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1. INTRODUCTION

Let (G,X) be a locally compact Hausdorff transformation group: thus G is a
locally compact Hausdorff group and X is a locally compact Hausdorff space to-
gether with a jointly continuous map (s,z) — s-x from G x X to X such that
s+ (t-x)=st -z and ez = x. The associated transformation-group C*-algebra
Co(X) x G is the C*-algebra which is universal for the covariant representations
of the C*-dynamical system (Co(X), G, ) in the sense of [20]. More concretely,
Co(X) x G is the enveloping C*-algebra of the Banach x-algebra L!(G, Co(X)) of
functions f : G — Cy(X) which are Bochner integrable with respect to a fixed left
Haar measure on G (cf. Section 7.6 from [18]). In the main results, we will always
assume that G and X are second countable so that Cy(X) x G is separable. In
our main results, we assume either that G is abelian or that G acts freely.

It is natural to attempt to characterize properties of Cy(X) x G in terms of
the dynamics of the action of G on X, and there are a large number of results of this
sort in the literature ([9], [13], [23], [24], [25], [15] and [16]). We were motivated
by a particularly nice example due to Green (Corollary 18 of [13]) in which he
was able to characterize the closure I of the ideal of continuous-trace elements in
Co(X) x G in the case G acts freely and Cyp(X) x G is postliminal. (Since we’ll be
working exclusively with separable C*-algebras, we will not distinguish between
Type I and postliminal algebras.) There are three ingredients required for this
sort of project. First, one needs a global characterization of algebras Co(X) x G
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which have continuous trace. Second, one needs to know that the ideal I is of
the form Cy(Y) x G for an open G-invariant set ¥ in X. And third, one wants a
straightforward characterization of Y in terms of the dynamics. Assuming that G
acts freely, Green showed that Cy(X) x G has continuous trace if and only if every
compact set K C X is wandering in that

{s€eG:s-KNK # 0}

is relatively compact in G (Theorem 17 from [13]). If Co(X) x G is postliminal,
then G acting freely implies every ideal is of the form Cy(Y) x G, and Green
showed I = Cy(Y') x G where

Y = {y € X : y has a compact wandering neighborhood N

1.1
(1) such that ¢(N) is closed and Hausdorft},

where ¢ : X — X/G is the quotient map. (The criteria in (1.1) are slightly different
than those given by Green; unfortunately, the statement in Corollary 18 from [13]
is not quite correct — see Remark 3.5.)

To extend Green’s results to actions which are not necessarily free, we relied
(i) on the second author’s result (Theorem 5.1 from [24]) stating that if G is
abelian then Cy(X) x G has continuous trace if and only if the stability groups
move continuously and every compact set is G-wandering as defined in Section 3,
and (ii) on a result of N.C. Phillips which allows us to assume the ideal in question
is of the form Cy(Y) x G. Our characterization is given in Theorem 3.10 and is
valid for abelian groups, freely acting amenable groups, or freely acting groups for
which Cy(X) x G is postliminal.

For abelian groups or freely acting groups, Gootman showed that Cp(X) x G
is postliminal if and only if the orbit space X/G satisfies the T axiom of separa-
bility (Theorem 3.3 of [9]). Similarly Cy(X) x G is liminal if and only if each orbit
is closed (Theorem 3.1 from [23]). Using these results, we give characterizations
of the largest postliminal and liminal ideals in Cp(X) X G in Theorems 3.16 and
3.14, respectively. R

The set of a € AT such that m + trm(a) is bounded on A is the positive
part of a two-sided ideal 7(A4). If T7(A) is dense in A, then A is said to have
bounded trace. Such algebras are also uniformly liminal (Theorem 2.6, [2]). The
first author has characterized when Cy(X) x G has bounded trace (Theorem 4.9,
[15]), and she has used this to find the largest bounded trace ideal in Theorem 5.8
from [15]. An intermediate condition between A being a continuous-trace C*-
algebra and an algebra with bounded trace is that A be a Fell algebra. A point

7 € Ais called a Fell point of the spectrum if there is a neighborhood V of w
and a € AT such that p(a) is a rank-one projection for all p € V. Then A is a

o~

Fell algebra if every m € A is a Fell point, and a Fell algebra is a continuous-trace
C*-algebra if and only if A is Hausdorff (cf. Section 5.14 of [22]). If G acts freely,
then Cp(X) x G is a Fell algebra if and only if X is a Cartan G-space ([16]), and we
treat the case of continuously varying stabilizers below (Proposition 3.3). Using
these results, we identify the largest Fell ideal in Cy(X) x G when the stability
groups vary continuously (Corollary 3.4).

Naturally our techniques depend on describing ideals in Cy(X) x G in terms
of the dynamics. To do this, we need to know that each primitive ideal in Cy(X) x G
is induced from a stability group (cf. Definition 4.12 from [23]). Cross products
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with this property are called EH-regular, and in the separable case it suffices for
G to be amenable ([12]) or for the orbit space X/G to be Ty (Proposition 20 from
[14]). Therefore, if G is abelian then Cy(X) x G is EH-regular. If G acts freely,
then we will have to assume either that G is amenable or the orbit space is T.
If the action is free and Cy(X) x G is EH-regular, then ideals in Co(X) x G are
in one-to-one correspondence with G-invariant open sets Y in X. If G does not
act freely, then we must assume that G is abelian so that we can employ the dual
action to conclude that the ideals we are interested in correspond to G-invariant
open subsets of X.

2. INVARIANCE OF IDEALS UNDER THE DUAL ACTION

Although ideals in Cp(X) x G can be difficult to describe in general, there is
always an ideal associated to each G-invariant open subset Y of X. The closure
of C.(G xY) (viewed as a subset of C.(G x X)) is an ideal in Cy(X) x G which
we can identify with Cy(Y) x G (cf., e.g., Lemma 1 of [13]). When the action
of G is free and Cy(X) x G is EH-regular, Corollary 5.10 from [23] implies that
Prim(Cy(X) x G) is homeomorphic to the quotient space (X/G)~ of X/G where

G-z is identified with G-y if G - 2 = G - y. It follows that every ideal of Cyp(X) x G
is of the form Cy(Y') x G for some G-invariant open set Y.

When G is abelian and does not necessarily act freely, we can distinguish
those ideals of Cy(X) x G of the form Cy(Y) x G via the dual action. Indeed, let

G denote the Pontryagin dual of G. The dual action @ of G on Co(X) x G is given
by

ar(f)(s) =7(s)f(s,:) for f e Ce(Gx X)andTeQqG.
The induced action of G on (Co(X)x G)Nis 7-m = moa; !, and this action is
jointly continuous (cf., e.g., Lemma 7.1 of [22]). The importance of the dual action
for us comes from the following lemma due to N.C. Phillips.

LeEMMA 2.1. (Proposition 6.39, [19]) Suppose that (G, X) is a second count-

able transformation group with G abelian. If I is a G-invariant ideal of Co(X) x G,
then there is an open G-invariant set'Y in X such that I = Co(Y) x G.

As an example, note that it is easy to see that the set of Fell points of the
spectrum is invariant under the dual action. If 7 is a Fell poi/{fu7 then by definition
there exist a € AT and an open neighborhood V' of 7 in A such that o(a) is a
rank-one projection for all ¢ € V. If b = @, (a) then for every p € 7 -V we have
p(b) = o(a) for some o € V. Hence 7 - 7 is also a Fell point. Thus the largest Fell
ideal must be of the form Cy(Y) x G.

Recall that a positive element a of a C*-algebra A is a continuous-trace
element if the function 7 — tr(w(a)) is finite and continuous on A. The linear
span m(A) of these elements is an ideal in A, and A is a continuous-trace C*-
algebra if m(A) is dense in A.

We want to prove that m(A) is invariant under the dual action. To do
this, we need a lemma of Green which characterizes this ideal by determining its
irreducible representations. Recall that if I is an ideal of a C*-algebra A, then the

spectrum 7 of I is homeomorphic to the open set O; := {p € A : p|; # 0} in A. We
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will also use that every C*-algebra A has a dense hereditary ideal k(A) — called
the Pedersen ideal of A — which is the smallest dense ideal in A (Theorem 5.6.1
of [18]). As Green’s result is an essential ingredient in many of our proofs, we give
the brief argument here. The key idea of the proof is that 7 (m(A)) # {0} if and

only if m has lots of closed neighborhoods in A.

LEMMA 2.2. (p. 96, [13]) Let A be a C*-algebra and I = m(A). Thenn € O;
if and only if

(i) there exists an ideal J of A which has continuous trace such that m € Oy;
and

(ii) m has a neighborhood basis consisting of closed sets.

Proof. Let m € Oj. There exists a positive element a € m(A) such that
tr(m(a)) = 1. It follows that the set

L= {p cA: tr(p(a)) = %}

is a closed neighborhood of m and L C Oy. Let {F,} be a compact neighborhood
basis of 7 in A. Notice that L is Hausdorff since Oy is. Thus F,, N L is closed in
L, and therefore in A as well. It follows that {F, N L} is a neighborhood basis of
7 consisting of closed sets. This proves item (ii). That item (i) holds is obvious
(just take J =1I).

Conversely, let m € A satisfy items (i) and (ii). Then there exists an ideal
Jo C J of A such that # € Oy, and Oy, C O;. Let a be a positive element of
the Pedersen ideal x(Jy) of Jo. Then p — tr(p(a)) is continuous on Oy because
k(Jo) C k(J) C m(J). Since p — tr(p(a)) vanishes off of Oy, it is continuous on
all of A. Thus x(Jo) C m(A) C I, whence Jo C I, and 7 € O;. &

PROPOSITION 2.3. Let (G, X) be a second countable transformation group
with G abelian. Then I = m(Co(X) x G) is G-invariant, and I = Co(Y) x G for
some open G-invariant subset Y of X.

Proof. We use Lemma 2.2 to show that 7 -7 € O; whenever 7 € Oy and
redG. Ifre O; then there exists an ideal J of A with continuous trace such
that 7 € Oj. Note that 7-7 € 7- Oy = O,.;, where 7 - J = a,(J). Since J has
continuous trace each element p of O is a Fell point and O is Hausdorff. Thus
7 - Oy is also Hausdorff, and each point 7-p in 7- O is a Fell point. It follows
that 7 - J is an ideal of A with continuous trace and 7 -7 € O,.;.

Finally, if {F,} is a neighborhood basis of 7 consisting of closed sets then
{r- F,} is a neighborhood basis of 7 -7 with the same properties. Thus -7 € Oy
by Lemma 2.2.

We have shown that O; and hence I are G-invariant. The final assertion
follows from Lemma 2.1. 1
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More generally, for an amenable C*-dynamical system (A4,G,a), an ideal
I of Ax,G is invariant under the dual coaction if and only if I = J x, G for
some unique, o-invariant ideal in J of A (Theorem 3.4 from [10]). Since we use a
representation theoretic approach to identify m(Co(X) X G) there are two obsta-
cles to extending our techniques to non-abelian groups. First, there is no notion
of induced coaction on (Cy(X) x G)", and second, we do not have a concrete
description of (Cp(X) x G)” in terms of X and G.

If G is abelian, consider the quotient space obtained from X x G where
(z,w) ~ (y,7) ifand only if G-z =G-yandw|s, =7ls,.

This identification makes sense because G - = G -y implies S; = S for abelian
groups. Since we're assuming (G, X) is second countable, Theorem 5.3 from [23]
implies that

[(z,w)] — ker (Indgj,sx)(w|sz))

is a homeomorphism of X x G/~ onto Prim(Co(X) x G). We write m,(w) for
Ind& s.)(Wls, ). Asnoted in the paragraph following the proof of Theorem 5.3 from
23], the map sending (z, w) to ker 7, (w) is open from X xG onto Prim (Cy(X) x G).
In particular, sets of the form U x V/~, with U and V open in X and é, respec-
tively, form a basis for the topology on Prim(Co(X) x G).

Let ¥(G) denote the space of closed subgroups of G endowed with the com-
pact Hausdorff topology from [7]. The stability subgroups S, are said to wvary
continuously if the map o : X — X(G) : ¢ — S, is continuous.

If A is a Fell algebra and 7 € A then 7 has an open Hausdorff neighborhood
in A (Corollary 3.4 from [1]). We want to be able to choose this neighborhood to
be G-invariant.

LEMMA 2.4. Suppose (G,X) is a second countable transformation group
with G abelian and with continuously varying stability groups. If Co(X) x G is
a Fell algebra, then every irreducible representation of Co(X)x G has an open

G-invariant Hausdorff neighborhood in (Co(X) x G)".

Proof. Since Co(X) x G is postliminal, we can identify Prim(Co(X)x G)
and (Cp(X) x G)". We can view (Co(X) = G)" as the appropriate quotient of
X/G x G, and then the map (G - z,w) — [ry(w)] is an open surjection onto
(Co(X)xG)" (Theorem 5.3 of [23]). In particular, (the class of) 7 := 7, (w)
is a typical element of (Cy(X) x G)". Since A is a Fell algebra, © has an open
Hausdorff neighborhood ([1]) which is of the form O for some closed ideal J of A.
We can shrink J a bit if need be, aind assume that there are open neighborhoods
Uof G-z in X/G and V of w in G such that U x V/~ is homeomorphic to O;.
Suppose that G-z and G-y are distinct points in U. Note that each orbit is closed
in X because Cp(X) x G is liminal (Theorem 3.1 of [23]). Thus, for each w € V,
the points [G - z,w] and [G - y,w] are distinct in U x V/~. Since Oy = U x V/~
is Hausdorff and z — [G - z,w] is continuous, we can separate G - and G -y by
G-invariant open sets and it follows that U is Hausdorff. Thus,

O:=Ux G/~
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is a G-invariant neighborhood of 7 which is Hausdorff because U is Hausdorff and
the stability subgroups vary continuously ([25]). 1

3. IDENTIFYING IDEALS IN Cp(X) X G

Let (G, X) be a transformation group with continuously varying stability groups.
Define an equivalence relation on X x G by

(x,5) ~ (y,t) if and only if z = y and s~ € S,.

The continuity of the map o sending x — S, implies that X x G/~ is locally
compact Hausdorfl and that the quotient map 6 : X x G — X x G/~ is open
(Lemma 2.3 from [24]). The action of G on X is o-proper if the map [(z,s)] —
(z,5-x) of X x G/~ into X x X is proper (Definition 4.1 of [21]). It is not hard
to see that the action is o-proper if and only if, given any compact subset K of
X, the image in X x G/~ of

(3.1) {(z,s) e X xG:zeKands-x € K}

is relatively compact. Any set K for which the image of (3.1) is relatively compact
is called G-wandering (p. 406 in [21]). If the action is free, then the notions of
o-properness and G-wandering reduce to the standard notions of properness and
wandering, respectively.

LEMMA 3.1. Let (G, X) be a (not necessarily second countable) transforma-
tion group with continuously varying stability groups. If U is an open G-wandering
neighborhood of X then the action of G on G - U is o-proper.

Proof. Let K be a compact set in G - U and choose t1,...,t, € G such that
n

K C | t;-U. It suffices to show that for each ¢ and j,
i=1

(3.2) §({(y,w) eG-UxG:ye KNt;-Uandw-y € KNt;-U})

is relatively compact in (G -U x G)/~.

Let [(ya,wq)] be a net in the set described in Equation 3.2. It will suffice to
find a convergent subnet. Since § is open, we can pass to a subnet, relabel, and
assume that this net lifts to a net (ya,s.) in G- U x G with s;'w, € S,,. Now
Yo € KNt;-U and 54 - yo € KNt;-U, so that yo =t; - ¢, for some z, € U and
Sati To = Sa - Yo € K Nt; - U, that is, tj_lsati-xa eU.

Now {(xmt;lsat,-)} isamnetin {(y,w) :y €U and w-y € U}. Since U is
G-wandering 6 ({(y,w) : y € U and w - y € U}) is relatively compact. By passing
to a subnet and relabeling, we may assume that for some n, € S, the net
{(zq, tj_lsatma)} converges in X x G. Since t; and ¢; are fixed,

{(ti - wa, satinat; )} = {(¥a, satinat; )}

also converges. Since t;nqt; ' €S, and s, w, €S, , we conclude that {[(ya, wa)]}
converges. 1
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In [16] the first author showed that if the action of G on X is free then
Co(X) x G is a Fell algebra if and only if X is a Cartan G-space (that is, each point
of X has a wandering neighborhood). If the stability subgroups vary continuously,
we can prove a similar result using the following generalization of Proposition 1.1.4
from [17].

LEMMA 3.2. Suppose that (G,X) is a (not necessarily second countable)
transformation group with G abelian and with continuously varying stability groups.
If each point of X has a G-wandering neighborhood, then G - x is closed in X for
allz e X.

Proof. Suppose that y € G - x. Let U be a G-wandering neighborhood of y.
Then there are s, € G such that s, -2 — y and s, -« € U for all a. We may
replace © by o, - = for some s,, € G, and assume that x € U. Then

(3.3) {(z,80)} C{(2,8) e X xG:2z€Uand s-z € U}.

Since the right-hand side of (3.3) has relatively compact image in X x G/~ and §
is open, we can pass to a subnet and relabel so that there are t, € S, such that
Sata — sin G. Then y = s-x and G - x is closed. 1

PROPOSITION 3.3. Let (G, X) be a second countable transformation group.
Suppose that either G acts freely, or that G is abelian and that the stability groups
vary continuously. Then Co(X) x G is Fell algebra if and only if each point of X
has a G-wandering neighborhood.

Proof. The free case is treated in [16]. Now suppose that G is abelian, that

the stability groups vary continuously and that Co(X) x G is a Fell algebra. Fix
z € X andlet m =7, (1) € (Co(X) x G)". By Lemma 2.4, 7 has an open Hausdorff

G-invariant neighborhood O, where J is an ideal of A. Thus .J = Co(Y) x G for
some G-invariant open subset Y of X, and J has continuous trace. The action
of G on Y is o-proper by Theorem 5.1 of [24]. Note that € Y, and let N be a
neighborhood of y which is compact in Y. Then N is G-wandering relative to Y,
and since Y is G-invariant N is also G-wandering relative to X.

Conversely, assume each point in X has a G-wandering neighborhood. Then

Lemma 3.2 implies that the orbits are closed, and Cy(X) x G is postliminal ([9];
even liminal ([23])). In particular, each m € (Cp(X) x G)” is of the form m,(w)

for some z € X and w € G. Let U be a G-wandering open neighborhood of x.
By Lemma 3.1 the action of G on G - U is o-proper. Since the stability subgroups
vary continuously it follows from Theorem 5.1 of [24] that J = Co(G - U) x G is
an ideal of A which has continuous trace. Thus ,(w) is a Fell point of J, whence
it is also a Fell point of O; C A
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COROLLARY 3.4. Let (G,X) be a second countable transformation group.
Suppose that either G acts freely and Co(X) = G is EH-regular, or that G is
abelian and that the stability groups vary continuously. Then the largest Fell ideal
of Co(X) x G is Co(W) x G where W is the open G-invariant subset

W ={w € X : w has a G-wandering neighborhood in X}.

Proof. Again, the free case is dealt with in [16]. In any event, the largest
Fell ideal of Co(X) x G is J where Oy = {7 € (Cy(X) x G)" : « is a Fell point
of (Cy(X)xG)"}. Since Oy is invariant under the dual action, it follows that
J = Co(W) x G for some open G-invariant subset W of X. Now apply Proposi-
tion 3.3. 1

REMARK 3.5. When the action of G on X is free and Cp(X) x G is postlim-

inal, Green (Corollary 18 from [13]) characterized the ideal m(Cy(X) x G) as
Co(Y’) x G where

Y’ = {z € X : x has a compact wandering neighborhood N

(3.4) . .
such that G - N is closed in X };

the following example shows that this is not quite correct. The correct state-
ment is contained in Theorem 3.10 below and says that the open subset Y of X

corresponding to m(Cy(X) x G) is given by equation (1.1) in Section 1.

ExaMPLE 3.6. Consider the transformation group described by Palais in
p. 298 of [17], where X is the strip {(z,y) : =1 < < 1 and y € R} and the group
action is by G = R. Beyond the strip —1 < x < 1 the action moves a point
according to

2

t-(Ly)=1,y+t) and t-(-1l,y)=(-1,y—1).

If (wo,y0) € int(X) let C(4,,y,) be the vertical translate of the graph of y = ;%
which passes through (zo,yo). Define ¢ - (x9,%0) to be the point (x,y) on Cz, 40)
such that the length of the arc of C,, ,,) between (zo,y0) and (z,y) is |t], and
x — xo has the same sign as ¢. That is, (xg,yo) moves counter-clockwise along
Clao,y0) at unit speed.

Palais states that a compact set is wandering if and only if it meets at most
one of the lines x = 1 and « = —1; this is only partially correct. Certainly, if a
compact set meets at most one of the boundary lines then it is wandering. However,
N =10,1] x [-1,1]U{(—1,0)} is an example of a wandering compact set meeting
both boundary lines; moreover, G - N is closed in X, and N is a neighborhood of
(1,y) forall y € (—1,1). One sees from these examples that for this transformation
group, the set Y’/ described in (3.4) is all of X whence Cy(X) x G should have
continuous trace. But this is impossible because X/G = (Cp(X) x G)" is not
Hausdorff: for example, G - (—1 4+ 1/n,0) is a sequence which converges to the
distinct orbits G- (—1,0) and G- (1,0). Alternatively, note that not every compact
set is wandering which contradicts Theorem 17 of [13].

REMARK 3.7. In Theorem 3.10, we want to consider sets K C X which are
G-wandering even though we definitely are not assuming that the stabilizer map
o is continuous on all of X. To make sense of this, we have to assume that o is at
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least continuous on G - K, and then it makes sense to ask if K is G-wandering in
G - K (or, equivalently, in any G-invariant set Z which contains K and on which
o is continuous). If K is open, it is not hard to see that o is continuous on G - K
if and only if ¢ is continuous on K. However, in general the continuity of o on K
does not imply that ¢ is continuous on G - K. The next lemma will allow us to
ignore this difficulty when applying the theorem.

LEMMA 3.8. Suppose that (G, X) is a (not necessarily second countable) lo-
cally compact transformation group with G abelian and with stabilizer map o. Let
q: X — X/G be the quotient map. If o is continuous on a compact set K and if
q(K) is Hausdorff, then o is continuous on G - K.

Proof. Suppose that ro -z — 7 -2 for ro, r € G and x4,z € K. We want
to show that S,_ .., = Sz, converges to S,, = S;. Since this happens if and
only if every subnet converges to S,,, we can pass to some convergent subnet (by
the compactness of K), relabel and assume that z, — y € K. But now G - z,
converges to both G -z and G -y, and since ¢(K) is Hausdorff, y = s - x for some
s € G. Thus by assumption, S, ., = Sz, converges to S, = S;. 1

REMARK 3.9. Up until this point, our work here has concentrated on the
case in which G is abelian, and we have relied on results from [16] to handle free
actions by nonabelian groups. Hereafter, we’ll have to treat both cases.

THEOREM 3.10. Let (G, X) be a second countable transformation group, and
let o be the stabilizer map sending x — S,. Assume either that G acts freely and

Co(X) x G is EH-regular, or that G is abelian. Let I := m(Co(X) xG). Then
I=CyY)xG, whereY is the open G-invariant subset

Y ={y € X : 0 is continuous on a G-wandering compact neighborhood

3.5
(3:5) N of y such that q(N) is closed and Hausdorff},

where ¢ : X — X/G is the quotient map.

Proof. Our proof is modeled on the proof of Corollary 18 from [13]. Here
we’ll give the proof for G abelian and remark that the free case follows from the
same sort of argument together with the following observation. If the action is
free, then E H-regularity implies that Prim(Co(X ) X G) is homeomorphic to the
Ty-ization (X/G)~ of X/G (Corollary 5.10 from [23]). It follows that the map
Y — Cy(Y) x G from the set of G-invariant open subsets of X to the set of ideals
of Cyp(X) x G is a bijection.

By Proposition 2.3, I = Cy(Z) x G where Z is an open G-invariant subset
of X. Let Y be as in (3.5). Suppose that 7 € Or. Since I has continuous trace,
it is certainly postliminal, and 7 = 7,y(w) for x € Z and w € G. Furthermore,
Theorem 5.1 from [24] implies that the stabilizer map o is continuous on Z and
that the action of G on Z is o-proper. Let N be a compact neighborhood of z in
Z. Then N is G-wandering relative to Z, and since Z is G-invariant, N is also
G-wandering relative to X.

Let ¢ : X — X/G be the quotient map. We claim there is a closed neigh-
borhood V of G -z in X/G such that V' C ¢(N). To prove the claim, we iden-

tify Prim(Co(X) x G) with X x G/~. Then Lemma 2.2 implies ker 7, (w) has a
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closed neighborhood W C (N x G)/~. The map y — ker my(w) is continuous by
Lemma 4.9 of 23, and factors through X/G by Corollary 4.8 of [23]. Thus we get
a continuous map s, : X/G — Prim(Co(X) x G). Let V := s;'(W). Then V is a
closed neighborhood of G- x. To prove the claim, it remains to see that V' C g(N).
But if G-y € V, then there is a (z,7) € N x G such that (y,w) ~ (z,7). In
particular, G -y = G - z. Since Z is open and G-invariant, it follows that y € Z.
(We have s, -y — z for s, € G.) Thus G -y and G - z have the same closures in
Z. But Cy(Z) x G is liminal and each orbit must be closed in Z (Proposition 4.17
of [23]). Thus G-y =G -z € ¢(N) as claimed.

With V as above, set N’ = ¢~ (V) N N. Note that N’ is compact and G-
wandering and G - N’ = ¢~1(V) is closed. Finally, G - N’/G is Hausdorff because
G-N' C Z, and Z/G is Hausdorff since Cy(Z) x G has continuous trace [25]. This
implies that z € Y. Therefore Z C Y, and I = Cy(Z) x G C Cp(Y) x G.

To prove the reverse implication notice that Co(Y) x G is a Fell algebra by
Proposition 3.3. In particular, it is postliminal, and every irredugible representa-
tion of Cy(Y) X G is of the form 7 = my(w) for y € Y and w € G. We will show
that 7 € Oy by verifying items (i) and (ii) of Lemma 2.2. Since Co(Y) x G is a
Fell algebra 7 has a Hausdorff open neighborhood O, where J is a closed ideal of
Co(X) x G (Corollary 3.4 from [1]). Note that J is a Fell algebra with Hausdorff
spectrum. Hence J has continuous trace. This establishes item (i) of Lemma 2.2.

Let N be a compact G-wandering neighborhood of y as in (3.5). We identify

(Co(X) x @) with X x G/~. Note that V = G-N x G/~ is a closed neighborhood
of 7 (first consider the complement and recall that the quotient map is open). That
V is Hausdorff follows from [25] because G - N/G is Hausdorff and the stability
subgroups vary continuously on G- N by Lemma 3.8. Let {F,} be a neighborhood
basis of 7 in (Cy(X) x G)" consisting of compact sets. Since a compact subset of a
Hausdorff space is closed, {F, NV} is a neighborhood basis of 7 in (Cy(X) x G)»
consisting of closed sets. This establishes item (ii). Since 7 was an arbitrary irre-
ducible representation of Cy(Y) x G, we must have Co(Y)x G C I = Co(Z) xG.
Therefore Z =Y and we’re done. 1

EXAMPLE 3.11. If A = Cp(X) xR is the transformation group in Exam-
ple 3.6, then I = m(A) corresponds to the open strip Y = {(x,y) : -1 <z < 1}.

EXAMPLE 3.12. Let G = R* act on X = R? by ¢ (x,y) = (2/t,y/t). The
orbits are rays emanating from the origin together with the origin which is a
fixed point. Each orbit is locally closed so Cy(X) x G is postliminal ([9]). The
stability subgroups do not vary continuously on any neighborhood of (0,0). If
U is any G-wandering (hence wandering) neighborhood of (z,y) # (0,0) then
(0,0) € G-U so that G- U is not closed in X. Thus Theorem 3.10 implies that
m(Co(X) x G) = {0}. Note that the action of G on W := X \ {(0,0)} is free
and proper so that Co(W) x G is an essential ideal of Cy(X) x G with continuous
trace.

It should be pointed out that even for liminal algebras A, it is possible that
m(A) = {0}. To see this, recall that a point = of a topological space X is separated
if for any point y of X not in the closure of {z}, the points  and y admit a pair of
disjoint neighborhoods. If A is a separable C*-algebra, then the set S of separated

points of the spectrum A is a dense Gs (4], 3.9.4).
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LEMMA 3.13. Let A be a C*-algebra and I := m(A). Then Oy is contained
in the interior of the separated points S of A.

Proof. Let m € Oy, and p € A such that p ¢ {r}. If p € Or then p and «
can be separated by disjoint relative open subsets of A because Oy is Hausdorff.
Since O; is open these relative open sets are open. Now suppose that p ¢ O;. Fix
a positive element a of m(A) such that tr(w(a)) > 1 and let f : A [0,00) be
the (continuous) map o + tr(c(a)). Note that p(a) = 0. Now f~1((1,00)) and
(o, %)) are disjoint open neighborhoods of 7 and p, respectively. Thus Oy C S
and since Oy is open we have Oy C intS. 1

Dixmier has given an example of a separable liminal C*-algebra A such that

the interior of the separated points in A is empty (Proposition 4 of [3]). Thus
m(A) = {0} for this algebra.

THEOREM 3.14. Let (G,X) be a second countable transformation group.
Suppose that either G acts freely and Co(X) X G is EH-regular, or that G is
abelian. Then the largest liminal ideal of Co(X) X G is Co(Z) x G where Z is
the open G-invariant subset

Z ={x € X : x has a neighborhood U

3.6
(3.6) such that G - z is closed in G - U for each z € U }.

Proof. If J is the largest liminal ideal then Oy = {7 € A: T(Co(X) % G) =
K(Hx)}. If G is abelian then O is invariant under the dual action, and we have
J = Cy(Y) x G for some open G-invariant subset Y of X. This follows from our
EH-regularity assumption in the free case. Let Z be as in (3.6). Note that every
y € Y has a neighborhood U (namely Y') such that G-z is closed in G- U for every
z € U by Theorem 3.1 of [23],s0Y C Z.

Let x € Z\'Y. Let V be an open neighborhood of  such that G - z is closed
in G-V for each z € V. Not every orbit in Y/ =Y UG -V can be closed in Y’
because Cy(Y) x G is the largest liminal ideal. Suppose that G - z is not closed in
Y’. Then there exists s, € G and w € Y’ such that s, -2 > w ¢ G - 2.

Since w € Y’, w has a neighborhood W such that G- is closed in G-W for all
u € W. But we can assume that s,, -z € W for some s,, and then G-s4,-2 = G-z
must be closed in G-W. Thus w € G-z, and this is a contradiction. Hence Z =Y
and we are done. 1

Every C*-algebra A has a largest postliminal ideal I, and this ideal I is
the smallest ideal such that the corresponding quotient is anti-liminal (Proposi-
tion 4.3.6 in [4]). When A = Cy(X) X G and G is abelian, it is clear that I is

invariant under the dual action: for every 7 € G the ideal a,(I) is postliminal
and A/a.(I) is antiliminal, hence @, (I) C I. If G is abelian or G acts freely then
Co(X) x G is Type I if and only if X/G is Ty (Theorem 3.3 from [9]). Effros and
Glimm have given a number of conditions on a second countable locally compact
transformation group (G, X') which are equivalent to X/G being Ty (see [8], The-
orems 2.1 and 2.6 from [5] and [6]). For example, X/G is Ty if and only if each
orbit is regular: the map sS, — sz is a homeomorphism of G/S, onto G - x.
(The term regular is borrowed from the definition on p. 223 of [14].) Using the
Effros-Glimm results, we have the following.
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LEMMA 3.15. (Effros-Glimm) Suppose that (G, X) is a second countable
locally compact transformation group and that U is a neighborhood of v € X.
Then the following are equivalent:

(i) G-U/G is Ty in the quotient topology;

(ii) G -y is regular for eachy € U;

(iii) G-y is a G subset of X for eachy € U;

(iv) G -y is locally closed in X for each y € U;

(v) G-y is second category in itself for each y € U.

THEOREM 3.16. Let (G,X) be a second countable transformation group.
Suppose that either G acts freely and Co(X) x G is EH-regular, or that G is abelian.
Then the largest postliminal ideal of Co(X) X G equals Co(Z) X G where Z is the
G-invariant subset

(3.7) Z ={x € X : x has a neighborhood U such that G -U/G is Typ}.

REMARK 3.17. The set Z can be realized as the set of points with neigh-
borhoods satisfying any of the equivalent conditions of Lemma 3.15.

Proof. If G is abelian, the largest postliminal ideal of Cp(X) x G is invariant
under the dual action, so equals Co(Y) x G for some G-invariant open subset Y’
of X. Let Z be as in (3.7). Every y € Y has an open G-invariant neighborhood U
(namely Y') such that G - U/G is To by Theorem 3.3 from [9]. Thus Y C Z.

Let x € Z\'Y and V an open neighborhood of z such that G - V/G is Ty.
Note that T := (G -V UY)/G cannot be Ty by the maximality of Co(Y) xG.
Choose distinct points G- z; and G- z2 in T such that every open neighborhood Uy
of G - z; contains G - z3 and every open neighborhood Us; of G - z5 contains G - 21.

IfG -2 €eT\(G-V/G)and G- 29 € T\ (Y/G) then G - V/G is an open
neighborhood of G - zo which does not contain G - z1, which is a contradiction.

If G- 2z and G - 22 both belong to Y/G or if G - z; and G - 25 both belong
to G- V/G then we get an immediate contradiction because Y/G and G - V/G are
open and Ty. Hence Y = 7. 1

REMARK 3.18. Let (4,G,a) be a C*-dynamical system with G compact
(but not necessarily abelian). It follows from Propositions 2.3 and 2.5 of [11] that
the largest liminal and postliminal ideals in A x,, G are of the form J x, G where
J is an a-invariant ideal of A. This is trivial if A = Cy(X), because Cy(X) x G has
bounded trace (hence is liminal) when G is compact (Proposition 3.4 from [15]).
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