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Abstract. It is shown that finitely many mutually orthogonal pure states
on a JB algebra with σ-finite covers restrict simultaneously to pure (i.e.
multiplicative) states on some maximal associative JB subalgebra. This re-
sult does not hold for any infinite system of orthogonal pure states; a coun-
terexample is constructed on any infinite dimensional, separable, irreducible
C∗-algebra with non-commutative quotient by the compact operators. Nev-
ertheless, under some natural additional conditions the restriction property
does hold for all systems of orthogonal pure states. Finally, it is shown that
any C∗-extreme completely positive map on a C∗-algebra A with σ-finite rep-
resentation and values in a finite dimensional algebra is multiplicative (even
B-morphism) on some maximal abelian subalgebra B of A.
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1. INTRODUCTION

One of the classical results in the theory of operator algebras says that any pure
completely positive map and, in particular, any pure state on an abelian C∗-algebra
is multiplicative ([8], [22]). This fact illustrates a nice interplay between algebraic
properties of states and geometric and order structure of the state space. For
non-abelian algebras extremal positive maps are far from being multiplicative in
general. Therefore a natural question arises as to whether, at least, a pure (respec-
tively extremal) positive map restricts to a multiplicative (respectively extremal)
map on some maximal abelian subalgebra. This problem, which is a central topic
of this paper, has been studied widely in the realm of C∗-algebras. Besides its im-
portance for the general theory of states on operator algebras it is relevant to the
axiomatic foundations of quantum theory because it relates C∗-algebraic quantum
mechanics to classical one. This line of research becomes topical in the light of the
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recent revival of the interest in the basic issues of the quantum theory (see e.g.

[12], [23]).

The aim of this paper is to study the restriction property of extremal positive

maps on both C∗-algebras and Jordan algebras. Our discussion falls into two parts.

In the first part we study systems of pairwise orthogonal pure states. It was

proved in [1] and [3] that given a finite system of orthogonal pure states on a sep-

arable C∗-algebra we can find a maximal abelian subalgebra such that all states

are pure (i.e. multiplicative) on it. We say in that case that the system of states

in question enjoys the restriction property. On the other hand it was proved in

[11] that any pure state on a C∗-algebra (not necessarily separable) whose GNS

representation acts on a separable Hilbert space is pure on some maximal abelian

subalgebra. We provide a simultaneous generalization of the above mentioned

results for finite systems of orthogonal pure states with separable GNS represen-

tations. Moreover, as it turns out that the restriction property depends purely on

the Jordan structure of operator algebras, we will formulate the results in terms

of Jordan-Banach algebras. The transition from the C∗-case to the Jordan case

requires some new ideas. Our main result is the following: Let %1, %2, . . . , %n be a

system of mutually orthogonal pure states on a JB algebra A such that the central

covers c(%1), c(%2), . . . , c(%n) are σ-finite in the double dual A∗∗ . Then there is

a maximal associative subalgebra B of A such that %1, %2, . . . , %n are multiplica-

tive on B. This result cannot be generalized to infinite systems of orthogonal

pure states. We construct a counterexample showing that nearly all irreducible

separable C∗-algebras admit systems of orthogonal pure states which are not simul-

taneously multiplicative on any maximal abelian subalgebra. However, we prove

that the restriction property does hold for infinite systems if one assumes some

additional natural conditions such as approaching to infinity and inequivalence

(compare [5]).

In the second part of the paper we deal with the restriction property of ex-

treme completely positive maps between C∗-algebras. As the main result of this

part we prove that any C∗-extreme completely positive map with separable rep-

resentation which has values in a finite dimensional algebra is multiplicative, and

thereby C∗-extreme by [14] Proposition 1.2, on some maximal abelian subalgebra.

Since states are very special (one-dimensional) completely positive maps the re-

sults of this part strengthen hitherto known results on the restriction property of

pure states obtained in [1], [3], [11], [19].
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2. RESTRICTING ORTHOGONAL PURE STATES ON JB ALGEBRAS

We recall a few definitions and fix the notation. Throughout this part let A be a
JB algebra, i.e. a real Banach algebra with a product ◦, such that the following
conditions hold for all a, b ∈ A:

(i) a ◦ b = b ◦ a,
(ii) a ◦ (a2 ◦ b) = a2 ◦ (a ◦ b),
(iii) ‖a2‖ = ‖a‖2,
(iv) ‖a2 + b2‖2 > ‖a2‖.
For all unmentioned details on Jordan algebras we refer the reader to the

monograph [18]. For a ∈ A we shall denote by Ua the positive linear map of A into
A defined by Ua(x) = 2a◦(a◦x)−a2◦x. We say that two elements a, b ∈ A operator
commute if a◦(b◦x) = b◦(a◦x) for each x ∈ A. LetM ⊂ A. The symbolM ′ will be
reserved for the set of all elements of A operator commuting with all elements inM .
The set M ′ is always a JB subalgebra. Indeed, by [18], p. 44, elements a and b in
A operator commute if and only if they generate an associative subalgebra. Hence,
if a and b operator commute then a and b2 also operator commute. Therefore, M ′

is closed with respect to squares. Since M ′ is obviously a closed subspace, we see
that it is a subalgebra. The algebra A will always be identified canonically with the
weak∗-dense subalgebra of its double dual A∗∗ . In the same way we shall identify
functionals in A∗ with their canonical normal extension to A∗∗ . A pure state of A
is an extreme point of the positive part of the unit sphere of the dual A∗. For any
pure state % on A there is a uniquely defined minimal projection in A∗∗ , denoted
by s(%), such that Us(%)(a) = %(a)s(%) for each a ∈ A. By c(%) we shall denote
the central support of %, i.e. the smallest central projection in A∗∗majorizing
the projection s(%). Two pure states % and ϕ are either equivalent, meaning that
c(%) = c(ϕ), or inequivalent, meaning that c(%) ◦ c(ϕ) = 0. Recall that when A
is a self-adjoint part of a C∗-algebra endowed with the standard anticommutant
product then c(%)A∗∗ (= Uc(%)(A∗∗ )) is isomorphic to the self-adjoint part of the
algebra B(H%) of all bounded operators acting on the Hilbert space H% resulting
from the GNS construction corresponding to %. Pure states % and ϕ are said to
be orthogonal if ‖%− ϕ‖ = 2, or equivalently, if s(%) ◦ s(ϕ) = 0.

A projection p in A∗∗ is called open if there is a net (aα) of positive elements
in A such that aα ↗ p. A projection p in A∗∗ is said to be closed if 1− p is open.
The product p ◦ q of two operator commuting open projections p and q is again
open (see [2], Theorem II.7 for the C∗-case, the proof for the Jordan algebras is
similar). The support projection s(%) of a pure state % is always closed. The range
projection r(a) of a ∈ A is always open. (The range projection of a ∈ A∗∗ is a
smallest projection p ∈ A∗∗ such that p◦a = a). Finally, A is called σ-finite if any
system of mutually orthogonal projections in A is at most countable. A projection
p ∈ A is called σ-finite if the algebra Up(A) is σ-finite.

In order to prove the main result we shall need the following auxiliary lem-
mas.
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2.1. Lemma. Let %1, %2, . . . , %n be orthogonal pure states on a JB algebra
A such that c(%i)A∗∗ is σ-finite for each i = 1, 2, . . . , n. Suppose x ∈ A operator
commutes with all support projections s(%1), s(%2), . . . , s(%n). Then there is an
element a ∈ A,

0 6 a 6 r(x) ◦
(

1−
n∑

i=1

s(%i)
)
,

satisfying

e ◦ r(a) =
(
e−

n∑
i=1

s(%i)
)
◦ r(x),

where e is the supremum projection of the set {c(%1), c(%2), . . . , c(%n)} in the pro-
jection lattice of A∗∗ .

Proof. As all minimal projections s(%1), s(%2), . . . , s(%n) operator commute

with r(x), an element p =
(
e−

n∑
i=1

s(%i)
)
◦r(x) is a projection. If p = 0 we can set

a = 0. Suppose that p is nonzero. By the assumption p is σ-finite. Any projection
in eA∗∗ is a union of minimal projections (see the structure theory of JW factors
[18]). Therefore p can be written as

p =
∑
α∈I

eα,

where each eα is a minimal projection in A∗∗ and I is a subset of positive integers.
Let us choose states ωα’s with the supports s(ωα) = eα, α ∈ I, and set

ω =
∑
α∈I

λαωα, where 0 < λα < 1,
∑
α∈I

λα = 1.

It can be verified easily that the support of ω is exactly p. Since the projection

r(x) ◦
(

1 −
n∑

i=1

s(%i)
)

is open we can select a net (aγ) ⊂ A of positive elements

such that aγ ↗ r(x)◦
(

1−
n∑

i=1

s(%i)
)

. As ω(p) = 1 and p 6 r(x)◦
(

1−
n∑

i=1

s(%i)
)
,

ω

(
r(x) ◦

(
1 −

n∑
i=1

s(%i)
))

= 1 and so ω(aγ) ↗ 1. Hence, there is a subsequence

(aj) (finite or infinite) of (aγ) such that ω(aj) ↗ 1. The sequence (r(aj)) being
increasing there exists a projection q ∈ A∗∗ such that r(aj) ↗ q. Now q 6

r(x) ◦
(

1−
n∑

i=1

s(%i)
)

and ω(q) = 1, which implies

r(x) ◦
(
e−

n∑
i=1

s(%i)
)

6 q 6 r(x) ◦
(

1−
n∑

i=1

s(%i)
)

and, in turn,

e ◦ q =
(
e−

n∑
i=1

s(%i)
)
◦ r(x).
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Putting

a =
∑

j

1
2j
aj

we get an element in A satisfying r(a) = q and the proof is completed by the
equality above.

2.2. Lemma. Let %1, %2, . . . , %n be orthogonal pure states on a JB alge-
bra A. Then there are norm one, positive, and mutually orthogonal elements x1,
x2, . . . , xn ∈ A such that

xi ◦ s(%j) = δijs(%j)

for all i, j = 1, . . . , n.

Proof. By [20], Proposition 2.3 there are positive, mutually orthogonal, norm
one elements x1, x2, . . . , xn ∈ A such that

%j(xi) = δij , i, j = 1, . . . , n.

Fix an index i. Then

Us(%j)(xi) = %j(xi)s(%j) = 0 whenever i 6= j.

According to [18], 4.1.14, p. 98, p ◦a = 0 for a projection p and a positive element
a in JB algebra whenever Up(a) = 0. Therefore

xi ◦ s(%j) = 0 whenever j 6= i.

Similarly, %i(xi) = 1 implies %i(1 − xi) = 0 and it follows s(%i) = s(%i) ◦ xi. The
proof is completed.

The following theorem extends Theorem 1.1 from [3] and Theorem 1 from
[11], and was proved for individual state in [19].

2.3. Theorem. Let %1, %2, . . . , %n be orthogonal pure states on a JB algebra
A such that c(%i)A∗∗ is σ-finite for all i = 1, . . . , n. Then there is a maximal
associative subalgebra B in A such that every state %i restricts to a pure state
on B.

Proof. Let us take positive, norm one, mutually orthogonal elements x1,
x2, . . . , xn ∈ A with the property

xi ◦ s(%j) = δijs(%j), i, j = 1, . . . , n,

the existence of which is guaranteed by Lemma 2.2. According to Lemma 2.1 we
can find elements ai ∈ A satisfying for all i = 1, . . . , n

0 6 ai 6 r(xi) ◦
(

1−
n∑

i=1

s(%i)
)

and

(2.1) e ◦ r(ai) =
(
e−

n∑
i=1

s(%i)
)
◦ r(xi),
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where e =
n∨

i=1

c(%i). Let us put x = x1+x2+· · ·+xn. Since x1, . . . , xn are mutually

orthogonal r(x) = r(x1) + · · ·+ r(xn) and by (2.1)

(2.2) e ◦
n∑

i=1

r(ai) =
(
e−

n∑
i=1

s(%i)
)
◦ r(x).

Letting bi = xi − ai, i = 1, . . . , n, we get a system of orthogonal (and thereby
operator commuting) elements in A. Moreover, bi’s are norm one since 1 > xi >
xi − ai > −1 and %i(bi) = 1. Let us choose a maximal associative subalgebra C in
the algebra

X = U
r(x)◦

(
1−

n∑
i=1

s(%i)

)(A∗∗ ) ∩A ∩ {b1, b2, . . . , bn}′.

IfX is zero, we set C = {0}. Let B be the algebra generated by b1, b2, . . . , bn and the
set C. We shall show that B is a maximal associative subalgebra of Ur(x)(A∗∗ )∩A.
For this let us take an element u ∈ Ur(x)(A∗∗ ) ∩ A operator commuting with all
elements in B. For proving that u ∈ B we shall consider the following auxiliary
element

h = e ◦
((

1− b1 − b2 − · · · − bn
)
◦ r(x)

)
= e ◦ (r(x)− x1 − x2 − · · · − xn) + e ◦ (a1 + a2 + · · ·+ an)

> e ◦ (a1 + a2 · · ·+ an).

Hence,

(2.3) e ◦ r(x) > r(h) >

(
e−

n∑
i=1

s(%i)
)
◦ r(x)

by (2.2). As ai◦s(%j) = 0 for all i, j = 1, . . . , n we get bi◦s(%j) = (xi−ai)◦s(%j) =
δijs(%i) and so

(2.4) h ◦ s(%i) = r(x) ◦ s(%i)− bi ◦ s(%i) = s(%i)− s(%i) = 0

for all i = 1, . . . , n. (In the last equality we used the fact that xi ◦ s(%i) = s(%i)
and also r(xi) ◦ s(%i) = s(%i)). Thus, combining (2.3) and (2.4), we conclude

r(h) =
(
e−

n∑
i=1

s(%i)
)
◦ r(x).

As u operator commutes with h we see that(
u ◦

n∑
i=1

s(%i)
)
◦ h = u ◦

( n∑
i=1

s(%i) ◦ h
)

= 0.

By this

0 =
(
u ◦

n∑
i=1

s(%i)
)
◦ r(h) =

(
u ◦

n∑
i=1

s(%i)
)
◦

((
e−

n∑
i=1

s(%i)
)
◦ r(x)

)

= u ◦
n∑

i=1

s(%i)−
(
u ◦

n∑
i=1

s(%i)
)
◦

n∑
i=1

s(%i).
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In other words, u ◦
n∑

i=1

s(%i) = U n∑
i=1

s(%i)
(u), or equivalently, u operator commutes

with
n∑

i=1

s(%i). Let us now put

(2.5) v = u−
n∑

i=1

%i(u)bi.

The element v operator commutes with
n∑

i=1

s(%i) and so v◦
n∑

i=1

s(%i) = U n∑
i=1

s(%i)
(v).

The equality

%j

(
U n∑

i=1

s(%i)
(v)

)
= %j(v) = %j(u)− %j(u) = 0, i = 1, . . . , n

implies immediately U n∑
i=1

s(%i)
(v) = 0 and so v ◦

n∑
i=1

s(%i) = 0. In summary,

v = U
r(x)◦

(
1−

n∑
i=1

s(%i)

)(v) ∈ U
r(x)◦

(
1−

n∑
i=1

s(%i)

)(A∗∗ ) ∩A.

Therefore v ∈ C and immediately u ∈ B showing that B is a maximal associative
subalgebra of

Ur(x)(A∗∗ ) ∩A.

Further, since %i(bi) = ‖bi‖ = 1 the Schwarz inequality entails that states %1,
%2, . . . , %n are multiplicative, and thereby pure, on B.

Finally, let us extend B to a maximal associative subalgebra B of A and show
that B satisfies all statements of the Theorem 2.3. Since B∩Ur(x)(A∗∗ ) = B, B is
a hereditary subalgebra of B. Indeed, whenever 0 6 f 6 g with f ∈ B and g ∈ B,
‖g‖ = 1, then f 6 r(x) and so f ∈ B. It follows that all states %1, %2, . . . , %n are
pure on B, which completes the proof.

Because of the one-to-one correspondence between associative JB algebras
and abelian C∗-algebras given by the complexification we get by specializing The-
orem 2.3 to C∗-algebras both Theorem 1.1 from [3] and Theorem 1 from [11].

In the concluding part of this section we shall deal with possible extensions
of Theorem 2.3 to systems of infinitely many orthogonal pure states. First we
show that Theorem 2.3 does not hold for arbitrary system of orthogonal pure
states. We exhibit a counterexample on any self-adjoint part of irreducible separa-
ble C∗-algebra which is not a commutative extension of the algebra of all compact
operators.
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2.4. Counterexample. Let A be a separable unital infinitely dimensional
C∗-algebra acting irreducibly on a Hilbert space H. Let K be the algebra of all
compact operators acting on H. Suppose that A/A∩K is non-commutative. Then
there is a sequence of pure, mutually orthogonal states on A which do not restrict
simultaneously to pure states on any maximal abelian subalgebra of A.

Proof. Since A acts irreducibly, either K ⊂ A or K∩A = {0}. Therefore our
discussion falls into two cases:

(a) Suppose A ∩ K = {0}. In that case A/A ∩ K = A is automatically
non-commutative because A has an infinite dimension. One can associate to any
orthonormal basis (ξn) of H a system of vector states (ωξn

), ωξn
(a) = (aξn, ξn),

for a ∈ A, which constitutes an orthogonal sequence of pure states on A. We show
that at least one sequence (ωξn

) of the form stated above fulfils the statement of
the counterexample. Let us suppose the contrary. By the stronger version of the
Glimm’s lemma [16] as stated in [5], Remark on p. 263–264, given a state f on A,
there is an orthonormal basis (ξn) of H such that

f(a) = lim
n→∞

(aξn, ξn) for each a ∈ A.

Let Bf be a maximal abelian subalgebra such that all states (ωξn) are pure states
on Bf . Then, of course, f is multiplicative on Bf . In other words, any state of A is
multiplicative on some maximal abelian C∗-subalgebra of A. Let us now choose a
sequence (xn) of unit vectors in H which is dense in the unit sphere of H. By the

argument above, for a state f =
∞∑

n=1

1
2nωxn

, there is a maximal abelian subalgebra

Bf such that f is multiplicative on Bf . As

1
2n
ωxn 6 f for all n on Bf

we see that all states (ωxn
) coincide with f on Bf and so they are multiplicative

on Bf . Obviously, for any a ∈ A
(axn, xn) > 0 for all n if and only if a > 0,

which implies that the weak∗-closure of the set (ωxn
) contains all pure states of

A (see e.g. [21], Theorem 4.3.8, p. 161). It means that any pure state of A is
multiplicative on Bf . Take now self-adjoint elements a ∈ Bf , b ∈ A and a pure
state % of A. The state % is definite on a. Thus,

%(i(ab− ba)) = 0.

It gives immediately ab− ba = 0. Hence, Bf is contained in the center Z(A) of A
and so Bf = Z(A) by maximality. As the center is a maximal abelian subalgebra
we infer that A has to be abelian — a contradiction with our assumption.

(b) Let us now consider the case of K ⊂ A that requires a different technique.
The quotient algebra A/K is non-abelian by the assumption, hence we can find a
self-adjoint element â in A/K and a pure state %̂ of A/K such that %̂(â)2 6= %̂(â2)
(see e.g. the reasoning in the part (a) above). We can lift â and %̂ to the self-adjoint
element a in A and the pure state % on A with %(a)2 6= %(a2). Making use of the
Weyl-von Neumann theorem (see e.g. [13], p. 59) we can find for any ε > 0 an
orthonormal basis (ξn) of H and a compact operator k ∈ K, ‖k‖ 6 ε, such that

a = ad + k,
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where ad ∈ A is a diagonal self-adjoint operator with respect to the basis (ξn) of
H. By taking k sufficiently small we can arrange for %(a2

d) 6= %(ad)2. Suppose that
there is a maximal abelian subalgebra B of A such that the sequence (ωξn) ∪ {%}
of orthogonal pure states gives the sequence of pure states on B and try to reach
a contradiction. Take a self-adjoint element b ∈ B. The definitness of ωξn

on b
implies that b−(bξn, ξn)1 ∈ {x ∈ A | ωξn

(x∗x) = 0} ([6]). Hence, bξn = (bξn, ξn)ξn
and we have derived that each vector ξn is an eigenvector of b. Alternatively, b
is diagonal with respect to the basis (ξn) and so B is the algebra of all such
operators lying in A by maximality. As ad ∈ B and % is not definite on ad we get
a contradiction. The proof is completed.

As a corollary of the Counterexample 2.4 we get, among others, that the
restriction property does not hold for all infinite systems of orthogonal pure states
on primitive antiliminal C∗-algebras. It is also interesting to remark that the
preceeding counterexample implies that there is a separable, irreducible subalgebra
of the Calkin algebra which admits a countable system of orthogonal pure states
without the restriction property. This is in contrast with the remarkable result
of J. Anderson ([7]) to the effect that any countable system (fn) of (even not
necessarily pure and not necessarily mutually orthogonal) states on the Calkin
algebra does have the restriction property.

In the light of the Counterexample 2.4 we need some additional conditions
for a system of orthogonal pure states to have the restriction property. Following
[5] we say that a sequence of pure states (%n) on a JB algebra A approaches to
infinity if lim

n→∞
%n(a) = 0 for all a ∈ A such that the spectrum of a contains zero.

2.5. Theorem. Let (%n) be a sequence of orthogonal pure states on a JB
algebra A approaching to infinity and such that c(%n)A∗∗ is σ-finite for all n =

1, 2, . . .. Suppose further that
∞∑

n=m
s(%n) is a closed projection for all m. Then

there a maximal associative subalgebra B of A such that all states %n’s restrict to
pure states on B.

Proof. The proof of the Theorem 2.5 can be obtained by modifying the ar-
guments in the proof of the Theorem 2.3. Indeed, there is a sequence (xn) of
orthogonal, positive, norm one elements in A with

xi ◦ s(%j) = δijs(%j), i, j = 1, 2, . . . .

(Using arguments in Lemma 2.2 this can be obtained by modifying the proof for

the C∗-case in Theorem 2.7 from [5].) Employing the fact that 1−
∞∑

i=1

s(%i) is an

open projection we can show as in the proof of Lemma 2.1 that for each i there is
an element ai with

0 6 ai 6 r(xi) ◦
(

1−
∞∑

j=1

s(%j)
)

and

e ◦ r(ai) =
(
e−

∞∑
j=1

s(%j)
)
◦ r(xi),
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where e =
∞∨

j=1

c(%j). We set

x =
∞∑

i=1

1
2i
xi and bi = xi − ai.

Then r(x) =
∞∑

i=1

r(xi). Let now C be a maximal associative subalgebra in the

algebra
U

r(x)◦
(

1−
∞∑

j=1

s(%j)

)(A∗∗ ) ∩A ∩ {b1, b2, . . .}′

and B be a subalgebra generated by the set {bi}∞i=1∪C. We show that B is maximal
associative. For this, let us choose an auxiliary element

h = e ◦
((

1−
∞∑

i=1

bi

)
◦ r(x)

)
.

Then (see the proof of Theorem 2.1)

r(h) =
(
e−

∞∑
i=1

s(%i)
)
◦ r(x).

Take an element u ∈ Ur(x)(A∗∗ )∩A operator commuting with B. Without loss of
generality we can suppose that the spectrum of u contains zero and set

v = u−
∞∑

i=1

%i(u)bi.

Observe that the series on the right hand side converges in A since lim
n→∞

%n(u) = 0
and bi’s are orthogonal. Now we can proceed as in the proof of Theorem 2.3 and
obtain that v ∈ C proving that B is maximal. The rest of the proof consists in
extending B to a maximal associative subalgebra B of A with the desired property
and it is the same as in the concluding part of the proof of Theorem 2.3.

For a separable non-unital JB algebra the condition that the sequence of

infinitely many pure states (%n) tends to infinity and
∞∑

n=m
s(%n) is closed for all

m is equivalent to the condition that there is a strictly positive element a ∈
A such that each %n is definite on a and lim

n→∞
%n(a) = 0 (see [5], Theorem 2.7

which can be directly generalized to Jordan algebras). Also, a straightforward
transcription of the C∗-arguments in [5] gives that any orthogonal system of pure
states %1, %2, . . . on a separable JB algebra with finite equivalent classes the size
of which is uniformly bounded (such a system is called nearly inequivalent) obeys
the assumption of Theorem 2.5 and thereby enjoys the restriction property.
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3. RESTRICTING COMPLETELY POSITIVE MAPS ON C∗-ALGEBRAS

In this section we shall deal with the restriction property of extreme completely
positive maps on C∗-algebras. All C∗-algebras will be assumed to be unital. Let
A be a C∗-algebra and B(H) be the algebra of all bounded operators acting on
a Hilbert space H. By the symbol Mn(A) we shall denote the C∗-algebra of all
n × n matrices over A. A linear map ϕ : A → B(H) is called completely positive
if, for each n, the map ϕ(n) : Mn(A) →Mn(B(H)) given by

ϕ(n)((aij))ij = (ϕ(aij))ij

is positive. According to the fundamental Stinespring’s theorem ([25]) any com-
pletely positive map is similar to a representation π of A on a Hilbert space K in
the sense of the following equality

ϕ(a) = V ∗π(a)V,

where V is a bounded operator of H into K and [π(A)V (H)] = K. (From now on
the symbol [X] shall denote the norm closed linear span of the set X). Moreover,
a completely positive map is called unital if it preserves the unite. In that case
the Stinespring’s decomposition simplifies to V being an isometric embedding of
H into K. So we can (and shall) identify H with the subspace of K and write

ϕ(a) = Pπ(a)P |H,

where P is the orthogonal projection of K onto H. Then [π(A)H] = K. There
are a few generalizations of the concept of pure state to the context of completely
positive maps. At first, a completely positive map ϕ : A → B(H) is called pure if
the only completely positive map ψ for which ψ 6 ϕ is a multiple of ϕ. (We use
the notation ψ 6 ϕ if ϕ − ψ is completely positive.) A completely positive map
ϕ is pure if and only if its representation π in the Stinespring’s decomposition
is irreducible [8], Corolarry 1.4.3. A unital completely positive map ϕ is called

C∗-extreme if the following condition holds: If ϕ =
n∑

i=1

t∗iϕiti, where ti’s are

invertible operators in B(H),
n∑

i=1

t∗i ti = 1, and ϕi’s are completely positive unital

maps of A into B(H), then all maps ϕi’s are unitarily equivalent to ϕ. Any
pure completely positive unital map is C∗-extreme. The converse does not hold.
Recently, it was shown by D.R. Farenick and H. Zhou ([15]) that if dimH < ∞
then every completely positive C∗-extreme map ϕ : A → B(H) is a special direct
sum of pure completely positive maps. More precisely, a sequence ϕπ

1 , ϕ
π
2 , . . . , ϕ

π
n

of unital completely positive maps, each mapping A into B(Ki), is called a nested
sequence corresponding to the representation π : A → B(K0) if

ϕπ
1 = w∗1πw1 and ϕπ

i = w∗i ϕ
π
i−1wi for i > 2

where each wi is an isometric embedding of Ki into Ki−1. By Theorem 2.1 from
[15] a completely positive map ϕ : A → B(H) is a C∗-extreme map if and only if
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there is a sequence of irreducible inequivalent representations π1, π2, . . . , πk of A
such that ϕ is unitarily equivalent to the direct sum

(3.1)
k∑

i=1

⊕
( ni∑

j=1

ϕπi
j

)
,

where each sequence ϕπi
1 , . . . , ϕ

πi
ni

is a nested sequence of completely positive maps
corresponding to πi. We shall call a completely positive map ϕ σ-finite if the
representation in its Stinespring’s decomposition acts on a separable Hilbert space.

As opposed to states, pure completely positive map on a separable algebra
need not restrict to pure completely positive map on any maximal abelian sub-
algebra. Indeed, let us consider an irreducible C∗-algebra A acting on a Hilbert
space H with dim H > 1. Since the identity map π is an irreducible representation
of A, π is a pure map. Any maximal abelian subalgebra B of A is of dimension
at least two. Thus the restriction of π to B cannot be a pure map because any
pure map on an abelian C∗-algebra has to be a complex-valued homomorphism.
Nevertheless, π is obviously multiplicative on B. So an appropriate formulation
of the restriction property for completely positive maps is the property of being
multiplicative on some maximal abelian subalgebra. The following theorem (gen-
eralization of Theorem 1 from [11]) shows that any C∗-extreme, finite dimensional,
completely positive map enjoys this property.

3.1. Theorem. Let ϕ : A → B(H) be C∗-extreme, completely positive, σ-
finite map, where A is a C∗-algebra and dimH < ∞. Then there is a maximal
abelian subalgebra B of A such that ϕ|B is multiplicative.

Proof. Any C∗-extreme completely positive map with values in finite di-
mensional Hilbert space is unitarily equivalent to a sequence of compressions of
irreducible representations. So we can suppose that that ϕ is of the form (3.1).
Assume each irreducible representations πi acts on a Hilbert space Hi. Under
obvious identification we can find, for each i, a decreasing sequence of non-zero
finite dimensional orthogonal projections P i

1 ⊇ · · · ⊇ P i
ni

in B(Hi) such that

(3.2) ϕπi
j (a) = P i

jπi(a)P i
j |Pj(Hi) i = 1, . . . , k; j = 1, . . . ni.

Now, let us pick an orthonormal basis (xn)l
n=1 of finite dimensional Hilbert space

K = P 1
1 (H1)⊕ P 2

1 (H2)⊕ · · · ⊕ P k
1 (Hk)

such that each Hilbert space P i
j (Hi) (viewed as a subspace of K) has an orthonor-

mal basis which is a subsequence of (xn)l
n=1. Let us define states %1, . . . , %l by

%m(a) = (πs(a)xm, xm), a ∈ A,

where s is such that xm ∈ P s
1 (Hs). The system %1, . . . , %l is a finite family of

mutually orthogonal pure states on A. Employing Theorem 2.3 we can find a
maximal abelian subalgebra B of A such that the states %1, %2, . . . , %l restrict to
pure states on B. We show that each direct summand in (3.1) is multiplicative on
B. For this it suffices to consider the case i = 1. Fix 1 6 j 6 n1. By construction,
there is an orthonormal basis ξ1, . . . , ξr of P 1

j (H1) such that the corresponding
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sequence of vector states ψ1, . . . , ψr is a subsequence of %1, . . . , %l. By the unique-
ness of the GNS construction the spaces [π1(B)ξh], where h = 1, 2, . . . , r, have to
be one-dimensional. Taking into account that π1(1)ξh = ξh we see that

[π1(B)ξh] = [ξh].

Thus, π1(b)ξh = ψh(b)ξh for all b ∈ B. Fix now b ∈ B and z ∈ P 1
j (H1). Then

ϕπ1
j (b)z = P 1

j π1(b)P 1
j z = P 1

j π1(b)z =
r∑

h=1

(π1(b)z, ξh)ξh

=
r∑

h=1

(z, π1(b∗)ξh)ξh =
r∑

h=1

(z, ψh(b∗)ξh)ξh =
r∑

h=1

ψh(b)(z, ξh)ξh.

In other words,

(3.3) ϕπ1
j (b) =

r∑
h=1

ψh(b)Pξh
,

where Pξh
is the orthogonal projection on [ξh]. Therefore ϕπ1

j is multiplicative on
B. The proof is complete.

We conclude the paper with some comments on Theorem 3.1. First of all,
when A is separable then any C∗-extreme completely positive map ϕ : A →
B(H), dimH <∞, restricts automatically to multiplicative map on some maximal
abelian subalgebra B of A. In the light of Theorem 2.5 the Theorem 3.1 holds for
dimH = ∞ on condition that we can find a sequence of vector states corresponding
to ϕ which are separated in some way. Also assumption that ϕ is σ-finite can be
removed if A is postliminal and ϕ is pure. (This will be done in a subsequent
paper.)

Finally, Theorem 3.1 can be strengthen by showing that ϕ is even B-morphism.
Let B be a subalgebra of A. A unital completely positive map ϕ : A → B(H) is
called B-morphism if

ϕ(ba) = ϕ(b)ϕ(a) for all b ∈ B, a ∈ A.

B-morphisms play an important role in dilatation theory of completely positive
maps ([9] and [10]). The maximal abelian subalgebra B of A in Theorem 3.1 as
constructed in its proof is such that ϕ is even B-morphism. Indeed, reviewing
the proof of Theorem 3.1, and using its notation, it is enough to verify that any
direct summand, let us say ϕπ1

j , in (3.1) is a B-morphism. Take b ∈ B, a ∈ A, and
x ∈ H1. Then

P 1
j π1(b)x =

r∑
h=1

(π1(b)x, ξh)ξh =
r∑

h=1

(x, π1(b∗)ξh)ξh =
r∑

h=1

ψh(b)(x, ξh)ξh.

Alternatively,

P 1
j π1(b) =

r∑
h=1

ψh(b)Pξh
.
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Hence,
ϕπ1

j (ba) = P 1
j π1(ba)P 1

j |P 1
j (H1) = P 1

j π1(b)π1(a)P 1
j |P 1

j (H1)

= P 1
j

r∑
h=1

ψh(b)Pξh
π1(a)P 1

j |P 1
j (H1)

= P 1
j

r∑
h=1

ψh(b)Pξh
P 1

j π1(a)P 1
j |P 1

j (H1) = ϕ(b)ϕ(a).
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