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1. INTRODUCTION

The purpose of this note is to extend two well known results from operator theory
in Hilbert spaces, namely Fuglede’s theorem and von Neumann’s bicommutant
theorem (both for normal operators) to the setting of Fourier p-multiplier operators
in the Banach spaces Lp(T), 1 < p <∞, where T is the circle group.

Recall a classical result of B. Fuglede ([8]) which states if T is a bounded
normal operator in a Hilbert space H and A is any bounded linear operator on
H satisfying TA = AT , then also AT ∗ = T ∗A. For an elegant proof we refer
to [17]. An abstract formulation proceeds along the following lines. Let X be
a Banach space and L(X) be the algebra of all continuous linear operators of
X into itself. Suppose that T belongs to a subalgebra of L(X) which has an
involution ∗. The question arises of whether AT ∗ = T ∗A whenever A ∈ L(X)
commutes with T? For instance, let T be any scalar-type spectral operator in
a Banach space X (see Chapter XV of [6]). Then T =

∫
σ(T )

z dP (z) and we can
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take T ∗ :=
∫

σ(T )

z̄ dP (z). Here P (·) is a projection-valued measure on the Borel

sets of the spectrum, σ(T ), which is σ-additive for the strong operator topology.
Fuglede’s theorem is known to hold in this case; this follows easily from Corollary 7
of [6], p. 1935 . A similar result holds for the slightly larger class of operators called
quasispectral (Theorem 1.2 in [1]) and also for the class of scalar-type prespectral
operators (Theorem 5.12 in [5]). I. Colojoară and C. Foias ([2]) introduced the
extensive class of generalized scalar operators T ∈ L(X), namely those possessing
a spectral distribution ϕ : C∞(C) → L(X) for which T = ϕ(idC), where idC is the
identity map on C. Then, with T ∗ := ϕ(idC), Fuglede’s theorem holds whenever
T is regular generalized scalar (p. 98 in [2]). Criteria for T to be regular can be
found in pp. 100 and 103 of [2].

One of our main aims is to establish Fuglede’s theorem for the class of all
Fourier p-multiplier operators in Lp(T), where 1 6 p < ∞, see Theorem 3.1. Of
course, when p = 2 such operators are normal in L2(T) and the original Fuglede
theorem applies.

Concerning our other main result (i.e. the bicommutant theorem) let H be
a Hilbert space and T ∈ L(H). Let 〈I, T, T ∗〉

wo
be the closed subalgebra of

L(H) generated by the identity operator I, T and T ∗ with respect to the weak
operator topology. Recall that the commutant Uc of a subset U ⊂ L(H) is given
by Uc = {A ∈ L(H) : AS = SA, ∀S ∈ U} and that its bicommutant Ucc is given
by (Uc)c. A classical result of J. von Neumann states that a ∗-algebra of operators
in L(H) coincides with its bicommutant if and only if it is closed for the weak
operator topology (Chapter IX in [6]). It follows from this result and Fuglede’s
theorem that 〈I, T, T ∗〉

wo
= {T}cc for every normal operator T ∈ L(X).

Scalar-type spectral operators in Banach spaces have an integral represen-
tation akin to that for normal operators in Hilbert spaces. Moreover, by the
Mackey-Wermer theorem, every scalar-type spectral operator T in a Hilbert space
H is essentially normal as it is of the form ST̃S−1, where T̃ is a normal operator
and S is a selfadjoint operator which is invertible in L(H) (Theorem 8.3 of [5]).
So, does von Neumann’s bicommutant theorem for normal operators also extend
to the class of scalar-type spectral p-multiplier operators in Lp(T)? It is shown in
Section 5 that this is indeed the case; see Theorem 5.4. The underlying reason for
this is that the resolution of the identity associated with any such scalar-type spec-
tral p-multiplier operator is necessarily purely atomic. This is due to the fact that
such operators are in a one-to-one correspondence with Littlewood-Paley decom-
positions of Z (relative to Lp(T)); see Theorem 4.1 and Remark 4.2. These facts
and other important properties for such operators are established in Section 4.
For instance, it is shown that translation operators corresponding to elements of
infinite order (necessarily unitary operators in the L2-setting) are not spectral for
p 6= 2; the proof is quite different to that of T.A. Gillespie ([10]), where the result is
established for arbitrary locally compact abelian groups. In contrast to the case of
L2, it turns out that scalar-type spectral multiplier operators in the setting p 6= 2
can never have a cyclic vector. This is due to the fact that multiplicity theory for
Boolean algebras of p-multiplier projections exhibits some curious features when
p 6= 2; see Lemma 5.1.

In conclusion, we point out that the obvious analogues of the results pre-
sented here (and their proofs) remain valid when T is replaced with any compact
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abelian metrizable group G, in which case the spaces Lp(G), 1 < p <∞, are still
separable and the dual group is countable and discrete.

2. PRELIMINARIES

Let T = {z ∈ C : |z| = 1} denote the circle group, identified with (−π, π] in the
usual way. The Fourier transform

f̂(n) =
1
2π

π∫
−π

e−intf(t) dt, n ∈ Z,

is defined for all f ∈ L1(T). According to Hausdorff-Young’s inequality, the Fourier
transform f 7→ f̂ is bounded from Lp(T) into lq(Z), where q is the dual exponent,
i.e. 1

p + 1
q = 1, and 1 6 p 6 2. An element T ∈ L(Lp(T)), 1 6 p 6 ∞, is called

a p-multiplier operator if it commutes with each translation operator τw, w ∈ T,
where τwf(z) = f(zw−1). This is the case if and only if there exists ψ ∈ l∞(Z),
necessarily unique, such that T̂ f = ψf̂ , for f ∈ Lp ∩ L2(T). The function ψ is
called a p-multiplier for T. Since p will always be clearly identified, the operator
T is denoted simply by Tψ. The space of all p-multipliers is denoted by Mp(T).
The inequality

(2.1) ‖ψ‖∞ 6 ‖Tψ‖L(Lp(T)), ψ ∈Mp(T),

is well known. If we equip Mp(T) with the norm |||ψ|||p := ‖Tψ‖L(Lp(T)), then
Mp(T) becomes a commutative unital Banach algebra with respect to pointwise
multiplication. Moreover, for each ψ ∈ Mp(T), the function ψ also belongs to
Mp(T). Since Mp(T) is isometrically isomorphic to Mq(T), where q is dual to
p and 1 < p < ∞, we will restrict our attention to 1 < p 6 2. The space
{Tψ : ψ ∈ Mp(T)} of all p-multiplier operators (which is isomorphic to Mp(T)),
will be denoted by Op(T).

Fix p ∈ (1, 2]. A decomposition {∆j}j∈J of Z is said to be a Littlewood-
Paley p-decomposition if there exist positive constants cp and Cp such that, with
Sjf(x) =

∑
k∈∆j

f̂(k)eikx, we have

cp‖f‖r 6

∥∥∥∥( ∑
j∈J

|Sjf |2
)1/2∥∥∥∥

r

6 Cp‖f‖r,

for all r in the interval [p, q]. By Khinchin’s inequality this is equivalent to the
requirement that for all sequences εj of ±1’s the operator Tε =

∑
j∈J

εjSj is bounded

on Lr(T), for p 6 r 6 q, with norm depending only on p and the decomposition
{∆j}j∈J (see [7]). We point out that whenever 1 6 p1 < p2 6 2, there exist
Littlewood-Paley p2-decompositions which are not p1-decompositions ([13]).

If X is a Banach space and T ∈ L(X), we denote by σpt(T ), σr(T ) and σc(T )
the point, residual and continuous spectra of T , respectively (p. 580 in [6]). The
spectrum σ(T ) of T is the complement (in C) of all points λ for which (λI −T )−1
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exists as an element of L(X). Of course, σ(T ) = σpt(T ) ∪ σr(T ) ∪ σc(T ). If f is a
function analytic in a neighbourhood of σ(T ), then a bounded operator f(T ) can
be defined by

(2.2) f(T ) :=
1

2πi

∫
Γ

f(λ)(λI − T )−1 dλ,

for a suitable contour Γ in the domain of f which surrounds σ(T ). For the basic
properties of the analytic calculus f 7→ f(T ) we refer to Chapter VII of [6]. A
subset F of σ(T ) which is both open and closed in σ(T ) is called a spectral set.
There is then an analytic function f which is identically 1 on F and 0 on the
rest of σ(T ). Then P (F ) := f(T ) is a continuous projection operator, called the
spectral projection of T corresponding to F ; it depends only on T and not on f
with the above properties.

The following result collects together some basic spectral properties of p-
multiplier operators (for the circle group).

Lemma 2.1. Let 1 < p 6 2 and ψ ∈Mp(T).
(i) Tψ is injective if and only if 0 /∈ ψ(Z).
(ii) λ ∈ σpt(Tψ) if and only if λ ∈ ψ(Z).
(iii) σr(Tψ) = ∅.
(iv) λ ∈ σc(Tψ) if and only if ψ−1({λ}) = ∅ and (ψ − λ)−1 /∈Mp(T).
(v) If λ ∈ σ(Tψ) is an isolated point, then λ ∈ σpt(Tψ). Moreover, the

spectral projection P ({λ}) of Tψ corresponding to the spectral set {λ} belongs to
Op(T). In fact, the characteristic function χλ := χψ−1({λ}) ∈Mp(T) and P ({λ}) =
Tχλ . The range of P ({λ}) is precisely ker(Tψ−λI).

For the proof note that (i) and (ii) are easy to check. For (iii) see Lemma 2.4
in [18]. To establish (iv) let λ ∈ σc(Tψ). Then Tψ−λ is injective and so ψ−1({λ}) =
∅ by (i). If (ψ − λ)−1 ∈Mp(T), then Tψ−λ is invertible in L(Lp(T)) contradicting
the fact that σc(Tψ) ⊂ σ(Tψ). Conversely, suppose that ψ−1({λ}) = ∅ and (ψ −
λ)−1 /∈ Mp(T). Then ψ−1({λ}) = ∅ implies λ /∈ σpt(Tψ) and (ψ − λ)−1 /∈ Mp(T)
implies λ ∈ σ(Tψ). Since σr(Tψ) = ∅ it follows that λ ∈ σc(Tψ).

Finally the proof of (v). By Theorem 2.3 of [18] we have λ ∈ σpt(Tψ). Let f
be analytic in a neighbourhood of σ(Tψ) and suppose f is 1 in a disc D with centre
λ and 0 in a neighbourhood of σ(Tψ)\{λ} which does not intersect D. Then (2.2)
implies that

(2.3) P ({λ}) =
1

2πi

∫
Γ

f(γ)T(γ−ψ)−1 dγ,

for any contour Γ surrounding σ(Tψ) and chosen such that the part of Γ sur-
rounding {λ} is contained in D and has index 1. Since each translation operator
τw, w ∈ T, commutes with T(γ−ψ)−1 , for γ ∈ Γ, and the integral in (2.3) can be
approximated by Riemann sums (in the operator norm), it is clear that P ({λ})
commutes with translations, and hence, that P ({λ}) ∈ Op(T). It follows from
(2.3) and the properties of f that, for g ∈ Lp(T), we have

P ({λ})g =
1

2πi

∫
Γ∩D

T(γ−ψ)−1g dγ,
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where the integral exist as a Bochner integral. An approximation argument (using
vector-valued simple functions) and Hausdorff-Young’s inequality yields

(P ({λ})g)̂ (n) =
1

2πi

∫
Γ∩D

ĝ(n)
γ − ψ(n)

dγ,

as an equality in lq(Z). For n ∈ Z with ψ(n) 6= λ we have ψ(n) ∈ σpt(Tψ) \ {λ}
and so ψ(n) is not inside Γ ∩D. However, if ψ(n) = λ, then ψ(n) is inside Γ ∩D.
So, the evaluation of the contour integral above shows P ({λ}) = Tχλ .

Suppose that P ({λ})h = h, i.e. h is in the range of P ({λ}) 6= 0. Applying
the Fourier transform one shows that χψ−1({λ})ĥ = ĥ, that is, ψ(k) = λ for all
k such that ĥ(k) 6= 0. Hence (ψ − λ)ĥ = 0, that is, h ∈ ker(Tψ−λ). It follows
that λ is a pole of the resolvent function of Tψ of order ν = 1 (Theorem 18 in [6],
p. 573) and hence, the range of P ({λ}) is precisely ker(Tψ−λ) (Theorem 24 in [6],
p. 576).

It is well known that

(2.4) ψ(Z) ⊂ σ(Tψ), ψ ∈Mp(T);

see, e.g. Lemma 2.1 of [18]. The containment (2.4) is proper in general ([11]), even
if ψ vanishes at infinity ([19]). Multipliers ψ for which (2.4) is an equality are said
to have the spectral mapping property. For the notion of a decomposable operator
(in an arbitrary Banach space) we refer to [2].

Lemma 2.2. Let 1 < p 6 2 and ψ ∈Mp(T).
(i) If Tψ is decomposable, then σ(Tψ) = ψ(Z).
(ii) If σ(Tψ) is a totally disconnected subset of C, then Tψ is decomposable.

Proof. Part (i) follows from (2.4) and Corollary 3.3 of [1]. Concerning part
(ii) we observe that Tψ is a U -scalar operator (in the sense of Definition 1.18 from
[2]; see Example 1.20 in [2]. Then Theorem 1.19 of [2] implies Tψ is decomposable.

3. THE FUGLEDE THEOREM

The aim of this section is to establish the following result concerning Fourier
multiplier operators for the circle.

Theorem 3.1. Let 1 6 p 6 2 and ψ ∈ Mp(T). If A ∈ L(Lp(T)) satisfies
ATψ = TψA, then also ATψ = TψA.

Proof. For p = 2 the result follows from the classical Fuglede theorem. So,
we may assume 1 6 p < 2. Let S be the convolution operator corresponding to
the multiplier n 7→ exp(−|n|). Note that the convolution kernel of S is a smooth
function, therefore S maps Lp(T) into Lp(T) and Lp(T) continuously into L2(T).
Let A2 : L2(T) → Lp(T) denote the restriction of A to the subspace L2(T) of Lp(T).
Then the composition SA2 maps L2(T) → L2(T) continuously. Fix f ∈ L2(T).
Since Tψ acts identically in L2, where we denote it by T̃ψ, as in Lp,

(SA2)T̃ψf = S(A2T̃ψf) = S(ATψf) = S(TψAf) = S(TψA2f).
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But, STψ = T̃ψS as bounded operators from Lp to L2 and we obtain that (SA2)T̃ψf
= T̃ψ(SA2)f for f ∈ L2. By Fuglede’s theorem applied to the normal operator
T̃ψ ∈ L(L2(T)) it follows that

(3.1) (SA2)T̃ψ = T̃ψ(SA2)

as elements of L(L2(T)). But, for each f ∈ L2(T), the right-hand-side of (3.1)
equals STψAf since STψ = T̃ψS as bounded operators from Lp to L2. It follows

from (3.1) that SA2T̃ψf = STψA2f for f ∈ L2(T), and again since T̃ψ and Tψ
agree on L2, that SA2Tψf = STψA2f , for f ∈ L2(T). The injectivity of S and
the definition of A2 then imply that ATψf = TψAf , for f ∈ L2(T). Finally, since
both ATψ and TψA are bounded on Lp and L2 is dense in Lp, we conclude that A
and Tψ commute.

4. SCALAR-TYPE SPECTRAL OPERATORS

Let 1 < p 6 2. An operator T ∈ L(Lp(T)) which is spectral in the sense of
N. Dunford (Chapter XV in [6]) has a decomposition T = S + N where S is a
scalar-type spectral (briefly, scalar) operator and N is a quasinilpotent operator
commuting with S. If T ∈ Op(T), then necessarily N = 0, (Proposition 2.1 in [1]).
That is, the only spectral operators T in Op(T) are scalar ones. This means that T
has an integral representation of the form T =

∫
σ(T )

λ dP (λ), where P is a spectral

measure (called the resolution of the identity of T ) defined on the Borel subsets
of C (actually, supp(P ) = σ(T )). More specifically, P (∅) = 0 and P (σ(T )) = I,
and P is multiplicative (i.e. P (E ∩ F ) = P (E)P (F )) and σ-additive with respect
to the strong operator topology in L(Lp(T)). For more precise details we refer
to [6]. In this section we make a detailed analysis of scalar p-multiplier operators in
L(Lp(T)). The main result is the characterization of such operators via Littlewood-
Paley p-decompositions of Z; see Theorem 4.1. Several consequences are deduced
from this result. In particular, it is shown (cf. Remark 4.2) that the resolution
of the identity of any scalar p-multiplier operator is atomic; this will play an
important role in the final section.

Fix 1 < p 6 2 and let {∆j : j ∈ Z} be a Littlewood-Paley p-decomposition
for Z. Given ξ ∈ l∞(Z) define ξ̃ : Z → C by ξ̃ =

∑
j∈Z

ξj χ∆j , in which case

ξ̃ ∈ Mp(T) and |||ξ̃|||p 6 Cp‖ξ̃‖l∞(Z) for some Cp > 0 depending only on p and
the decomposition {∆j : j ∈ Z}. Let Σ denote the σ-algebra of all subsets of Z.
For each E ∈ Σ, the idempotent ψE =

∑
j∈E

χ∆j
belongs to Mp(T) and satisfies

|||ψE |||p 6 Cp. An argument as in the proof of Proposition 8 from [16] shows
that R : Σ → L(Lp(T)) defined by R(E) = TψE is a spectral measure. Then
the p-multiplier operator Tξ̃ =

∫
Z
ξ(n) dR(n) is a scalar operator with spectrum

σ(Tξ̃) equal to the R-essential range of ξ (pp. 2188–2191 in [6]). Since R has
no non-trivial null sets (an R-null set F ∈ Σ means R(E) = 0 for all E ∈ Σ
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with E ⊂ F ), the R-essential range of ξ is precisely the closure ξ̃(Z). Accordingly,

σ(Tξ̃) = ξ̃(Z). Let {ωn}n∈N be an enumeration of the distinct points in {ξj : j ∈ Z}
and for each n ∈ N, define P ({ωn}) =

∑
ωn=ξj

R({j}). Then the resolution of the

identity P : B(σ(Tξ̃)) → L(Lp(T)) of Tξ̃, where B(σ(Tξ̃)) denotes the σ-algebra

of all Borel subsets of σ(Tξ̃), is given by P (F ) =
∞∑
n=1

δωn(F )P ({ωn}). Here δωn
is the Dirac measure at ωn. We point out that every compact set K ⊂ C is the
spectrum of some scalar operator T ∈ Op(T). Indeed, take any Littlewood-Paley
p-decomposition {∆j : j ∈ Z} with infinitely many terms and choose {ξj}j∈Z to be
any enumeration of a countable dense subset of K. Then T = Tξ̃ has the required
properties.

It turns out that the above construction of scalar operators in Op(T) is a
paradigm. That is, there are no others, as made precise in the following result.

Theorem 4.1. Let 1 < p 6 2 and Tψ ∈ Op(T). Then Tψ is scalar if and
only if {ψ−1({ω}) : ω ∈ ψ(Z)} is a Littlewood-Paley p-decomposition of Z.

Proof. Suppose that ∆ = {ψ−1({ω}) : ω ∈ ψ(Z)} has the Littlewood-Paley
p-property. If ψ(Z) is finite, then Tψ is a finite linear combination of projections
from Op(T) and hence, is a scalar operator. Otherwise, let {ξj}j∈Z be an enumera-
tion (indexed by Z) of the distinct points of ψ(Z). Then ξ = (ξj)j∈Z is an element
of l∞(Z). Let Tξ̃ be defined as above. Since ξ̃ = ψ it is clear that Tψ = Tξ̃ and
hence, Tψ is scalar.

Conversely, suppose that Tψ is a scalar operator. Since Tψ is then decom-
posable (p. 33 in [2]) it follows from Lemma 2.2 that σ(Tψ) = ψ(Z). Fix λ ∈ ψ(Z).
Let P : B(σ(Tψ)) → L(Lp(T)) be the resolution of the identity of Tψ. Since
λ ∈ σpt(T ) (see Lemma 2.1 (ii)) the non-zero projection P ({λ}) satisfies

(4.1) P ({λ})(Lp(T)) = {f ∈ Lp(T) : Tψf = λf} = ker(Tψ−λ),

Theorem 2 of [6], p. 1955. Moreover, P ({λ}) commutes with every bounded oper-
ator commuting with Tψ (Corollary 7 in [6], p. 1935) and hence, in particular, it
commutes with all translations. Accordingly, P ({λ}) ∈ Op(T) and so equals TχF (λ)

for some set F (λ) ⊂ Z. For each n ∈ ψ−1({λ}) the function f(z) = zn satisfies
Tψf = λf . Then (4.1) implies that P ({λ}f = f , that is, TχF (λ)f = f . Take Fourier
transforms and evaluate at n shows that n ∈ F (λ). Accordingly, ψ−1({λ}) ⊂ F (λ).
On the other hand, choose n ∈ F (λ) and let f be as above. Then TχF (λ)f = f ,
that is, f belongs to the range of TχF (λ) = P ({λ}). It follows from (4.1), upon tak-
ing Fourier transforms, that ψ(n) = λ. Hence F (λ) ⊂ ψ−1({λ}). This establishes
that χψ−1({λ}) ∈Mp(T), for λ ∈ ψ(Z).

Let {λn}n∈N be an enumeration of ψ(Z). Then the sets E(n) := ψ−1({λn}),
for n ∈ N, form a disjoint covering of Z. To show that the E(n)’s have the
Littlewood-Paley p-property we need to show, for all sequences εn of ±1’s and
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N ∈ N, that the functions g =
N∑
n=1

εnχE(n) ∈Mp(T) uniformly. Now, we have

Tg =
N∑
n=1

εnTχE(n) =
N∑
n=1

εnP ({λn}) =
∫

σ(T )

g̃ dP,

where g̃ : C → C is the function
N∑
n=1

εnχ{λn}. Since P ({λn}) 6= 0, for each n ∈ N,

the P -essential supremum norm |g̃|P of g̃ (see p. 2187 in [6]) equals ‖g‖l∞(Z) = 1.
It follows that

|||g|||p 6 4 sup{‖P (E)‖ : E ∈ B(σ(Tψ))} <∞

(see p. 2181 in [6]).

Remark 4.2. If Tψ ∈ Op(T) is scalar, then its resolution of the identity
P : B(σ(Tψ)) → L(Lp(T)) is given by

P (F ) =
∑
λn∈F

TχE(n) , F ∈ B(σ(Tψ)),

and

Tψ =
∫

σ(Tψ)

λ dP (λ) =
∞∑
n=1

λnTχE(n) .

To see this define, for each E ∈ B(σ(Tψ)), the projection

(4.2) Q(E) =
∞∑
n=1

δλn(E)P ({λn}) =
∞∑
n=1

δλn(E)TχE(n) .

This formula and the σ-additivity of P imply that

(4.3) Q(σ(Tψ)) =
∞∑
n=1

P (λn) =
∞∑
n=1

TχE(n) ,

where the series converges unconditionally in the strong operator topology of
L(Lp(T)). Using the fact that {E(n)}n∈N is a decomposition of Z, it is obvi-
ous that the right-hand-side of (4.3) applied to any trigonometric polynomial f
just gives f again. It follows that Q(σ(Tψ)) = I. Using the identities δλn(E∩F ) =
δλn(E)δλn(F ), for n ∈ N and E,F ∈ B(σ(Tψ)), and TχE(n)TχE(m) = 0 whenever
n 6= m, it follows from (4.2) that Q(E ∩ F ) = Q(E)Q(F ). The σ-additivity of P
implies that

(4.4) 〈Q(E)f, g〉 =
∞∑
n=1

〈TχE(n)f, g〉δλn(E), E ∈ B(σ(Tψ)),

for f ∈ Lp(T) and g ∈ Lq(T), where the series is unconditionally convergent in
C. The Vitali-Hahn-Saks theorem ensures that the right-hand-side of (4.4) is a
σ-additive complex measure. So, Q is σ-additive for the weak (hence, also strong)
operator topology. Accordingly, Q is a spectral measure. Moreover, the identities
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supp(Q) = supp(P ) — clear from (4.2) — and supp(P ) = σ(Tψ) (Corollary 11 (ii)
of [6], p. 2191) show that supp(Q) = σ(Tψ). Finally, it follows from (4.4) that the
operator ∫

σ(Tψ)

λ dQ(λ) =
∞∑
n=1

λnP ({λn}) =
∞∑
n=1

λnTχE(n)

coincides with
∫

σ(Tψ)

λ dP (λ) on trigonometric polynomials and hence, on all of

Lp(T). Hence, Q is a resolution of the identity for Tψ. By uniqueness (Corollary 8
in [6], p. 1935) Q = P .

We proceed to deduce some consequences of Theorem 4.1. First a result, via
quite different methods, due to T.A. Gillespie ([9]).

Corollary 4.3. Let u ∈ T be an element of infinite order. Then, for p ∈
(1, 2), the translation operator τu is not scalar.

Proof. Note that τu = Tψ, where ψ(n) = un for n ∈ Z. Since ψ is injective,
it follows that {ψ−1({ω}) : ω ∈ ψ(Z)} is the family of all singleton subsets of Z,
which does not have the Littlewood-Paley p-property.

A slightly more general result is the following one.

Corollary 4.4. Let 1 < p < 2 and ψ ∈ Mp(T). If ψ is injective on
[N,∞) ∩ Z or (−∞, N ] ∩ Z, for some N ∈ Z, then Tψ is not a scalar operator.

Proof. We consider only E := [N,∞)∩Z as the other case is similar. Suppose
Tψ is scalar. Since χE ∈ Mp(T), the projection TχE is surely scalar. By a result
of C.A. McCarthy ([12]) the family of scalar operators in Op(T) is an algebra and
hence, the p-multiplier operator TψχE = TψTχE is also scalar. If ψN := ψχE ,
then {ψ−1

N ({ω}) : ω ∈ ψN (Z)} contains all singleton sets {n}, for n > N and so
cannot have the Littlewood-Paley p-property. Hence, TψN is not scalar which is a
contradiction. So, the original assumption that Tψ is scalar is false.

Corollary 4.4 is a version, for the circle group, of a similar result known for p-
multiplier operators Tψ on groups other than T. For instance, if ψ : Rn×Tm → C
has certain local monotonicity properties, then this is the case (see Propositions 2.4
and 2.5 in [1]).

Lemma 4.5. Let 1 < p 6 2 and ψ ∈ Mp(T). Suppose that Tψ is a compact
operator. Then 0 is the only possible limit point of ψ(Z) and ψ−1({λ}) is a finite
subset of Z, for each non-zero λ ∈ ψ(Z). In particular, σ(Tψ) = ψ(Z).

Proof. It is well known that σ(Tψ) is countable with 0 as only possible limit
point. Lemma 2.2 applies to show that σ(Tψ) = ψ(Z). Hence, 0 is the only
possible limit point of ψ(Z). Accordingly, each λ ∈ ψ(Z) \ {0} is an isolated point
of σ(Tψ). By Lemma 2.1 (v) λ is an eigenvalue of Tψ, the characteristic function
χλ of the set ψ−1({λ}) belongs to Mp(T) and the range of the spectral projection
P ({λ}) = Tχλ of Tψ corresponding to the spectral set {λ} is ker(Tψ−λI). Since λ
is a pole of Tψ of order 1 (see the proof of Lemma 2.1 (v)), the compactness of Tψ
implies that ker(Tψ − λI) is finite dimensional ([6], p. 579). But if n ∈ ψ−1({λ}),
then zn belongs to ker(Tψ − λI). Hence, ψ−1({λ}) is finite.
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Remark 4.6. (i) The condition that 0 is the only possible limit point of ψ(Z)
and ψ−1({λ}) is a finite subset of Z, for each non-zero λ ∈ ψ(Z), is equivalent to
lim

|n|→∞
ψ(n) = 0, i.e. ψ ∈ c0(Z).

(ii) Lemma 4.5 does not characterize the compact operators in Op(T).

Proof. As noted earlier, M. Zafran exhibited p-multipliers ψ ∈ c0(Z) for
which the inclusion (2.4) is proper. By Lemma 4.5 we see that Tψ cannot be
compact in this case.

Corollary 4.7. Let 1 < p 6 2. A scalar operator Tψ ∈ Op(T) is a compact
if and only if ψ ∈ c0(Z).

Proof. As noted above, compactness of Tψ alone ensures ψ ∈ c0(Z). So,
suppose ψ ∈ c0(Z). Let {λn}n∈N be an enumeration of ψ(Z)\{0}. By Remark 4.2
we have, with E(n) := ψ−1({λn}), that Tψ =

∑
n∈N

λnTχE(n) , where the series is

unconditionally convergent in the strong operator topology. Since the resolution
of the identity for Tψ has no non-trivial null sets, it follows from Theorem 10 of
[6], p. 2189, that there exists a constant K > 0 such that

(4.5)
∥∥∥∥Tψ − N∑

n=1

λnTχE(n)

∥∥∥∥ 6 K sup{|λn| : n > N}, N ∈ N.

Since ψ ∈ c0(Z) each set E(n) is finite so TχE(n) is a finite rank projection. More-
over, since the right-hand-side of (4.5) converges to 0 we see that Tψ is compact.

Remark 4.8. It is straightforward to exhibit compact multiplier operators
which are not scalar. Take for instance ψ(n) = (1 + n2)−1, n ∈ Z. Then Tψ ∈
Mp(T), 1 6 p 6 2, is compact, as it is easily seen that Tψ can be approximated
in the operator norm topology by finite rank operators. But, Tψ is not scalar; see
Corollary 4.4.

Corollary 4.9. Let 1 < p < 2 and Tψ ∈ Op(T ) have totally disconnected
spectrum. For each spectral set E of Tψ, let P (E) denote the corresponding spectral
projection. Then Tψ is scalar if and only if

(4.6) sup{‖P (E)‖L(Lp(T)) : E a spectral set of Tψ} <∞.

Proof. If Tψ is scalar, then each spectral projection for Tψ belongs to the
range of the resolution of the identity of Tψ. It was noted in the proof of The-
orem 4.1 that this range is a uniformly bounded subset of L(Lp(T)) from which
(4.6) follows.

Conversely, suppose (4.6) holds. Lemma 2.2 shows that σ(Tψ) = ψ(Z). Given
any spectral set E ⊂ σ(Tψ), an argument as in the proof of Lemma 2.1 (v), with
the singleton set {λ} replaced by E and the contour Γ suitably chosen to surround
E (within the domain of f), shows that χψ−1(E) ∈ Mp(T) and the associated
spectral projection P (E) equals Tχψ−1(E)

.
Let T ′ψ ∈ Oq(T) denote the dual operator to Tψ. Then σ(Tψ) = σ(T ′ψ).

Moreover, since (T ′ψ)′ = Tψ and σr(T ′ψ) = ∅ (see Lemma 2.1) it follows from
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Proposition 1.14 of [5] that σpt(Tψ) = σpt(T ′ψ). It follows from Proposition 1.2
and Theorem 1.19 (iv) of [5] that Tψ and T ′ψ have the same spectral sets. In
addition, if P (E) is a spectral projection of Tψ, then P (E)′ is a spectral projection
of T ′ψ associated with the spectral set E. Combining these comments with the fact
that Lp(T) is a reflexive Banach space, Theorem 5.36 of [5] applied to T = T ′ψ
implies that Tψ is prespectral of class Lq(T). That is, there exists a spectral
measure P̃ : B(σ(Tψ)) → L(Lp(T)) of class Lq(T) satisfying Definition 5.5 of [5]
and agreeing with the finitely additive (see p. 1930 in [6]) spectral measure P on
the algebra of all spectral subsets of σ(Tψ). Accordingly, Tψ is actually a spectral
operator (Theorem 6.5 in [5]) and P̃ is its resolution of the identity. As noted at
the start of the section, Tψ is then necessarily scalar.

Remark 4.10. Some comments concerning (4.6) are in order. Let Tψ ∈
Op(T) have totally disconnected spectrum. According to Theorem 4.1 and Corol-
lary 4.9 we see that (4.6) is satisfied if and only if ∆ = {ψ−1({λ}) : λ ∈ ψ(Z)} is a
Littlewood-Paley p-decomposition of Z. Let χλ denote the characteristic function
of ψ−1({λ}), λ ∈ ψ(Z). Then ∆ is a Littlewood-Paley p-decomposition if and only
if

(4.7) sup
{∥∥∥∥ ∑

λ∈F

Tχλ

∥∥∥∥
L(Lp(T))

: F ⊂ ψ(Z), F finite
}
<∞.

So, (4.6) and (4.7) are equivalent. However, the two families of operators in (4.6)
and (4.7) can be quite different. Recall that σ(Tψ) = ψ(Z). If each λ ∈ ψ(Z) is an
isolated point of the spectrum, that is, {λ} is a spectral set of Tψ, then

(4.8)
{ ∑
λ∈F

Tχλ : F ⊂ ψ(Z), F finite
}
⊂ {P (E) : E a spectral set of Tψ}

and so clearly (4.6) implies (4.7). However, if some of the limit points of ψ(Z) are
eigenvalues of Tψ (in which case these limit points actually belong to ψ(Z); see
Lemma 2.1), then (4.8) fails to be satisfied. Of course, if there are only finitely
many limit points of ψ(Z) belonging to σpt(Tψ), then it can still be argued that
(4.7) follows from (4.6). However, if there are infinitely many such limit points,
then it is not clear why (4.7) follows from (4.6); this is precisely what the proof of
Corollary 4.9 argues.

5. VON NEUMANN’S BICOMMUTANT THEOREM

As noted in the introduction, if T is a normal operator in a Hilbert space, then a
result of J. von Neumann states that {T}cc = 〈I, T, T ∗〉

wo
. If Tψ ∈ Op(T), for some

1 < p < 2, is a scalar operator (the natural counterpart in Lp(T) of a (normal)
multiplier operator in L2(T)) and we interpret Tψ as T ∗ψ, then an analogue of von

Neumann’s bicommutant theorem would be that {Tψ}cc = 〈I, Tψ, Tψ〉
wo

. The
aim of this section is to show that this is indeed the case. As a by-product of the
arguments involved we show, for 1 < p < 2, that no scalar operator in Op(T) can
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have a cyclic vector. This is in contrast to the case p = 2 where a cyclic vector
does exist whenever ψ is injective.

Let X be a Banach space. For the notion of a Boolean algebra (briefly,
B.a.) of projections M in L(X) we refer to Chapter 5 of [5] or Chapter XVII
of [6]. Of particular relevance is the concept of M being σ-complete (Chapter
XVII in [6]). The range of any spectral measure defined on a σ-algebra of sets is
a σ-complete B.a. of projections; see p. 2204 in [6]. A non-zero projection G in
a B.a. of projections M ⊂ L(X) is called an atom if, whenever H ∈ M satisfies
H 6 G (meaning HG = H or, equivalently, that HX ⊂ GX), then either H = 0
or H = G. The B.a. M is said to be countably atomic if there exists a sequence
of atoms {Gn}n∈N in M such that, whenever G ∈ M, there is a subset A ⊂ N
such that G =

∑
n∈A

Gn, where the series converges unconditionally in the strong

operator topology. We say that M is generated by {Gn}n∈N.
Multiplicity theory for a complete B.a. of projections M in a Banach space

X is due to W.G. Bade; see Section 3 of Chapter XVIII in [6]. For X separable
(which we now assume) it is known that every P ∈ M satisfies the countable chain
condition (see p. 2266 in [6] for the definition). Moreover, M is complete if and
only if it is σ-complete (Lemma 21 of [6], p. 2215). The multiplicity m(P ) of P
is defined to be the smallest cardinal power of a set of vectors A ⊂ PX such that
PX = span{M[x] : x ∈ A}, where M[x] := span{Qx : Q ∈ M} is the cyclic space
spanned by x with respect to M. A projection P ∈ M is said to have uniform
multiplicity n ∈ N∪ {ℵ0} if m(Q) = n whenever 0 6= Q 6 P . If P ∈ M is an atom
and 0 6= x ∈ PX, then M[x] is the 1-dimensional space spanned by x. Hence, in
this case m(P ) = dim(PX) and, in particular, P has uniform multiplicity equal
to dim(PX). There is a unique family {Pn : n ∈ N ∪ {ℵ0}} of pairwise disjoint
elements in M such that I =

∨
Pn (the supremum is formed in the B.a. M) and,

if Pn 6= 0, then Pn has uniform multiplicity n (Theorem 3 in [6], p. 2265). We say
that M has finite uniform multiplicity if there exists an integer N ∈ N such that
Pn = 0 for all n ∈ {ℵ0} ∪ {N + 1, N + 2, . . .}.

The following result shows that σ-complete B.a.’s of p-multiplier projections
for the circle group have a curious structure.

Lemma 5.1. Let 1 < p < 2 and M ⊂ Op(T) be any σ-complete B.a. of
projections.

(i) M is countably atomic.
(ii) M does not have finite uniform multiplicity.

Proof. (i) Since Lp(T) is separable, there is a scalar operator T ∈ L(Lp(T))
whose resolution of the identity P has range precisely M (Proposition 2 in [14]).
Since P (E) commutes with every translation, for each E ∈ B(σ(T )), a standard
approximation argument (p. 2190 in [6]) shows that T = Tψ for some ψ ∈Mp(T).
It is clear from the formula for P given in Remark 4.2 that M is generated by the
countable family P ({λn}) = TχE(n) , for n ∈ N, where {λn}n∈N is an enumeration
of ψ(Z) and E(n) = ψ−1({λn}). Since each set {λn} is a singleton it is immediate
that P ({λn}) is an atom of M. Accordingly, M is countably atomic.

(ii) If M contains an atom with infinite dimensional range then, as noted
prior to the lemma, this atom has uniform multiplicity ℵ0. Then M cannot have
finite uniform multiplicity. So, suppose the other possibility occurs, i.e. all atoms
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P ({λn}) have finite dimensional range. If it were the case that M has finite uniform
multiplicity N , then

N = sup{dim(P ({λn})(Lp(T)) : n ∈ N} <∞.

By Theorem 4.1 the family ∆ = {E(n)}n∈N is a Littlewood-Paley p-decomposition
of Z. It is routine to verify that
(5.1) TχE (Lp(T)) = {g ∈ Lp(T) : supp(ĝ) ⊂ E}
whenever E ⊂ Z is a set for which χE ∈ Mp(T). Accordingly, each set E(n) is
finite, for n ∈ N, and no set has more than N elements. Choose one element e1n
from each set E(n) and call the collection of all these elements F1. Now choose
one element e2n from each set E(n) \ {e1n} which happens to be non-empty and
let F2 denote the set of all of these elements. Continue the process to produce
sets F1, . . . , FN which are pairwise disjoint and have union Z. Let q > 2 be the
dual exponent to p. We will see that each set Fn is a Λ(q)-set and, since a finite
union of Λ(q)-sets is again a Λ(q)-set, this produces a contradiction since Z is not
a Λ(p)-set. To prove this claim we show F1 is a Λ(q)-set: define Q̂nf = χ{e1n}f̂

and (PE(n)f )̂ = χE(n)f̂ . One may employ, for instance, the vector-valued version
of the Lp-boundedness of the Hilbert transform, to see that∥∥∥∥( ∑

n

|Qngn|2
)1/2∥∥∥∥

p

6 Cp

∥∥∥∥( ∑
n

|gn|2
)1/2∥∥∥∥

p

.

If we plug in gn = PE(n)f and use QnPE(n) = Qn, then the fact that {E(n)}n∈N
is a Littlewood-Paley p-decomposition implies∑

m∈F1

|f̂(m)|2 6 Cp

∥∥∥∥( ∑
n

|PE(n)f |2
)1/2∥∥∥∥2

p

6 C ′p‖f‖2
p.

Hence F1 is a Λ(q)-set. Clearly, the same argument works for the other Fn’s.

Remark 5.2. Let p ∈ (1, 2] and N ⊂ Op(T) be any bounded B.a. of pro-
jections. Then N has a purely atomic completion M ⊂ Op(T). Indeed, since a
reflexive space cannot contain an isomorphic copy of the sequence space c0, it
is known that the closure M of N with respect to the strong operator topology
in L(Lp(T)) is a complete B.a. of projections, [10]. Clearly, M ⊂ Op(T). Then
Lemma 5.1 ensures that M is atomic.

Lemma 5.3. Let X be a Banach space and T ∈ L(X) be a scalar operator
with resolution of the identity P : B(σ(T )) → L(X). Let M denote the range of
P and define T ∗ :=

∫
σ(T )

λ dP (λ). Then

(i) {T}cc = Mcc.
(ii) 〈I, T, T ∗〉

wo
= 〈M〉

wo
.

Proof. It is known that A ∈ L(X) satisfies AT = TA if and only if AP (E) =
P (E)A for all E ∈ B(σ(T )) (Corollary 7 in [6], p. 1935), from which (i) is im-
mediate. Part (ii) is also known; it follows from Proposition 4.2 of [4] applied to
the strong operator topology closure M

so
of M, after noting that M

so
is complete

(Lemma 23 in [6], p. 2216) and that 〈M〉
wo

= 〈M so〉
wo

and Mcc = (M
so

)cc.
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We now have the main result of this section.

Theorem 5.4. Let 1 < p 6 2 and let Tψ ∈ Op(T) be a scalar operator. Then

〈I, Tψ, Tψ〉
wo

= {Tψ}cc.

Proof. It was noted at the beginning of this section that the range M of
the resolution of the identity of Tψ is a σ-complete B.a. of projections. More-
over, Lemma 5.1 (i) shows that M is countably atomic from which it follows that
〈M〉

wo
= Mcc (Proposition 1 in [15]). Then Lemma 5.3 gives the desired conclu-

sion.

Remark 5.5. The bicommutant result of Theorem 5.4 does not hold for all
scalar operators in general Banach spaces. J. Dieudonné exhibited a σ-complete
B.a. of projections M in a separable, reflexive Banach space X such that the inclu-
sion 〈M〉

wo
⊂ Mcc is strict ([3]). As noted in the proof of Lemma 5.1, separability

ofX implies that M equals the range of the resolution of the identity of some scalar
operator T ∈ L(X). Lemma 5.3 shows that the inclusion 〈I, T, T ∗〉

wo
⊂ {T}cc is

strict.

Let T ∈ L(X) be a scalar operator and T ∗ :=
∫

σ(T )

λ dP (λ), where P is the

resolution of the identity of T . A vector x ∈ X is said to be cyclic for T if the
subspace {q(T, T ∗)x : q a polynomial} is dense in X.

Lemma 5.6. Let T ∈ L(X) be a scalar operator with resolution of the iden-
tity P . Then x ∈ X is a cyclic vector for T if and only if the linear span of
{P (E)x : E ∈ B(σ(T ))} is dense in X.

Proof. Since both {q(T, T ∗) : q a polynomial} and the linear span of {P (E) :
E ∈ B(σ(T ))} are convex subsets of L(X) it follows from Lemma 5.3 (ii) that

(5.2) 〈I, T, T ∗〉
so

= 〈P (E) : E ∈ B(σ(T ))〉
so
,

where “so” indicates the closed subalgebra generated with respect to the strong
operator topology in L(X). Moreover, the seminorm ρ : S 7→ ‖Sx‖, S ∈ L(X), is
continuous with respect to the strong operator topology. A routine approximation
argument based on (5.2) and the property mentioned of ρ then gives the desired
conclusion.

We conclude with the following result.

Theorem 5.7. (i) Let 1 < p < 2 and Tψ ∈ Op(T) be a scalar operator.
Then T has no cyclic vector.

(ii) Let ψ ∈ l∞(Z). Then the normal operator Tψ ∈ O2(T) has a cyclic vector
if and only if ψ is injective.

Proof. (i) Let M denote the range of the resolution of the identity P of Tψ.
Suppose that a cyclic vector f ∈ Lp(T) exists for Tψ. Lemma 5.6 implies that
M[f ] = Lp(T), from which it is clear that M has uniform multiplicity one. This
contradicts Lemma 5.1 (ii).

(ii) If Tψ has a cyclic vector, then Lemma 5.6 implies that each atom in
the countably atomic B.a. M has 1-dimensional range. It follows from (5.1) that
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ψ−1({λ}) must be a singleton subset of Z, for each λ ∈ ψ(Z). Hence, ψ is injective.
Conversely, suppose that ψ is injective, in which case each atom Tχλ of M, for
λ ∈ ψ(Z), has rank 1. Recall that χλ is the characteristic function of ψ−1({λ}).
Choose any f ∈ L2(T) with f̂(k) 6= 0 for all k ∈ Z. Fix n ∈ Z and let en(z) = zn.
With E = {ψ(n)} it turns out that P (E)f = f̂(n)en and so en belongs to the span
of {P (F )f : F ∈ B(σ(Tψ))}. Accordingly, this span contains all trigonometric
polynomials and so is dense in L2(T). By Lemma 5.6 we see f is a cyclic vector
for Tψ.
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