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1. INTRODUCTION

Let (G, X) be a locally compact Hausdorff transformation group: thus G is a
locally compact Hausdorff group and X is a locally compact Hausdorff space to-
gether with a jointly continuous map (s, x) 7→ s · x from G × X to X such that
s · (t · x) = st · x and e · x = x. The associated transformation-group C∗-algebra
C0(X) o G is the C∗-algebra which is universal for the covariant representations
of the C∗-dynamical system (C0(X), G, α) in the sense of [20]. More concretely,
C0(X) o G is the enveloping C∗-algebra of the Banach ∗-algebra L1(G, C0(X)) of
functions f : G → C0(X) which are Bochner integrable with respect to a fixed left
Haar measure on G (cf. Section 7.6 from [18]). In the main results, we will always
assume that G and X are second countable so that C0(X) o G is separable. In
our main results, we assume either that G is abelian or that G acts freely.

It is natural to attempt to characterize properties of C0(X) o G in terms of
the dynamics of the action of G on X, and there are a large number of results of this
sort in the literature ([9], [13], [23], [24], [25], [15] and [16]). We were motivated
by a particularly nice example due to Green (Corollary 18 of [13]) in which he
was able to characterize the closure I of the ideal of continuous-trace elements in
C0(X) o G in the case G acts freely and C0(X) o G is postliminal. (Since we’ll be
working exclusively with separable C∗-algebras, we will not distinguish between
Type I and postliminal algebras.) There are three ingredients required for this
sort of project. First, one needs a global characterization of algebras C0(X) o G
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which have continuous trace. Second, one needs to know that the ideal I is of
the form C0(Y ) o G for an open G-invariant set Y in X. And third, one wants a
straightforward characterization of Y in terms of the dynamics. Assuming that G
acts freely, Green showed that C0(X) o G has continuous trace if and only if every
compact set K ⊂ X is wandering in that

{s ∈ G : s ·K ∩K 6= ∅}
is relatively compact in G (Theorem 17 from [13]). If C0(X) o G is postliminal,
then G acting freely implies every ideal is of the form C0(Y ) o G, and Green
showed I = C0(Y ) o G where

(1.1)
Y = {y ∈ X : y has a compact wandering neighborhood N

such that q(N) is closed and Hausdorff},

where q : X → X/G is the quotient map. (The criteria in (1.1) are slightly different
than those given by Green; unfortunately, the statement in Corollary 18 from [13]
is not quite correct — see Remark 3.5.)

To extend Green’s results to actions which are not necessarily free, we relied
(i) on the second author’s result (Theorem 5.1 from [24]) stating that if G is
abelian then C0(X) o G has continuous trace if and only if the stability groups
move continuously and every compact set is G-wandering as defined in Section 3,
and (ii) on a result of N.C. Phillips which allows us to assume the ideal in question
is of the form C0(Y ) o G. Our characterization is given in Theorem 3.10 and is
valid for abelian groups, freely acting amenable groups, or freely acting groups for
which C0(X) o G is postliminal.

For abelian groups or freely acting groups, Gootman showed that C0(X) o G
is postliminal if and only if the orbit space X/G satisfies the T0 axiom of separa-
bility (Theorem 3.3 of [9]). Similarly C0(X) o G is liminal if and only if each orbit
is closed (Theorem 3.1 from [23]). Using these results, we give characterizations
of the largest postliminal and liminal ideals in C0(X) o G in Theorems 3.16 and
3.14, respectively.

The set of a ∈ A+ such that π 7→ trπ(a) is bounded on Â is the positive
part of a two-sided ideal T (A). If T (A) is dense in A, then A is said to have
bounded trace. Such algebras are also uniformly liminal (Theorem 2.6, [2]). The
first author has characterized when C0(X) o G has bounded trace (Theorem 4.9,
[15]), and she has used this to find the largest bounded trace ideal in Theorem 5.8
from [15]. An intermediate condition between A being a continuous-trace C∗-
algebra and an algebra with bounded trace is that A be a Fell algebra. A point
π ∈ Â is called a Fell point of the spectrum if there is a neighborhood V of π
and a ∈ A+ such that ρ(a) is a rank-one projection for all ρ ∈ V . Then A is a
Fell algebra if every π ∈ Â is a Fell point, and a Fell algebra is a continuous-trace
C∗-algebra if and only if Â is Hausdorff (cf. Section 5.14 of [22]). If G acts freely,
then C0(X) o G is a Fell algebra if and only if X is a Cartan G-space ([16]), and we
treat the case of continuously varying stabilizers below (Proposition 3.3). Using
these results, we identify the largest Fell ideal in C0(X) o G when the stability
groups vary continuously (Corollary 3.4).

Naturally our techniques depend on describing ideals in C0(X) o G in terms
of the dynamics. To do this, we need to know that each primitive ideal in C0(X) o G
is induced from a stability group (cf. Definition 4.12 from [23]). Cross products
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with this property are called EH-regular, and in the separable case it suffices for
G to be amenable ([12]) or for the orbit space X/G to be T0 (Proposition 20 from
[14]). Therefore, if G is abelian then C0(X) o G is EH-regular. If G acts freely,
then we will have to assume either that G is amenable or the orbit space is T0.
If the action is free and C0(X) o G is EH-regular, then ideals in C0(X) o G are
in one-to-one correspondence with G-invariant open sets Y in X. If G does not
act freely, then we must assume that G is abelian so that we can employ the dual
action to conclude that the ideals we are interested in correspond to G-invariant
open subsets of X.

2. INVARIANCE OF IDEALS UNDER THE DUAL ACTION

Although ideals in C0(X) o G can be difficult to describe in general, there is
always an ideal associated to each G-invariant open subset Y of X. The closure
of Cc(G × Y ) (viewed as a subset of Cc(G ×X)) is an ideal in C0(X) o G which
we can identify with C0(Y ) o G (cf., e.g., Lemma 1 of [13]). When the action
of G is free and C0(X) o G is EH-regular, Corollary 5.10 from [23] implies that
Prim

(
C0(X) o G

)
is homeomorphic to the quotient space (X/G)∼ of X/G where

G ·x is identified with G ·y if G · x = G · y. It follows that every ideal of C0(X) o G
is of the form C0(Y ) o G for some G-invariant open set Y .

When G is abelian and does not necessarily act freely, we can distinguish
those ideals of C0(X) o G of the form C0(Y ) o G via the dual action. Indeed, let
Ĝ denote the Pontryagin dual of G. The dual action α̂ of Ĝ on C0(X) o G is given
by

α̂τ (f)(s) = τ(s)f(s, ·) for f ∈ Cc(G×X) and τ ∈ Ĝ.

The induced action of Ĝ on (C0(X) o G)∧ is τ · π = π ◦ α̂−1
τ , and this action is

jointly continuous (cf., e.g., Lemma 7.1 of [22]). The importance of the dual action
for us comes from the following lemma due to N.C. Phillips.

Lemma 2.1. (Proposition 6.39, [19]) Suppose that (G, X) is a second count-
able transformation group with G abelian. If I is a Ĝ-invariant ideal of C0(X) o G,
then there is an open G-invariant set Y in X such that I = C0(Y ) o G.

As an example, note that it is easy to see that the set of Fell points of the
spectrum is invariant under the dual action. If π is a Fell point, then by definition
there exist a ∈ A+ and an open neighborhood V of π in Â such that σ(a) is a
rank-one projection for all σ ∈ V . If b = α̂τ (a) then for every ρ ∈ τ · V we have
ρ(b) = σ(a) for some σ ∈ V . Hence τ · π is also a Fell point. Thus the largest Fell
ideal must be of the form C0(Y ) o G.

Recall that a positive element a of a C∗-algebra A is a continuous-trace
element if the function π 7→ tr(π(a)) is finite and continuous on Â. The linear
span m(A) of these elements is an ideal in A, and A is a continuous-trace C∗-
algebra if m(A) is dense in A.

We want to prove that m(A) is invariant under the dual action. To do
this, we need a lemma of Green which characterizes this ideal by determining its
irreducible representations. Recall that if I is an ideal of a C∗-algebra A, then the
spectrum Î of I is homeomorphic to the open set OI := {ρ ∈ Â : ρ|I 6= 0} in Â. We
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will also use that every C∗-algebra A has a dense hereditary ideal κ(A) — called
the Pedersen ideal of A — which is the smallest dense ideal in A (Theorem 5.6.1
of [18]). As Green’s result is an essential ingredient in many of our proofs, we give
the brief argument here. The key idea of the proof is that π

(
m(A)

)
6= {0} if and

only if π has lots of closed neighborhoods in Â.

Lemma 2.2. (p. 96, [13]) Let A be a C∗-algebra and I = m(A). Then π ∈ OI

if and only if
(i) there exists an ideal J of A which has continuous trace such that π ∈ OJ ;

and
(ii) π has a neighborhood basis consisting of closed sets.

Proof. Let π ∈ OI . There exists a positive element a ∈ m(A) such that
tr(π(a)) = 1. It follows that the set

L =
{

ρ ∈ Â : tr(ρ(a)) >
1
2

}
is a closed neighborhood of π and L ⊂ OI . Let {Fα} be a compact neighborhood
basis of π in Â. Notice that L is Hausdorff since OI is. Thus Fα ∩ L is closed in
L, and therefore in Â as well. It follows that {Fα ∩ L} is a neighborhood basis of
π consisting of closed sets. This proves item (ii). That item (i) holds is obvious
(just take J = I).

Conversely, let π ∈ Â satisfy items (i) and (ii). Then there exists an ideal
J0 ⊂ J of A such that π ∈ OJ0 and OJ0 ⊂ OJ . Let a be a positive element of
the Pedersen ideal κ(J0) of J0. Then ρ 7→ tr(ρ(a)) is continuous on OJ because
κ(J0) ⊂ κ(J) ⊂ m(J). Since ρ 7→ tr(ρ(a)) vanishes off of OJ0 , it is continuous on
all of Â. Thus κ(J0) ⊂ m(A) ⊂ I, whence J0 ⊂ I, and π ∈ OI .

Proposition 2.3. Let (G, X) be a second countable transformation group
with G abelian. Then I = m(C0(X) o G) is Ĝ-invariant, and I = C0(Y ) o G for
some open G-invariant subset Y of X.

Proof. We use Lemma 2.2 to show that τ · π ∈ OI whenever π ∈ OI and
τ ∈ Ĝ. If π ∈ OI then there exists an ideal J of A with continuous trace such
that π ∈ OJ . Note that τ · π ∈ τ · OJ = Oτ ·J , where τ · J = α̂τ (J). Since J has
continuous trace each element ρ of OJ is a Fell point and OJ is Hausdorff. Thus
τ · OJ is also Hausdorff, and each point τ · ρ in τ · OJ is a Fell point. It follows
that τ · J is an ideal of A with continuous trace and τ · π ∈ Oτ ·J .

Finally, if {Fα} is a neighborhood basis of π consisting of closed sets then
{τ ·Fα} is a neighborhood basis of τ ·π with the same properties. Thus τ ·π ∈ OI

by Lemma 2.2.
We have shown that OI and hence I are Ĝ-invariant. The final assertion

follows from Lemma 2.1.
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More generally, for an amenable C∗-dynamical system (A,G, α), an ideal
I of A oα G is invariant under the dual coaction if and only if I = J oα G for
some unique, α-invariant ideal in J of A (Theorem 3.4 from [10]). Since we use a
representation theoretic approach to identify m(C0(X) o G) there are two obsta-
cles to extending our techniques to non-abelian groups. First, there is no notion
of induced coaction on (C0(X) o G)∧, and second, we do not have a concrete
description of (C0(X) o G)∧ in terms of X and G.

If G is abelian, consider the quotient space obtained from X × Ĝ where

(x, ω) ∼ (y, τ) if and only if G · x = G · y and ω|Sx
= τ |Sy

.

This identification makes sense because G · x = G · y implies Sx = Sy for abelian
groups. Since we’re assuming (G, X) is second countable, Theorem 5.3 from [23]
implies that

[(x, ω)] 7→ ker
(
IndG

(x,Sx)(ω|Sx
)
)

is a homeomorphism of X × Ĝ/∼ onto Prim(C0(X) o G). We write πx(ω) for
IndG

(x,Sx)(ω|Sx
). As noted in the paragraph following the proof of Theorem 5.3 from

[23], the map sending (x, ω) to kerπx(ω) is open from X×Ĝ onto Prim
(
C0(X) o G

)
.

In particular, sets of the form U × V/∼, with U and V open in X and Ĝ, respec-
tively, form a basis for the topology on Prim

(
C0(X) o G

)
.

Let Σ(G) denote the space of closed subgroups of G endowed with the com-
pact Hausdorff topology from [7]. The stability subgroups Sx are said to vary
continuously if the map σ : X → Σ(G) : x 7→ Sx is continuous.

If A is a Fell algebra and π ∈ Â then π has an open Hausdorff neighborhood
in Â (Corollary 3.4 from [1]). We want to be able to choose this neighborhood to
be Ĝ-invariant.

Lemma 2.4. Suppose (G, X) is a second countable transformation group
with G abelian and with continuously varying stability groups. If C0(X) o G is
a Fell algebra, then every irreducible representation of C0(X) o G has an open
Ĝ-invariant Hausdorff neighborhood in (C0(X) o G)∧.

Proof. Since C0(X) o G is postliminal, we can identify Prim
(
C0(X) o G

)
and (C0(X) o G)∧. We can view (C0(X) o G)∧ as the appropriate quotient of
X/G × Ĝ, and then the map (G · x, ω) 7→ [πx(ω)] is an open surjection onto
(C0(X) o G)∧ (Theorem 5.3 of [23]). In particular, (the class of) π := πx(ω)
is a typical element of (C0(X) o G)∧. Since A is a Fell algebra, π has an open
Hausdorff neighborhood ([1]) which is of the form OJ for some closed ideal J of A.
We can shrink J a bit if need be, and assume that there are open neighborhoods
U of G · x in X/G and V of ω in Ĝ such that U × V/∼ is homeomorphic to OJ .
Suppose that G ·x and G ·y are distinct points in U . Note that each orbit is closed
in X because C0(X) o G is liminal (Theorem 3.1 of [23]). Thus, for each ω ∈ V ,
the points [G · x, ω] and [G · y, ω] are distinct in U × V/∼. Since OJ = U × V/∼
is Hausdorff and z 7→ [G · z, ω] is continuous, we can separate G · x and G · y by
G-invariant open sets and it follows that U is Hausdorff. Thus,

O := U × Ĝ/∼
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is a Ĝ-invariant neighborhood of π which is Hausdorff because U is Hausdorff and
the stability subgroups vary continuously ([25]).

3. IDENTIFYING IDEALS IN C0(X) o G

Let (G, X) be a transformation group with continuously varying stability groups.
Define an equivalence relation on X ×G by

(x, s) ∼ (y, t) if and only if x = y and s−1t ∈ Sx.

The continuity of the map σ sending x 7→ Sx implies that X × G/∼ is locally
compact Hausdorff and that the quotient map δ : X × G → X × G/∼ is open
(Lemma 2.3 from [24]). The action of G on X is σ-proper if the map [(x, s)] 7→
(x, s · x) of X ×G/∼ into X ×X is proper (Definition 4.1 of [21]). It is not hard
to see that the action is σ-proper if and only if, given any compact subset K of
X, the image in X ×G/∼ of

(3.1) {(x, s) ∈ X ×G : x ∈ K and s · x ∈ K}

is relatively compact. Any set K for which the image of (3.1) is relatively compact
is called G-wandering (p. 406 in [21]). If the action is free, then the notions of
σ-properness and G-wandering reduce to the standard notions of properness and
wandering, respectively.

Lemma 3.1. Let (G, X) be a (not necessarily second countable) transforma-
tion group with continuously varying stability groups. If U is an open G-wandering
neighborhood of X then the action of G on G · U is σ-proper.

Proof. Let K be a compact set in G · U and choose t1, . . . , tn ∈ G such that

K ⊂
n⋃

i=1

ti · U . It suffices to show that for each i and j,

(3.2) δ
(
{(y, w) ∈ G · U ×G : y ∈ K ∩ ti · U and w · y ∈ K ∩ tj · U}

)
is relatively compact in (G · U ×G)/∼.

Let [(yα, wα)] be a net in the set described in Equation 3.2. It will suffice to
find a convergent subnet. Since δ is open, we can pass to a subnet, relabel, and
assume that this net lifts to a net (yα, sα) in G · U × G with s−1

α wα ∈ Syα . Now
yα ∈ K ∩ ti · U and sα · yα ∈ K ∩ tj · U , so that yα = ti · xα for some xα ∈ U and
sαti · xα = sα · yα ∈ K ∩ tj · U , that is, t−1

j sαti · xα ∈ U .
Now {(xα, t−1

j sαti)} is a net in {(y, w) : y ∈ U and w · y ∈ U}. Since U is
G-wandering δ

(
{(y, w) : y ∈ U and w · y ∈ U}

)
is relatively compact. By passing

to a subnet and relabeling, we may assume that for some nα ∈ Sxα
the net

{(xα, t−1
j sαtinα)} converges in X ×G. Since ti and tj are fixed,

{(ti · xα, sαtinαt−1
i )} = {(yα, sαtinαt−1

i )}

also converges. Since tinαt−1
i ∈Syα and s−1

α wα∈Syα , we conclude that {[(yα, wα)]}
converges.
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In [16] the first author showed that if the action of G on X is free then
C0(X) o G is a Fell algebra if and only if X is a Cartan G-space (that is, each point
of X has a wandering neighborhood). If the stability subgroups vary continuously,
we can prove a similar result using the following generalization of Proposition 1.1.4
from [17].

Lemma 3.2. Suppose that (G, X) is a (not necessarily second countable)
transformation group with G abelian and with continuously varying stability groups.
If each point of X has a G-wandering neighborhood, then G · x is closed in X for
all x ∈ X.

Proof. Suppose that y ∈ G · x. Let U be a G-wandering neighborhood of y.
Then there are sα ∈ G such that sα · x → y and sα · x ∈ U for all α. We may
replace x by sα0 · x for some sα0 ∈ G, and assume that x ∈ U . Then

(3.3) {(x, sα)} ⊂ {(z, s) ∈ X ×G : z ∈ U and s · z ∈ U}.

Since the right-hand side of (3.3) has relatively compact image in X ×G/∼ and δ

is open, we can pass to a subnet and relabel so that there are tα ∈ Sx such that
sαtα → s in G. Then y = s · x and G · x is closed.

Proposition 3.3. Let (G, X) be a second countable transformation group.
Suppose that either G acts freely, or that G is abelian and that the stability groups
vary continuously. Then C0(X) o G is Fell algebra if and only if each point of X

has a G-wandering neighborhood.

Proof. The free case is treated in [16]. Now suppose that G is abelian, that
the stability groups vary continuously and that C0(X) o G is a Fell algebra. Fix
x ∈ X and let π = πx(1) ∈ (C0(X) o G)∧. By Lemma 2.4, π has an open Hausdorff
Ĝ-invariant neighborhood OJ , where J is an ideal of A. Thus J = C0(Y ) o G for
some G-invariant open subset Y of X, and J has continuous trace. The action
of G on Y is σ-proper by Theorem 5.1 of [24]. Note that x ∈ Y , and let N be a
neighborhood of y which is compact in Y . Then N is G-wandering relative to Y ,
and since Y is G-invariant N is also G-wandering relative to X.

Conversely, assume each point in X has a G-wandering neighborhood. Then
Lemma 3.2 implies that the orbits are closed, and C0(X) o G is postliminal ([9];
even liminal ([23])). In particular, each π ∈ (C0(X) o G)∧ is of the form πx(ω)
for some x ∈ X and ω ∈ Ĝ. Let U be a G-wandering open neighborhood of x.
By Lemma 3.1 the action of G on G ·U is σ-proper. Since the stability subgroups
vary continuously it follows from Theorem 5.1 of [24] that J = C0(G · U) o G is
an ideal of A which has continuous trace. Thus πx(ω) is a Fell point of Ĵ , whence
it is also a Fell point of OJ ⊂ Â.
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Corollary 3.4. Let (G, X) be a second countable transformation group.
Suppose that either G acts freely and C0(X) o G is EH-regular, or that G is
abelian and that the stability groups vary continuously. Then the largest Fell ideal
of C0(X) o G is C0(W ) o G where W is the open G-invariant subset

W = {w ∈ X : w has a G-wandering neighborhood in X}.

Proof. Again, the free case is dealt with in [16]. In any event, the largest
Fell ideal of C0(X) o G is J where OJ = {π ∈ (C0(X) o G)∧ : π is a Fell point
of (C0(X) o G)∧}. Since OJ is invariant under the dual action, it follows that
J = C0(W ) o G for some open G-invariant subset W of X. Now apply Proposi-
tion 3.3.

Remark 3.5. When the action of G on X is free and C0(X) o G is postlim-
inal, Green (Corollary 18 from [13]) characterized the ideal m(C0(X) o G) as
C0(Y ′) o G where

(3.4)
Y ′ = {x ∈ X : x has a compact wandering neighborhood N

such that G ·N is closed in X };

the following example shows that this is not quite correct. The correct state-
ment is contained in Theorem 3.10 below and says that the open subset Y of X
corresponding to m(C0(X) o G) is given by equation (1.1) in Section 1.

Example 3.6. Consider the transformation group described by Palais in
p. 298 of [17], where X is the strip {(x, y) : −1 6 x 6 1 and y ∈ R} and the group
action is by G = R. Beyond the strip −1 < x < 1 the action moves a point
according to

t · (1, y) = (1, y + t) and t · (−1, y) = (−1, y − t).

If (x0, y0) ∈ int(X) let C(x0,y0) be the vertical translate of the graph of y = x2

1−x2

which passes through (x0, y0). Define t · (x0, y0) to be the point (x, y) on C(x0,y0)

such that the length of the arc of C(x0,y0) between (x0, y0) and (x, y) is |t|, and
x − x0 has the same sign as t. That is, (x0, y0) moves counter-clockwise along
C(x0,y0) at unit speed.

Palais states that a compact set is wandering if and only if it meets at most
one of the lines x = 1 and x = −1; this is only partially correct. Certainly, if a
compact set meets at most one of the boundary lines then it is wandering. However,
N = [0, 1]× [−1, 1]∪ {(−1, 0)} is an example of a wandering compact set meeting
both boundary lines; moreover, G ·N is closed in X, and N is a neighborhood of
(1, y) for all y ∈ (−1, 1). One sees from these examples that for this transformation
group, the set Y ′ described in (3.4) is all of X whence C0(X) o G should have
continuous trace. But this is impossible because X/G ∼= (C0(X) o G)∧ is not
Hausdorff: for example, G · (−1 + 1/n, 0) is a sequence which converges to the
distinct orbits G · (−1, 0) and G · (1, 0). Alternatively, note that not every compact
set is wandering which contradicts Theorem 17 of [13].

Remark 3.7. In Theorem 3.10, we want to consider sets K ⊂ X which are
G-wandering even though we definitely are not assuming that the stabilizer map
σ is continuous on all of X. To make sense of this, we have to assume that σ is at
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least continuous on G ·K, and then it makes sense to ask if K is G-wandering in
G ·K (or, equivalently, in any G-invariant set Z which contains K and on which
σ is continuous). If K is open, it is not hard to see that σ is continuous on G ·K
if and only if σ is continuous on K. However, in general the continuity of σ on K
does not imply that σ is continuous on G · K. The next lemma will allow us to
ignore this difficulty when applying the theorem.

Lemma 3.8. Suppose that (G, X) is a (not necessarily second countable) lo-
cally compact transformation group with G abelian and with stabilizer map σ. Let
q : X → X/G be the quotient map. If σ is continuous on a compact set K and if
q(K) is Hausdorff, then σ is continuous on G ·K.

Proof. Suppose that rα · xα → r · x for rα, r ∈ G and xα, x ∈ K. We want
to show that Srα·xα

= Sxα
converges to Sr·x = Sx. Since this happens if and

only if every subnet converges to Sx, we can pass to some convergent subnet (by
the compactness of K), relabel and assume that xα → y ∈ K. But now G · xα

converges to both G · x and G · y, and since q(K) is Hausdorff, y = s · x for some
s ∈ G. Thus by assumption, Srα·xα = Sxα converges to Sy = Sx.

Remark 3.9. Up until this point, our work here has concentrated on the
case in which G is abelian, and we have relied on results from [16] to handle free
actions by nonabelian groups. Hereafter, we’ll have to treat both cases.

Theorem 3.10. Let (G, X) be a second countable transformation group, and
let σ be the stabilizer map sending x 7→ Sx. Assume either that G acts freely and
C0(X) o G is EH-regular, or that G is abelian. Let I := m

(
C0(X) o G

)
. Then

I = C0(Y ) o G, where Y is the open G-invariant subset

(3.5)
Y = { y ∈ X : σ is continuous on a G-wandering compact neighborhood

N of y such that q(N) is closed and Hausdorff },

where q : X → X/G is the quotient map.

Proof. Our proof is modeled on the proof of Corollary 18 from [13]. Here
we’ll give the proof for G abelian and remark that the free case follows from the
same sort of argument together with the following observation. If the action is
free, then EH-regularity implies that Prim

(
C0(X) o G

)
is homeomorphic to the

T0-ization (X/G)∼ of X/G (Corollary 5.10 from [23]). It follows that the map
Y 7→ C0(Y ) o G from the set of G-invariant open subsets of X to the set of ideals
of C0(X) o G is a bijection.

By Proposition 2.3, I = C0(Z) o G where Z is an open G-invariant subset
of X. Let Y be as in (3.5). Suppose that π ∈ OI . Since I has continuous trace,
it is certainly postliminal, and π = πx(ω) for x ∈ Z and ω ∈ Ĝ. Furthermore,
Theorem 5.1 from [24] implies that the stabilizer map σ is continuous on Z and
that the action of G on Z is σ-proper. Let N be a compact neighborhood of x in
Z. Then N is G-wandering relative to Z, and since Z is G-invariant, N is also
G-wandering relative to X.

Let q : X → X/G be the quotient map. We claim there is a closed neigh-
borhood V of G · x in X/G such that V ⊂ q(N). To prove the claim, we iden-
tify Prim

(
C0(X) o G

)
with X × Ĝ/∼. Then Lemma 2.2 implies kerπx(ω) has a
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closed neighborhood W ⊂ (N × Ĝ)/∼. The map y 7→ ker πy(ω) is continuous by
Lemma 4.9 of 23, and factors through X/G by Corollary 4.8 of [23]. Thus we get
a continuous map sω : X/G → Prim

(
C0(X) o G

)
. Let V := s−1

ω (W ). Then V is a
closed neighborhood of G ·x. To prove the claim, it remains to see that V ⊂ q(N).
But if G · y ∈ V , then there is a (z, γ) ∈ N × Ĝ such that (y, ω) ∼ (z, γ). In
particular, G · y = G · z. Since Z is open and G-invariant, it follows that y ∈ Z.
(We have sα · y → z for sα ∈ G.) Thus G · y and G · z have the same closures in
Z. But C0(Z) o G is liminal and each orbit must be closed in Z (Proposition 4.17
of [23]). Thus G · y = G · z ∈ q(N) as claimed.

With V as above, set N ′ = q−1(V ) ∩ N . Note that N ′ is compact and G-
wandering and G ·N ′ = q−1(V ) is closed. Finally, G ·N ′/G is Hausdorff because
G ·N ′ ⊂ Z, and Z/G is Hausdorff since C0(Z) o G has continuous trace [25]. This
implies that x ∈ Y . Therefore Z ⊂ Y , and I = C0(Z) o G ⊂ C0(Y ) o G.

To prove the reverse implication notice that C0(Y ) o G is a Fell algebra by
Proposition 3.3. In particular, it is postliminal, and every irreducible representa-
tion of C0(Y ) o G is of the form π = πy(ω) for y ∈ Y and ω ∈ Ĝ. We will show
that π ∈ OI by verifying items (i) and (ii) of Lemma 2.2. Since C0(Y ) o G is a
Fell algebra π has a Hausdorff open neighborhood OJ , where J is a closed ideal of
C0(X) o G (Corollary 3.4 from [1]). Note that J is a Fell algebra with Hausdorff
spectrum. Hence J has continuous trace. This establishes item (i) of Lemma 2.2.

Let N be a compact G-wandering neighborhood of y as in (3.5). We identify
(C0(X) o G)∧ with X×Ĝ/∼. Note that V = G·N×Ĝ/∼ is a closed neighborhood
of π (first consider the complement and recall that the quotient map is open). That
V is Hausdorff follows from [25] because G · N/G is Hausdorff and the stability
subgroups vary continuously on G ·N by Lemma 3.8. Let {Fα} be a neighborhood
basis of π in (C0(X) o G)∧ consisting of compact sets. Since a compact subset of a
Hausdorff space is closed, {Fα ∩ V } is a neighborhood basis of π in (C0(X) o G)∧
consisting of closed sets. This establishes item (ii). Since π was an arbitrary irre-
ducible representation of C0(Y ) o G, we must have C0(Y ) o G ⊂ I = C0(Z) o G.
Therefore Z = Y and we’re done.

Example 3.11. If A = C0(X) o R is the transformation group in Exam-
ple 3.6, then I = m(A) corresponds to the open strip Y = {(x, y) : −1 < x < 1}.

Example 3.12. Let G = R+ act on X = R2 by t · (x, y) = (x/t, y/t). The
orbits are rays emanating from the origin together with the origin which is a
fixed point. Each orbit is locally closed so C0(X) o G is postliminal ([9]). The
stability subgroups do not vary continuously on any neighborhood of (0, 0). If
U is any G-wandering (hence wandering) neighborhood of (x, y) 6= (0, 0) then
(0, 0) ∈ G · U so that G · U is not closed in X. Thus Theorem 3.10 implies that
m(C0(X) o G) = {0}. Note that the action of G on W := X \ {(0, 0)} is free
and proper so that C0(W ) o G is an essential ideal of C0(X) o G with continuous
trace.

It should be pointed out that even for liminal algebras A, it is possible that
m(A) = {0}. To see this, recall that a point x of a topological space X is separated
if for any point y of X not in the closure of {x}, the points x and y admit a pair of
disjoint neighborhoods. If A is a separable C∗-algebra, then the set S of separated
points of the spectrum Â is a dense Gδ ([4], 3.9.4).
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Lemma 3.13. Let A be a C∗-algebra and I := m(A). Then OI is contained
in the interior of the separated points S of Â.

Proof. Let π ∈ OI , and ρ ∈ Â such that ρ /∈ {π}. If ρ ∈ OI then ρ and π

can be separated by disjoint relative open subsets of Â because OI is Hausdorff.
Since OI is open these relative open sets are open. Now suppose that ρ /∈ OI . Fix
a positive element a of m(A) such that tr(π(a)) > 1 and let f : Â → [0,∞) be
the (continuous) map σ 7→ tr(σ(a)). Note that ρ(a) = 0. Now f−1((1,∞)) and
f−1([0, 1

2 )) are disjoint open neighborhoods of π and ρ, respectively. Thus OI ⊂ S
and since OI is open we have OI ⊂ intS.

Dixmier has given an example of a separable liminal C∗-algebra A such that
the interior of the separated points in Â is empty (Proposition 4 of [3]). Thus
m(A) = {0} for this algebra.

Theorem 3.14. Let (G, X) be a second countable transformation group.
Suppose that either G acts freely and C0(X) o G is EH-regular, or that G is
abelian. Then the largest liminal ideal of C0(X) o G is C0(Z) o G where Z is
the open G-invariant subset

(3.6)
Z = {x ∈ X : x has a neighborhood U

such that G · z is closed in G · U for each z ∈ U }.

Proof. If J is the largest liminal ideal then OJ = {π ∈ Â : π
(
C0(X) o G

)
=

K(Hπ)}. If G is abelian then OJ is invariant under the dual action, and we have
J = C0(Y ) o G for some open G-invariant subset Y of X. This follows from our
EH-regularity assumption in the free case. Let Z be as in (3.6). Note that every
y ∈ Y has a neighborhood U (namely Y ) such that G ·z is closed in G ·U for every
z ∈ U by Theorem 3.1 of [23], so Y ⊂ Z.

Let x ∈ Z \ Y . Let V be an open neighborhood of x such that G · z is closed
in G · V for each z ∈ V . Not every orbit in Y ′ = Y ∪ G · V can be closed in Y ′

because C0(Y ) o G is the largest liminal ideal. Suppose that G · z is not closed in
Y ′. Then there exists sα ∈ G and w ∈ Y ′ such that sα · z → w /∈ G · z.

Since w ∈ Y ′, w has a neighborhood W such that G·u is closed in G·W for all
u ∈ W . But we can assume that sα0 ·z ∈ W for some sα0 and then G ·sα0 ·z = G ·z
must be closed in G ·W . Thus w ∈ G ·z, and this is a contradiction. Hence Z = Y
and we are done.

Every C∗-algebra A has a largest postliminal ideal I, and this ideal I is
the smallest ideal such that the corresponding quotient is anti-liminal (Proposi-
tion 4.3.6 in [4]). When A = C0(X) o G and G is abelian, it is clear that I is
invariant under the dual action: for every τ ∈ Ĝ the ideal α̂τ (I) is postliminal
and A/α̂τ (I) is antiliminal, hence α̂τ (I) ⊂ I. If G is abelian or G acts freely then
C0(X) o G is Type I if and only if X/G is T0 (Theorem 3.3 from [9]). Effros and
Glimm have given a number of conditions on a second countable locally compact
transformation group (G, X) which are equivalent to X/G being T0 (see [8], The-
orems 2.1 and 2.6 from [5] and [6]). For example, X/G is T0 if and only if each
orbit is regular : the map sSx 7→ s · x is a homeomorphism of G/Sx onto G · x.
(The term regular is borrowed from the definition on p. 223 of [14].) Using the
Effros-Glimm results, we have the following.
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Lemma 3.15. (Effros-Glimm) Suppose that (G, X) is a second countable
locally compact transformation group and that U is a neighborhood of x ∈ X.
Then the following are equivalent:

(i) G · U/G is T0 in the quotient topology;
(ii) G · y is regular for each y ∈ U ;
(iii) G · y is a Gδ subset of X for each y ∈ U ;
(iv) G · y is locally closed in X for each y ∈ U ;
(v) G · y is second category in itself for each y ∈ U .

Theorem 3.16. Let (G, X) be a second countable transformation group.
Suppose that either G acts freely and C0(X) o G is EH-regular, or that G is abelian.
Then the largest postliminal ideal of C0(X) o G equals C0(Z) o G where Z is the
G-invariant subset

(3.7) Z = {x ∈ X : x has a neighborhood U such that G · U/G is T0}.

Remark 3.17. The set Z can be realized as the set of points with neigh-
borhoods satisfying any of the equivalent conditions of Lemma 3.15.

Proof. If G is abelian, the largest postliminal ideal of C0(X) o G is invariant
under the dual action, so equals C0(Y ) o G for some G-invariant open subset Y
of X. Let Z be as in (3.7). Every y ∈ Y has an open G-invariant neighborhood U
(namely Y ) such that G · U/G is T0 by Theorem 3.3 from [9]. Thus Y ⊂ Z.

Let x ∈ Z \ Y and V an open neighborhood of x such that G · V/G is T0.
Note that T := (G · V ∪ Y )/G cannot be T0 by the maximality of C0(Y ) o G.
Choose distinct points G ·z1 and G ·z2 in T such that every open neighborhood U1

of G · z1 contains G · z2 and every open neighborhood U2 of G · z2 contains G · z1.
If G · z1 ∈ T \ (G · V/G) and G · z2 ∈ T \ (Y/G) then G · V/G is an open

neighborhood of G · z2 which does not contain G · z1, which is a contradiction.
If G · z1 and G · z2 both belong to Y/G or if G · z1 and G · z2 both belong

to G · V/G then we get an immediate contradiction because Y/G and G · V/G are
open and T0. Hence Y = Z.

Remark 3.18. Let (A,G, α) be a C∗-dynamical system with G compact
(but not necessarily abelian). It follows from Propositions 2.3 and 2.5 of [11] that
the largest liminal and postliminal ideals in A oα G are of the form J oα G where
J is an α-invariant ideal of A. This is trivial if A = C0(X), because C0(X) o G has
bounded trace (hence is liminal) when G is compact (Proposition 3.4 from [15]).
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