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Abstract. We study finite von Neumann algebras M that admit an approx-
imate identity made with completely positive normal maps whose extention
to L2(M) are compact operators. We prove heredity results, and we state
sufficient conditions on actions of countable groups to ensure that the crossed
product algebras have the same property.
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1. INTRODUCTION

In [14], U. Haagerup proved that the reduced C∗-algebra of the non Abelian free
group FN has Grothendieck’s metric approximation property. To do that, he
proved the existence of a sequence (ϕn)n>1 of normalized, positive definite func-
tions on FN with the following properties:

(1) for every g ∈ FN , the sequence ϕn(g) tends to 1 as n→∞;
(2) for every n, ϕn belongs to C0(FN ), i.e. tends to 0 at infinity of FN .
It turns out that many classes of locally compact, second countable groups

possess such sequences (where pointwise convergence to 1 is replaced by uniform
convergence on compact subsets), and it is the reason why we call it the Haagerup
property in [7]. In [8], M. Choda observed that a countable group Γ has the
Haagerup property if and only if its associated von Neumann algebra L(Γ) admits
a sequence (Φn) of completely positive, normal maps such that

(1′) τ ◦ Φn 6 τ and Φn extends to a compact operator on `2(Γ) (τ denotes
the natural trace on L(Γ));

(2′) for every x ∈ L(Γ), ‖Φn(x)− x‖2 tends to zero as n→∞.
(See also [1], Proposition 4.16.)
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Obviously, injective finite von Neumann algebras have the Haagerup property
in this sense. However, the first family of examples of finite von Neumann algebras
that have this property and which are neither group algebras nor injective is given
by F. Boca in [6]: he proves that the amalgamated free product factors constructed
by S. Popa in [24] have the above property.

It is worth mentioning that the first use of the Haagerup property in the
context of (group) von Neumann algebras is due to A. Connes and V. Jones [9]:
they showed the existence, for every property T countable group, of a cocycle
action on some algebra L(Fn) which cannot be perturbed to a genuine action. A
crucial fact is that if N is a type II1 factor with property T, then it cannot be
embedded into any factor with the Haagerup property. See also Section 6 and
Appendix in [27].

Our article is organized as follows: In Section 2, we recall the precise defi-
nition of the Haagerup property for a finite von Neumann algebra and we prove
first a technical result which says that one can always choose a sequence of unital
completely positive maps (Φn) as above such that τ ◦ Φn = τ for every n. This
stronger condition is unavoidable to extend such maps to free products, for in-
stance. Nevertheless, the weaker condition is more flexible to use while proving
that any reduced algebra eMe has the Haagerup property if M does, for example
(see Theorem 2.3). A priori, that property depends on the choice of some finite
trace τ , but we prove in Proposition 2.4 that if a finite von Neumann algebra M
has the Haagerup property with respect to some trace τ , then it has the same
property with respect to any other trace τ ′. We also prove the following heredity
result:

Theorem 1.1. Let 1 ∈ N ⊂M be finite von Neumann algebras (with sepa-
rable preduals). Assume that N has the Haagerup property and that the commu-
tant N ′ of N in the standard representation L2(M) is finite. Then M has also the
Haagerup property.

If N and M are finite factors, the finiteness hypothesis on N ′ means that N
has finite Jones’ index in M , and the result is well known (see [6], Lemma 3.10,
for instance). However, a typical case where Theorem 1.1 applies is when there
exists a conditional expectation E : M → N with finite probabilistic index: see
Corollary 2.6 and Proposition 2.10 for an explicit example.

Section 3 deals with crossed products of finite von Neumann algebras N
with the Haagerup property by trace-preserving actions of groups Γ with the same
property, and our main result there is:

Theorem 1.2. If Γ acts on a finite von Neumann algebra N and if Γ con-
tains a normal subgroup H such that:

(i) the von Neumann subalgebra N oH of N o Γ has the Haagerup property;
(ii) the quotient group Q = Γ/H is amenable;

then N o Γ has the Haagerup property.

We also give examples of properly outer actions of non amenable groups on
the hyperfinite type II1 factor R such that the crossed products have the Haagerup
property and we discuss briefly Boca’s notion of the Haagerup property for an
inclusion N ⊂ M = N o Γ: it turns out that the inclusion has the Haagerup
property if and only if Γ has the Haagerup property. As a consequence, we get
the following result for countable groups:
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Proposition 1.3. Let Γ1 and Γ2 be two groups that are Orbit Equivalent
(see Section 3). Then one of them has the Haagerup property if and only if the
other one does.

Finally, this paper ends with an appendix where we give a proof of a result
of S. Popa ([26], Proposition 1.1) which is related to Corollary 2.6: if a conditional
expectation E from a von Neumann algebra M onto a von Neumann subalgebra
N has finite index, then it is automatically faithful and normal.

2. TECHNICAL AND HEREDITY RESULTS

In this paper, M,N, . . . denote von Neumann algebras with separable preduals, ex-
cept in the Appendix. Let ϕ be a faithful, normal state on M . Denote by L2(M,ϕ)
the standard Hilbert space associated with ϕ and denote by ξϕ ∈ L2(M,ϕ) the
unit vector which implements ϕ. We also denote by ‖ · ‖2,ϕ the associated Hilbert
norm on M ; we simply write ‖ · ‖2 when ϕ is fixed and when there is no danger
of confusion. If e is a non zero projection of M , we denote by ϕe the state on
eMe defined by ϕe(exe) = ϕ(e)−1ϕ(exe) for all exe ∈ eMe. If Φ : M → M
is a completely positive, normal map such that ϕ ◦ Φ 6 ϕ, then Φ extends to a
contraction TΦ : L2(M,ϕ) → L2(M,ϕ) via the equality

TΦ(xξϕ) = Φ(x)ξϕ

for x ∈M . We say that Φ is L2-compact if TΦ is a compact operator. As we mainly
deal with finite von Neumann algebras here, we use the symbol τ to denote a finite,
faithful, normal, normalized trace on M , and we shortly call it a trace. We recall
the following definition taken from [1]:

Definition 2.1. Let M be a finite von Neumann algebra and let τ be a
trace on M as above. We say that M has the Haagerup approximation property
with respect to τ (shortly: M has the Haagerup property) if there exists a sequence
(Φn)n>1 of completely positive, normal maps from M to itself such that:

(i) τ ◦ Φn 6 τ and Φn is L2-compact for every n;
(ii) for every x ∈M , ‖Φn(x)− x‖2,τ → 0 as n→∞.

Apparently, the above property depends on the trace τ ; however, we will
prove below that it is not the case. Moreover, we prove that the sequence (Φn)
can be chosen to be τ -preserving:

Proposition 2.2. Let M be a finite von Neumann algebra which has the
Haagerup property with respect to some trace τ . Then there exists a sequence
(Ψn)n>1 of completely positive normal maps on M which satisfy:

(i′) τ ◦Ψn = τ , Ψn(1) = 1 and Ψn is L2-compact for every n > 1;
(ii′) for every x ∈M , ‖Ψn(x)− x‖2,τ → 0 as n→∞.

Proof. We prove first that we can choose a sequence (Φ′n) that fulfills con-
ditions (i) and (ii) of Definition 2.1 and such that Φ′n(1) 6 1 for every n. To do
that, let (ak)k>1 be a ‖ · ‖2-dense sequence of the unit ball of M with a1 = 1.
For every n > 1, set Fn = {ak : where 1 6 k 6 n}. Let (Φn) be a sequence
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as in Definition 2.1. Extracting a subsequence if necessary, we assume that the
following inequality holds for every positive integer n:

sup
x∈Fn

‖Φn(x)− x‖2 6
1

4n+1
.

We are going to define a sequence (Φ′n) of completely positive normal maps that
satisfies condition (i), such that Φ′n(1) 6 1 and morever

sup
x∈Fn

‖Φ′n(x)− x‖2 6
1

2n−1

for every n.
Fix n > 1, set εn = 1

2n+1 and let en denote the spectral projection of Φn(1)
corresponding to the interval [1− εn, 1 + εn]. Then (Φn(1)− 1)2 > ε2n(1− en) and
we get:

ε2nτ(1− en) 6 τ((Φn(1)− 1)2) = ‖Φn(1)− 1‖2
2 6

1
42n+2

.

This implies that

τ(1− en) 6
4
16

(
2
4

)2n

=
1

22n+2
.

Now, set for x ∈M : Φ′n(x) = 1
1+εn

enΦn(x)en. Then Φ′n(1) 6 1, and, if x ∈M+,

τ ◦ Φ′n(x) 6 τ(enΦn(x)en) = τ(Φn(x)1/2enΦn(x)1/2) 6 τ ◦ Φn(x) 6 τ(x).

This shows that Φ′n satisfies condition (i) and that it is L2-compact since TΦ′
n

=
1

1+εn
enJenJTΦn

. Finally, let x ∈ Fn. Then:

‖Φ′n(x)− x‖2 6 ‖enΦn(x)en − x− εnx‖2 6 ‖enΦn(x)en − x‖2 +
1

2n+1

6 ‖en(Φn(x)− x)en‖2 + ‖enxen − enx‖2 + ‖enx− x‖2 +
1

2n+1

6
1

4n+1
+

1
2n+1

+ 2 · 1
2n+1

6
1

2n−1
.

(We used the fact that ‖x‖ 6 1 for every x ∈ Fn.)
We define now the required sequence (Ψn). Fix n > 1. As τ ◦Φ′n 6 τ , there

exists hn ∈ M such that 0 6 hn 6 1 and that τ ◦ Φ′n(x) = τ(hnx) for all x ∈ M .
Notice that in particular, τ(Φ′n(1)) = τ(hn). If Φ′n(1) = 1, then set Ψn = Φ′n, and
we are done because this implies that hn = 1. Thus assume that Φ′n(1) − 1 6= 0.
Set

xn =
1

τ(1− hn)
(1− Φ′n(1)) and yn = 1− hn,

which are positive elements of M . Next define Ψn : M →M by

Ψn(x) = Φ′n(x) + xnτ(ynx) = Φ′n(x) + x1/2
n τ(ynx)x1/2

n .

It is a completely positive, normal and L2-compact map on M . Moreover, Ψn(1) =
1 and

τ ◦Ψn(x) = τ(hnx) + τ(xnτ(ynx))

= τ(hnx) +
1

τ(1− hn)
τ(1− Φ′n(1))τ((1− hn)x) = τ(x)
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for all x ∈M , since τ(1− hn) = τ(1−Φ′n(1)). Finally, one has for every x ∈M+:

Ψn(x)− Φ′n(x) = xnτ(ynx) 6 ‖x‖xnτ(yn) = ‖x‖(1− Φ′n(1)),

which shows that (Ψn) satisfies condition (ii′).

We now gather some heredity results concerning the Haagerup property; the
second one is analogous to semidiscreteness in the case of injective von Neumann
algebras.

Theorem 2.3. Let M,M1 and M2 be finite von Neumann algebras gifted
with traces τ, τ1 and τ2 respectively. Assume that M1 and M2 have the Haagerup
property (with respect to their prescribed traces). Then:

(i) If e is any non zero projection of M and if M has the Haagerup property
with respect to τ , then the reduced algebra eMe has the Haagerup property with
respect to the trace τe. Moreover, if 1 ∈ N ⊂ M is a von Neumann subalgebra of
M , then it has the Haagerup property with respect to τ |N .

(ii) Assume that there exists a sequence of finite von Neumann algebras
(Nn)n>1, each being gifted with a trace τn with respect to which it has the Haagerup
property, and assume that for every n there exist completely positive normal maps
Sn : M → Nn and Tn : Nn →M such that τn ◦Sn 6 τ , τ ◦Tn 6 τn, and such that

‖Tn ◦ Sn(x)− x‖2,τ → 0

as n → ∞. Then M has the Haagerup property with respect to τ . In particular,
M has the Haagerup property with respect to τ if it is generated by an increasing
sequence of von Neumann algebras 1 ∈ N1 ⊂ N2 ⊂ · · · and if there exists an
increasing sequence of projections en ∈ Nn with limit 1 such that the reduced
algebras enNnen all have the Haagerup property with respect to their traces τen .

(iii) The tensor product von Neumann algebra M1⊗M2 has the Haagerup
property with respect to the tensor product trace τ1 ⊗ τ2.

(iv) The free product von Neumann algebra M1 ?M2 has the Haagerup prop-
erty with respect to the free trace τ1 ? τ2.

Proof. Assertions (i) and (iii) are obvious. Assertion (iv) follows from Propo-
sition 3.9 of [6]. Observe nonetheless that one has to choose sequences (Ψi,n) on
Mi satisfying conditions (i′) and (ii′) of Proposition 2.2 in order to be able to
extend them to the free product M1 ? M2.

We now prove (ii). Let F ⊂M be a finite subset and let ε > 0. There exists
an integer n such that

‖Tn ◦ Sn(x)− x‖2,τ 6
ε

2
, ∀x ∈ F.

There exists a completely positive normal map Φ : Nn → Nn such that τn◦Φ 6 τn,
Φ is L2-compact and

‖Φ(Sn(x))− Sn(x)‖2,τn
6
ε

2
, ∀x ∈ F.

Then Φn = Tn ◦ Φ ◦ Sn is a completely positive normal map on M , τ ◦ Φn 6 τ ,
and, as TΦn

= TTn
TΦTSn

, Φn is L2-compact and satisfies for every x ∈ F :

‖Φn(x)− x‖2,τ 6 ‖TnΦSn(x)− TnSn(x)‖2,τ + ‖TnSn(x)− x‖2,τ

6 ‖Φ(Sn(x))− Sn(x)‖2,τ +
ε

2
6 ε.
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Finally, in the particular case, denoting by ENn
the conditional expectation from

M onto Nn associated with τ , it suffices to set Sn(x) = τ(en)enENn
(x)en and

Tn(enxen) = τ(en)−1enxen for x ∈M .

The following proposition shows that the Haagerup property is in fact inde-
pendent of the trace:

Proposition 2.4. Let M be a finite von Neumann algebra and let τ and τ ′
be two normal, faithful, finite, normalized traces on M . If M has the Haagerup
property with respect to τ then it also has the Haagerup property with respect to τ ′.

Proof. Let h be the positive operator affiliated with Z(M), the centre of M ,
such that τ ′(x) = τ(hx) for every x ∈M .

Let us assume first that h and h−1 are bounded operators, and let (Φn)n>1

be a sequence of completely positive normal maps on M satisfying conditions (i)
and (ii) in Definition 2.1 with respect to τ . Then set Ψn(x) = h−1Φn(hx) for
x ∈ M . Then it is easy to check that the sequence (Ψn)n>1 satisfies the same
conditions with respect to τ ′.

If h or h−1 is unbounded, for every n > 2 let en ∈ Z(M) be the spectral
projection of h corresponding to the interval

[
1
n , n

]
. Observe that en increases

to 1. Set

hn =
τ(en)
τ(hen)

hen =
τ(en)
τ ′(en)

hen,

which is a positive, invertible element of Z(enM). Then we have for every enx ∈
enM :

τen(hnenx) =
τ(en)
τ ′(en)

1
τ(en)

τ(henx) =
1

τ ′(en)
τ ′(enx) = τ ′en

(enx).

As h±1
n are bounded operators and as enMen has the Haagerup property with

respect to τen by Theorem 2.3 (ii), the first part of the proof shows that enMen
has the Haagerup property with respect to τ ′en

as well. Again, Theorem 2.3 (ii)
shows that M has the Haagerup property with respect to τ ′.

Theorem 2.5. Let 1 ∈ N ⊂ M be a pair of finite von Neumann algebras.
Assume that N has the Haagerup property and that there exists a Hilbert space H
such that M ⊂ B(H) and that the commutant N ′

H of N in B(H) is a finite von
Neumann algebra. Then M and N ′

H have the Haagerup property.

Proof. Denote by M ′
H the commutant of M in B(H). If A denotes any

von Neumann algebra among M,N,M ′
H, N

′
H, let CtrA be the canonical Z(A)-

valued trace on A. Recall that the coupling operators cM (H) and cN (H) are
positive, invertible operators affiliated with Z(M) and Z(N) respectively and are
characterized by:

CtrM (eM
′

ξ ) = cM (H)CtrM ′(eMξ ), ∀ξ ∈ H,

and similarly for cN (H).
Let us assume first that there exists a positive integer m such that

1
m

6 cN (H) 6 m.
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We claim that the same inequalities hold true for cM (H). Indeed, by Propositions 3
and 6, pp. 300 and 302 of [12], and by Lemma 1.1 of [17], there exist vectors
ξ1, . . . , ξm ∈ H such that the cyclic projections eNξ1 , . . . , e

N
ξm

are pairwise orthogonal
with sum 1. As eMξi

> eNξi
for all i, we get

cM (H) 6
m∑
i=1

cM (H)CtrM ′(eMξi
) =

m∑
i=1

CtrM (eM
′

ξi
) 6 m.

Similarly, since cM ′(H) = cM (H)−1, we prove that cM (H) > 1
m .

Now set n = m2, and denote by M ′ (respectively N ′) the commutant of
M (respectively N) in its standard representation L2(M) (respectively L2(N)).
By Lemma 2.2 of [17], there exist non zero projections e′ ∈ N ′ ⊗ Mn(C) and
f ′ ∈ M ′ ⊗Mn(C), and unitary operators u : H → e′(L2(N) ⊗ Cn) and v : H →
f ′(L2(M) ⊗ Cn) such that N ′

H = u∗e′(N ′ ⊗ Mn(C))e′u and M ′
H = v∗f ′(M ′ ⊗

Mn(C))f ′v. This proves successively that N ′
H, M ′

H, M ′ and finally M have the
Haagerup property.

If cN (H) or cN (H)−1 is unbounded, for every integer m > 2, let zm ∈ Z(N)
be the spectral projection of cN (H) corresponding to the interval

[
1
m ,m

]
. Then

zm
m

6 cNzm
(zmH) = cN (H)zm 6 mzm,

hence the reduced algebras (N ′
H)zm

and Mzm
have the Haagerup property for

every m. As zm → 1 when m→∞, we conclude by Theorem 2.3 (ii).

A typical case where conditions of Theorem 2.5 are fulfilled is the case where
there exists a conditional expectation E : M → N with finite (probabilistic) index
(see [4] and [25]): there exists a positive constant c such that E(x∗x) > c x∗x
for every x ∈ M . If this is the case, then E is automatically faithful and normal
(see Proposition 1.1 of [26] and the Appendix of the present notes for a slightly
different proof). Moreover, the above condition is in fact equivalent to the following
apparently stronger property: there exists a positive constant c′ such that the map
E−c′Id is completely positive ([13] and [25]), and this implies thatN ′ ⊂ B(L2(M))
is finite (see for instance [18]). Choose a normal, faithful state ϕ on M such that
ϕ ◦ E = ϕ, and denote by e the extention of E to L2(M,ϕ). Then 〈M, e〉 is
the von Neumann algebra generated by M and e and it is called the Jones’ basic
construction. As it is equal to JN ′J , it is also finite. Hence,

Corollary 2.6. Let N ⊂ M be such that there exists a conditional expec-
tation E of finite index from M onto N . If N has the Haagerup property, then so
do M and 〈M, e〉.

Following Definition 1.4.3 of [23], let us say that two finite von Neumann
algebras M and N are w-stable equivalent if there exists a correspondence H from
M to N such that the commutants M ′

H and N ′
H of M and N in B(H) are finite von

Neumann algebras. (Recall that such a correspondence is a left normal M -module
and a right normal N -module.) Thus we have:
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Corollary 2.7. If M and N are finite and w-stable equivalent and if one
of them has the Haagerup property, then so does the other one.

In Remark 2.4 of [26], S. Popa gives an example of a pair of finite von
Neumann algebras, with atomic centres, with no trace-preserving conditional ex-
pectation of finite index, but which has some conditional expectation of finite
index: for every integer k > 2, consider an inclusion of locally trivial Jones

subfactors Nk ⊂ Mk with Jones index
(

1
k

)−1

+
(
1 − 1

k

)−1

= k2

k−1 , and set
N =

⊕
k

Nk ⊂
⊕
k

Mk = M . Let Ek : Mk → Nk be the expectation with min-

imal index: Ind(Ek) = 4. Then E =
⊕
k

Ek has finite index, but the unique trace

preserving conditional expectation EN does not. If all Mk’s have the Haagerup
property, then so does 〈M, e〉, but, as Z(〈M, e〉) is atomic, it is not necessary
to apply the Theorem 2.5 because Theorem 2.3 (ii) suffices. We give below a
“completely non atomic” analogue of Popa’s example where Theorem 2.5 is really
necessary to get the conclusion.

For a while, let M be a semifinite von Neumann algebra with a normal,
faithful, semifinite trace Tr, and let L2(M,Tr) be the Hilbert space completion
of the σ-weakly dense ideal {x ∈ M : Tr(x∗x) < ∞} with respect to the scalar
product 〈x, y〉 = Tr(y∗x). Set

M1,1 = {x ∈M : ‖x‖ 6 1 and Tr(x∗x) 6 1};

set also P1(M) = {p ∈ M : p2 = p∗ = p and Tr(p) 6 1} and I1(M) = {u ∈ M :
u∗u ∈ P1(M)}.

Lemma 2.8. M1,1 is a complete metric space with respect to the distance
function d(x, y) = Tr(|x − y|2)1/2. Moreover, P1(M) and I1(M) are closed sub-
spaces of M1,1. In particular, they are all standard Borel spaces.

Proof. Completeness of M1,1 is a straightforward consequence of Proposi-
tion 4, Part I, Chapter 5 in [12], and the remaining assertions are immediate.

Now, let B denote the type I∞ factor with separable predual and let P
be a type II1 factor with separable predual which has furthermore the following
properties:

(1) P has the Haagerup property;
(2) there exists a one parameter group of automorphisms (σt)t∈R of P⊗B

that scales the trace, namely

(τ ⊗ Tr) ◦ σt = e−t(τ ⊗ Tr), ∀t ∈ R.

One can take for instance P = R, the hyperfinite type II1 factor, more generally,
P = Q⊗R, where Q is a factor with the Haagerup property, or P = L(F∞), where
F∞ denotes the non Abelian free group on countably many generators, by [28].
Let S be the open interval (0, 1), and set for s ∈ S:

βs = σlog(s/(1−s)),

in order that
(τ ⊗ Tr) ◦ βs =

1− s

s
(τ ⊗ Tr), ∀s ∈ S.
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Next, fix a unitary operator u ∈ P such that τ(uk) = 0 for every non zero integer
k, and, following [3], define a family of projections (es)s∈S ⊂ P by

es = s+
∑
n 6=0

sin(snπ)
nπ

un.

Then es has trace s and s 7→ es is ‖ · ‖2-continous. Finally, fix some minimal
projection f ∈ B (so that Tr(f) = 1). The choices made above imply that

(τ ⊗ Tr) ◦ βs(es ⊗ f) =
1− s

s
(τ ⊗ Tr)(es ⊗ f) = 1− s,

hence βs(es ⊗ f) is equivalent to (1− es)⊗ f in P⊗B for every s.

Lemma 2.9. With notations as above, there exists a Borel map s 7→ us from
S to I1(P⊗B) such that

βs(es ⊗ f) = u∗sus and (1− es)⊗ f = usu
∗
s

for every s ∈ S.

Proof. Set D1 = {(p, q) ∈ P1(P⊗B)2 : τ ⊗Tr(p) = τ ⊗Tr(q)}. Then D1 is a
closed subspace of the product metric space P1(P⊗B)2 because if (pn) ⊂ P1(P⊗B)
converges to p, then

|Tr(pn − p)| 6 Tr(|pn − p|) 6 ‖pn − p‖2‖pn + p‖2 → 0

by Powers-Størmer Inequality.
Define f : I1(P⊗B) → D1 by f(u) = (u∗u, uu∗). Then f is continuous and

onto. As D1 and I1(P⊗B) are standard Borel spaces, by von Neumann Selection
Theorem, f admits a Borel section g : D1 → I1(P⊗B). Thus define us ∈ I1(P⊗B)
by us = g(βs(es ⊗ f), (1− es)⊗ f). Then

(u∗sus, usu
∗
s) = f(us) = (βs(es ⊗ f), (1− es)⊗ f)

for every s ∈ S, and s 7→ us is Borel.

Next, define

θ′s : (P⊗B)es⊗f = Pes
⊗ Cf → (P⊗B)(1−es)⊗f = P1−es

⊗ Cf

by θ′s(x) = usβs(x)u∗s. This gives a family of ∗-isomorphisms θs : Pes
→ P1−es

such that the map s 7→ θs(esx(s)es) is a Borel map for every bounded Borel map
s 7→ x(s) from S to P .

At last, set M = L∞(S)⊗P and

N = {x ∈M : ∃y ∈M s.t. x(s) = esy(s)es + θs(esy(s)es) a.e.}
= {x ∈M : esx(s)(1− es) = (1− es)x(s)es = 0 and

θs(esx(s)es) = (1− es)x(s)(1− es) a.e.}.

Then N is a unital von Neumann subalgebra of M , it admits a conditional expec-
tation E : M → N of finite index, namely

E(x)(s) =
1
2
[esx(s)es+θ−1

s ((1−es)x(s)(1−es))+θs(esx(s)es)+(1−es)x(s)(1−es)].
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However, as every finite trace τ on M is of the form

τ(x) =
∫
S

τP (x(s))h(s) ds,

where h is a positive element of L1(S), there is a unique trace-preserving condi-
tional expectation EN from M onto N which is given by

EN (x)(s) = sesx(s)es + (1− s)θ−1
s ((1− es)x(s)(1− es))

+ sθs(esx(s)es) + (1− s)(1− es)x(s)(1− es),

and if there existed a positive constant c such that EN (x∗x) > c x∗x for all x ∈M ,
then we would get for almost every s ∈ S:

esEN (es)es = ses > c es,

which forces c = 0, a contradiction. This shows that EN has infinite index. We
thus get:

Proposition 2.10. Let M = L∞(S)⊗P and N ⊂ M be as above. Let e be
the projection associated to the conditional expectation E as above. Then 〈M, e〉
has the Haagerup property.

3. THE CASE OF CROSSED PRODUCTS

We fix first our notations concerning the class of von Neumann algebras that will be
discussed in this section. LetN be a finite von Neumann algebra gifted with a finite
trace τ and with a τ -preserving action α of a countable group Γ. We describe the
usual two realizations of the crossed product algebraM = N oα Γ that will be used
here. For t ∈ Γ, we denote by t 7→ λt (respectively t 7→ ρt) the left (respectively
right) representation of Γ on `2(Γ), and by t 7→ ut the canonical implementation
of the action α on L2(N) = L2(N, τ), i.e. ut is given by ut(xξτ ) = αt(x)ξτ for
every x ∈ N . We also set λ(t) = 1 ⊗ λt, which is a unitary operator acting on
L2(N)⊗ `2(Γ). Similarly, for every bounded, complex-valued function f on Γ, we
denote by mf the associated multiplication operator on `2(Γ), and by m(f) the
operator 1 ⊗ mf on L2(N) ⊗ `2(Γ). We denote also by L(Γ) the von Neumann
algebra acting on `2(Γ) and generated by the left regular representation λ of Γ.

The first realization of M is the von Neumann algebra generated by π(N)∪
{λ(t) : t ∈ Γ}, where π = πα : N → B(L2(N)⊗ `2(Γ)) is defined by

(π(x)ξ)(g) = αg−1(x)ξ(g)

for all x ∈ N , g ∈ Γ and ξ ∈ L2(N)⊗ `2(Γ) = `2(Γ, L2(N)). In this realization, M
is a von Neumann subalgebra of N⊗B (where B = B(`2(Γ)), and more precisely,
it is the fixed point algebra under the action θ of Γ defined by θt = αt⊗Ad ρt. The
second realization of N oα Γ also acts on L2(N)⊗`2(Γ) and it is the von Neumann
algebra generated by {xut ⊗ λt : x ∈ N, t ∈ Γ}. The isomorphism between these
algebras is

ι : (π(N) ∪ λ(Γ))′′ → {xut ⊗ λt : x ∈ N, t ∈ Γ}′′
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defined by ι(X) = wXw∗ where w is the unitary operator on L2(N)⊗ `2(Γ) given
by (wξ)(g) = ugξ(g). One has ι(π(x)) = x ⊗ 1 for x ∈ N and ι(λ(t)) = ut ⊗ λt
for t ∈ Γ. Finally, we denote by EN the natural (trace preserving) conditional
expectation onto N given by EN (π(x)λ(g)) = δg,1π(x) in the first realization, and
by EN (xug ⊗ λg) = δg,1x⊗ 1 in the second.

The first result of this section is already known for semidirect product groups
H oα Γ whereH has the Haagerup property and Γ is amenable (see [7], Chapter 6);
moreover, it follows directly from Proposition 4.17 of [1] that if Γ is amenable and
if N has the Haagerup property, then N oα Γ has the compact approximation
property (see Definition 4.13 of [1]). We do not know how to deduce directly from
this that N oα Γ has the Haagerup property. Instead, our proof is inspired by that
of Theorem 3.11 in [11]:

Proposition 3.1. If Γ is amenable and if N has the Haagerup property,
then N oα Γ has also the Haagerup property.

Proof. We use the first realization of N oα Γ. Let f be a finitely supported,
nonnegative-valued function on Γ such that

∑
t∈Γ

f(t)2 = 1. By Lemmas 3.7 and 3.9

of [11], the mapping Ψf : N⊗B → N oα Γ defined by

Ψf (X) =
∑
t∈Γ

θt(m(f)Xm(f))

is well defined, normal, and obviously completely positive. By Lemma 3.8 of [11],
we have moreover

Ψf (1) =
∑
t∈Γ

f2(t)π(αt(1)) = 1.

Now, let Φ : N → N be a completely positive normal map such that τ ◦ Φ 6 τ
and which is L2-compact. We define Φf on N oα Γ by

Φf (X) = Ψf ◦ Φ⊗ iB(X)

for all X ∈ N oα Γ, where iB denotes the identity map on B = B(`2(Γ)). Φf is
clearly completely positive and normal. We need the following formula, for x ∈ N
and g ∈ Γ:

(3.1) Φf (π(x)λ(g)) =
∑
t∈S(f)

f(t)f(g−1t)π(αt ◦ Φ ◦ αt−1(x))λ(g)

where S(f) denotes the support of f . Denote also by (eu,v)u,v∈Γ the system
of matrix units associated with the canonical basis (δt)t∈Γ of `2(Γ): eu,v(ξ) =
〈ξ, δv〉δu for every ξ ∈ `2(Γ). We compute first Φf (π(x)m(χF )λ(g)) for any finite
subset F of Γ containing S(f). By definition, π(x)m(χF ) =

∑
u∈F

αu−1(x) ⊗ eu,u;

moreover, one has for y ∈ N , g ∈ Γ and any finitely supported function h on Γ:

(3.2)
∑
t∈Γ

θt(m(f)y ⊗mhλgm(f)) =
∑
t∈Γ

ϕg,h(t)π(αt(y))λ(g)
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where ϕg,h(t) = f(t)h(t)f(g−1t). This follows from Lemma 3.8 and the proof of
Lemma 3.9 of [11], but the referee suggested that we give a quick proof for the
reader’s convenience. First, for fixed t ∈ Γ, one has:

θt(m(f)y ⊗mhλgm(f)) = θt(1⊗mf · y ⊗mhλg · 1⊗mf )

= θt(y ⊗ (mfhλgmf )) = θt(y ⊗ (mϕg,h
))λ(g)

since Ad ρt(λg) = λg. Next, we claim that
∑
t∈Γ

θt(y⊗mϕg,h
) =

∑
t∈Γ

ϕg,h(t)π(αt(y)).

Indeed, one has for every finitely supported L2(N)-valued function ξ:∑
t∈Γ

〈θt(y ⊗mϕg,h
)ξ, ξ〉

=
∑
t∈Γ

〈αt(y)⊗ ρtmϕg,h
ρ−1
t ξ, ξ〉 =

∑
s,t∈Γ

ϕg,h(st)〈αt(y)ξ(s), ξ(s)〉

=
∑
u,s∈Γ

ϕg,h(u)〈αs−1(αu(y))ξ(s), ξ(s)〉 =
∑
t∈Γ

ϕg,h(t)〈π(αt(y))ξ, ξ〉.

This proves our claim and ends the proof of (3.2).
Now, as

Φ⊗ iB(π(x)m(χF )λ(g)) =
∑
u∈F

Φ⊗ iB(αu−1(x)⊗ (eu,uλg))

=
∑
u∈F

(Φ ◦ αu−1(x))⊗ (eu,uλg),

we get

Φf (π(x)m(χF )λ(g)) =
∑
u∈F

∑
t∈Γ

θt (m(f)Φ ◦ αu−1(x)⊗ eu,uλgm(f))

=
∑
u∈F

∑
t∈Γ

ϕu(t)π(αt ◦ Φ ◦ αu−1(x))λ(g),

with ϕu(t) = f(t)δu(t)f(g−1t) (because eu,u = mδu
). Thus

Φf (π(x)m(χF )λ(g)) =
∑
u∈F

f(u)f(g−1u)π(αu ◦ Φ ◦ αu−1(x))λ(g)

=
∑
t∈S(f)

f(t)f(g−1t)π(αt ◦ Φ ◦ αt−1(x))λ(g),

which proves (3.1) because of the σ-weak continuity of Φf . Let us still denote by
τ the trace on N oα Γ induced by that on N ; we prove that τ ◦Φf 6 τ : for that,
let X =

∑
π(xg)λ(g) ∈ N oα Γ with xg = 0 except for finitely many g’s. One has

X∗X =
∑
s

( ∑
h

π(αh−1(x∗hxhs))
)
λ(s), which gives, taking account of (3.1),

Φf (X∗X) =
∑
s,h

∑
t∈S(f)

f(t)f(s−1t)π(αt ◦ Φ ◦ αt−1h−1(x∗hxhs))λ(s),
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and
τ ◦ Φf (X∗X) =

∑
t∈S(f)

∑
h

f(t)2τ ◦ Φ(αt−1h−1(x∗hxh))

6
∑
t∈S(f)

∑
h

f(t)2τ(x∗hxh) = τ(X∗X).

In order to check that Φf is L2-compact, recall that ξτ⊗δ1 is the vector associated
to τ , and observe that for x ∈ N and g ∈ Γ, one has

π(αt ◦ Φ ◦ αt−1(x))ξτ ⊗ δg = ug−1tTΦ(ut−1xξτ )⊗ δg,

which gives

Φf (π(x)λ(g))ξτ ⊗ δ1 =
∑
t∈S(f)

f(t)f(g−1t)ug−1tTΦut−1(xξτ )⊗ δg.

If ξ =
∑
g
ξ(g)⊗ δg ∈ L2(N)⊗ `2(Γ) is arbitrary, we have:

TΦf
(ξ) =

∑
g∈Γ

∑
t∈S(f)

f(t)f(g−1t)ug−1tTΦut−1(ξ(g))⊗ δg

=
∑

g∈S(f)S(f)−1

∑
t∈S(f)

f(t)f(g−1t)ug−1tTΦut−1(ξ(g))⊗ δg.

This proves that TΦf
is a finite sum of compact operators, hence it is also compact.

Finally, in order to complete the proof, fix finite subsets K ⊂ N and L ⊂ Γ, and
ε > 0. Since Γ is amenable, there exists a finitely supported function f as above
such that |〈λgf, f〉 − 1| 6 ε

C ∀g ∈ L, where C = 2
(
1 + max

x∈K
‖x‖

)
. Next, choose Φ

such that ‖Φ◦αt−1(x)−αt−1(x)‖2 6 ε
2 ∀t ∈ S(f), x ∈ K. Then it is straightforward

to check that

‖Φf (π(x)λ(g))− π(x)λ(g)‖2 6 ε, ∀x ∈ K, g ∈ L

and this ends the proof.

Our next result relies on Proposition 3.1 above, on Proposition 3 in [5] and
also on the deep Theorem 1.1 of [21] which states that if (β, u) is a centrally free
cocycle crossed action (see below) of an amenable countable group Q on a von
Neumann algebra M and if its restriction to Z(M) preserves the restriction of
some normal, faithful state, then the cocycle u is a coboundary. In particular, the
cocycle crossed product algebra N oβ,uQ is ∗-isomorphic to an ordinary crossed
product algebra. Let us recall some definitions from [21], for instance.

A central sequence in a finite von Neumann algebra N is a bounded sequence
(xn) ⊂ N such that ‖xnx − xxn‖2 → 0 as n → ∞ for every x ∈ N . An auto-
morphism θ of N is called centrally trivial if ‖θ(xn)− xn‖2 → 0 for every central
sequence (xn) of N . The set of all centrally trivial automorphisms of N is denoted
by Ct(N) and it is a normal subgroup of Aut(N); θ is called properly centrally
non trivial if θ|pN is not centrally trivial for any non zero θ-invariant projection
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p ∈ Z(N). A cocycle crossed action of a group Q on N is a pair (β, u) where
β : Q→ Aut(N) and u : Q×Q→ U(N) satisfy for all q, r, s ∈ Q

βqβr = Ad(u(q, r))βqr,

u(q, r)u(qr, s) = βq(u(r, s))u(q, rs),

u(1, q) = u(q, 1) = 1.

The cocycle crossed action is then called centrally free if βq is properly centrally
non trivial for every q 6= 1.

Theorem 3.2. Let 1 → H → Γ → Q → 1 be a short exact sequence of
countable groups and let α be an action of Γ on N which preserves some trace τ .
Assume that:

(i) the crossed product N oα|H H has the Haagerup property;
(ii) Q is an amenable group.
Then the crossed product N oα Γ has the Haagerup property.

Proof. By Proposition 3 of [5], there exists a cocycle crossed action (β, u) of
Q on N oα|H H such that N oα Γ is ∗-isomorphic to the cocycle crossed product
(N oH) oβ,uQ. If (β, u) is centrally free, then it follows from Theorem 1.1 of [21]
that u is a coboundary, hence that there exists an action β′ of Q on N oα|H H
such that (N oH) oβ′ Q is ∗-isomorphic to N oα Γ, and Proposition 3.1 above
applies. However, it may well happen that (β, u) be not centrally free. In order to
deal with this case, choose an outer action θ : Q→ Aut(R), where R denotes the
hyperfinite type II1 factor. Since Ct(R) is the subgroup of inner automorphisms
of R, θ is a centrally free action.

Next, let α ⊗ θ : Γ → Aut(N⊗R) be the action defined by (α ⊗ θ)g =
αg ⊗ θψ(g), where ψ is the canonical projection from Γ onto Q. We intend to
show that the crossed product (N⊗R) oα⊗θ Γ has the Haagerup property; as it
obviously contains N oα Γ, the proof will be complete.

Remark that (N⊗R) oα⊗θ|H H is naturally isomorphic to the tensor product
(N oα|H H)⊗R, which has the Haagerup property. Let us still denote by (β, u)
the cocycle crossed action of Q on M = (N⊗R) oα⊗θ|H H constructed in the proof
of Proposition 3 of [5]. We need to check that it is centrally free. To do that, let
us recall how it is defined: For every q ∈ Q, choose nq ∈ Γ (with n1 = 1) such
that ψ(nq) = q, define σ : Q→ Aut(H) and v : Q×Q→ H by

σq(h) = nqhn
−1
q and v(q, r) = nqnrn

−1
qr ,

and set γ = (α ⊗ θ)|H. Then u(q, r) = λ(v(q, r)) and β : Q → Aut(M) is
characterized by

(a) βq(πγ(x)) = πγ((α⊗ θ)nq (x)) for every x ∈ N ;
(b) βq(λ(h)) = λ(σq(h)) for every h ∈ H.

Let us fix q ∈ Q, q 6= 1 and a non zero βq-invariant projection p ∈ Z(M) =
Z(N oH)⊗1; hence write p = z⊗1 with z ∈ Z(N oH). It follows that βq(z⊗x) =
z ⊗ θq(x) for every x ∈ R. As θq is not centrally trivial, there exists a central
sequence (xn) ⊂ R such that

lim inf ‖θq(xn)− xn‖2 > 0.
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Set yn = z ⊗ xn for all n. Then it is a central sequence in M and ‖βq(yn)− yn‖2

does not tend to 0 as n→∞, which proves that that (β, u) is centrally free. The
first part of the proof shows that (N⊗R) oα⊗θ Γ has the Haagerup property.

We also mention the following result which is a consequence of Theorems 2.3
and 2.5, and the fact that if an action of Γ is trivial on some von Neumann
subalgebra P of N then the crossed product P o Γ is equal to the tensor product
P⊗L(Γ):

Proposition 3.3. Assume that N and Γ have the Haagerup property, and
let α be an action of Γ on N that preserves some trace τ . Then the crossed product
algebra N oα Γ has the Haagerup property if the triple (N,Γ, α) satisfies at least
one of the following conditions:

(i) There exists a Hilbert space H such that N ⊂ B(H) and the commutant
(NΓ)′H of the fixed point subalgebra is finite.

(ii) There exists a sequence of α-invariant von Neumann subalgebras

1 ∈ N1 ⊂ N2 ⊂ · · · ⊂ N

whose union is ‖ · ‖2-dense in N and such that every crossed product algebra
Nn oα Γ has the Haagerup property.

Remark 3.4. Assume that (N,Γ, α) satisfies conditions (i) above. Assume
also that there exists a unitary representation v of Γ on H which implements α
on N and that the action is quasi-free in the sense of [2]: for every g 6= 1, the
condition

x ∈ N, xy = αg(y)x, ∀y ∈ N

implies x = 0. Then it follows from Section II of [2] that Γ acts by α′ = Ad(v) on
the commutant N ′

H of N and that the commutant (NΓ)′H is ∗-isomorphic to the
crossed product N ′

H oα′ Γ. In particular, the latter crossed product algebra has
also the Haagerup property.

Let us describe a case where condition (ii) above is satisfied: suppose that
(An, τn)n>1 is a sequence of finite von Neumann algebras, each one being gifted
with a trace-preserving action α(n) of a group Γ such that all crossed products
An oα(n) Γ have the Haagerup property. Let (N, τ) be the infinite tensor product
von Neumann algebra

( ⊗
n>1

An,⊗nτn
)

and let α =
⊗
n
α(n) be the corresponding

action. Then the crossed product N oα Γ has the Haagerup property.
We will see now how to exploit the following fact: Assume that the group

Γ admits a unitary representation ρ : Γ → NM (N) where M is a finite von
Neumann algebra containing N and where NM (N) = {u ∈ U(M) : uNu∗ = N} is
the normalizer of N in M . This gives an action α on N by αg(x) = Ad ρ(g)(x) =
ρ(g)xρ(g−1). Then the crossed product N oα Γ is contained in M oα Γ and this
one is isomorphic to the tensor productM⊗L(Γ). (Thus, N oα Γ has the Haagerup
property if M and Γ do.) Indeed, denote by βg the automorphism Ad ρ(g) on M
and by J the canonical antilinear involution on L2(M, τ) defined by J(xξτ ) = x∗ξτ
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for x ∈ M . Then the canonical implementation of the automorphism βg is ug =
ρ(g)Jρ(g)J for every g ∈ Γ. Define V from L2(M)⊗ `2(Γ) to itself by

V
∑
g∈Γ

ξ(g)⊗ δg =
∑
g∈Γ

Jρ(g)Jξ(g)⊗ δg.

Then V is a unitary operator and we have for every g ∈ Γ and every x ∈M :

V (xρ(g)⊗ λg)V ∗ = xug ⊗ λg.

This proves that M⊗L(Γ) is isomorphic to the crossed product M oβ Γ.
A typical (and rather trivial) case where hypotheses above are satisfied is

when N is finite dimensional: α is implemented by a unitary representation u
on the finite dimensional space L2(N), hence we take M = B(L2(N)) which is
finite dimensional, too. Another case which may be of interest is the case where
M = L(Γ), N is an Adλg-invariant von Neumann subalgebra (∀g ∈ Γ) and, of
course, α = Adλ.

The first case allows us to give a family of properly outer actions of groups
Γ with the Haagerup property on the hyperfinite type II1 factor R such that the
crossed products Ro Γ have the Haagerup property. We realize R as the von
Neumann algebra obtained by the GNS construction of the CAR C∗-algebra with
respect to its unique normalized trace τ . Let us recall the definition: given any
separable Hilbert space H (whose scalar product is assumed to be linear in the
second variable), there exists a unique unital, simple C∗-algebra CAR(H) with an
isometric linear map a : H → CAR(H) such that

a∗(ξ)a(η) + a(η)a∗(ξ) = 〈ξ, η〉1 and a(ξ)a(η) + a(η)a(ξ) = 0

for all ξ, η ∈ H, and such that a(H) generates CAR(H) as a C∗-algebra. It admits
a unique trace τ which is characterized by

τ(a∗(ξm) · · · a∗(ξ1)a(η1) · · · a(ηn)) = 2−nδm,n det(〈ξj , ηk〉j,k)

for all ξ1, . . . , ξm, η1, . . . , ηn ∈ H. Denote by πτ the representation of the corre-
sponding GNS construction. If H is infinite-dimensional, then the von Neumann
algebra πτ (CAR(H))′′ is the hyperfinite type II1 factor. Furthermore, every uni-
tary operator u on H defines a τ -preserving automorphism Bog(u) on CAR(H)
(and hence on R) characterized by

Bog(u)(a(ξ)) = a(uξ)

for all ξ ∈ H. Such an automorphism is called a Bogoliubov automorphism. Recall
also that Bog(u) is inner in Aut(R) if and only if u−1 is a Hilbert-Schmidt operator
on H.

Let now Γ be a countable group with the Haagerup property that acts (on
the left) on some infinite countable set X with the following two properties:

(H1) each orbit Γx is finite;
(H2) for every g ∈ Γ, g 6= 1, the set {x ∈ X : gx 6= x} is infinite.

Denote by πX the representation of Γ on `2(X) given by

(πX(g)ξ)(x) = ξ(g−1x),
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and by αX the action on R given by

αXg = Bog(πX(g))

for every g. Then condition (H1) implies that the triple (R,Γ, αX) satisfies condi-
tion (ii) in Proposition 3.3. Moreover, condition (H2) implies that αXg is an outer
automorphism of R for every g 6= 1, thus αX is a properly outer action. Observe
that such a set X always exists if Γ is residually finite: indeed, in this case, Γ con-
tains a decreasing sequence (Γn) of normal subgroups of finite index with trivial
intersection. One can take X =

∐
n

Γ/Γn.

To end this section, let us recall Definition 3.1 of [6] on the Haagerup property
for an inclusion of finite von Neumann algebras: Consider a pair 1 ∈ N ⊂ M of
finite von Neumann algebras (with separable preduals, say) with a fixed finite
trace τ on M . Denote by EN the unique τ -preserving conditional expectation
from M onto N and by eN the associated projection from L2(M) onto L2(N).
Let FN (M) be the set of operators T ∈ N ′ ∩ B(L2(M)) which are finite sums of
the form T =

∑
i∈F

aieNbi where F is a finite set and ai, bi ∈ M for all i. Denote

also by KN (M) the norm closure of FN (M) in B(L2(M)). Then we say that the
inclusion N ⊂ M has the Haagerup property if there exists a sequence (Φn)n>1

of EN -preserving, N -bimodules, unital, normal, completely positive maps from M
to itself such that:

(1) lim
n→∞

‖Φn(x)− x‖2 = 0 for every x ∈M ;

(2) TΦn ∈ KN (M) for all n.

Then we have (compare with Corollary 3.20 of [6]):

Proposition 3.5. Let N be a finite von Neumann algebra with a finite trace
τ and let α be a τ -preserving action of a countable group Γ on N . Then the
inclusion N ⊂ N oα Γ has the Haagerup property if and only if Γ does.

Proof. Suppose that the inclusion N ⊂ N oα Γ has the Haagerup property,
and let (Φn)n>1 be as above. Define ϕn : Γ → C by

ϕn(g) = τ(Φn(λ(g))λ(g−1)).

It is straightforward to check that ϕn is a normalized, positive definite function
on Γ. Moreover, for each fixed g ∈ Γ, one has

|ϕn(g)− 1| = |τ({Φn(λ(g))− λ(g)}λ(g−1))| −→
n→∞

0.

It remains to see that for every n > 1, ϕn ∈ C0(Γ). Fix n and ε > 0; there exist
a1, . . . , am, b1, . . . , bm ∈ N oα Γ such that∥∥∥∥TΦn

−
m∑
i=1

aieNbi

∥∥∥∥ 6
ε

2
.

In particular,

sup
g∈Γ

∥∥∥∥Φn(λ(g))−
m∑
i=1

aiEN (biλ(g))
∥∥∥∥

2

6
ε

2
.
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But for fixed a, b ∈ N oα Γ, the function g 7→ ‖aEN (bλ(g))‖2 belongs to C0(Γ),
hence there exists a finite subset F of Γ such that∥∥∥∥ m∑

i=1

aiEN (biλ(g))
∥∥∥∥

2

6
ε

2

for every g /∈ F . This implies that |ϕn(g)| 6 ε if g /∈ F .
Assume that Γ has the Haagerup property, and let (ϕn)n>1 ⊂ C0(Γ) be a

sequence of normalized, positive definite functions that tends to 1 pointwise on Γ.
By Lemma 4.10 of [19], for instance, every ϕn extends to a normal, completely
positive map Φn on N oα Γ satisfying

Φn(axb) = aΦn(x)b and Φn(λ(g)) = ϕn(g)λ(g)

for all a, b ∈ N , x ∈ N oα Γ and g ∈ Γ. Moreover, it is easy to see that Φn is EN -
preserving and, as ϕn(g) → 1 as n→∞ for every g, we see that ‖Φn(x)−x‖2 → 0
as n → ∞ for every x. Finally, we show that TΦn

∈ KN (M): let 1 ∈ F1 ⊂ F2 ⊂
· · · ⊂ Γ be an increasing sequence of finite sets whose union equals Γ, and set for
every m > 1

Tm =
∑
g∈Fm

ϕn(g)λ(g)eNλ(g−1).

Since the projections λ(g)eNλ(g−1) commute with N and since TΦn
= 1 ⊗mϕn

,
we have

‖TΦn
− Tm‖ = ‖mϕn

−mϕnχFm
‖ = sup

g/∈Fm

|ϕn(g)|,

where χFm denotes the characteristic function of Fm, which shows that

‖TΦn
− Tm‖ → 0

as m→∞ for ϕn ∈ C0(Γ).

Consider two inclusions 1 ∈ Nj ⊂ Mj , j = 1, 2, of finite von Neumann
algebras, and suppose that they are isomorphic: there exists a ∗-isomorphism
θ : M1 →M2 such that θ(N1) = N2. Obviously, if one inclusion has the Haagerup
property then so does the other one. As an application of that fact, consider two
countable groups Γ1 and Γ2 that are Orbit Equivalent: for j = 1, 2 there exists an
essentially free measure-preserving action of Γj on some probability space (Sj , µj)
and a measurable bijection (modulo null sets) θ : S1 → S2 that is measure-class
preserving and such that for almost all s ∈ S1, θ(sΓ1) = θ(s)Γ2. Put Mj =
L∞(Sj) o Γj for j = 1, 2. It is well-known that the inclusions L∞(S1) ⊂ M1 and
L∞(S2) ⊂ M2 are isomorphic (see for instance [10], p. 226). Thus we get from
Proposition 3.4:

Corollary 3.6. If Γ1 and Γ2 are Orbit Equivalent and if one of them has
the Haagerup property, then so does the other one.
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4. APPENDIX

Let 1 ∈ N ⊂M be a pair of arbitrary (i.e. not necessarily σ-finite) von Neumann
algebras and let E : M → N be a conditional expectation. Recall from [25], [22]
or [4] that E has finite index if there exists a number c > 0 such that

E(x∗x) > c x∗x

for every x ∈M .
The aim of this appendix is to give a proof of the following useful technical

result of S. Popa which appeared in [26] :

Proposition 4.1. Every conditional expectation E : M → N with finite
index is normal.

Let M and N be as above. We need to recall a few facts about the decompo-
sition of every element ϕ of the dual M∗ of M into its normal and singular parts
(see [29], Chapter III, Theorem 2.14): Consider M as a ∗-subalgebra of its bidual
M∗∗; there exists a unique central projection z ∈ M∗∗ such that the predual M∗
of M is

M∗ = M∗z = {ϕz : ϕ ∈M∗} ,
and thus every ϕ ∈M∗ has a unique decomposition

ϕ = ϕn + ϕs

with ϕn = ϕz|M ∈M∗ is the normal part of ϕ and ϕs = ϕ(1−z)|M is its singular
part. Moreover, ‖ϕ‖ = ‖ϕn‖ + ‖ϕs‖. It is also clear that the map ϕ 7→ ϕn from
M∗ to M∗ is linear and that

(aϕb)n = aϕnb

for all ϕ ∈M∗ and a, b ∈M . (Recall that (aϕb)(x) = ϕ(bxa) for all a, b, x ∈M .)
The proof of Proposition 4.1 requires two lemmas, the first of which giving

a more useful description of ϕn for positive ϕ; it is inspired by the classical (i.e.
commutative) case of finite measures.

For x ∈ M+, denote by D(x) the set of families (xi)i∈I ⊂ M+ such that∑
i

xi = x, the series converging σ-weakly.

Lemma 4.2. For every ϕ ∈M∗
+ and every x ∈M+ we have

ϕn(x) = inf
{ ∑
i∈I

ϕ(xi) : (xi)i∈I ∈ D(x)
}
.

Proof. For simplicity, for ϕ ∈M∗
+ and x ∈M+, set

ν(x) = inf
{ ∑
i∈I

ϕ(xi) : (xi) ∈ D(x)
}
.

The following two properties follow readily from the definition of ν:

(1) ν(λx) = λν(x) for λ ∈ R+ and x ∈M+ ;
(2) ν(x+ y) 6 ν(x) + ν(y) for x, y ∈M+.
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Moreover, we have
ϕn(x) 6 ν(x) 6 ϕ(x)

because ϕn 6 ϕ, and since ν(x) is an infimum. In particular, ν(x) 6 ‖ϕ‖ ‖x‖ for
every x ∈M+. We claim that

ν(p) = ϕn(p)

for every projection p ∈ M : indeed, as ϕn 6 ν, we only need to check that
ν(p) 6 ϕn(p). But it follows from Theorem III.3.8 of [29] that for every projection
p in M , there exists a family of pairwise orthogonal projections (pi)i∈I ⊂M with
sum p and such that ϕs(pi) = 0 for every i ∈ I. Hence ϕ(pi) = ϕn(pi) for every i,
and, as ϕn is normal,

ν(p) 6
∑
i∈I

ϕ(pi) =
∑
i∈I

ϕn(pi) = ϕn(p).

Using moreover (1) and (2), we get for all λ1, . . . , λn > 0 and all pairwise orthog-
onal projections p1, . . . , pn ∈M :

ϕn

( ∑
j

λjpj

)
6 ν

( ∑
j

λjpj

)
6

∑
j

λjν(pj) =
∑
j

λjϕn(pj) = ϕn

( ∑
j

λjpj

)
.

If x ∈ M+ is arbitrary and if ε > 0, there exist non negative numbers λ1, . . . , λn
and pairwise orthogonal projections p1, . . . , pn ∈M such that∑

j

λjpj 6 x and
∥∥∥∥x−∑

j

λjpj

∥∥∥∥ 6 ε.

Then

ν(x) 6 ν

(
x−

∑
j

λjpj

)
+ ν

( ∑
j

λjpj

)

6 ‖ϕ‖ · ε+
∣∣∣∣ϕn( ∑

j

λjpj − x

)∣∣∣∣ + ϕn(x) 6 2‖ϕ‖ · ε+ ϕn(x),

which shows that ν(x) 6 ϕn(x).

Remark 4.3. Observe that if M is σ-finite, then

ϕn(x) = inf
{ ∑
k∈N

ϕ(xk) : (xk)k∈N ⊂M+,
∑
k

xk = x

}
.

From now on we fix a conditional expectation E : M → N . We define its
normal part En as follows: For x ∈ M , En(x) is the element of N characterized
by

ϕ(En(x)) = (ϕ ◦ E)n(x)

for every ϕ ∈ N∗.
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Lemma 4.4. The map En : M → N has the following properties:
(i) En(x+ y) = En(x) + En(y) for all x, y ∈M .
(ii) En is a bi-N -module map, i.e. En(axb) = aEn(x)b for all x ∈ M and

a, b ∈ N .
(iii) En is positive, i.e. En(x) > 0 for every x ∈M+.
(iv) En is a normal map, i.e. ϕ ◦ En ∈M∗ for every ϕ ∈ N∗.
(v) If there exists c > 0 such that E(x) > c x for every x ∈ M+, then

En(x) > c x for every x ∈M+.

Proof. Properties (i), (ii) and (iii) are straightforward consequences of the
reminded properties of the map ϕ 7→ ϕn.

(iv) If (xi)i∈I is an increasing net in M+ which converges σ-weakly to x ∈
M+, we have for positive ϕ ∈ N∗:

ϕ(En(x)) = (ϕ ◦ E)n(x) = sup
i

(ϕ ◦ E)n(xi) = sup
i
ϕ(En(xi)),

which shows that En is normal.
(v) We assume that N ⊂M ⊂ B(H) for some Hilbert space H. Fix x ∈M+

and ξ ∈ H. For any element (xi) ∈ D(x), we have

〈c xξ, ξ〉 =
∑
i

〈c xiξ, ξ〉 6
∑
i

〈E(xi)ξ, ξ〉,

hence, by Lemma 4.2,
〈c xξ, ξ〉 6 〈En(x)ξ, ξ〉.

This ends the proof of the lemma.

Now, if E is of finite index, its normal part En is a finite, normal operator-
valued weight with finite index from M to N . As in [4], we associate to En the
Hilbert N -module X = (M, 〈 · , · 〉En

), where X = M as a right N -module with
N -valued inner product 〈x, y〉En = En(x∗y). Since En is of finite index, X is
selfdual by Proposition 3.3 of [4], and as E : M → N is bounded and N -linear,
there exists h ∈M such that

E(x) = En(hx)

for every x ∈ M . But this implies that E is normal, and this ends the proof of
Proposition 4.1.

In order to see the usefulness of that result, we state a consequence that is
inspired by a private communication of S. Popa:

Proposition 4.5. Let 1 ∈ N ⊂M be von Neumann algebras such that there
exists a conditional expectation of finite index E : M → N and let 1 ∈ A ⊂ N ′∩M
be an injective von Neumann subalgebra. Then there exists a normal, faithful
conditional expectation of M onto A′ ∩M .

Proof. By Corollary 1.7 of [18] for instance, the relative commutant N ′ ∩M
is finite, hence A is finite and injective. Thus, by [15], there exists a mean m on
the unitary group U(A) such that

(4.1)
∫

U(A)

V (au∗, u) dm(u) =
∫

U(A)

V (u∗, ua) dm(u)
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for every separately σ-continuous bilinear form V on A× A and for every a ∈ A.
Define E′ : M → A′ ∩M by

ϕ(E′(x)) =
∫

U(A)

ϕ(uxu∗) dm(u)

for all ϕ ∈M∗ and all x ∈M . This defines a conditional expectation from M onto
A′ ∩M , and we will check that it is faithful and normal. For fixed ϕ ∈ M∗ and
x ∈ M , set V (a, b) = ϕ(bxa) and apply (4.1): one gets ϕ(E′(xa)) = ϕ(E′(ax)),
hence E′(uxu∗) = E′(x) for all x ∈M and all u ∈ U(A). As U(A) is contained in
N ′ ∩M , and as E has finite index, there exists a positive constant c such that

E(uxu∗) = u∗E(uxu∗)u > c x

for all x ∈M+ and all u ∈ U(A). This implies that

E ◦ E′(x) > c x

for every x ∈M+. By Proposition 4.1, E ◦E′ has finite index, hence it is faithful
and normal. Thus E′ is faithful and finally we prove that it is normal: let (xi)i∈I ⊂
M+ be a decreasing, bounded generalized sequence which converges σ-weakly to
0. Set y = lim

i∈I
E′(xi) = inf

i
E′(xi) > 0. As E ◦ E′ is normal, we have 0 =

limE ◦ E′(xi) > E(y), hence y = 0 since E is faithful.
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Math. Scand. 68(1991), 221–246.

19. P. Jolissaint, Invariant states and a conditional fixed point property for affine
actions, Math. Ann. 304(1996), 561–579.

20. P. Jolissaint, Borel cocycles, approximation properties and relative property T
Ergodic Theory Dynam. Systems 20(2000), 483–499.

21. A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lecture
Notes in Math., vol. 1138, Springer-Verlag, 1985.

22. M. Pimsner, S. Popa, Entropy and index for subfactors, Ann. Sci. École Norm.
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