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Abstract. In this paper we give characterizations of essential left ideals of a
C∗-algebra A in terms of their properties as operator A-modules. Conversely,
we seek C∗-algebraic characterizations of those ideals J in A such that A is
an essential extension of J in various categories of operator modules. In
the case of two-sided ideals, we prove that all the above concepts coincide.
We obtain results, analogous to M. Hamana’s results, which characterize the
injective envelope of a C∗-algebra as a maximal essential extension of the C∗-
algebra, but with completely positive maps replaced by completely bounded
module maps. By restricting to one-sided ideals, module actions reveal clear
differences which do not show up in the two-sided case. Throughout this
paper, module actions are crucial.
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1. INTRODUCTION

Let A denote a C∗-algebra. In the C∗-algebra literature a two-sided ideal, J , of
A is called essential if aJ = {0} implies a = 0. Given a category and an object X
contained in an object Y , then Y is called an essential extension ofX provided that
every morphism of Y that restricts to be an isomorphism of X must necessarily
be an isomorphism of Y . In this paper we study the relationships between these
two different approaches to essentiality as we vary the category.

Every left ideal can be regarded as an object in the category of operator
left A-modules, with morphisms either the completely contractive or completely
bounded left A-module maps. Thus, it is interesting to know the relationships
between an ideal J being essential in A, in the C∗-algebraic sense, and A being an
essential extension of J in these categories. For two-sided ideals we show that all
three concepts coincide. Moreover, these conditions are equivalent to the injective
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envelopes, I(J) and I(A), being completely isometrically isomorphic via a map
that restricts to be the identity on J .

However, for left ideals these concepts differ. It is still true that if I(J) and
I(A) are completely isometrically isomorphic via a map that restricts to be the
identity on J , then J is an essential left ideal in A. But the converse does not
necessarily hold.

In this paper, we characterize the essential left ideals of A via their properties
as modules in the above categories. We also give some characterizations of the
left ideals for which A is an essential extension in some of these categories in C∗-
algebraic terms. But there are some categories for which we are unable to give
C∗-algebraic characterizations of these families of left ideals.

As in the earlier work of M. Frank and the second author ([5]), we find that
when the morphisms are the completely contractive maps, then our questions re-
duce to the case of completely positive maps and rely mostly on the earlier results
of M. Hamana. However, when the morphisms are taken to be the completely
bounded maps or in the case of one-sided ideals, then we are dealing with a com-
pletely isomorphic situation which requires new techniques or the recent results of
[5] and [3].

Two of M. Hamana’s original characterizations of the injective envelope I(A)
of A were as the minimal injective object containing A and as a maximal essential
extension of A in the category of operator systems and completely positive maps.
In the work of M. Frank and the second author ([5]), it was shown that I(A)
could also be characterized as the minimal injective containing A in the category
of operator left A-modules and completely bounded maps. Completing this set
of ideas we show that I(A) can also be characterized as the maximal essential
extension of A in this latter category.

Throughout this paper, C∗-algebras are not necessarily unital. In Section 3
we cite a result of [5] where “unital” is assumed. But as is remarked there, many
results, including this one, follow in the case of a non-unital C∗-algebra A, by
taking its minimal unitization A1 and observing that A-modules are naturally
A1-modules.

2. DEFINITIONS

We begin by recalling a remark from [5]. When dealing with a category whose mor-
phisms are vector spaces of bounded linear maps, then requiring that an object is
injective only guarantees that every bounded linear map has a bounded extension,
but not necessarily of the same norm. When we want to insist that extensions
also have the same norm, then we shall refer to the objects as tight injectives. It is
easy to see that tight injectivity is equivalent, by scaling, to requiring that every
contractive linear map has a contractive linear extension. Thus tight injectivity is
the same as saying that the object is injective in a category where the morphisms
are all contractive linear maps. Throughout this paper we shall refer to situations
as tight, or simply omit the word tight, instead of constantly referring to a change
of categories. But of course, both viewpoints are useful.

We start with definitions of several notions many of which are already known,
but perhaps not in our particular setting.
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Definition 2.1. Let A and B be operator algebras.
(1) An operator A-B-bimodule X is an operator space which is also an A-B-

bimodule with

‖(alm)(xlm)‖ 6 ‖(alm)‖ ‖(xlm)‖ and ‖(xlm)(blm)‖ 6 ‖(xlm)‖ ‖(blm)‖

∀(xlm) ∈ Mn(X), ∀(alm) ∈ Mn(A), ∀(blm) ∈ Mn(B), ∀n ∈ N. If A (respectively,
B) contains an identity 1A (respectively, 1B), we always assume that ∀x, 1Ax = x
(respectively, ∀x, x1B = x). We also say an operator left A-module (respectively,
operator right A-module, operator A-bimodule) for an operator A-C-bimodule (re-
spectively, operator C-A-bimodule, operator A-A-bimodule).

(2) A (respectively, tight) A-B-rigid extension of an operator A-B-bimodule
X is a pair (Y, ι) consisting of an operator A-B-bimodule Y and a completely
bounded (respectively, completely isometric) A-B-bimodule map ι : X → Y which
is an isomorphism onto its range (a one-to-one completely bounded linear map
whose inverse ι(X) → X is also completely bounded) such that the identity map
on Y is the only completely bounded (respectively, completely contractive) A-B-
bimodule map on Y which fixes each element of ι(X).

(3) A (respectively, tight) A-B-essential extension of an operator A-B-bimo-
dule X is a pair (Y, ι) consisting of an operator A-B-bimodule Y and a completely
boundedly (respectively, completely isometric) A-B-bimodule map ι : X → Y
which is an isomorphism onto its range, such that for any operator A-B-bimodule
W and for any completely bounded (respectively, completely contractive) A-B-
bimodule map φ : Y → W , φ is a completely bounded isomorphism (respectively,
a complete isometry) whenever φ|ι(X) is. If there is no proper embedding of Y
by a completely boundedly isomorphic (respectively, completely isometric) A-B-
bimodule map into any (respectively, tight) A-B-essential extension of X which is
an isomorphism onto its range (or, equivalently, there is no proper (respectively,
tight) A-B-essential extension of Y ), then we say (Y, ι) is a maximal (respectively,
tight) A-B-essential extension of X.

(4) An operator A-B-bimodule W is (respectively, tight) A-B-injective, if
for any operator A-B-bimodules Y and Z with Y ⊂ Z (Y has a matrix norm
and a module action inherited from Z) any completely bounded A-B-bimodule
map Y → W extends to a completely bounded A-B-bimodule map Z → W
(respectively, preserving the completely bounded norm).

(5) A (respectively, tight) A-B-injective extension of an operator A-B-bimo-
dule X is a pair (Y, ι) consisting of an operator A-B-bimodule Y and a completely
bounded (respectively, completely isometric) A-B-bimodule map ι : X → Y which
is an isomorphism onto its range, with Y (respectively, tight) A-B-injective.

(6) An A-B-injective envelope of an operator A-B-bimodule X is a pair
(Y, ι) consisting of an operator A-B-bimodule Y and a completely isometric A-B-
bimodule map ι : X → Y with Y a minimal tight A-B-injective operator A-B-
bimodule containing ι(X) (i.e. for any tight A-B-injective operator A-B-bimodule
Z with ι(X) ⊂ Z ⊂ Y , necessarily Y = Z holds, where Z has a matrix norm and
a module action inherited from Y ). We denote this Y by I(X). Frequently we
identify X with ι(X) and regard it as X ⊂ I(X).
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In the above (2), (3), (5), and (6), often we simply write Y for (Y, ι).

Remark 2.2. (1) There are still some difficulties involved in trying to define
injective envelopes in the non-tight setting. In (6) above we really are defining
injective envelopes only in the tight setting.

(2) The following is a well-known argument ([8]). Let A and B be C∗-
algebras. For any operator A-B-bimodule, take any tight A-B-injective extension
(Y, ι) of X. (Such an extension exists even if X is an operator A-B-bimodule, since
X can be considered as X ⊂ B(H) for some Hilbert space H by the representation
theorem for operator modules ([4], [2], [3]) and B(H) is a tight A-B-injective by
the bimodule version of G. Wittstock’s extension theorem (Theorem 4.1 in [19].
See also [15].) Given a minimal ι(X)-projection on Y (the existence of a minimal
projection can be shown in the same way as [8]), then it follows that “(Y, ι) is an
A-B-injective envelope of X ⇔ Y is the range of a minimal ι(X)-projection on
some A-B-injective operator A-B-bimodule containing ι(X)”. In particular, for
any operator A-B-bimodule X, its tight A-B-injective envelope exists.

(3) When A and B are C∗-algebras, as is proved in Corollary 2.6 in [3], an
operator A-B-bimodule is tight A-B-injective if and only if it is C-C-injective, and
also when X is an operator A-B-bimodule, Y is an A-B-injective envelope of X
if and only if Y is a C-C-injective envelope of X. For this reason, when X is an
operator A-B-bimodule we frequently call I(X) just an injective envelope of X.
Also this fact justifies that we use the simple notation I(X) without mentioning
A and B.

3. ESSENTIAL EXTENSIONS WITH MODULE ACTIONS

In this section we obtain the necessary characterizations of injective envelopes
as maximal essential extensions. In the tight situation, these are basically re-
statements of results of M. Hamana. However, in the non-tight situation, these
characterizations rely on recent work of M. Frank and the second author ([5])
which extends Hamana’s rigidity results to completely bounded module maps.
Analogous results to the known results in the category of modules over a ring
(Theorem 2.10.20 in [14]) were obtained by M. Hamana in the cases of Banach
modules, C∗-algebras, operator systems and operator spaces ([6], [7], [8], [9]).
Without any intrinsic changes in his proofs, similar results hold for the case of
operator modules over C∗-algebras. We summarize the key facts below.

Theorem 3.1. Let A,B be C∗-algebras, and X an operator A-B-bimodule.
Then the following are equivalent:

(i) (Y, ι) is a maximal tight A-B-essential extension of X;
(ii) (Y, ι) is a tight A-B-injective and tight A-B-essential extension of X;
(iii) (Y, ι) is an A-B-injective envelope of X;
(iv) (Y, ι) is a tight A-B-injective and tight A-B-rigid extension of X.
Moreover, such a Y is complete.
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Proof. First, we suppose that X is an operator A-B-bimodule.
That (ii) ⇔ (iii) ⇔ (iv) immediately follows from the operator module over

C∗-algebra version of Lemma 2.11 in [9], but this result relies on several earlier
results. For the convenience of the reader, we also include an outline of the proof
of this part.

(ii) ⇒ (iii) We only need to show minimality of Y . Let Z be a tight A-B-
injective operator A-B-bimodule such that ι(X) ⊂ Z ⊂ Y . Then idZ extends to a
completely contractive A-B-bimodule map φ : Y → Z. By the assumption (ii), φ
has to be a complete isometry, so that Y = Z.

(iii) ⇒ (iv) The same as the proof of Lemma 3.6 in [8]. When applying this
proof, note that, if φ is an ι(X)-projection on Y (i.e. a completely contractive
A-B-bimodule map on Y with φ2 = φ and φ|ι(X) = idι(X)), then Imφ ⊂ Y is a
tight A-B-injective operator A-B-bimodule, so that Imφ = Y by minimality of Y .
Hence φ (= idY ) is a minimal ι(X)-projection on Y and Y is its range.

(iv) ⇒ (ii) The same as the proof (necessity) of Theorem 3.7. in [8].
(i) ⇒ (ii) Let (I(Y ), κ) be an A-B-injective envelope of Y . By (iii) ⇒ (ii),

(I(Y ), κ) is a tight A-B-essential extension of Y , so that (I(Y ), κ ◦ ι) is a tight
A-B-essential extension of X, hence I(Y ) = κ(Y ) by maximality. Thus Y is tight
A-B-injective.

(ii) ⇒ (i) Let (Z, κ) be a tight A-B-essential extension of Y . By injectivity
of Y , κ−1 : κ(Y ) → Y extends to a completely contractive A-B-bimodule map
φ : Z → Y . But by essentiality of Z, φ has to be a complete isometry. Thus
κ(Y ) = Z.

Finally, we show completeness. Let Y satisfy the equivalent conditions (i)–
(iv) and let (Ỹ , κ) be its completion. Then Ỹ is an A-B-bimodule and obviously
a tight A-B-essential extension of Y . By injectivity of Y , κ(Y ) → Y extends to
a completely contractive A-B-bimodule map φ : Ỹ → Y with φ|κ(Y ) completely
isometric. But by an essentiality of Ỹ , φ has to be a complete isometry, so that
Ỹ = κ(Y ).

Remark 3.2. (1) From this theorem, in particular, for any operator A-B-
bimoduleX, a maximal tight A-B-essential extension exists, since an A-B-injective
envelope exists (Remark 2.2 (2)).

(2) It immediately follows from rigidity in the above theorem that the A-
B-injective envelope is unique up to completely isometric A-B-bimodule isomor-
phisms.

(3) In particular, if X = A with A a unital C∗-algebra, I(A) is completely
isometrically isomorphic to M. Hamana’s injective envelope C∗-algebra IC∗(A)
([7]) of A. This is easily seen by observing unital completely positive maps are
just the same as unital completely contractive maps, and using the rigidity of
I(A) and IC∗(A). If A is a non-unital C∗-algebra, then I(A) is completely iso-
metrically isomorphic to IC∗(A1), via a map that restricts to be the identity on
A, by Proposition 2.8 in [3], where A1 is the minimal unitization of A. Namely,
I(A1) is completely isometrically isomorphic to I(A). Actually the above identifi-
cation of I(A) with IC∗(A) or IC∗(A1) is also as A-A-, A-C- and C-A-bimodules
by Remark 2.2 (3).
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In the non-tight case a similar result holds thanks to Corollary 2.2 in [5]
which is the generalization of “rigidity” to the non-tight case in the presence of a
module action.

Theorem 3.3. Let A be a C∗-algebra, I(A) its injective envelope and let E
be an operator left A-module with A ⊂ E. Then the following are equivalent:

(i) E is a maximal A-C-essential extension of A;
(ii) E is an A-C-injective and A-C-essential extension of A;
(iii) E is a minimal A-C-injective extension of A;
(iv) E is completely boundedly isomorphic to I(A) as left A-modules, via a

map that restricts to the identity on A;
(v) E is an A-C-injective and A-C-rigid extension of A.
The analogous result holds for the operator right A-module case and the op-

erator A-bimodule case.

Proof. Throughout the proof, without loss of generality, we may assume that
I(A) = IC∗(A) (Remark 3.2 (3)).

That (iii) ⇒ (iv) was proven in Theorem 3.3 in [5].
That (iv) ⇒ (iii) follows by noting that any A-C-injective extension of A

which is completely boundedly isomorphic to a minimal A-C-injective extension as
left A-modules is also minimal and that I(A) is a minimal A-C-injective extension
by Theorem 3.1 in [5].

(iv) ⇒ (i) Without loss of generality we may assume that E = I(A). Let W
be any operator left A-module and φ : I(A) → W a completely bounded left A-
module map which is a completely bounded isomorphism on A. Let ψ : φ(A) → A

be the inverse of this map and extend ψ to a completely bounded left A-module
map ψ̃ : W → I(A). Since ψ̃ ◦ φ : I(A) → I(A) is the identity on A, it is the
identity on I(A) by rigidity (Corollary 2.2 in [5]). This shows that φ(I(A)) is
completely boundedly isomorphic to I(A). Maximality: Suppose that (F, ι) is
an A-C-essential extension of I(A). A completely boundedly isomorphic left A-
module map ι−1 : ι(I(A)) → I(A) extends to a completely bounded left A-module
map ρ : F → I(A). By essentiality of F , ρ has to be a completely bounded
isomorphism, so that F = ι(I(A)).

(i) ⇒ (iv) We may assume that A ⊂ E ⊂ B(H) for some Hilbert space H by
the representation theorem for operator modules ([4], [2], [3]). Extend the identity
map on A to a completely bounded left A-module map ψ : B(H) → I(A), then
ψ(E) ⊂ I(A) is completely boundedly isomorphic to E. The map ψ−1 : ψ(E) → E

extends to a completely bounded left A-module map φ : I(A) → B(H). By rigidity
(Corollary 2.2 in [5]), ψ◦φ is the identity on I(A). Hence we have A ⊂ E ⊂ φ(I(A))
with φ(I(A)) completely boundedly isomorphic to I(A). This makes φ(I(A)) an
operator A-C-essential extension of A by applying (iv) ⇒ (i) that we have already
proved. Thus, by maximality of E, E = φ(I(A)) so that I(A) is completely
boundedly isomorphic to E as left A-modules by φ.
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Now we have that (i) ⇒ (ii), since clearly (i) and (iv) imply (ii).
Next, we show that (ii) ⇒ (iv). By the assumption (ii), the identity map on

A extends to a completely bounded left A-module map φ : E → I(A) and the map
φ(E) → E extends to a completely bounded left A-module map ψ : I(A) → E.
Then ψ ◦ φ is the identity on E. But by rigidity (Corollary 2.2 in [5]), φ ◦ψ is the
identity on I(A).

(iv) ⇒ (v) Without loss of generality, we may assume that E = I(A). Then
(v) immediately follows from Corollary 2.2 in [5].

(v) ⇒ (iv) By injectivity of E, the identity map on A extends to a completely
bounded left A-module map φ : I(A) → E. Similarly, by injectivity of I(A),
the identity map on A extends to a completely contractive A-B-bimodule map
ψ : E → I(A). But ψ◦φ = idI(A) and φ◦ψ = idE by rigidity of I(A) (Corollary 2.2
in [5]) and E, respectively.

As is seen in the above proof, Corollary 2.2 in [5] played a crucial role.
Before moving on to the main results, let us introduce some definitions.

4. ESSENTIAL LEFT IDEALS

Recall that a closed two-sided ideal K in a C∗-algebra A is essential, if aK =
{0} implies a = 0, or, equivalently, Ka = {0} implies a = 0, or, equivalently,
K ∩K ′ 6= {0} for all non-zero closed two-sided ideals K ′ in A, where a ∈ A. We
now generalize these ideas to the one-sided case. Note that a subset J ⊂ A is a
closed left ideal in A if and only if J∗ is a closed right ideal in A. Let J be a
closed left ideal in A. As is well known (say, [10], [12], [16]), J has a contractive
right approximate identity {eα}. Namely, {eα} ⊂ (J ∩ J∗)+ is an increasing net
and lim

α→∞
jeα = j ∀j ∈ J and ‖eα‖ 6 1 ∀α. Clearly, it is also a contractive left

approximate identity of J∗.

Lemma 4.1. Let A be a C∗-algebra, I a closed right ideal in A, and J a
closed left ideal in A. Then

I ∩ J = IJ,

where IJ := span{ij : i ∈ I, j ∈ J}, here the closure is taken in A.

Proof. I ∩ J ⊃ IJ is clear. We show I ∩ J ⊂ IJ . Let i ∈ I ∩ J and {eα} a
right approximate identity of J , then i = lim

α→∞
ieα ∈ IJ .

Proposition 4.2. Let A be a C∗-algebra and J a closed left ideal in A.
Then the following are equivalent:

(i) JJ∗ is an essential two-sided ideal in A;
(ii) if a ∈ A and aJ = {0}, then a = 0;
(iii) I ∩ J 6= {0} for any non-zero closed right ideal I in A;
(iv) K ∩ J 6= {0} for any non-zero closed two-sided ideal K in A.
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Proof. (i) ⇒ (ii) Suppose aJ = {0} for a ∈ A, then aJJ∗ = {0}, so that
a = 0.

(ii) ⇒ (iii) Let I be a closed right ideal in A with I ∩J = {0}, then IJ = {0}
by Lemma 4.1, so that I = {0} by the assumption (ii).

(iii) ⇒ (iv) Clear.
(iv) ⇒ (i) Obviously JJ∗ is a closed two-sided ideal in A, so we only show

essentiality. Let K := {a ∈ A : aJJ∗ = {0}}, then K is a closed two-sided ideal in
A. Suppose that a ∈ K then aJJ∗ = {0} and 0 = ajj∗a∗ = aj(aj)∗ for all j ∈ J ,
so that aJ = {0}. Hence K ∩ J = KJ = {0}. Thus assumption (iv) implies that
K = {0} and so JJ∗ is an essential ideal.

One obtains a parallel result for a right ideal I by setting J = I∗.

Remark 4.3. Let A be a C∗-algebra, let J be a closed left ideal and let
{eα} be a right approximate identity of J .

(1) JJ∗ is the two-sided ideal in A generated by J in A. Also JJ∗ = JA
since, for any a ∈ A, ja = lim

α→∞
(jeα)a = j · lim

α→∞
eαa.

(2) Any j ∈ J satisfies j = lim
α→∞

jeα, hence J ⊂ JJ∗ even if A is non-unital.
Similarly, J∗ ⊂ JJ∗.

Definition 4.4. Let A be a C∗-algebra and let J be a closed left ideal in
A. When any of the equivalent statements in Proposition 4.2 hold, we say that J
is an essential left ideal in A. We say that a right ideal I is an essential right ideal
when I∗ is an essential left ideal.

5. MAIN RESULTS

In this section we present our main results, showing the relationships between
the various notions of “essential” for left ideals. We apologize to the reader in
advance for the rather long list of conditions that are equivalent to a left ideal
being essential in the C∗-algebraic sense. However, it is convenient to know that
all of these are equivalent. We have presented the results in this particular fashion
so that one can more easily contrast the tight and non-tight cases and the cases
of one-sided and two-sided ideals.

Theorem 5.1. Let A be a C∗-algebra, J a closed left ideal in A, and {eα}
a contractive right approximate identity of J . Then the statements in (I) and (II)
are equivalent, respectively, each statement in (I) implies (5) and (5) implies each
statement in (II).

(I)



(1) I(J) is completely isometrically isomorphic to I(A)
via a map that restricts to the identity on J ;

(2) A is a tight C-C-essential extension of J ;
(3) A is a tight A-C-essential extension of J ;
(4) ‖(alm)‖ = sup

α
‖(almeα)‖

for all (alm) ∈ Mn(A) and for all n ∈ N;

(5) there exists n ∈ N such that

‖(alm)‖ = sup
α
‖(almeα)‖ for all (alm) ∈ Mn(A);
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(II)



(6) ‖(alm)‖ = sup{‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
for all (alm) ∈ Mn(A) and for all n ∈ N;

(7) there exists n ∈ N such that
‖(alm)‖ = sup{‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
for all (alm) ∈ Mn(A);

(8) there exists c > 1 such that
‖(alm)‖ 6 c · sup{‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
for all (alm) ∈ Mn(A) and for all n ∈ N;

(9) there exist c > 1 and n ∈ N such that
‖(alm)‖ 6 c · sup{‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
for all (alm) ∈ Mn(A);

(10) A is a tight C-J-essential extension of J ;
(11) A is a C-J-essential extension of J ;
(12) A is a tight A-J-essential extension of J ;
(13) A is an A-J-essential extension of J ;
(14) Mn(J) is an essential left ideal in Mn(A) for all n ∈ N;
(15) Mn(J) is an essential left ideal in Mn(A) for some n ∈ N;
(16) Mn(A) is canonically ∗-isomorphically embedded

in M(Mn(JJ∗)) for all n ∈ N;
(17) Mn(A) is canonically ∗-isomorphically embedded

in M(Mn(JJ∗)) for some n ∈ N;

where M(Mn(JJ∗)) is the multiplier algebra of Mn(JJ∗).

Proof. (1) ⇒ (2) Without loss of generality, we may assume that A ⊂ I(J) =
I(A). Let W be any operator space, φ : A → W any complete contraction which
is completely isometric on J . Since I(J) is tight C-C-injective, φ−1 : φ(J) → J
extends to a complete contraction ψ : W → I(J). Then, again, by tight C-C-
injectivity of I(J), ψ ◦ φ extends to a complete contraction ρ : I(J) → I(J) with
ρ|J = idJ . By rigidity (Theorem 3.1), ρ = idI(J), hence φ has to be a complete
isometry.

(2) ⇒ (3) Clear.
(3) ⇒ (4) Let us define ℘ : A → R+ by ℘(a) := sup

α
‖aeα‖, ∀a ∈ A. And

let Ã := A/Ker℘, then Ã is an operator space with a well-defined matrix norm
||| · |||, where |||(alm + Ker℘)||| := sup

α
‖(almeα)‖, ∀(alm) ∈ Mn(A), ∀n ∈ N . Define

φ : A → Ã by φ(a) := a + Ker℘. Moreover, since Ker℘ is a left A-module, Ã is
an operator A-C-bimodule. The map φ is a completely contractive A-C-bimodule
map which is completely isometric on J , so that, φ is completely isometric on A by
the assumption (3). Hence ‖(alm)‖ = |||(alm)||| = sup

α
‖(almeα)‖, ∀(alm) ∈ Mn(A),

∀n ∈ N .
(4) ⇒ (1) Since the assumption remains valid if we adjoin an identity to

A, we may assume that A is unital. Consider the canonical operator system

S =
(

C J
J∗ C

)
⊂M2(A) associated with J . Keeping the notation of [3], we have

that I(S) =
(

I11 I(J)
I(J)∗ I22

)
.
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By [8], the identity map on S extends to a ∗-homomorphism, π : C∗(S) →

I(S). Note that there will exist maps such that π((bi,j))=
(
π1,1(b1,1) π1,2(b1,2)
π2,1(b2,1) π2,2(b2,2)

)
.

We may extend π to a completely positive map Φ : M2(A) → I(S). Since Φ is a
∗-homomorphism on C∗(S) it will be a bimodule map over this C∗-algebra, that
is Φ(bxc) = π(b)Φ(x)π(c) for b, c ∈ C∗(S).

We also have that there exist maps φ1, φ2 and φ, such that

Φ((ai,j)) =
(
φ1(a1,1) φ(a1,2)
φ(a∗2,1)

∗ φ2(a2,2)

)
.

Note that
(

0 0
0 J∗J

)
⊂ C∗(S). Hence, for any a ∈ A and any α, we have

that (
0 aeα

0 0

)
=

(
0 φ(aeα)
0 0

)
= Φ(

(
0 aeα

0 0

)
) = Φ(

(
0 a
0 0

) (
0 0
0 eα

)
)

= Φ(
(

0 a
0 0

)
)π(

(
0 0
0 eα

)
) =

(
0 φ(a)
0 0

) (
0 0
0 π2,2(eα)

)
=

(
0 φ(a)π2,2(eα)
0 0

)
.

Thus, we find that aeα = φ(a)π2,2(eα) and so we have that

‖φ(a)‖ > sup
α
‖φ(a)π2,2(eα)‖ = sup

α
‖aeα‖ = ‖a‖,

from which it follows that φ is an isometry of A into I(J). The proof that φ is a
complete isometry follows similarly.

Since I(J) is injective, φ extends to a completely contractive map from I(A)
to I(J), which we still denote by φ.

Since I(A) is injective, (φ|A)−1 : φ(A) → A extends to a completely contrac-
tive map ψ : I(J) → I(A). Then ψ ◦φ and φ ◦ψ are completely contractive maps,
that restrict to be the identity on A and J , respectively. Thus, ψ ◦ φ = idI(A)

and φ ◦ ψ = idI(J) by rigidity (Theorem 3.1). Hence φ and ψ are onto complete
isometries, so that I(J) is completely isometrically isomorphic to I(A), via a map
that is the identity on J .

It is clear that (4) ⇒ (5) ⇒ (7) ⇒ (9) ⇒ (15), that (6) ⇒ (7), and that
(6) ⇒ (8) ⇒ (9).

(6) ⇒ (10) Let W be any operator right J-module and φ : A → W any
completely contractive right J-module map which is completely isometric on J .
Then ∀n ∈ N and ∀(alm) ∈ Mn(A),

‖(alm)‖ =sup{‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
=sup{‖φn((alm)(jlm))‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
=sup{‖(φ(alm))(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
6‖(φ(alm))‖,

which shows that φ is completely isometric on A. Where φn : Mn(A) → Mn(W )
is defined by φn((alm)) := (φ(alm)).
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(10) ⇒ (12) Clear.
(12) ⇒ (15) Let K := {a ∈ A : aJ = {0}}, then K is a closed two-sided ideal

in A and K ∩ JJ∗ = KJJ∗ = {0}. Let A/K be equipped with the quotient norm
that makes A/K a C∗-algebra, hence an operator A-J-bimodule with induced
matrix norms and natural module actions. Let π : A→ A/K be the quotient map
that is a ∗-homomorphism and also a completely contractive A-J-bimodule map.
Since K ∩ JJ∗ = {0}, π is one-to-one on JJ∗, hence ∗-isometric on JJ∗. Thus
π is completely isometric on JJ∗, especially on J . By the assumption (12), π is
one-to-one on A, so that K = {0}, which means J is an essential left ideal.

(6) ⇒ (11) Let W be any operator right J-module and φ : A→W any com-
pletely bounded right J-module map which is completely boundedly isomorphic
on J . Then there exists c > 0 such that ‖(jlm)‖ 6 c · ‖(φ(jlm))‖, ∀(jlm) ∈ Mn(J)
with ‖(jlm)‖ 6 1, ∀n ∈ N. Hence ∀n ∈ N and ∀(alm) ∈ M(A),

‖(alm)‖ = sup ‖(alm)(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
6 c · sup{‖φn((alm)(jlm))‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
= c · sup{‖(φ(alm))(jlm)‖ : (jlm) ∈ Mn(J), ‖(jlm)‖ 6 1}
6 c · ‖(φ(alm))‖.

Thus, φ is a completely bounded isomorphism.
(11) ⇒ (13) Clear.
(13) ⇒ (15) Just the same as that (12) ⇒ (15).
(15) ⇒ (14) Suppose aJ = {0}, ∀a ∈ A. Let (alm) ∈ Mn(A) be the matrix

such that a11 = a and all other entries are 0. Then, by the assumption, (alm) ·
Mn(J) = {0} which implies (alm) = (0) from (15), so that a = 0. Hence J is
an essential left ideal in A, so that Mn′(J) is an essential left ideal in Mn′(A),
∀n′ ∈ N.

(14) ⇒ (16) Fix n ∈ N. Since Mn(J) is an essential left ideal in Mn(A), the
canonical embedding ϕ : Mn(A) →M(Mn(JJ∗)) is one-to-one (Proposition 4.2),
hence it is a ∗-isomorphism.

(16) ⇒ (17) Clear.
(16) ⇒ (6) Let an n ∈ N. Let us consider the following maps.

Mn(A)
ϕ
↪→M(Mn(JJ∗))

ρ̃
∼→M(K(Mn(J)))

τ
∼→ B(Mn(J)).

Where we regard Mn(J) as a right Hilbert C∗-module over Mn(J∗J) with the
inner product 〈 · | · 〉 : Mn(J) × Mn(J) → Mn(J∗J) defined by 〈j|j′〉 := j∗j′,
∀j, ∀j′ ∈ Mn(J).

B(Mn(J)) is the set of adjointable maps on Mn(J).
K(Mn(J)) is the set of compact adjointable operators on Mn(J). Namely,

K(Mn(J)) := span{θj,j′ : j, j′ ∈ Mn(J)}, where θj,j′ : Mn(J) → Mn(J) is de-
fined by θj,j′(j′′) := jj′

∗
j′′ for ∀j, ∀j′, ∀j′′ ∈ Mn(J), and the closure is taken in

B(Mn(J)).
The map ϕ is the canonical embedding.
The map ρ : Mn(JJ∗) → K(Mn(J)) is defined in the following way:

ρ
( ∑

m

(jmj′m
∗)

)
=

∑
m

θjm,j′m , ∀jm, ∀j′m ∈ Mn(J)
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is a well-defined ∗-homomorphism and extends to an onto ∗-homomorphism
Mn(JJ∗) → K(Mn(J)). By Proposition 4.2, Mn(J) is an essential left ideal in
Mn(JJ∗), thus ρ is one-to-one and hence a ∗-isomorphism. Therefore, we obtain
a ∗-isomorphism ρ̃ : M(Mn(JJ∗)) →M(K(Mn(J))).

The map τ−1 : B(Mn(J)) →M(K(Mn(J))) is defined in the following way:
τ−1(T ) := (T1, T2), where T1(θj,j′) := T ·θj,j′ , T2(θj,j′) := θj,j′ ·T , ∀T ∈ B(Mn(J)).
For a proof that τ−1 is a ∗-isomorphism, see [11] and [18].

We can easily see that τ ◦ρ̃◦ϕ(a) = Ta, where Ta(j) := aj, ∀a ∈ Mn(A), ∀j ∈
Mn(J). Hence (6) follows.

(17) ⇒ (7) The same as that (16) ⇒ (6).

Remark 5.2. (i) We will show later in this paper that the equivalent condi-
tions (II) do not imply (5). We do not know whether or not (5) implies the equiv-
alent conditions (I). It can be seen that (5) implies that there is an n-isometric
A-C-bimodule map of A into I(J).

(ii) The quantity sup
α
‖(almeα)‖ does not depend on the choice of contractive

right approximate identities. In fact, take another contractive right approximate
identity fβ . Then, by noting that {eα} ⊂ J ∩ J∗ and fβ is also a contractive
left approximate identity of J∗ (Remark 4.3), lim

β→∞
eαfβ = eα = lim

β→∞
fβeα, ∀α.

Hence,

sup
α
‖(almeα)‖ = sup

α
lim

β→∞
‖(almeαfβ)‖ = sup

α
lim

β→∞
‖(almfβeα)‖

6 sup
α

sup
β
‖(almfβeα)‖ 6 sup

β
‖(almfβ)‖.

Similarly, the other inequality holds. Similar reasoning applies to the approximate
identities that appear in Theorem 5.3, Corollary 5.4 and Corollary 5.5.

(iii) It is interesting to note that injective envelopes are related to tight “ C-
C ”-, or, “A-C ”-essential extensions, while essential left ideals are related to tight
“ C-J ”-, or, “A-J ”-essential extensions.

(iv) In (4) and (5) of Theorem 5.1, we can replace ‖(almeα)‖ by ‖(eαalm)‖.
In fact,

‖(alm)‖ = ‖(alm)∗‖ = sup
α
‖(a∗mleα)‖ = sup

α
‖(eαalm)‖.

Similar considerations hold in Theorem 5.3, Corollary 5.4, and Corollary 5.5.
(v) Theorem 5.1 remains true if (5) is replaced by the weakest condition,

namely, that ‖a‖ = sup
α
‖aeα‖ for all a ∈ A. Similar considerations hold in Theo-

rem 5.3, Corollary 5.4, and Corollary 5.5.
(vi) The statement (9) with n = 1 is equivalent to saying that the left A-

module J is c-faithful in the terminology of [2]. Hence we see that if we regard left
ideals of A as operator left A-modules, then J being faithful (this is equivalent to
saying that J is an essential left ideal in A in our definition (Definition 4.4)) and
J being c-faithful are equivalent for any c > 1.

(vii) In the proof that (16) ⇒ (6) and that (17) ⇒ (7), we used the Hilbert
C∗-module theory. We can give an alternative proof of these parts that looks
easier but is less informative (the involution is not given explicitly). First, note
that, that (16) ⇒ (14) and that (17) ⇒ (15) easily follow. So it suffices to show
that (14) ⇒ (6). We use an already known principle ([17], [1]): Any contractive
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homomorphism from C∗-algebra to Banach algebra is a ∗-homomorphism with a
certain involution in the range. In fact, B(Mn(J)) is a Banach algebra and the
canonical embedding Mn(A) → B(Mn(J)) is a contractive homomorphism. (14)
implies that this embedding is one-to-one, hence a ∗-isomorphism, so that (6)
follows.

In the non-tight case, we could not connect essential extensions with injective
envelopes. This is mainly because we can not say I(J) is a (non-tight) A-C-rigid
extension of J . But still a similar result holds.

Theorem 5.3. Let A be a C∗-algebra, J a closed left ideal and let {eα} be
a contractive right approximate identity for J . Then (2a)⇒ (3a) ⇒ (4a) ⇒ (5a)
⇒ “each statement of (II) in Theorem 5.1”.

(2a) A is a C-C-essential extension of J ;
(3a) A is an A-C-essential extension of J ;
(4a) There exists c > 1 such that ‖(alm)‖ 6 c · sup

α
‖(almeα)‖ for all (alm) ∈

Mn(A) and all n ∈ N;
(5a) There exist c > 1 and n ∈ N such that ‖(alm)‖ 6 c · sup

α
‖(almeα)‖ for

all (alm) ∈ Mn(A).

Proof. (2a) ⇒ (3a) Clear.
(3a) ⇒ (4a) Similar to that (3) ⇒ (4) in Theorem 5.1.
That (4a) ⇒ (5a) ⇒ “(9) in Theorem 5.1” is clear.

Note that the statement (2a) says just that A = J . In fact, if J 6⊆ A, then
we can take a J-projection φ on A (i.e. a completely bounded linear map on A
with φ2 = φ and φ|J = idJ) such that J ⊂ Imφ 6⊆ A with the codimension of Imφ

in A is 1.
Together with the right ideal versions of Theorem 5.1 and Theorem 5.3, and

by noting that, when J is a two-sided ideal in A, C-J- or A-J- in (10)—(13) of
Theorem 5.1 can be replaced by C-A- or A-A- with trivial modifications in the
proof, the next corollary immediately follows.

Corollary 5.4. Let A be a C∗-algebra, K a closed two-sided ideal in A, and
{eα} a contractive approximate identity of K. Then the following are equivalent:

(1) I(K) is completely isometrically isomorphic to I(A), via a map that
restricts to the identity on K;

(2) A is a tight C-C-essential extension of K;
(3) A is a tight A-C-essential extension of K;
(3a) A is an A-C-essential extension of K;
(4) ‖(alm)‖ = sup

α
‖(almeα)‖ for all (alm) ∈ Mn(A) and for all n ∈ N;

(4a) There exists c > 1 such that ‖(alm)‖ 6 c · sup
α
‖(almeα)‖ for all (alm) ∈

Mn(A) and for all n ∈ N;
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(5) There exists n ∈ N such that ‖(alm)‖ = sup
α
‖(almeα)‖ for all (alm) ∈

Mn(A);
(5a) There exist c > 1 and n ∈ N such that ‖(alm)‖ 6 c · sup

α
‖(almeα)‖ for

all (alm) ∈ Mn(A);
(6) ‖(alm)‖ = sup{‖(alm)(klm)‖ : (klm) ∈ Mn(K), ‖(klm)‖ 6 1} for all

(alm) ∈ Mn(A) and for all n ∈ N;
(7) There exists n ∈ N such that ‖(alm)‖ = sup{‖(alm)(jlm)‖ : (klm) ∈

Mn(K), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A);
(8) There exists c > 1 such that ‖(alm)‖ 6 c · sup{‖(alm)(klm)‖ : (klm) ∈

Mn(K), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A) and for all n ∈ N;
(9) There exist c > 1 and n ∈ N such that ‖(alm)‖ 6 c · sup{‖(alm)(klm)‖ :

(klm) ∈ Mn(K), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A);
(10′) A is a tight C-A-essential extension of K;
(11′) A is a C-A-essential extension of K;
(12′) A is a tight A-A-essential extension of K;
(13′) A is an A-A-essential extension of K;
(14) Mn(K) is an essential ideal in Mn(A) for all n ∈ N;
(15) Mn(K) is an essential ideal in Mn(A) for some n ∈ N;
(16) Mn(A) is ∗-isomorphically embedded in M(Mn(K)) for all n ∈ N;
(17) Mn(A) is ∗-isomorphically embedded in M(Mn(K)) for some n ∈ N.

Thus, in the two-sided case, all the concepts of essentiality that we have
introduced are equivalent.

From the above corollary and by observing that “Mn(J) is an essential left
ideal in Mn(A) ⇔ Mn(JJ∗) is an essential two-sided ideal in Mn(A)” (Defini-
tion 4.4), the following also holds.

Corollary 5.5. Let A be a C∗-algebra, let J be a closed left ideal of A and
let {uβ} be a contractive approximate identity of JJ∗. Then each statement of (II)
in Theorem 5.1 is equivalent to each of the following:

(1b) I(JJ∗) is completely isometrically isomorphic to I(A), via a map that
restricts to the identity on JJ∗;

(2b) A is a tight C-C-essential extension of JJ∗;
(3b) A is a tight A-C-essential extension of JJ∗;
(3ab) A is an A-C-essential extension of JJ∗;
(4b) ‖(alm)‖ = sup

β
‖(almuβ)‖ for all (alm) ∈ Mn(A) and for all n ∈ N;

(4ab) There exists c > 1 such that ‖(alm)‖ 6 c ·sup
β
‖(almuβ)‖ for all (alm) ∈

Mn(A) and for all n ∈ N;
(5b) There exists n ∈ N such that ‖(alm)‖ = sup

β
‖(almuβ)‖ for all (alm) ∈

Mn(A);
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(5ab) There exist c > 1 and n ∈ N such that ‖a‖ 6 c · sup
β
‖aeβ‖ for all

(alm) ∈ Mn(A);
(6b) ‖(alm)‖ = sup{‖(alm)(klm)‖ : (klm) ∈ Mn(JJ∗), ‖(klm)‖ 6 1} for all

(alm) ∈ Mn(A) and for all n ∈ N;
(7b) There exists n ∈ N such that ‖(alm)‖ = sup{‖(alm)(klm)‖ : (klm) ∈

Mn(JJ∗), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A);
(8b) There exists c > 1 such that ‖(alm)‖ 6 c · sup{‖(alm)(klm)‖ : (klm) ∈

Mn(JJ∗), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A) and for all n ∈ N;
(9b) There exist c > 1 and n ∈ N such that ‖(alm)‖ 6 c · sup{‖(alm)(klm)‖ :

(klm) ∈ Mn(JJ∗), ‖(klm)‖ 6 1} for all (alm) ∈ Mn(A);
(10′b) A is a tight C-A-essential extension of JJ∗;
(11′b) A is a C-A-essential extension of JJ∗;
(12′b) A is a tight A-A-essential extension of JJ∗;
(13′b) A is an A-A-essential extension of JJ∗;
(14b) Mn(JJ∗) is an essential ideal in Mn(A) for all n ∈ N;
(15b) Mn(JJ∗) is an essential ideal in Mn(A) for some n ∈ N.

6. EXAMPLES AND APPLICATIONS

It is easy to construct an example of a left but not two-sided ideal which satisfies
all the statements in Theorem 5.1.

Example 6.1. Let A be any C∗-algebra which properly contains an essential
two-sided ideal K. Set

J :=
(
A K
A K

)
.

Then J is a left but not two-sided ideal in M2(A) and M2(K) ⊂ J ⊂ M2(A),
hence we can make I(M2(K)) ⊂ I(J) ⊂ I(M2(A)) with an injective envelope
(I(Mn(K)), ι) of Mn(K). The identity map on I(M2(K)) extends to a completely
contractive linear map φ : I(M2(A)) → I(M2(K)). M2(A) is a tight A-C-essential
extension of M2(K) by Corollary 5.4, and I(M2(A)) is a tight A-C-essential exten-
sion of M2(A) by Theorem 3.1, so that I(M2(A)) is a tight A-C-essential extension
of M2(K). Hence by rigidity (Theorem 3.1), φ is a complete isometry since it fixes
each element of ι(M2(K)). Thus I(M2(A)) = I(J) = I(M2(K)).

Example 6.2. This example shows that each statement in (II) in Theo-
rem 5.1 does not necessarily imply (5) in Theorem 5.1 or (5a) in Theorem 5.3.
Especially, J is an essential left ideal in A is equivalent to saying that A is a
(tight) C-J-essential extension of J , but those do not necessarily imply that A is
a (tight) A-C-essential extension of J .

Let A := M2 and

J :=
(

C O
C O

)
.

Then A is a C∗-algebra and J is a closed left ideal in A with a contractive right

identity. e :=
(

1 0
0 0

)
. It is easy to see JJ∗ = A, so especially, JJ∗ is an essential
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two-sided ideal in A, hence J is an essential left ideal in A by Definition 4.4. Let

a :=
(

0 0
0 1

)
, and let (alm) ∈ Mn(A) be such that a11 = a, alm = 0 if l 6= 1 or

m 6= 1. Then ‖(alm)‖ = 1, while ‖(alme)‖ = 0.

Remark 6.3. If A is a C∗-algebra and J is a closed left ideal in A, and if
A is a (respectively, tight) A-C-essential extension of J , with J properly con-
tained in A, then J can not have a (respectively, contractive) right identity.
In fact, suppose that J has a (respectively, contractive) right identity e. Then
(alm) 7−→ (alme) ∀(alm) ∈ Mn(A),∀n ∈ N defines a completely bounded (respec-
tively, completely contractive) left A-module map φ : A→ J which is completely
isometric on J , so that φ is a completely bounded isomorphism (respectively, a
complete isometry). But 0 6= (a−ae) ∈ Kerφ for a ∈ A\J , hence a contradiction.

Thus, in particular, for any finite dimensional left ideal J 6⊆ A, A can not be
a (tight) A-C-essential extension of J .

We close this section with another application of a part of Theorem 5.1. As
is defined in [13], for two C∗-algebras A and B with A,B ⊂ B(H) for some Hilbert
space H, we say that A norms B when the following equation holds for each n > 1
and for each X ∈ Mn(B).

‖X‖ = sup{‖RXC‖ : R ∈ Rown(A), C ∈ Coln(A), ‖R‖, ‖C‖ 6 1},
where Rown(A) and Coln(A) are, respectively, row and column matrices over A.
We show that, if A is an essential two-sided ideal in B, then A norms B. By
Lemma 2.4 in [13] (they were requiring all algebras to be unital, but this is not
essential), it suffices to show that, for each n > 1 and for each X ∈ Mn(B),

‖X‖ = sup{‖XC‖ : C ∈ Coln(A), ‖C‖ 6 1}.
But Coln(A) is (readily seen to be) an essential left ideal in Mn(B), so the equation
follows from Theorem 5.1 (14) ⇒ (6).

7. CONCLUSIONS AND QUESTIONS

(1) Compared with the tight case, the non-tight case is generally unknown.
The difficulty in the non-tight case mainly comes from the lack of a rigidity result
that does not need some module actions. Even in the Banach space case, there are
a few deep results, but the entire picture is unclear. We do not know the existence
of a “non-tight injective envelope”, namely a minimal injective extension, for an
arbitrary operator space. Also the lack of rigidity makes it difficult to connect
essential extensions with even tight injective envelopes. As a result, we do not
know if either of the following implications is true: A is a tight A-C-essential
extension of J ?⇔ A is an A-C-essential extension of J .

(2) The implications (5) ?⇒ (4) in Theorem 5.1 and (5a) ?⇒ (4a) ?⇒ (3a) in
Theorem 5.3 are still unknown.

(3) As one possible generalization of the results in this paper, one can consider
replacing C∗-algebras by operator algebras. In such a case, the difficulty comes
from the fact that we still do not know whether or not the representation B(H) of
an operator A-B-bimodule ([4], [2], [3]) is A-B-injective. Consequently, we do not
know the existence of any A-B-injective operator modules. Such modules play an
important role in characterizing and constructing essential extensions.
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