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Abstract. The paper is devoted to the study of Toeplitz operators with
radial symbols on the weighted Bergman spaces on the unit ball in Cn. Ad-
mitting “badly” behaved unbounded symbols we get new qualitative features.
In particular, contrary to known results, a Toeplitz operator with the same
(unbounded) symbol now can be bounded in one weighted Bergman space
and unbounded in another, compact in one weighted Bergman space and
bounded but not compact in another, compact in one weighted Bergman
space and unbounded in another.

In our case of radial symbols, the Wick (or covariant) symbol of a
Toeplitz operator gives complete information about the operator, providing
its spectral decomposition.
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1. INTRODUCTION

We consider the weighted Bergman space A2
µ(Bn) of holomorphic functions in unit

ball Bn ⊂ Cn which belong to the weighted space Lµ
2 (Bn), and Toeplitz operators

with radial symbols acting on A2
µ(Bn).

The theory of Bergman type spaces and problems of boundedness and com-
pactness of the Toeplitz operators acting on these spaces have been studied in-
tensively in recent years. Without claiming completeness we refer to [1], [7], [11],
[13], and also [14] for references. The methods in mentioned works are mainly
based on Berezin transform techniques and Tauberian type theorems, which do
not work well or at all when the symbols of the Toeplitz operators may have
singular behaviour near the boundary (the sphere S2n−1, for us).

On the other hand, in the recent work ([12], see also [6]) a new approach has
been proposed, which allows handling radial symbols having a “bad” behaviour.
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In particular, it has been shown that Toeplitz operators can be bounded and even
compact for badly behaved symbols (for example, unbounded near the boundary).

The papers [6] and [12] are devoted to the case of the unit disk, while here we
apply the methods of [6] and [12] to the study of the n-dimensional case. It turns
out that there is no qualitative difference between the one-dimensional and multi-
dimensional cases when studying global properties such as commutative algebra
structure etc.; this is why we are emphasize questions concerning the properties of
concrete Toeplitz operators. For example, for weighted Bergman spaces on the unit
ball with the weights µλ(|z|) = (1−|z|2)λ−1, λ > 0, boundedness (compactness) of
the Toeplitz operator Ta with a positive (and even unbounded) symbol a on some
weighted space for λ = λ0 implies boundedness (compactness) on all the spaces
for λ > 0 (see [14] for the case of the unit disk). Nevertheless we give an example
of a symbol for which the corresponding Toeplitz operator is bounded when λ = 1
(weightless case) and unbounded for λ = 2, compact for λ = 1 and bounded but
not compact for λ = 2, compact for λ = 1, and unbounded for λ = 2. Such
examples draw attention to qualitative new features and reflect the very singular
nature of the symbols under consideration.

We also use the Berezin concept of Wick and anti-Wick symbols. It turns
out that in our particular (radial symbol) case the Wick (or covariant) symbol of
a Toeplitz operator gives complete information about the operator, providing its
spectral decomposition.

All that can be obtained from the results of [6] and [12] with slight changes,
we present here without the proofs, referring to those papers.

2. PRELIMINARIES

We will identify Cn = R2n writing zk = xk + iyk, z = (z1, . . . , zn) ∈ Cn. Let

z, ξ ∈ Cn, we will use the following standard notation: z ·ξ =
n∑

j=1

zjξj , |z| =
√
z · z,

zα = zα1
1 · · · zαn

n , where α = (α1, . . . , αn), αk ∈ Z+ = N∪ {0}, is a multiindex and
|α| = α1 + · · ·+ αn is its length, α! = α1! · · ·αn!.

Consider a non negative measurable function (weight) µ(r), r ∈ (0, 1), such
that mes {r ∈ (0, 1) : µ(r) > 0} = 1, and∫

Bn

µ(|z|) dxdy = |S2n−1|
1∫

0

µ(r)r2n−1 dr <∞,

where |S2n−1| = 2πn− 1
2 Γ−1

(
n − 1

2

)
is the surface area of the unit sphere S2n−1,

and Γ(z) is the Gamma function.
Introduce the weighted space

Lµ
2 (Bn) =

{
f : ‖f‖2Lµ

2 (Bn) =
∫
Bn

|f(z)|2µ(|z|) dν(z) <∞
}
,

where dν(z) = dxdy is the usual Lebesgue volume measure, and L2(S2n−1) is the
space with the usual Lebesgue surface measure.
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Let Hk be the space of spherical harmonics of order k (see, for example [8]).
The space L2(S2n−1) is the direct sum of mutually orthogonal spaces Hk, i.e.,

L2(S2n−1) =
∞⊕

k=0

Hk.

Each space Hk is the direct sum (under the identification Cn = R2n) of the mu-
tually orthogonal spaces Hp,q (see, for example [9]):

Hk =
⊕

p+q=k
p,q∈Z+

Hp,q, k ∈ Z+,

where Hp,q, for each p, q = 0, 1, . . ., is the space of harmonic polynomials (their
restrictions to the unit sphere, more precisely) of complete order p in the variable
z and complete order q in the conjugate variable z = (z1, . . . , zn). Thus

L2(S2n−1) =
⊕

p,q∈Z+

Hp,q.

The Hardy space H2(Bn) in the unit ball Bn is a closed subspace of L2(S2n−1).
Denote by PS2n−1 the Szegö orthogonal projection of L2(S2n−1) onto the Hardy

space H2(Bn). It is well known that H2(Bn) =
∞⊕

p=0
Hp,0. The standard orthonor-

mal base in H2(Bn) has the form (see, for example, [9])

eα(ω) = dn,αω
α, dn,α =

√
(n− 1 + |α|)!

|S2n−1|(n− 1)!α!
for |α| = 0, 1, . . . .

Fix now and in all that follows an ortonormal basis {eα,β(ω)}α,β , α, β ∈ Zn
+, in

the space L2(S2n−1) so that eα,0(ω) ≡ eα(ω), |α| = 0, 1, . . . .
Passing to the spherical coordinates we have

(2.1) Lµ
2 (Bn) = L2((0, 1), µ(r)r2n−1 dr)⊗ L2(S2n−1).

Now each function f(z) ∈ Lµ
2 (Bn) admits the decomposition

(2.2) f(z) =
∞∑

|α|+|β|=0

cα,β(r)eα,β(ω), r = |z|, ω =
z

r
,

with the coefficients cα,β(r) satisfying the condition

‖f‖2Lµ
2 (Bn) =

∞∑
|α|+|β|=0

1∫
0

|cα,β(r)|2µ(r)r2n−1 dr <∞.

Thus the decomposition (2.1), (2.2) together with the Parseval’s equality give rise
to the unitary operator

U1 : L2((0, 1), µ(r)r2n−1 dr)⊗ L2(S2n−1) → L2((0, 1), µ(r)r2n−1 dr)⊗ l2

≡ l2(L2((0, 1), µ(r)r2n−1 dr)),
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defined as U1 : f(z) → {cα,β(r)}, with

‖f‖2Lµ
2 (Bn) =‖cα,β(r)‖2l2(L2((0,1),µ(r)r2n−1 dr) =

∞∑
|α|+|β|=0

‖cα,β(r)‖2L2((0,1),µ(r)r2n−1 dr).

Let f(z) be a holomorphic function in the unit ball Bn, and let

f(z) =
∞∑

|α|=0

cαz
α

be its Taylor series (which converges uniformly on each compact subset of Bn, see
[9]). We have

(2.3) f(z) =
∞∑

|α|=0

cαz
α =

∞∑
|α|=0

cαr
|α|ωα =

∞∑
|α|=0

cα(r)eα(ω),

where cα(r) = cαd
−1
n,αr

|α|, r = |z|, ω = z
r .

Let A2
µ(Bn) be the Bergman space of holomorphic in Bn functions from

Lµ
2 (Bn). Denote by Bµ

Bn the Bergman orthogonal projection of Lµ
2 (Bn) onto the

Bergman space A2
µ(Bn). From the above it follows that to characterize a function

f(z) ∈ A2
µ(Bn) and considering its decomposition according to (2.3), one can

restrict to the functions having the representation

(2.4) f(z) =
∞∑

|α|=0

cα,0(r)eα,0(ω).

Now let us take an arbitrary function f(z) from A2
µ(Bn) in the form (2.4). It has

to satisfy the Cauchy-Riemann equations, i.e.,

(2.5)
∂

∂zk
f(z) ≡ 1

2

(
∂

∂xk
+ i

∂

∂yk

)
f(z) = 0, k = 1, . . . , n, z ∈ Bn.

Applying ∂
∂zk

to (2.4) we have

(2.6)
∂

∂zk

∞∑
|α|=0

cα,0(r)eα,0(ω) =
zk

r

∞∑
|α|=0

(
d
dr
cα,0(r)−

|α|
r
cα,0(r)

)
eα,0(ω),

where k = 1, . . . , n, and we come to the infinite system of ordinary linear differen-
tial equations

d
dr
cα,0(r)−

|α|
r
cα,0(r) = 0, |α| = 0, 1, . . . .

Their general solution has the form cα,0(r) = bαr
|α| = λ(n, |α|)cα,0r

|α|, with

λ(n,m) =
( 1∫

0

t2m+2n−1µ(t) dt
)− 1

2
. Hence, for any f(z) ∈ A2

µ(Bn) we have

f(z) =
∞∑

|α|=0

cα,0λ(n, |α|) r|α|eα,0(ω)
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and, as is easy to verify, ‖f‖2L2,µ(Bn) =
∞∑

|α|=0

|cα,0|2. Thus the image A2
1,µ(Bn) =

U1(A2
µ(Bn)) is characterized as the (closed) subspace of

L2((0, 1), µ(r)r2n−1 dr)⊗ l2 = l2(L2((0, 1), µ(r)r2n−1 dr))
which consists of all sequences cα,β(r) of the form

cα,β(r) =
{
λ(n, |α|)cα,0r

|α|, |β| = 0,
0, |β| 6= 0,

and, in addition,

‖f‖Lµ
2 (Bn) = ‖{cα,β(r)}‖l2(L2((0,1),µ(r)r2n−1 dr)) =

( ∞∑
|α|=0

|cα,0|2
) 1

2

.

For each m ∈ Z+ introduce the function

(2.7) ϕm(ρ) = λ(n,m)
1
n

( ρ∫
0

r2m+2n−1µ(r) dr
) 1

2n

, ρ ∈ [0, 1].

Obviously, there exists the inverse function for the function ϕm(ρ) on [0, 1], which
we will denote by φm(r). Introduce the operator

(2.8) (umf)(r) =
√

2n
λ(n,m)

φ−m
m (r)f(φm(r)).

Proposition 2.1. The operator um maps unitary L2((0, 1), µ(r)r2n−1 dr)
onto L2((0, 1), r2n−1 dr) in such a way that

(2.9) um(λ(n,m)rm) =
√

2n, m ∈ Z+.

Proof. Consider um : L2((0, 1), µ(r)r2n−1 dr) → L2((0, 1), r2n−1 dr) an oper-
ator of the form

(umf)(r) = ψm(r)f(φm(r)).
Here we assume that ψm(r) > 0, r ∈ (0, 1), and that φm(r) is bijective and
continuous on [0, 1]. Let r = ϕm(y) be the inverse of φm on (0, 1). Since we
assume that um is unitary, we have the following condition
(2.10) [ψm(ϕm(ρ))]2ϕ2n−1

m (ρ)ϕ′m(ρ) = ρ2n−1µ(ρ).
Now condition (2.9) implies

(2.11)
√

2n = ψm(r)λ(n,m)φm
m(r),

or
2n = [ψm(ϕm(ρ))]2λ(n,m)2ρ2m.

Combining this with (2.10) we have
2nϕ2n−1

m (ρ)ϕ′m(ρ) = λ2(n,m)ρ2n+2m−1µ(ρ),
or

ϕ2n
m (ρ) = λ2(n,m)

ρ∫
0

r2n+2m−1µ(r) dr

which gives (2.7).
Finally calculating ψm(r) from (2.11) we arrive to (2.8).
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Introduce the unitary operator

U2 : l2(L2((0, 1), µ(r)r2n−1 dr)) → l2(L2((0, 1), r2n−1 dr))≡L2((0, 1), r2n−1 dr)⊗l2,
where

U2 : {cα,β(r)} → {(u|α|+|β|cα,β)(r)}.
Then, the space A2

2,µ = U2(A2
1,µ) coincides with the space of all sequences bα,β for

which

bα,β =
{√

2nbα, for |β| = 0,
0, otherwise

and
∞∑

|α|=0

|bα|2 <∞.

Let l0(r) =
√

2n; we have l0(r) ∈ L2((0, 1), r2n−1 dr) and ‖l0‖L2((0,1),r2n−1 dr)

= 1. Denote by L0 the one-dimensional subspace of L2((0, 1), r2n−1 dr) generated
by l0(r). The orthogonal projection P0 of L2((0, 1), r2n−1 dr) onto L0 has obviously
the form

(2.12) (P0f)(r) = 〈f, l0〉l0 =
√

2n

1∫
0

f(ρ)
√

2nρ2n−1 dρ.

Denote by l+2 the subspace of l2 consisting of all sequences {bα,β}, such that
bα,β = 0 for all β with |β| > 0. And let p+ be the orthogonal projections of l2
onto l+2 , then p+ = χ+(α, β)I, where χ+(α, β) = 1, if |β| = 0 and χ+(α, β) = 0, if
|β| 6= 0.

Observe that A2
2,µ = L0 ⊗ l+2 , and the orthogonal projection B2 of

l2(L2((0, 1), r2n−1 dr)) ≡ L2((0, 1), r2n−1 dr)⊗ l2

onto A2
2,µ has the form B2 = P0 ⊗ p+. Thus we arrive at the following theorem.

Theorem 2.2. The unitary operator U = U2U1 gives an isometric isomor-
phism of the space Lµ

2 (Bn) onto l2(L2((0, 1), r2n−1 dr)) ≡ L2((0, 1), r2n−1 dr)⊗ l2
such that:

(1) the Bergman space A2
µ(Bn) is mapped onto L0 ⊗ l+2 ,

U : A2
µ(Bn) → L0 ⊗ l+2 ,

where L0 is the one-dimensional subspace of L2((0, 1), r2n−1 dr), generated by the
function l0(r) =

√
2n;

(2) the Bergman projection Bµ
Bn is unitary equivalent to

UBµ
BnU

−1 = P0 ⊗ p+,

where P0 is the one-dimensional projection (2.12) of L2((0, 1), r2n−1 dr) onto L0.

Introduce the operator

R0 : l+2 → L2((0, 1), r2n−1 dr)⊗ l2

by the rule
R0 : {cα,β} → l0(r){χ+(α, β)cα,β},

that is, we extend a sequence {cα,β} ∈ l+2 to all of l2 putting zero values on l2	 l+2 ,
and then multiply this sequence by l0(r).
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The mapping R0 is obviously an isometric embedding, and the image of R0

coincides with the space A2
2,µ. The adjoint operator

R∗0 : L2((0, 1), r2n−1 dr)⊗ l2 → l+2
is given by

R∗0 : {cα,β(r)} →
{
χ+(α, β)

1∫
0

cα,β(ρ)
√

2nρ2n−1 dρ
}
,

and
R∗0R0 = I : l+2 → l+2 ,

R0R
∗
0 = B2 : L2((0, 1), r2n−1 dr)⊗ l2 → A2

2,µ = L0 ⊗ l+2 .

Now the operator R = R∗0U maps the space Lµ
2 (Bn) onto l+2 , and its restriction

R|A2
µ(Bn) : A2

µ(Bn) → l+2 is an isometric isomorphism. The adjoint operator is
given by R∗ = U∗R0 : l2 → A2

µ(Bn) ⊂ Lµ
2 (Bn), and its restriction R∗|l+2 is an

isometric isomorphism of l+2 onto A2
µ(Bn).

Remark 2.3. We have
RR∗ = I : l+2 → l+2 and R∗R = Bµ

Bn : Lµ
2 (Bn) → A2

µ(Bn).

Theorem 2.4. The isometric isomorphism R∗ = U∗R0 : l+2 → A2
µ(Bn) is

given by

R∗ : {cα,β} 7→
∞∑

|α|=0

λ(n, |α|)cα,0r
|α|eα,0(ω).

Proof. Let {cα,β} ∈ l+2 , we have

R∗ = U∗1U
∗
2R0 : {cα,β} 7→ U∗1U

∗
2 ({

√
2ncα,β}) = U∗1 ({

√
2nλ(n, |α|)cα,βr

|α|})

=
∞∑

|α|=0

λ(n, |α|)cα,0r
|α|eα,0(ω).

Corollary 2.5. The inverse isomorphism R : A2
µ(Bn) → l+2 is given by

R : ϕ(z) 7→ {cα,β},
where cα,0 = 〈ϕ, ẽµ

α〉 = λ(n, |α|)dn,α

∫
Bn

ϕ(z)zα dν(z), |α| ∈ Z+, and ẽµ
α(z), |α| ∈

Z+, are the elements of the standard ortonormal base in A2
µ(Bn); i.e.,

ẽµ
α(z) = ln,αz

α, with ln,α =
( ∫

Bn

zαzαµ(|z|) dxdy
)− 1

2

= dn,αλ(n, |α|).

For ϕ ∈ L2(S2n−1) let ϕ(ω) =
∞∑

|α|+|β|=0

bα,βeα,β(ω) be its decomposition in

L2(S2n−1). Let also F be the (unitary discrete Fourier) transform
F : ϕ→ {bα,β} ∈ l2, ‖ϕ‖L2(S2n−1) = ‖{bα,β}‖l2 .
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Introduce the operator R̃ : Lµ
2 (Bn) → L2(S2n−1) as follows,

R̃ = F−1R.

Corollary 2.6. We have the following isometric isomorphisms between the
Bergman A2

µ(Bn) and the Hardy H2(Bn) spaces:

R̃|A2
µ(Bn) : A2

µ(Bn) → H2(Bn),

R̃∗|H2(Bn) : H2(Bn) → A2
µ(Bn).

The operators R̃ and R̃∗ provide the following decomposition of the Bergman Bµ
Bn

and the Szegö PS2n−1 projections:

R̃∗R̃ = Bµ
Bn : Lµ

2 (Bn) → A2
µ(Bn),

R̃R̃∗ = PS2n−1 : L2(S2n−1) → H2(Bn),

Another connection between the Bergman and the Hardy spaces, as well as
between the corresponding projections is given by the following

Theorem 2.7. The unitary operator V = (I ⊗ F−1)U2(I ⊗ F) gives an
isometric isomorphism of the spaces Lµ

2 (Bn) and L2(Bn) under which
(i) the Bergman A2

µ(Bn) and the Hardy H2(Bn) spaces are connected by the
formula

V (A2
µ(Bn)) = L0 ⊗H2(Bn),

(ii) the Bergman Bµ
Bn and the Szegö PS2n−1 projections are connected by the

formula
V Bµ

BnV
−1 = P0 ⊗ PS2n−1 ,

where P0 is the one-dimensional projection (2.12) of L2([0, 1), r2n−1 dr) onto one-
dimensional space L0 generated by l0(r) =

√
2n ∈ L2([0, 1), r2n−1 dr).

3. TOEPLITZ OPERATORS WITH RADIAL SYMBOLS

We study here the Toeplitz operators Ta = Bµ
Bna : ϕ ∈ A2

µ(Bn) 7→ Bµ
Bnaϕ ∈

A2
µ(Bn) with radial symbols a = a(r).

Theorem 3.1. Let a = a(r) be a measurable function on the segment [0, 1].
Then the Toeplitz operator Ta acting on A2

µ(Bn) is unitary equivalent to the mul-
tiplication operator γa,µI acting on l+2 . The sequence γa,µ = {γa,µ(|α|)} is given
by

(3.1) γa,µ(m) =
1
2
λ2(n,m)

∫ 1

0

a(
√
r)µ(

√
r)rm+n−1 dr, m ∈ Z+.

Proof. The operator Ta is unitary equivalent to the operator

RTaR
∗ = RBµ

BnaB
µ
BnR

∗ = R(R∗R)a(R∗R)R∗ = (RR∗)RaR∗(RR∗) = RaR∗

= R∗0U2U1a(r)U−1
1 U−1

2 R0 = R∗0U2{a(r)}U−1
2 R0

= R∗0{χ+(α, β)a(φ|α|(r))}R0.
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Further, let {cα,β} be a sequence from l+2 . Then

R∗0{χ+(α, β)a(φ|α|(r))}R0{cα,β} =
{ 1∫

0

a(φ|α|(r))2ncα,βr
2n−1 dr

}
= {γa,µ(|α|)cα,β}.

Here we use that
1∫

0

a(φm(r))2nr2n−1 dr =

1∫
0

a(y) dϕ2n
m (y) = λ2(n,m)

1∫
0

a(y)y2m+2n−1µ(y) dy.

Corollary 3.2. (i) The Toeplitz operator Ta with measurable radial symbol
a = a(r) is bounded on A2

µ(Bn) if and only if sup
m∈Z+

|γa,µ(m)| <∞. Moreover,

(3.2) ‖Ta‖ = sup
m∈Z+

|γa,µ(m)|.

(ii) The Toeplitz operator Ta is compact if and only if lim
m→∞

γa,µ(m) = 0. The
spectrum of the bounded Toeplitz operator Ta is given by

spTa = {γa,µ(m) : m ∈ Z+},

and its essential spectrum ess-spTa coincides with the set of all limit points of the
sequence {γa,µ(m)}m∈Z+ .

Recall now the essential ingredients of the Berezin’s theory (see, for example,
[2], [3] and [4]). Let H be a Hilbert space, and {ϕg}g∈G be a subset of elements of
H parameterized by elements g of some set G with a measure dµ. Then {ϕg}g∈G

is a system of coherent states if for all ϕ ∈ H

‖ϕ‖2 = (ϕ,ϕ) =
∫
G

|(ϕ,ϕg)|2 dµ,

or, equivalently, if for all ϕ1, ϕ2 ∈ H

(3.3) (ϕ1, ϕ2) =
∫
G

(ϕ1, ϕg)(ϕ2, ϕg) dµ.

Define an isomorphic inclusion V : H → L2(G) by the rule

V : ϕ ∈ H 7→ f = f(g) = (ϕ,ϕg) ∈ L2(G).

By (3.3) we have (ϕ1, ϕ2) = 〈f1, f2〉, where ( · , · ) and 〈 · , · 〉 are the scalar products
on H and L2(G), respectively, and fh(g) = fg(h).

Let H2(G) = V (H) ⊂ L2(G). A function f ∈ L2(G) is an element of
H2(G) if and only if, for all h ∈ G, 〈f, fh〉 = f(h). The operator (Pf)(g) =∫
G

(ϕt, ϕg)f(t) dµ(t) is the orthogonal projection of L2(G) onto H2(G).
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If fg(t) = V ϕg = (ϕg, ϕt), g ∈ G, is the image of the system of coherent
states {ϕg}g∈G in H2(G), then

(Pf)(g) = 〈f, fg〉 =
∫
G

f(t)ft(g) dµ(t).

The function a(g), g ∈ G, is called the anti–Wick (or contravariant) symbol
of an operator T : H → H if

V TV −1|H2(G) = Pa(g)P = Pa(g)I|H2(G) : H2(G) → H2(G),

or if the operator V TV −1|H2(G) is the Toeplitz operator

Ta(g) = Pa(g)I|H2(G) : H2(G) → H2(G)

with the symbol a(g).
Given an operator T : H → H, introduce the (Wick) function

(3.4) ã(g, h) =
(Tϕh, ϕg)
(ϕh, ϕg)

, g, h ∈ G.

If the operator T has an anti-Wick symbol, that is V TV −1 = Ta(g) for some
function a = a(g), then

ã(g, h) =
〈Tafh, fg〉
〈fh, fg〉

, g, h ∈ G,

and

(3.5)

(Taf)(g) =
∫
G

a(t)f(t)ft(g) dµ(t) =
∫
G

a(t)ft(g) dµ(t)
∫
G

f(h)fh(t) dµ(h)

=
∫
G

f(h) dµ(h)
∫
G

a(t)ft(g)fh(t) dµ(t)

=
∫
G

f(h) dµ(h)
fh(g)
〈fh, fg〉

∫
G

a(t)fh(t)fg(t) dµ(t)

=
∫
G

ã(g, h)f(h)fh(g) dµ(h).

Interchanging the integrals above, we understand them in a weak sense.
The restriction of the function ã(g, h) onto the diagonal

ã(g) = ã(g, g) =
(Tϕg, ϕg)
(ϕg, ϕg)

, g ∈ G,

is called the Wick (or covariant, or Berezin) symbol of the operator T : H → H,
and the formula (3.5) gives the representation of the operator Ta in terms of the
Wick symbol.
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The Wick and anti-Wick symbols of an operator T : H → H are connected
by the Berezin transform

ã(g) =
∫
G

a(t)
(ϕg, ϕt)(ϕt, ϕg)

(ϕg, ϕg)
dµ(t) =

∫
G

a(t)|fg(t)|2 dµ(t)∫
G

|fg(t)|2 dµ(t)
.

Recall that the Bergman kernel in the space A2
µ(Bn) has the form

K(z, w) =
∞∑

|α|=0

ẽµ
α(z)ẽµ

α(w).

The reproducing property

(3.6) f(z)=(Bµ
Bnf)(z)=

∫
Bn

f(w)K(z, w)µ(|w|) dν(w)=〈f,K(z, w)〉=〈f,K(w, z)〉

shows that the system of functions kw(z) = K(z, w), w ∈ Bn, forms a system of
coherent states in the space A2

µ(Bn). That is, in our context, we have G = Bn,
dµ = µ(|z|) dxdy, H = H2(G) = A2

µ(Bn), L2(G) = Lµ
2 (Bn), ϕg = fg = kg, where

g = w ∈ Bn.
Now the operator T having the anti-Wick symbol a is nothing but the

Toeplitz operator Ta with symbol a.

Theorem 3.3. Let Ta be the Toeplitz operator with a radial symbol a = a(r).
Then the corresponding Wick function (3.4) has the form

(3.7) ã(z, w) = K−1(z, w)
∞∑

|α|=0

ẽµ
α(z)ẽµ

α(w)γa,µ(|α|).

Proof. Calculate

ã(z, w) =
〈akw, kz〉
〈kw, kz〉

= k−1
w (z)〈akw, kz〉

= K−1(z, w)
∞∑

|α|=0

∞∑
|β|=0

ẽµ
α(w)ẽµ

β(z)〈aẽµ
α, ẽ

µ
β〉

= K−1(z, w)
∞∑

|α|=0

ẽµ
α(z)ẽµ

α(w)〈aẽµ
α, ẽ

µ
α〉

= K−1(z, w)
∞∑

|α|=0

ẽµ
α(z)ẽµ

α(w)γa(|α|).

The Wick function (3.7) depends in fact on z and w, thus we will write
ã(z, w) in what follows.
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Denote by Lµ
α the one-dimensional subspace of A2

µ(Bn) generated by the base
element ẽµ

α(z), |α| ∈ Z+. Then the one-dimensional projection Pµ
α of A2

µ(Bn) onto
Lµ

α has obviously the form

Pµ
α f = 〈f, ẽµ

α〉ẽµ
α = ẽµ

α(z)
∫
Bn

f(w)ẽµ
α(w)µ(|w|) dν(w).

Corollary 3.4. Let Ta be a bounded Toeplitz operator having radial symbol
a(r). Then the writing of the operator Ta in the form of operator with the Wick
symbol (3.5) gives the spectral decomposition of the operator Ta,

Ta =
∞∑

|α|=0

γa,µ(|α|)Pµ
α .

The eigenvalues γa,µ(|α|) depend only on |α|. Collecting the terms with the
same |α| and using the formula

(z · w)m =
∑
|α|=m

m!
α!
zαwα

we obtain

ã(z, w) = K−1(z, w)
∞∑

m=0

l(n,m) γa,µ(m)(z · w)m,

where l(n,m) = |S2n−1|−1 (m+n−1)!
m!(n−1)! λ

2(n,m), and

Ta =
∞∑

m=0

γa,µ(m)Pµ
(m),

where (Pµ
(m)f)(z) = l(n,m)

∫
Bn

f(w)(z · w)mµ(|w|) dν(w), is the orthogonal pro-

jection of A2
µ(Bn) onto the subspace generated by all elements ẽµ

α with |α| = m,
m ∈ Z+.

Ccorollary 3.5. Let Ta be a bounded Toeplitz operator with radial symbol
a(r). Then the Wick symbol of the operator Ta is radial as well, and is given by
the formula

ã(r) = K−1(z, z)
∞∑

m=0

l(n,m)γa,µ(m)r2m,

where K(z, z) =
∞∑

m=0
l(n,m)r2m.

In terms of Wick symbols the composition formula for Toeplitz operators is
quite transparent:
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Corollary 3.6. Let Ta, Tb be the Toeplitz operators with the Wick symbols

ã(z, w) = K−1(z, w)
∞∑

m=0

l(n,m)γa,µ(m)(z · w)m,

b̃(z, w) = K−1(z, w)
∞∑

m=0

l(n,m)γb,µ(m)(z · w)m,

respectively. Then the Wick symbol c̃(z, w) of the composition T = TaTb is given
by

c̃(z, w) = K−1(z, w)
∞∑

m=0

l(n,m)γa,µ(m)γb,µ(m)(z · w)m.

The above corollary gives rise to a natural question: when is the product of
two Toeplitz operators a Toeplitz operator as well. In the rest of this section we
give a particular answer to this question considering, for the sake of simplicity, the
case of a weightless space, i.e., the classical Bergman space A2(Bn) ≡ A2

1(Bn) and
the Toeplitz operators Ta acting on it.

As above, to each Toeplitz operator with radial (perhaps unbounded, but in
any case densely defined) symbol a(r) ∈ L1((0, 1), r2n−1 dr) there is assigned the
operator (on l+2 ) of multiplication by the sequence

γa(m) = (m+ n)

1∫
0

a(
√
r)rm+n−1 dr = (m+ n)

∞∫
0

a(
√

e−t)e−nte−mt dt

for m = 0, 1 . . . , where obviously a(
√

e−t)e−nt ∈ L1(R+). Now given two Toeplitz
operators Ta1 , Ta2 , we will find the sufficient conditions under which there exists
a radial function a(r) such that Ta = Ta1Ta2 , or, equivalently

(3.8) γa(m) = γa1(m)γa2(m), m = 0, 1, . . . .

Let

A(t) =
{
a(
√

e−t)e−nt t > 0,
0, t 6 0.

The formal construction (inverse Fourier-Laplace transform)

(3.9) (F−1A)(z) ≡ 1√
2π

∫
R

A(t)eizt dt, z ∈ Π ∪ R,

defines a holomorphic function in the upper half-plane Π (⊂ C) which coincides on
the real axis with the inverse Fourier transform (F−1A)(ξ) of the function A(t).
Thus, in the above notation

(3.10) γa(m) = (m+ n)(F−1A)(im)

Let Ak(t) correspond to ak(
√
r) as above. The convolution

A0(t) =
∫
R

A1(t− s)A2(s) ds ≡
t∫

0

A1(t− s)A2(s) ds
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is supported on the positive real half-line, belongs to L1(R+), and its inverse

Fourier transform is given by

(F−1A0)(z) =
√

2π(F−1A1)(z) (F−1A2)(z), z ∈ Π ∪ R,

where the expressions (F−1A0)(z), (F−1Ak)(z), for z ∈ Π, are understood as

integrals (3.9). By (3.10) the equality (3.8) is equivalent to

(3.11) (F−1A)(im) =
√

2π(m+ n)(F−1A1)(im)(F−1A2)(im), m = 0, 1, . . . .

Let the function

(3.12)
√

2π(n− iξ)(F−1A1)(ξ)(F−1A2)(ξ), ξ ∈ R,

belong to the Wiener ring W0 of the (inverse) Fourier transforms of sumable func-

tions (see [10] for numerous sufficient conditions for a function from C0(R) to be

in W0). Then there exists a function A(t) ∈ L1(R) whose Fourier transform coin-

cides with (3.12). Moreover, we claim that the function A(t) is supported on R+.

It follows from the fact that A(t) (as a regular functional on C∞0 (R)) coincides
in the distributional sense with the functional

√
2π(nI + d

dx )A0(x), which has the
(distributional) support on R+. Thus, for that function A(t) we have

F−1A(z) = (n− iz)(F−1A1)(z)(F−1A2)(z), z ∈ Π ∪ R.

In particular, the equality (3.11) is valid for our A(t). Now if we set

a(
√
r) = A(ln r−1)r−n

then obviously a(
√
r) ∈ L1((0, 1), rn−1 dr). Finally, the function a(r) defines the

Toeplitz operator Ta for which

(3.13) Ta = Ta1Ta2 .

We summarize the above in the following theorem.

Theorem 3.7. Let Ta1 , Ta2 be Toeplitz operators, not necessarily bounded,
acting on the Bergman space A2(Bn). Let further A1(t) = a1(

√
e−t)e−nt, A2(t) =

a2(
√

e−t)e−nt as above. If the function (3.12) belongs to W0, then there exists a

Toeplitz operator Ta with the radial symbol a(r) such that the equality (3.13) is

satisfied.
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4. WEIGHTLESS CASE

Here we continue consideration of the Toeplitz operators

Ta = BBna : ϕ ∈ A2(Bn) 7→ BBnaϕ ∈ A2(Bn)

with radial symbols a = a(r), acting on the classical Bergman space A2(Bn); i.e.,
now µ(r) ≡ 1. It turns out that this case is quite similar to the one-dimensional
case studied in [6]. Therefore in this section we simply collect the corresponding
results, omitting the proofs.

Remark 4.1. The sequence (3.1) for the weightless case is given by

(4.1) γa(m) =
∫ 1

0

a
(
r

1
2(m+n)

)
dr = (m+ n)

1∫
0

a(
√
r)rm+n−1 dr, m = 0, 1, . . . ,

and Theorem 3.1 has an obvious reformulation for this particular case.

Example 4.2. The general form of a radial function which is harmonic in
Bn \ {0} is as follows,

h(r) = c1r
2−2n + c2, c1, c2 ∈ C.

We have

γh(m) =

1∫
0

h
(
r

1
2(m+n)

)
dr =

m+ n

m+ 1
c1 + c2,

that is, the Toeplitz operator Th is bounded on A2(Bn), and its discrete spectrum
is given by

spTh =
{
m+ n

m+ 1
c1 + c2

}
m∈Z+

.

The Toeplitz operator Th is compact if and only if c2 = −c1.
From now on we will assume that a(r) ∈ L1((0, 1), r2n−1 dr). We will use

the auxiliary function b(r) = a(
√
r). Consequently, we have the condition b(r) ∈

L1((0, 1), rn−1 dr). Following [6] introduce for b ∈ L1((0, 1), rn−1 dr) the function

B(s) =

1∫
s

b(u)un−1 du.

Then, integrating by parts we have

γa(m) = m(m+ n)

1∫
0

B(s)sm−1 ds.

Theorem 4.3. ([6]) If the function B(s) when s→ 1 has the form

(4.2) B(s) = O(1− s)
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then
sup

m∈Z+

|γa(m)| <∞.

If

(4.3) B(s) = o(1− s)

then
lim

m→∞
γa(m) = 0.

Theorem 4.4. ([6]) Let b ∈ L1((0, 1), rn−1 dr) and b(u) > 0 almost every-
where. Then the conditions (4.1), (4.2) are also necessary for γa ∈ l∞, γa ∈ c0
respectively.

Example 4.5. Let a(r) = r2−2n(1−r2)−β sin(1−r2)−α. Then due to result
of [6],

(4.4) B(v) =
cos(1− v)−α

α
(1− v)α−β+1 + O((1− v)α−β−2).

Hence the Toeplitz operator Ta with the above symbol a is bounded on A2(Bn) for
α > β, and moreover is compact for α > β. These properties depend only on the
correlation between α and β and thus the Toeplitz operator can be bounded and
even compact for both bounded and unbounded (near the boundary S2n−1 = ∂Bn)
symbols of the above type.

Example 4.6. Consider the following family of radial nonnegative symbols
aα(r) = r2−2n(1− r2)α−1, α > 0. We have

Bα(s) =
(1− s)α

α
.

By Theorem 4.3 the operator Taα
is bounded if and only if α > 1, and compact if

and only if α > 1. That is, in this scale unbounded symbols generate unbounded
Toeplitz operators. Moreover, as it will follow from Corollary 4.7, to generate
bounded or compact Toeplitz operator its unbounded symbol must necessarily have
sufficiently sophisticated oscillating behaviour near the unit sphere S2n−1 = ∂Bn.

For a nonnegative symbol a(r) introduce the function

ma(u) = inf
r∈[u,1)

a(r),

which is obviously always monotone.

Corollary 4.7. ([6]) If lim
u→1

ma(u) = +∞ (which is equivalent to lim
r→1

a(r) =

+∞), then the Toeplitz operator Ta is unbounded.

Theorem 4.8. ([6]) Let b(u) ∈ L1((0, 1), u2n−1 du). Then

(4.5) lim
m→∞

(γa(m+ 1)− γa(m)) = 0.

From this theorem it is follows that the set of different limit points of the
sequence γa(m) forms a closed connected subset of C. In particular, the sequence
γa(m) can not have a finite or countable set of limit points.
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Corollary 4.9. The essential spectrum of a bounded Toeplitz operator with
a radial symbol a(r) ∈ L1((0, 1), r2n−1 dr) is always connected.

If the l∞ sequence γa(m) does not have a limit, then the essential spectrum
of the corresponding Toeplitz operator can be quite rich. The following examples
are based on the results of [6].

Example 4.10. (Unit circle and unit interval)

(i) Let ap(r) = αpr
2−2n(ln r−2)ip, αp =

{ 1∫
0

(ln 1
s )ip ds

}−1

, p > 0. Then

γap(m) = exp{−ip ln(m+ 1)} and

spTap
= ess-spTap

= S1.

(ii) If cp = r2−2nImαp(ln r−2)ip, then γcp
(m) = − sin(p ln(m+ 1)) and

spTcp
= ess-spTcp

= [−1, 1].

Example 4.11. (Square) Let a(r) = c1(r) + ic2(r), then

γa(m) = −(sin ln(m+1)+i sin
√

2 ln(m+1)) and spTa = ess-spTa = [0, 1]×[0, 1].

5. POWER WEIGHT CASE

Let us consider a partial, but most important case, when the weight is given by

µ(z) = (1− |z|2)λ−1, λ > 0.

We denote A2
(λ)(B

n) = A2
µ(Bn), γa,(λ)(m) = γa,µ(m) for µ(z) = (1− |z|2)λ−1. We

obviously have

γa,(λ)(m) = B−1(m+ n, λ)

1∫
0

a(
√
r)(1− r)λ−1rm+n+1 dr,

where B(z, w) is the Beta function.
As we will see the Toeplitz operator with positive symbol a(|z|), being

bounded on a certain A2
(λ0)

(Bn) is automatically bounded on all A2
(λ)(B

n), λ > 0.

Theorem 5.1. Let there exists a constant M > 0 such that Re a(|z|)+M > 0
or Re a(|z|)−M 6 0 and analogously for Im a(|z|). Then the Toeplitz operator Ta

is bounded or unbounded on each A2
(λ)(B

n), λ > 0 simultaneously.

Proof. Obviously, we can assume that a(|z|) > 0. The general case will follow
by usual arguments. Let β(z, w) denotes the distance in the Bergman metric
between the point z and w of the unit ball, and let E(z, l) = {w ∈ Bn : β(z, w) < l}
be the open Bergman metric ball centered at z with radius l. Denote by |E(z, l)|
the measure of E(z, l). By the results of [13] the following quantities are equivalent
for any fixed l > 0 :

(5.1) Q1
l (a) ≡ sup

z∈Bn

|E(z, l)|−n−λ

∫
E(z,l)

a(|w|)(1− |w|2)λ−1 dν(w)
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and

(5.2) Q2(a) ≡ sup
f∈A2

(λ)(B
n)

‖f‖−2
A2

(λ)(B
n)

∫
Bn

a(|z|)|f(z)|2(1− |z|2)λ−1 dν(z).

Moreover, analysis of the corresponding results in [13] shows that there exist con-
stants C1, C2 depending only on l (not on a(r)) such that C1Q

2(a) 6 Q1
l (a) 6

C2Q
2(a). The quantity (5.2) is equal to

(5.3) sup
m∈N∪{0}

|γa,(λ)(m)| ≡ sup
|α|∈Nn∪{0}

∫
Bn

a(|z|)|ẽ(λ)
α,0(z)|2(1− |z|2)λ−1 dν(z),

because γa,(λ)(|α|) = 〈Taẽ
(λ)
α,0, ẽ

(λ)
α,0〉(λ) = 〈a(|z|)ẽ(λ)

α,0, ẽ
(λ)
α,0〉(λ), where the scalar prod-

uct is taken in the space A2
(λ)(B

n), and ẽ
(λ)
α,0 are the elements of the standard

ortonormal basis for A2
(λ)(B

n) :

ẽ
(λ)
α,0(z) = |Bn|− 1

2

√
Γ(|α|+ n+ λ)

Γ(n+ λ)α!
zα.

On the other hand, also by [13] for each l > 0 there exists a constant C = C(l)
such that

(5.4) C−1 6 |E(z, l)|(1− |w|2) 6 C

for all z ∈ Bn and w ∈ E(z, l). That is why, the expression under supremum
sign in (5.1) is comparable with |E(z, l)|−n−1

∫
E(z,l)

a(|w|) dν(w) and hence (5.1) is

comparable to

(5.5) sup
z∈Bn

|E(z, l)|−n−1

∫
E(z,l)

a(|w|) dν(w),

which does not depend on λ > 0.

Corollary 5.2. If the Toeplitz operator Ta with symbol a(|z|) as in the
previous theorem is bounded on some A2

(λ0)
(Bn), then

1∫
0

r2n+1a(r)(1− r2)λ−1 dr <∞

for all λ > 0.

In particular, this says that a positive symbol of a bounded Toeplitz operator
(being unbounded) can not have a “bad” (say power-like growth) behaviour near
the point r = 1.

Analogously one can show that compactness of a positive Toeplitz operator
does not depend on λ as well.
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Theorem 5.3. Let a(|z|) be as in Theorem 5.1. The Toeplitz operator Ta is
compact or is not compact on each A2

(λ)(B
n) simultaneously.

The results of Theorems 5.1 and 5.3 coincide with the corresponding result of
[14] for the unit disk. As we will see now these results fail to be true for symbols
unbounded from the both sides. Thus admitting such symbols is an important
qualitative step.

Example 5.4. There exists a symbol a = a(|z|) such that
(i) The Toeplitz operator Ta is bounded on A2

(1)(B
n) ≡ A2(Bn), but un-

bounded on A2
(2)(B

n).
(ii) The operator Ta is compact A2

(1)(B
n), and bounded but not compact on

A2
(2)(B

n).
(iii) The operator Ta is compact on A2

(1)(B
n), but unbounded on A2

(2)(B
n).

To construct such a symbol we will use the characterization given in the
proof of Theorem 3.2. We have,

γa,(1)(m) ≡ γa(m) = (m+ n)

1∫
0

a(
√
r)rm+n−1 dr,(5.6)

γa,(2)(m) = (m+ n)(m+ n+ 1)

1∫
0

a(
√
r)(1− r)rm+n−1 dr.(5.7)

Thus,

(5.8) γa,(2)(m) = (m+ n+ 1)γa,(1)(m)− (m+ n)γa,(1)(m+ 1)

and boundedness, compactness of Ta on A2
(2)(B

n) is uniquely determined by the
behaviour of γa,(1)(m) when m → ∞. Let us show that the following situations
can be realized

– sup
m∈N∪{0}

|γa,1(m)| <∞, but γa,(2)(m) →∞ when m→∞.

– γa,1(m) → 0 when m → ∞ and sup
m∈N∪{0}

|γa,(2)(m)| < ∞, but γa,(2)(m)

does not tend to 0 when m→∞.
– γa,1(m) → 0 when m→∞, but γa,(2)(m) →∞ when m→∞.
Obviously, these three situations are exactly equivalent to the previous ones.

Let us examine γa,1(m). Changing the variable we get

γa,1(m)=(m+ n)

∞∫
0

a(
√

e−y)e−(m+n)y dy=−i(i(m+ n))

∞∫
0

a(
√

e−y)ei(i(m+n))y dy

and we can formally consider the above expression (up to the constant −i) as
the Fourier transform, multiplied by the variable and then calculated at the point
i(m+ n), of the function supported on the positive half-axis. It will be correct if
we assume that b(y) ≡ a(

√
e−y)e−ny belongs to L2(0,∞), which is the same that

a(r) ∈ L2((0, 1), r4n−1 dr).
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Denote

(5.9) F (z) = (n− iz)

∞∫
0

b(y)eizy dy, f(z) =
F (z)

(n− iz)
.

By the Paley-Wiener theorem ([5]) there exists a one-to-one correspondence be-
tween the square integrable functions on the real axis supported on the positive
half-axis and the functions from the Hardy space H2(Π) over the upper complex
half-plane Π, i.e., with the functions ϕ which are analytic in Π and such that
gy(x) = |ϕ(x + iy)| is a square integrable function on the real axis (x ∈ R) for
each fixed y with uniformly bounded L2 norms. The correspondence is given by
the (inverse) Fourier transform and is

ϕ(z) =

∞∫
0

ψ(t)eizt dt, z ∈ Π,

where ϕ ∈ H2(Π) if and only if ψ ∈ L2(R) and ψ(t) = 0 for almost everywhere
t < 0.

Now, let us return to (5.8). Having fixed a function f(z) ∈ H2(Π), the
corresponding function b(y) will belong to L2(0,∞) and the function a(r) =
r−2nb(2 ln 1/r) will be from L2((0, 1), r4n−1 dr) and hence we can use it to de-
fine the corresponding Toeplitz operator Ta. Moreover, if γa,(λ) is the sequence
which corresponds to that Toeplitz operator acting on A2

(λ)(B
n), then

γa,(1)(m) = F (im) = (m+ n)f(im),

γa,(2)(m) = (m+ n)(m+ n+ 1)[f(im)− f(i(m+ 1))].

Thus we have to construct functions f ∈ H2(Π) which realize all the situations
mentioned above.

Let us introduce the function of one complex variable

(5.10) f(z) = exp
{

i
5π

ln2(z + ni)
}

ln−ν(z + ni), ν > 0.

Here we chouse the single-valued branch of the multi-valued analytic functions,
being analytic function in 3π/2 6 arg(z+ ni) < 7π/2. This function is analytic in
the upper half-plane and, moreover, belongs to H2(Π) since for y > 0,

|f(x+ iy)| 6 C(x2 + (1 + y)2)−
1
5π arg(x+i(n+y)), arg(x+ i(n+ y)) ∈ [2π, 3π].

Examine the function f(z) at the points im. We have

f(im) = exp
{
− 5πi

4

}
exp

{
i

5π
ln2(m+ n)

}
[ln(m+ n) + i 5π

2 ]−ν

m+ n
.

The first conclusion is:

(m+ n)f(im) → 0, m→∞ for all ν > 0,

and
(m+ n)|f(im)| 6 C <∞ for ν = 0.



Toeplitz operators on the unit ball in Cn with radial symbols 345

Consider next

(m+ n)(m+ n+ 1)[f(im)− f(i(m+ 1))]e
5πi
4

=
exp{ i

5π ln2(m+ n)}
[ln(m+ n) + i 5π

2 ]ν
+ (m+ n) exp

{
i

5π
ln2(m+ n+ 1)

}
·
([

ln(m+ n) + i
5π
2

]−ν

−
[

ln(m+ n+ 1) + i
5π
2

]−ν)
+ (m+ n)

exp{ i
5π ln2(m+ n)} − exp{ i

5π ln2(m+ n+ 1)}[
ln(m+ n) + i 5π

2

]ν

≡ K(m) + L(m) +M(m).

Obviously, K(m), L(m) tend to 0 when ν > 0, and are bounded when ν = 0. Now,
M(k) is equivalent, when m→∞, to

(5.11) M(m) ≈ − i
5π

exp{ i
5π ln2(m+ n)} ln(m+ n)
[ln(m+ n) + i 5π

2 ]ν
.

Thus, the sequence M(m) is unbounded for 0 6 ν < 1, is bounded for ν > 1 and
tends to 0 (when k →∞) if and only if ν > 1.

Finally, the cases ν = 0, ν = 1, and 0 < ν < 1 realize all three situations.

Remark 5.5. The results of this section can be obtained in the same way for

another (comparable) type of a weight, i.e., for the weight µ(|z|) =
(

ln 1/|z|2
)λ−1

,
λ > 0. In this case

γa,(λ)(m) = 2(m+ n)λΓ−1(λ)

1∫
0

a(
√
r) lnλ−1 1

r
rm+n−1 dr,

where Γ(z) is the Gamma function.
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