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Abstract. Let 1 < p < ∞ and let µ be a compactly supported regular
Borel measure on Rn which has the property that there exists a t > 1/(p−1)
such that

sup
0<r61

Z
Rn

“µ(B(x, r))

rp

”t

dµ(x) < ∞.

We show that, for such a µ, any singular integral operator on L2(Rn, µ) with a
smooth, homogeneous kernel of degree −1 belongs to the norm ideal C+

p/(p−1).
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1. INTRODUCTION

In this paper we study singular integral operators of the type

(TK,µf)(x) =
∫

K(x− y)f(y) dµ(y),

where K is a homogeneous function of degree −1. We are interested in the question
when TK,µ belongs to the Lorentz-like ideal C+

p/(p−1), 1 < p < ∞. In other words,
we would like to know under what condition on the measure µ are the s-numbers

of TK,µ such that sup
ν>1

ν−1/p
ν∑

j=1

sj(TK,µ) < ∞? This question is closely related to

the problem of diagonalizing commuting tuples of self-adjoint operators modulo
the ideal C−p , which is the pre-dual of C+

p/(p−1). Besides this operator-theoretical
connection, the reader will see the important role that geometric measure theory
plays in this investigation. More precisely, the question we investigate is about
an interplay between operator theory and a certain kind of measure density. To
explain our results, some background information is necessary.
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Recall that, for a compact operator A on a separable, infinite dimensional
Hilbert space H, its s-numbers s1(A) > s2(A) > · · · > sn(A) > · · · are defined as
follows: If rank(A) < ∞, then this sequence is simply a descending arrangement of
the eigenvalues of |A| counting multiplicity. If rank(A) = ∞, then this sequence is
a descending arrangement of the nonzero eigenvalues of |A| counting multiplicity.
See [5].

Given a Hilbert space H and a p ∈ [1,∞), the classes C−p , Cp and C+
p re-

spectively consist of all the compact operators A on H such that ‖A‖−p < ∞,
‖A‖p < ∞ and ‖A‖+

p < ∞. Here, ‖A‖p = {tr(|A|p)}1/p and

‖A‖−p =
∞∑

j=1

j(1−p)/psj(A), ‖A‖+
p = sup

ν>1

ν∑
j=1

sj(A)

ν∑
j=1

j−1/p

.

Cp is usually refereed to as the Schatten p-class and we have C−p′ ⊂ Cp′ ⊂ C+
p′ ⊂ C−p

⊂ Cp ⊂ C+
p for all 1 6 p′ < p < ∞. C−p , Cp and C+

p are examples of a much larger
class of ideals called norm ideals of compact operators ([8]). (In some literature
they are known as symmetrically normed ideals. See, e.g., [5].)

Throughout the paper, K denotes a homogeneous function of degree −1
which is C∞ on Rn \ {0} for some n ∈ N. That is, the function x 7→ K(x) is
smooth on Rn \ {0} and

λK(λx) = K(x) for all x ∈ Rn \ {0} and λ > 0.

Suppose that µ is a regular Borel measure on Rn. We let TK,µ denote the singular
integral operator

(TK,µf)(x) =
∫

K(x− y)f(y) dµ(y), f ∈ L2(Rn, µ),

whenever it makes sense.
In this paper we consider the question, when does TK,µ belong to C+

p/(p−1)?
The investigation of this problem started with Voiculescu’s works ([10]–[12]) and
the joint work ([3]) by David and Voiculescu. Besides the intrinsic interest asso-
ciated with TK,µ, there is a full explanation in the Introduction of [3] as to why
such a problem is important. Rather than repeating the entire explanation here,
we simply remind the reader the following: Suppose that 1 < p < ∞ and that
the measure µ on Rn has the property that TK,µ ∈ C+

p/(p−1) for K(x) = xj/|x|2,
j = 1, . . . , n, where we write x = (x1, . . . , xn). Then the n-tuple (Mµ

1 , . . . ,Mµ
n ) of

self-adjoint operators on L2(Rn, µ) cannot be simultaneously diagonalized modulo
C−p ([3]; see also [12], Proposition 2.1). Here and in what follows, Mµ

j denotes the
multiplication operator on L2(Rn, µ) defined by the formula

(Mµ
j f)(x1, . . . , xn) = xjf(x1, . . . , xn).

As usual, in a metric space (X, d), we denote the ball {y ∈ X : d(x, y) < r}
by B(x, r). To motivate our investigation, let us recall a well-known result.
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Theorem 1.1. ([3]) Suppose that 1 < p < ∞. Suppose that µ is a compactly
supported regular Borel measure on Rn for which there is a positive number C such
that

(1.1)
µ(B(x, r))

rp
6 C for all x ∈ Rn and 0 < r 6 1.

Then TK,µ ∈ C+
p/(p−1) for every C∞ homogeneous function K of degree −1 on Rn \

{0}. Consequently, for such a measure µ, (Mµ
1 , . . . ,Mµ

n ) cannot be simultaneously
diagonalized modulo C−p .

The results of [3] also cover other norm ideals and measures with growth
rates other than rp. Nevertheless every measure in [3] was assumed to have a
uniform upper bound for growth rate,

µ(B(x, r)) 6 C1h(r) for all x ∈ Rn and r > 0.

And it was the function h that was matched with the norm ideal in question ([3],
Theorem 3.1). The obvious question here is what happens if one drops such a
uniform upper bound? As it turns out, we can prove TK,µ ∈ C+

p/(p−1) under a
condition weaker than (1.1).

Theorem 1.2. Suppose that 1 < p < ∞. Let µ be a compactly supported
regular Borel measure on Rn. Suppose that there is a t > 1/(p− 1) such that

(1.2) sup
0<r61

∫
Rn

(µ(B(x, r))
rp

)t

dµ(x) < ∞.

Then TK,µ ∈ C+
p/(p−1) for every C∞ homogeneous function K of degree −1 on Rn \

{0}. Consequently, for such a measure µ, (Mµ
1 , . . . ,Mµ

n ) cannot be simultaneously
diagonalized modulo C−p .

Since we are only dealing with finite measures, any µ which satisfies (1.1)
automatically satisfies (1.2) for every t > 1/(p − 1) (indeed for every t > 0).
Compared with Theorem 1.1, our main improvement lies in the fact that we allow
x 7→ µ(B(x, r)) to vary over a wide range for each fixed r. In other words, under
our assumption the function r 7→ µ(B(x, r))/rp need not be bounded for any
x; to ensure TK,µ ∈ C+

p/(p−1), the boundedness of a certain kind of “average” of
µ(B(x, r))/rp will suffice.

Our improvement over Theorem 1.1 is not vacuous. Indeed, for each integer
N > 2 and each t > 1/(N − 1) there exists a compactly supported probability
measure ω = ωN,t on RN+1 such that

sup
0<r61

∫
RN+1

(ω(B(x, r))
rN

)t

dω(x) < ∞

and such that

(1.3) lim sup
r↓0

ω(B(x, r))
rN

= ∞ for every x ∈ ∆ω,
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where ∆ω denotes the support of ω. By the usual Covering Lemma ([4], [7], [9])
(1.3) implies that the N -dimensional Hausdorff measure of ∆ω is zero.

As it turns out, even (1.2) is not a necessary condition for TK,µ ∈ C+
p/(p−1).

One can also produce a measure ω0 on RN+1 which has the properties

sup
0<r61

∫
RN+1

(ω0(B(x, r))
rN

)t

dω0(x) = ∞ for every t >
1

N − 1

and

sup
0<r61

∫
RN+1

(ω0(B(x, r))
rN

)1/(N−1)

dω0(x) < ∞,

but TK,ω0 ∈ C+
N/(N−1) for every C∞-homogeneous function K of degree −1 on

RN+1 \ {0}.
Theorem 1.2 and ω0 might lead to the speculation that the natural condition

for TK,µ ∈ C+
p/(p−1), 1 < p < ∞, is that

(1.4) sup
0<r61

∫
Rn

(µ(B(x, r))
rp

)1/(p−1)

dµ(x) < ∞.

But this turns out to be false. One can show by an example that, in general, (1.4)
alone does not even guarantee the compactness of TK,µ, much less membership in
C+

p/(p−1). The reason that (1.4) might lead to undesirable situation is that this
condition by itself does not rule out the possibility that µ(B(x, r)) ≈ r for a set
of x whose measure is on the order of r. In other words, such a µ might be too
singular for TK,µ to be compact.

Due to the technicalities involved, the construction of the measures men-
tioned above will be omitted. The focus of the paper will be on the proof of
Theorem 1.2.

2. PROOF OF THEOREM 1.2

Throughout the section, we fix an n ∈ N and we let

Q = [0, 1)n = [0, 1)× · · · × [0, 1),

the unit cube in Rn. For each ` ∈ N, we let W` be the set of words of length `
with {1, 2, 3, . . . , 2n} being the set of alphabet. That is,

W` = {w1 · · ·w` : w1, . . . , w` ∈ {1, 2, 3, . . . , 2n}}.
Let Γ = {(s1, . . . , sn) : s1, . . . , sn ∈ {0, 1}} and let γ1, . . . , γ2n be an enumeration
of the elements in Γ. Given w = w1 · · ·w` ∈ W`, we define

Qw = Qw1···w`
= [0, 2−`)n + 2−1γw1 + · · ·+ 2−`γw`

.

It is clear that
⋃

w∈W`

Qw = Q and that Qw ∩Qw′ = ∅ for w 6= w′ in W`. Define

W =
∞⋃

`=1

W`.
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The homogeneity of the kernel K(x− y) is such that, for the proof of Theo-
rem 1.2, we only need to consider measures which are concentrated on Q. There-
fore, for the rest of the section let µ be a regular Borel measure on Rn such that
µ(Rn \ Q) = 0. Furthermore, we assume that dim(L2(Rn, µ)) = ∞. For each
w ∈ W, we define the element ew ∈ L2(Rn, µ) by the formula

ew =
{

(µ(Qw))−1/2χQw if µ(Qw) > 0,
0 if µ(Qw) = 0.

Let Λ = {(s1, . . . , sn) : s1, . . . , sn ∈ {−1, 0, 1}}. Given w ∈ W` and λ ∈ Λ, we
have either Qw + 2−`λ = Qw′ for some w′ ∈ W` or Qw + 2−`λ ⊂ Rn \ Q. Thus
for w ∈ W` and λ ∈ Λ, we define the element e(w, λ) ∈ L2(Rn, µ) = L2(Q, µ) as
follows:

e(w, λ) =
{

ew′ if Qw + 2−`λ = Qw′ , w′ ∈ W`,
0 if Qw + 2−`λ ⊂ Rn \Q.

Similarly, for w ∈ W` and λ ∈ Λ, we define

µ(w, λ) =
{

µ(Qw′) if Qw + 2−`λ = Qw′ , w′ ∈ W`,
0 if Qw + 2−`λ ⊂ Rn \Q.

For the rest of the section we let K denote a C∞-homogeneous function of
degree −1 on Rn \ {0}. Let 0 6 η̃ 6 1 be a C∞-function on [0,∞) such that η̃ = 1
on [0, 1/2] and η̃ = 0 on [5/8,∞). Define η(r) = η̃(r) − η̃(2r), r ∈ [0,∞). It is
easy to see that

(2.1) η = 0 on
[
0,

1
4

]
∪

[5
8
,∞

)
and η = 1 on

[1
3
,
1
2

]
.

Let `0 ∈ N be such that 2`0−1 >
√

n. Now
k′∑

`=−k

η(2`r) = η̃(2−kr) − η̃(2k′+1r).

Since |u| 6
√

n < 2`0−1 for every u ∈ [−1, 1]n, we have

(2.2)
∞∑

`=−`0

η(2`|u|) = 1 if u ∈ [−1, 1]n and u 6= 0.

(2.1) implies that K(u)η(|u|) = 0 if 0 < |u| 6 1/4. Hence there is a periodic
C∞-function ϕ on Rn with (2`0+2Z)n as its period lattice such that

(2.3) ϕ(u) = K(u)η(|u|) if u ∈ [−2`0 , 2`0 ] and u 6= 0.

Such a ϕ has a Fourier expansion

(2.4) ϕ(u) =
∑
z∈Zn

cz exp(2−`0−1iπ〈u, z〉) with
∑
z∈Zn

|cz| < ∞.

For −`0 6 k < k′, we set

Kk(u) =
k∑

`=−`0

K(u)η(2`|u|), Kk,k′(u) =
k′∑

`=k+1

K(u)η(2`|u|).

Accordingly, for such k and k′, we define the operators

(Tkf)(x) =
∫

Kk(x− y)f(y) dµ(y), (Tk,k′f)(x) =
∫

Kk,k′(x− y)f(y) dµ(y)
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on L2(Rn, µ). By (2.3), (2.4) and the fact that K(u) = 2`K(2`u), it is clear that
T1 ∈ C1.

For w ∈ W` and z ∈ Zn, we set fz
w(x) = exp(2`−`0−1iπ〈x, z〉). For 1 6 k < k′,

z ∈ Zn and λ ∈ Λ, we define the operator

(2.5) Ak,k′,z,λ =
k′∑

`=k+1

∑
w∈W`

2`{µ(w, λ)µ(Qw)}1/2(fz
we(w, λ))⊗ (fz

wew)

on L2(Rn, µ). The proof of Theorem 1.2 relies on the following decomposition
of Tk,k′ .

Lemma 2.1. For any 1 6 k < k′, Tk,k′ =
∑

λ∈Λ

∑
z∈Zn

czAk,k′,z,λ. Therefore, by

(2.4), there is a constant C2.1(n, K) > 0 which depends only on n and on K such
that for any norm ideal C of compact operators on L2(Rn, µ) and for any such k
and k′, we have

‖Tk,k′‖C 6 C2.1(n, K) sup{‖Ak,k′,z,λ‖C : z ∈ Zn, λ ∈ Λ}.

Proof. By (2.1), for each ` ∈ N, η(2`|x− y|) 6= 0 only if 2`(x− y) ∈ (−1, 1)n,
i.e., only if x ∈ y + (−2−`, 2−`)n. Hence if y ∈ Qw, w ∈ W`, then η(2`|x− y|) 6= 0
only if x ∈

⋃
λ∈Λ

(Qw + 2−`λ). On the other hand, if y ∈ Qw, w ∈ W`, and x ∈⋃
λ∈Λ

(Qw +2−`λ), then 2`(x− y) ∈ [−2, 2]n and, therefore, K(2`(x− y))η(2`|x− y|)

= ϕ(2`(x− y)). By this observation and (2.4), for x 6= y in Q,

K(2`(x− y))η(2`|x− y|) =
∑
λ∈Λ

∑
w∈W`

χQw+2−`λ(x)K(2`(x−y))η(2`|x−y|)χQw(y)

=
∑
λ∈Λ

∑
w∈W`

χQw+2−`λ(x)ϕ(2`(x− y))χQw
(y)

=
∑
z∈Zn

cz

∑
λ∈Λ

∑
w∈W`

exp(2−`0−1iπ〈2`(x− y), z〉)χQw+2−`λ(x)χQw
(y).

From this and the identity Kk,k′(u) =
k′∑

`=k+1

2`K(2`u)η(2`|u|) for u ∈ [−1, 1]n\{0}

we obtain the decomposition of Tk,k′ .

This lemma reduces the proof of Theorem 1.2 to estimate of ‖Ak,k′,z,λ‖+
p/(p−1),

which we will take up next. Let us first record three elementary lemmas.

Lemma 2.2. Suppose that 0 < τ < ∞. Then there is a positive number C
which depends only on n and τ such that, for any ` ∈ N,

(2.6)
1
C

∫
(µ(B(x, 2−`)))τ dµ(x)6

∑
w∈W`

(µ(Qw))1+τ 6
∫

(µ(B(x, 2−`+`0)))τ dµ(x).

Proof. Let B = B(τ, n) > 0 be such that (a1+ · · ·+a3n)τ 6 B(aτ
1 + · · ·+aτ

3n)
whenever a1, . . . , a3n are non-negative numbers. Suppose that w ∈ W` and u ∈
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Qw. Then it is obvious that B(u, 2−`) ⊂
⋃

λ∈Λ

(Qw + 2−`λ). Hence for every x ∈ Q

we have

(2.7)

(µ(B(x, 2−`)))τ =
∑

w∈W`

(µ(B(x, 2−`)))τχQw
(x)

6
∑

w∈W`

(
µ
( ⋃

λ∈Λ

(Qw + 2−`λ)
))τ

χQw
(x).

Since there are exactly 3n elements in Λ, we have∫
(µ(B(x, 2−`)))τ dµ(x) 6 B

∑
w∈W`

∑
λ∈Λ

(µ(Qw + 2−`λ))τµ(Qw).

By Hölder’s inequality,
∑

w∈W`

(µ(Qw + 2−`λ))τµ(Qw) 6
∑

w∈W`

(µ(Qw))1+τ for every

λ ∈ Λ. Therefore C = 3nB will do for the first half of (2.6).
To prove the second half of (2.6), we observe that, since

√
n < 2`0−1,

B(u, 2−`+`0) ⊃ Qw if u ∈ Qw and w ∈ W`. Thus
∑

w∈W`

(µ(Qw))τχQw(x) 6

(µ(B(x, 2−`+`0)))τ for every x ∈ Q. The second half of (2.6) is now obtained
by integrating this inequality.

Let {v1, . . . , vk, . . .} be an orthonormal set in a Hilbet space H. Define the
orthogonal projections Pk = v1 ⊗ v1 + · · ·+ vk ⊗ vk, k ∈ N.

Lemma 2.3. Suppose that A1, . . . , Aj are finite-rank operators on a Hilbert
space. Suppose k1 6 · · · 6 kj are integers such that rank(Ai) 6 ki, i = 1, 2, . . . , j.
Then in any norm ideal C of compact operators, we have

‖A1 + · · ·+ Aj‖C 6
∥∥∥ j⊕

i=1

(‖Ai‖+ · · ·+ ‖Aj‖)Pki

∥∥∥
C
.

Proof. It is known that ‖A1+· · ·+Aj‖C 6 ‖ ‖A1‖Pk1 + · · ·+‖Aj‖Pkj
‖C ([13],

Lemma 4.4). If we set Pk,k′ = vk+1⊗vk+1 + · · ·+vk′⊗vk′ for k < k′ and Pk,k = 0,

then
j∑

i=1

‖Ai‖Pki
=

j∑
i=1

j∑
ν=i

‖Aν‖Pki−1,ki
, where k0 = 0. Obviously there is a partial

isometries U such that
j∑

i=1

j∑
ν=i

‖Aν‖Pki−1,ki
= U∗

{ j⊕
i=1

j∑
ν=i

‖Aν‖Pki

}
U.

Suppose now that we are given a p ∈ (1,∞). For the rest of the section, let
s and τ be such that 1 < s 6 p and τ > 1/(s− 1).

Lemma 2.4. There is a positive number C(s) which depends only on s such
that the following holds true: Let ρ and S be positive numbers and let A1, . . . , AJ

be trace-class operators on a Hilbert space satisfying the conditions ‖Aj‖ 6 2−sjρ,
‖Aj‖1 6 S, j = 1, . . . , J. Then∥∥∥∥ J∑

j=1

2jAj

∥∥∥∥+

s/(s−1)

6 C(s)(ρ1/sS(s−1)/s + ρ).
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Proof. Let j0 = min{j ∈ Z : 2sjS/ρ > 1} and let J0 = max{1, j0}. Without
loss of generality, we may assume that J > J0. Define

(2.8) kj =
[2sjS

ρ

]
, J0 6 j 6 J.

(As usual, [R] denotes the largest integer not exceeding R.) Let C > 0 be such

that C
ν∑

i=1

i−(s−1)/s > ν1/s for all ν ∈ N. Let the projections Pk be the same as in

the preceding lemma. We first show that

(2.9)
∥∥∥∥ J∑

j=J0

2−(s−1)jPkj

∥∥∥∥+

s/(s−1)

6 3C(1− 21−s)−1
(S

ρ

)(s−1)/s

.

Denote T =
J∑

j=J0

2−(s−1)jPkj . Set kJ0−2 = kJ0−1 = 0. If kj−1 < ` 6 kj , J0 6

j 6 J , then s`(T ) =
J∑

i=j

2−(s−1)i 6 (1 − 21−s)−12−(s−1)j . Given km−1 < ν 6 km,

J0 6 m 6 J , let us write ν = ν0 + km−1 with 1 6 ν0 6 km − km−1. We have

(2.10)

ν∑
i=1

si(T )

ν∑
i=1

i−(s−1)/s

6C(1−21−s)−1ν−1/s

(
2−(s−1)mν0+

m−1∑
j=J0−1

2−(s−1)j(kj−kj−1)
)

6C(1−21−s)−1

(
2−(s−1)mk(s−1)/s

m +
m−1∑

j=J0−1

(2−(s−1)jk
(s−1)/s
j )

(kj

ν

)1/s
)

.

By (2.8), 2−(s−1)jk
(s−1)/s
j 6 (S/ρ)(s−1)/s, J0 − 1 6 j 6 J . The

m−1∑
j=J0−1

· · · term

above is 0 if m = J0. If m > J0 + 1, since ν > 1 + km−1 > 2s(m−1)S/ρ, we have
(kj/ν)1/s 6 2−(m−1−j) for J0 − 1 6 j 6 m− 1. Substituting these into (2.10), we

see that
ν∑

i=1

si(T )/
ν∑

i=1

i−(s−1)/s 6 3C(1− 21−s)−1(S/ρ)(s−1)/s, which yields (2.9).

Write X =
J∑

j=J0

2jAj and Y =
J∑

j=J0

21−(s−1)jρPkj
= 2ρT . Our next step is

to show that

(2.11) ‖X‖+
s/(s−1) 6 ‖Y ‖+

s/(s−1),

which, when combined with (2.9), yields

(2.12)
∥∥∥∥ J∑

j=J0

2jAj

∥∥∥∥+

s/(s−1)

6 6C(1− 21−s)−1S(s−1)/sρ1/s.
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To establish (2.11), obviously it suffices to show that
ν∑

i=1

si(X) 6
ν∑

i=1

si(Y ) for

every ν ∈ N. But it is obvious that

(2.13)
ν∑

i=1

si(Y ) = tr(Y Pν) =
∑
kj6ν

J06j6J

21−(s−1)jρkj + ν
∑
kj>ν

J06j6J

21−(s−1)jρ,

where the first (respectively second) term is 0 if there are no J0 6 j 6 J which
satisfy kj 6 ν (respectively kj > ν). Let B be an operator such that ‖B‖ 6 1 and
rank(B) 6 ν. For J0 6 j 6 J such that kj 6 ν, we have

(2.14) |tr(2jAjB)|6‖2jAj‖1‖B‖ 6 2jS =(2−(s−1)jρ)×
(2sjS

ρ

)
621−(s−1)jρkj .

For J0 6 j 6 J such that kj > ν, we have

(2.15) |tr(2jAjB)| 6 ‖2jAj‖ ‖B‖1 6 2−(s−1)jρν < ν21−(s−1)jρ.

It follows from (2.13)–(2.15) that |tr(XB)| 6
ν∑

i=1

si(Y ). Since

ν∑
i=1

si(X) 6 sup{|tr(XB)| : ‖B‖ 6 1, rank(B) 6 ν},

this completes the proof of (2.11).
Since (2.12) is now proven, the lemma follows if J0 = 1. Suppose that J0 > 1.

By the definition of J0, we have S < ρ/2sj for 1 6 j 6 J0 − 1. Hence∥∥∥∥ J0−1∑
j=1

2jAj

∥∥∥∥
1

6
J0−1∑
j=1

2jS 6 ρ

J0−1∑
j=1

2−(s−1)j 6 ρ2−(s−1)(1− 2−(s−1))−1.

This completes the proof.

For the proof of Theorem 1.1, Lemmas 2.1 and 2.4 will suffice. But the proof
of Theorem 1.2 requires an extra step. For integers 1 6 k < k′, define

M(s, τ, k, k′) = sup
{ ∫ (µ(B(x, r))

rs

)τ

dµ(x) : 2−k′+`0 6 r 6 2−k−1+`0

}
.

Proposition 2.5. If τ > 1/(s − 1), then there is a constant C(n, s, τ) > 0
which depends only on n, s and τ such that:∥∥∥∥ k′∑

`=k+1

∑
w∈W`

2`µ(Qw)(fwew)⊗ (fwew)
∥∥∥∥+

s/(s−1)

6 C(n, s, τ){(M(s, τ, k, k′))1/(1+τ) + (M(s, τ, k, k′))1/s(1+τ)(µ(Q))(s−1)/s}

for 1 6 k < k′, and fw ∈ L∞(Rn, µ) with ‖fw‖∞ 6 1 and w ∈
k′⋃

`=k+1

W`.
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Proof. We fix 1 6 k < k′ and denote M = 2τs`0M(s, τ, k, k′). For k + 1 6
` 6 k′, we set

W`,0 = {w ∈ W` : µ(Qw) < 21−s`M1/(τ+1)},
W`,m = {w ∈ W` : 2m−s`M1/(τ+1) 6 µ(Qw) < 2m+1−s`M1/(τ+1)}, m ∈ N.

For m = 0, 1, 2, . . . and k + 1 6 ` 6 k′, define A`,m =
∑

w∈W`,m

µ(Qw)(fwew) ⊗

(fwew). (Naturally,
∑

w∈∅
· · · means 0.) Let

(2.16) Bm =
k′∑

`=k+1

2`A`,m, m = 0, 1, 2, . . . .

Thus
∥∥∥ ∑

m>0

Bm

∥∥∥+

s/(s−1)
is the quantity to be estimated.

If w and w′ are distinct elements in Wν , then the supports of fwew and
fw′ew′ are disjoint. Hence ‖Aν,m‖ 6 M1/(1+τ)2m+1−sν . Thus there is a C1 > 0
which depends only on s such that for any k + 1 6 ` 6 k′,

(2.17)
k′∑

ν=`

‖2νAν,m‖ 6 C1M
1/(1+τ)2m−(s−1)`.

Suppose that m > 1. Let k1 = k1(m) be the smallest integer such that
2sk1−(1+τ)m > 1 and let k0 = max{k + 1, k1}. It follows from the definition of
W`,m and (2.6) that, for k + 1 6 ` 6 k′,

card(W`,m)× (2m−s`)1+τM 6
∑

w∈W`,m

(µ(Qw))1+τ

6 2τs`0M(s, τ, k, k′)2−τs` = M2−τs`.

That is, card(W`,m) 6 2s`−(1+τ)m. Set

n`,m = [2s`−(1+τ)m] for ` > k0 and n`,m = 0 for ` < k0.

Then

(2.18) rank(A`,m) 6 card(W`,m) 6 n`,m, k + 1 6 ` 6 k′.

Thus we have Bm = 0 in the case k0 > k′. Let us assume k0 6 k′. From
Lemma 2.3, (2.17) and (2.18) we obtain

(2.19) ‖Bm‖+
s/(s−1) 6 C1M

1/(1+τ)‖B̃m‖+
s/(s−1),

where B̃m =
k′⊕

`=k0

2m−(s−1)`Pn`,m
.

Now the s-numbers of B̃m are such that si(B̃m) = 2m−(s−1)` if nk0−1,m + · · ·
· · ·+ n`−1,m < i 6 nk0−1,m + · · ·+ n`−1,m + n`,m, where k0 6 ` 6 k′.

This gives us sufficient information to estimate ‖B̃m‖+
s/(s−1).
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Suppose that j = j0+nk0−1,m+· · ·+nν−1,m with 1 6 j0 6 nν,m, k0 6 ν 6 k′.
Then

(2.20)

j∑
i=1

si(B̃m)

j∑
i=1

i−(s−1)/s

6 Cj−1/s

(
j02m−(s−1)ν +

ν−1∑
`=k0−1

n`,m2m−(s−1)`

)

6C

(
n(s−1)/s

ν,m 2m−(s−1)ν +
ν−1∑

`=k0−1

(n`,m

j

)1/s

(n(s−1)/s
`,m 2m−(s−1)`)

)
.

Note that n
(s−1)/s
`,m 2m−(s−1)` 6 2m−(s−1)(1+τ)m/s for k0 − 1 6 ` 6 k′. Set δ =

21−(s−1)(1+τ)/s. Now we invoke the condition τ > 1/(s − 1): It simply means
1− (s− 1)(1 + τ)/s < 0. That is, δ < 1. It follows from (2.20) that

j∑
i=1

si(B̃m)

j∑
i=1

i−(s−1)/s

6 C

(
1 +

ν−1∑
`=k0−1

(n`,m

j

)1/s
)

δm.

Now
ν−1∑

`=k0−1

(n`,m/j)1/s = 0 if ν = k0. If ν > k0, we have j > 1 + nν−1,m >

2s(ν−1)−(1+τ)m. That is, n`,m/j 6 2s(`−ν+1) for k0 − 1 6 ` 6 ν − 1. Thus

the
(
1 +

ν−1∑
`=k0−1

(n`,m/j)1/s
)

above is not greater than 3 in any case. Thus

j∑
i=1

si(B̃m)/
j∑

i=1

i−(s−1)/s 6 3Cδm for all such j. This implies that ‖B̃m‖+
s/(s−1) 6

3Cδm. Combining this with (2.19), we obtain

(2.21) ‖Bm‖+
s/(s−1) 6 3CC1M

1/(1+τ)δm.

This holds for every m > 1 and the constants C and C1 depend only on s.
To estimate ‖B0‖+

s/(s−1), we note that ‖A`,0‖ 6 21−s`M1/(τ+1) and ‖A`,0‖1 6

µ(Q). Thus, applying Lemma 2.4 with ρ = 2M1/(τ+1) and S = µ(Q), we have

‖B0‖+
s/(s−1) 6 2C(s)(M1/s(1+τ)(µ(Q))(s−1)/s + M1/(1+τ)).

Combining this with (2.21), we obtain the desired bound for
∥∥∥ ∑

m>0

Bm

∥∥∥+

s/(s−1)
.

In this paper, our definition of the rank-one operator ξ⊗ζ is (ξ⊗ζ)f = 〈f, ζ〉ξ.

Corollary 2.6. Let s, τ and C(n, s, τ) be the same as in Proposition 2.5.
For any 1 6 k < k′, z ∈ Zn and λ ∈ Λ, we have

(2.22)
‖Ak,k′,z,λ‖+

s/(s−1) 6 C(n, s, τ)
(
(M(s, τ, k, k′))1/(1+τ)

+ (M(s, τ, k, k′))1/s(1+τ)(µ(Q))(s−1)/s
)
.
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Proof. Recall that Ak,k′,z,λ is defined by (2.5). Let {ξw : w ∈ W} be an
orthonormal set in L2(R, µ). For a fixed set of 1 6 k < k′, z ∈ Zn and λ ∈ Λ, we
define

A =
k′∑

`=k+1

∑
w∈W`

√
2`µ(Qw)ξw ⊗ (fz

wew),

B =
k′∑

`=k+1

∑
w∈W`

√
2`µ(w, λ)ξw ⊗ (fz

we(w, λ)).

For w′ ∈ W`, set fz
w′,λ = fz

w if there is a w ∈ W` (which is necessarily unique)
such that Qw′ = Qw + 2−`λ and set fz

w′,λ = 0 if no such w exists. Hence

B∗B =
k′∑

`=k+1

∑
w′∈W`

2`µ(Qw′)(fz
w′,λew′)⊗ (fz

w′,λew′),

A∗A =
k′∑

`=k+1

∑
w∈W`

2`µ(Qw)(fz
wew)⊗ (fz

wew).

Thus, if we write R for the right-hand side of (2.22), then it follows from Proposi-
tion 2.5 that ‖A∗A‖+

s/(s−1) 6 R and that ‖B∗B‖+
s/(s−1) 6 R. Now for any X ∈ C−s ,

we can write X = Y ∗Z with ‖Y ∗Y ‖−s = ‖X‖−s = ‖Z∗Z‖−s . Since Ak,k′,z,λ = B∗A,
we have

|tr(Ak,k′,z,λX)| = |tr(ZB∗AY ∗)| 6 {tr(ZB∗BZ∗)tr(Y A∗AY ∗)}1/2

6 {‖Z∗Z‖−s ‖B∗B‖+
s/(s−1)‖Y

∗Y ‖−s ‖A∗A‖+
s/(s−1)}

1/2,

where the second inequality uses the duality between C−s and C+
s/(s−1) ([5]). Thus

|tr(Ak,k′,z,λX)| 6 ‖X‖−s R. Another application of the duality completes the proof.

Proof of Theorem 1.2. As we mentioned before, we may assume µ(Rn\Q) = 0
without loss of generality. Thus we may apply all the propositions above. By (1.2),
there is a positive number B such that

(2.23) M(p, t, k, k′) 6 B for all 1 6 k < k′.

Since t > 1/(p− 1), there is an s ∈ (1, p) such that t > 1/(s− 1). We have

M(s, t, k, k′) 6 2t(p−s)(−k−1+`0)M(p, t, k, k′) 6 2t(p−s)(−k−1+`0)B.

That is, lim
k→∞

sup
k′>k

M(s, t, k, k′) = 0. Since Tk,k′ = Tk′ − Tk, it follows from

Lemma 2.1, Corollary 2.6 and this limit that lim
k→∞

sup
k′>k

‖Tk′ − Tk‖+
s/(s−1) = 0.

Hence {Tk}∞k=1 is a Cauchy sequence in C+
s/(s−1).

It is easy to deduce from (1.2) that

lim
k→∞

2k

∫
µ(B(x, 2−k)) dµ(x) = 0.
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Using this limit, the definition of η and the homogeneity of K, it is easy to show
that

lim
ε↓0

(〈TK,µ,εf, g〉 − 〈Tk(ε)f, g〉) = 0 for any f, g ∈ L∞(Rn, µ),

where k(ε) ∈ N is such that 2−k(ε)−2 < ε 6 2−k(ε)−1 and

(TK,µ,εf)(x) =
∫

|x−y|>ε

K(x− y)f(y) dµ(y).

Since {Tk}∞k=1 is a Cauchy sequence in C+
s/(s−1), this shows that the singular inte-

gral operator TK,µ is well defined on L2(Rn, µ). Indeed it is the ‖ · ‖+
s/(s−1)-limit

of {Tk}∞k=1.
Thus to prove that TK,µ ∈ C+

p/(p−1), we only need to show that the numerical
sequence {‖Tk‖+

p/(p−1)}
∞
k=1 is bounded. By Lemma 2.1, Corollary 2.6 and (2.23),

we have

(2.24) ‖Tk,k′‖+
p/(p−1) 6 C2.1(n, K)C(n, p, t){B1/(1+t) + B1/p(1+t)(µ(Q))(p−1)/p}

for all 1 6 k < k′. Since Tk = T1,k + T1 and T1 ∈ C1, (2.24) implies that
{‖Tk‖+

p/(p−1)}
∞
k=1 is bounded.
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