PRODUCTS

For a set I, let Ai, i ∈ I be a unital C∗-algebra with a state φi whose GNS
representation is faithful. The reduced free product (A,φ) = ∗

i∈I
(Ai, φi) defined

by Voiculescu ([17]; see also [19]) is the pair of a unital C∗-algebra A with unital
embeddings Ai ↪→ A for all i ∈ I and a state φ such that

(i) φ|Ai = φi, for all i ∈ I,
(ii) the family (Ai)i∈I is free in (A,φ),
(iii) A is generated by the family (Ai)i∈I ,
(iv) the GNS reprentation of φ is faithful on A.

Here, the statement (ii) means that φ(a1a2 · · · an) = 0 whenever aj ∈ Aιj , φ(aj) =
0 and ιj 6= ιj+1 for j ∈ {1, 2, . . . , n− 1}.

The state φ is denoted by ∗
i∈I

φi. A reduced word a in (Ai)i∈I is an ele-

ment in A given by an expression of the form a = a1a2 · · · an, where n > 1, ai ∈
Aιi

, φιi
(ai) = 0 and ι1 6= ι2, . . . , ιn−1 6= ιn. The number n is called the length

of the reduced word. Following Dykema ([9]), we call the set {ι1, . . . , ιn} ⊂ I the
alphabet for the word a. The linear span of all reduced words in (Ai)i∈I is dense
in A. Let αi be a ∗-automorphism of Ai, and let φi be an αi-invariant state
of Ai. Then there exists a φ-preserving automorphism α of the algebra A such
that α(a1a2 · · · an) = αι1(a1)αι2(a2) · · ·αιn(an) whenever aj ∈ Aιj , φ(aj) = 0 and
ιj 6= ιj+1 for j ∈ {1, 2, . . . , n− 1}. The automorphism α is denoted by ∗

i∈I
αi.

4.1. Let B be an exact C∗-algebra, and let ψ be a state of B with faithful
GNS-representation. Let G be an amenable discrete group, and let λ be the left
regular representation ofG. LetA be the algebra given by the reduced free product
construction:

(A, φ) = (C∗r (G), τG) ∗ (B,ψ),

where τG is the trace of C∗r (G) such that τG(λg) = 0 for all g ∈ G except the unit.
We use the method in [4] that A is decomposed into the crossed product. We put

Ag = λgBλ
∗
g and φg = φ|Ag for all g ∈ G.

Let A be the C∗-subalgebra of A generated by {λgBλ
∗
g : g ∈ G}. Since {λgBλ

∗
g :

g ∈ G} is a free family with respect to φ, we have that

(A,φ|A) ∼= ∗
g∈G

(Ag, φg).

We give the action α of G on A by αg(a) = λgaλ
∗
g for all g ∈ G and a ∈ A. As we

showed in [4], Claim 4, A is decomposed into the crossed product AoαG. In this
setting, it is obvious (so we omit the proof) that automorphisms of AoαG with
the property (3.1) arise naturally as in the following:
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4.2. Lemma. Under the same notations as in 4.1, let β ∈ Aut(B) with
ψ ◦ β = ψ, and let σ ∈ Aut(G). Then γ = σ ∗ β ∈ Aut(A) is an automorphism
of AoαG which satisfies the condition (3.1). In particular, if σ is the identity
automorphism of G, then the restriction γA of γ to A commutes with the action α.

Theorem 4.3. Let B,ψ and G be the same as in 4.1. If β is an automor-
phism of B preserving ψ, then

ht
(

∗
g∈G

βg

)
= ht(idG ∗ β).

Here, βg is a copy of β for all g ∈ G and idG is the identity automorphism of
C∗r (G).

Proof. We use the same notations as in 4.1. Remark that A is exact by
[8]. We denote by γ the automorphism idG ∗ β of AoαG. Then γ satisfies all
conditions in Corollary 3.5. Hence we have that ht(γ) = ht(γA).

On the other hand, the automorphism γA is conjugate to ∗
g∈G

(αg β α−1
g ).

We denote by γg the restriction of γ to the embedded copy of Ag into A. The
automorphism βg on the embedded copy of B in A is given by βg = αg ◦ γg. Then

∗
g∈G

(αg β α
−1
g ) is conjugate to

(
∗

g∈G
αg

)
∗

g∈G
βg

(
∗

g∈G
α−1

g

)
. Hence, we have that

ht(γA) = ht
(

∗
g∈G

βg

)
so that ht

(
∗

g∈G
βg

)
= ht(idG ∗ β).

In Theorem 4.3, we do not know the relation among the values{
ht

(
∗

16i6n
βi

)}
n∈N

, where each βi is a copy of an automorphism β. If we let

G =
∐

n∈N
Gn, (Gn is a group with |Gn| = n) and if we let γ = idC∗(G) ∗ β for an

automorphism β of a unital C∗-algebra B preserving the given state of B, then

ht(idC∗r (Z2) ∗ γ) = ht(γ ∗ γ ∗ · · · ∗ γ︸ ︷︷ ︸
n times

), for all n ∈ N.

In fact, by Theorem 4.3, ht(idC∗r (Z3)∗γ) = ht(γ∗γ∗γ) > ht(γ∗γ) > ht(idC∗r (Z3)∗γ)
because C∗r (Gn) ⊂ C∗r (G) ∗ B and the restriction of γ to C∗r (Gn) is the identity.
So, ht(γ ∗ γ ∗ γ) = ht(γ ∗ γ) = ht(idC∗r (Z2) ∗ γ). Similarly, for all n ∈ N, we have
the equality. However, we don’t know the relation between ht(β ∗ id) and ht(β).

4.4. Next we show some examples of non-trivial automorphisms β ∈ Aut(B)
that ht(idC∗r (G) ∗ β) = ht(β). They are given as free permutations of the reduced
free products of C∗-algebras, and have 0 entropy. In special cases, β is the free
permutation of the generators of Cuntz algebra O∞ in [7] or C∗r (F∞) of the free
group with infinite generators and ht(β) = 0 ([3], [9]).

Let I be a finite set, and for every ι ∈ I let Cι be a finite dimensional
C∗-algebra with a state µι whose GNS representation is faithful. Let

(C, µ) = ∗
ι∈I

(Cι, µι).

Let J be a set, and for every ζ ∈ J let (Bζ , ψζ) be a copy of (C, µ). Put

(B,ψ) = ∗
ζ∈J

(Bζ , ψζ).
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Let σ be a permutation of J . Then there exists the automorphism σ∗ of B
sending the embedded copy of Bζ in B identically to the embedded copy of Bσ(ζ)

in B for every ζ ∈ J .

Theorem. Under the same notations as in 4.1, assume that (B,ψ) is the
pair arising from the above reduced free product construction. If θ ∈ Aut(G) has
h(θ) = 0, then

ht(θ̂ ∗ σ∗) = 0.

Proof. We denote θ̂ ∗ σ∗ by γ. As in 4.1, A is decomposed into AoαG and
γ is the automorphism of AoαG such that γ(λg) = λθ(g) and γ(Ag) = Aθ(g).
Let Hg = L2(Ag, φg) on which Ag acts via the GNS representation, and let ξg
be the image of the identity of Ag in Hg. Then we may consider A as the C∗-
algebra which acts on the Hilbert space H arising from the reduced free product
(H, ξ) = ∗

g∈G
(Hg, ξg). Let W (A) be the set of reduced words in (Ag)g∈G. To

compute ht(idA oα G, γ, ωK , δ) for finite sets ω ⊂ A and K ⊂ G, it is sufficient to
take a finite set ω ⊂ W (A). We may assume that ω is contained in the unit ball
of A and that each reduced word a ∈ ω has a form that

a = λg1b1λ
∗
g1
· · ·λgn

bnλ
∗
gn
, g1 6= g2, . . . , gn−1 6= gn,

where each bk is contained in the set of the reduced words in (Bζ)ζ∈J so that bk
has a form that bk = b(k, 1) · · · b(k, nk), where b(k, l) ∈ Bζ(k,l) ∩ ker(ψζ(k,l)) and
ζ(k, l) 6= ζ(k, l + 1) for all l, 1 6 l 6 nk − 1.

We denote by Cζ,ι the embedded copy of Cι into Bζ which is obtained by
the natural embedding in the reduced free product construction.

Again, we may assume that each b(k, l) is contained in the set of the reduced
words in (Cζ,ι)ζ∈J,ι∈I so that b(k, l) = c(k, l; 1)·· · ··c(k, l;m(k, l)), where c(k, l; t) ∈
Cι(k,l;t) ∩ ker(µι(k,l;t)), and ι(k, l; t) 6= ι(k, l; t+ 1) for all t, 1 6 t 6 m(k, l)− 1.

Thus we may assume that ω is a finite subset of the reduced words in
{λgCζ,ιλ

∗
g : g ∈ G, ι ∈ I, ζ ∈ J} of finite dimensional C∗-algebras.

Given a finite subset K of G and given δ > 0, let F (n) be a Følner’s set

for
(

n−1⋃
i=0

θi(K), δ/2
)

such that |F (n)| = c

(
n−1⋃
i=0

θi(K), δ/2
)

. Since ht(θ) = 0, we

have by Proposition 3.3 and Lemma 4.2, that

ht(idA oα G, γ, ωK , δ) 6 lim sup
n→∞

1
n

log rcp
(

idA,
⋃

h∈F (n)

α−1
h

( n−1⋃
i=0

γi(ω)
)
,
δ

2

)
.

We denote the set
⋃

h∈F (n)

αh−1

(
n−1⋃
i=0

γi(ω)
)

by ω(n, γ).

Let q be the maximum of the lengths of the words belonging to ω. Then q is
also the maximum of the lengths of the words belonging to ω(n, γ). Let J be the
set of the alphabets for the elements of ω. We denote by J (n, γ) the alphabets for
ω(n, γ), and by d(J (n, γ)) the maximum over (g, ζ, ι) ∈ J (n, γ) of the dimension
of L2(λgCζ,ιλ

∗
g, φ) as a Banach space. Then d(J (n, γ)) is the maximum d of

the dimensions of (Cι)ι∈I . Since A is represented as the C∗-algebra acting on H
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given as the reduced free product Hilbert space of (Hg)g∈G, we have by Dykema’s
estimate in [9], Proof of Theorem 1:

rcp

(
idA, ω(n, γ),

δ

2

)
6 (1 + k|J (n, γ)|kdk).

Here k is an integer which depends only on δ/2 and q. We put JG = {g ∈
G : (g, ζ, ι) ∈ J (n, γ) for some ζ ∈ J, ι ∈ I}, JJ = {ζ ∈ J : (g, ζ, ι) ∈
J (n, γ) for some g ∈ G, ι ∈ I}, and JI = {ι ∈ I : (g, ζ, ι) ∈ J (n, γ) for some g ∈
G, ζ ∈ J}. Then

J (n, γ) ⊂ {h−1θi(g)σi(ζ)ι : h ∈ F (n), g ∈ JG, ζ ∈ JJ , ι ∈ JI}.

This implies that |J (n, γ)| 6 n2|F (n)| |JG| |JJ | |JI | so that

ht(idA oα G, γ, ωK , δ) 6 kh(θ,K, δ) = 0.

Hence we have that h(θ̂ ∗ σ∗) = ht(γ) = 0.

Remark. (1) The proof of Theorem 4.4 holds in the case where I is a one
point set and σ∗ = ∗

ι∈I
αζ , where αζ is a ψζ-preserving automorphisms of Bζ .

(2) The restriction γA of γ to A in the proof of Theorem 4.4 is the same kind
of automorphism as in Theorem from [9], and ht(γA) = 0. Hence Theorem 4.4
gives an example for γ ∈ Aut(AoαG) such that ht(γ) = ht(γA) + ht(γG).

Corollary. Assume that θ ∈ Aut(G) has h(θ) = 0.
(i) If σ∗ ∈ Aut(O∞) is a permutation of the generators of the Cuntz algebra

O∞, then ht(θ̂ ∗ σ∗) = 0.
(ii) If σ∗ is the automorphism of the type II1-factor L(F∞) induced by a

permutation of the generators of the free group F∞, then the Connes-Stφrmer
entropy H(θ̄∗σ∗) = 0. Here θ̄ is the automorphism of the finite group von Neumann
algebra L(G) induced by θ.

Proof. Let (T , µ) be the pair of the Toeplitz algebra T and the state µ with
µ(vv∗) = 0 for the generator v of T . Then (T , µ) is embedded into the free product
(C, µ) for a suitable (Cι, µι)ι∈I , and the pair (C∗r (Z), τZ) is also embedded into the
free product (C, µ) for a suitable (Cι, µι)ι∈I ([9], Examples 7).

By the monotonicity of ht(·) and by Theorem 4.4 we have ht(θ̂ ∗ σ∗) = 0 for
the σ∗ of O∞ or of C∗r (F∞).

In general, the topological entropy dominates the CNT-entropy. Hence we
have that hτG∗τF∞

(θ̂ ∗ σ∗) = 0. This implies that the Connes-Størmer entropy
H(θ̄ ∗ σ∗) = 0.

Acknowledgements. The author thanks Nathaniel Brown for pointing out a gap in
the preliminary version of this paper and kind communications. She also thanks the
referee for many valuable comments.

Note added in proof. After this paper was accepted, more general results on free
products were obtained by Brown-Dykema-Shlyakhtenko.
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