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Abstract. In this paper we characterize when the product of two block
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1. INTRODUCTION

This work is motivated by two recent papers [9] and [7]. In [9], T. Yoshino answers
the question of when the products of two Hankel operators (on the Hardy space)
is also a Hankel operator. In [7], R.A. Mart́ınez-Avendaño characterizes when a
Toeplitz operator and a Hankel operator commute.

In this paper we obtain generalizations of these two results for block Hankel
and Toeplitz operators on vector-valued Hardy space. We also characterize when
the product of a Toeplitz and Hankel operator is a Hankel. These results are
motivated by the classical results in [2] where Brown and Halmos characterized
when the product of two Toeplitz operators (on the Hardy space) is also a Toeplitz
operator and when two Toeplitz operators commute.

The aim is to describe the algebraic properties of the Toeplitz and Hankel
operators via the properties of their symbols. Our basic idea is to reduce operator
equations involving Toeplitz and Hankel operators on the Hardy space to some
operator equations on the subspaces of constant functions. These equations on
the subspaces can be readily reduced to the relations on the symbols of these
operators. This idea has been used in the author’s paper [5] to show that if the
product of six Toeplitz operators is zero, then one of them has to be zero. This
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idea provides an unified framework for these algebraic problems of Toeplitz and
Hankel operators.

We give an outline of the paper. In Section 2 we answer some algebraic
questions for Toeplitz and Hankel operators in the setting of an abstract Hilbert
space. This abstract approach does not use the symbols of Toeplitz and Hankel
operators, which demonstrates its generality and simplicity. In Section 3 we apply
the results of Section 2 to answer the question of when a block Hankel operator
and a block Toeplitz operator on vector-valued Hardy space commute. We also
characterize when the product of a block Hankel and a block Toeplitz operator is
a Hankel operator. In Section 4, by using the results of Section 2 we show that
if the product of two block Hankel operators on the Hardy space is also a Hankel
operator, then their symbols have to be simple rational functions.

In Section 5, we note that if the product of three or more Hankel operators is
a Hankel operator, their symbols can be quite general, however if all the products
of three Hankel operators (by varying their positions in the products) are Hankel
operators, then their symbols are quite special and related to inner functions. This
result is motivated by recent work of Xia and Zheng ([8]) and the author ([5]) where
the questions when all the products of three Hankel operators are zero or of finite
rank were discussed. We end this section by stating a conjecture concerning when
all the products of a finite number of Hankel operators are Hankel operators.

2. HANKEL AND TOEPLITZ OPERATORS ON A HILBERT SPACE

Let K be a complex separable Hilbert space. Let S be a pure isometry on K (i.e.,
S∗S = I and S∗n → 0 strongly as n→∞). Set

∆ = I − SS∗ and K0 = ∆K.

Note that ∆ = PK0 where PK0 is the projection onto K0. The subspace K0 is
called the wandering subspace of S and the whole space K can be decompose as

K = K0 ⊕ SK0 ⊕ S2K0 ⊕ · · · .

See page 125 in [3] for more details. A linear bounded operator T on K is a
Toeplitz operator if T satisfies the operator equation S∗TS = T and an operator
H is said to be a Hankel operator if HS = S∗H.

In this section we discuss several algebraic problems for Hankel and Toeplitz
operators on K. The basic idea is to reduce operator equations involving Toeplitz
and Hankel operators on the space K to operator equations on the subspace K0.
Those operators equations on K0 can be readily reduced to relations on the sym-
bols of these operators as will be done in the subsequent sections. The abstract
approach of this section does not use the symbols of Toeplitz and Hankel operators,
which demonstrates its generality and simplicity.
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Lemma 2.1. If H1 and H2 are two Hankel operators and T1 and T2 are two
Toeplitz operators on K, then

S∗(T1H1 −H2T2)− (T1H1 −H2T2)S = S∗T1∆H1 +H2∆T2S.

Proof. Note that

S∗T1H1 = S∗T1(SS∗ + ∆)H1

= S∗T1SS
∗H1 + S∗T1∆H1

= T1H1S + S∗T1∆H1

= (T1H1 −H2T2)S +H2T2S + S∗T1∆H1

= (T1H1 −H2T2)S +H2(SS∗ + ∆)T2S + S∗T1∆H1

= (T1H1 −H2T2)S +H2SS
∗T2S +H2∆T2S + S∗T1∆H1

= (T1H1 −H2T2)S + S∗H2T2 +H2∆T2S + S∗T1∆H1.

The lemma follows from the above equations.

The following theorem essentially reduces the operator equation TH = HT

on the whole space K to some operator equations on the subspace K0.

Theorem 2.2. Let H be a Hankel operator and T be a Toeplitz operator on
K. Then TH = HT if and only if

H∆TS + S∗T∆H = 0(2.1)

(TH −HT )∆ = 0.(2.2)

Proof. The necessity is clear from the above lemma. (With H = H1 = H2

and T = T1 = T2).
Now we prove the sufficiency. Let D = TH −HT . By assumption (2.1) and

the above lemma

S∗D = DS.

Therefore

ker(D) ⊃ S ker(S∗D) ⊃ S ker(D).

Thus ker(D) is invariant for S. By assumption (2.2), ker(D) ⊃ K0. Therefore, by
the invariance of ker(D) for S,

ker(D) ⊃ SK0.

By iteration, ker(D) ⊃ SnK0 for n > 0. We conclude that D = 0. That is,
TH = HT.
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Theorem 2.3. Let H1,H2 be two Hankel operators. Then H1H2 is also a
Hankel operator if and only if

H1∆H2S − S∗H1∆H = 0(2.3)

(H1H2S − S∗H1H2)∆ = 0(2.4)

(H1H2S − S∗H1H2)∗∆ = 0.(2.5)

Proof. Note that

H1H2S = H1SS
∗H2S +H1∆H2S = S∗(H1H2S)S +H1∆H2S

S∗H1H2 = S∗H1SS
∗H2 + S∗H1∆H2 = S∗(S∗H1H2)S + S∗H1∆H2.

Let D = H1H2S − S∗H1H2. Subtracting the above two equations gives

D = S∗DS +H1∆H2S − S∗H1∆H2.

Assume H1H2 is a Hankel operator. Thus D = 0. The necessity of condition
(2.3) follows from the above equation.

Assume now conditions (2.3), (2.4) and (2.5) hold. The above equation
implies that D = S∗DS. By assumption (2.4), ker(D) ⊃ K0, thus

ker(S∗DS) = ker(D) ⊃ K0.

Therefore
DSK0 ⊂ ker(S∗) = K0.

On the other hand, the assumption (2.5) ker(D∗) ⊃ K0 implies that

DSK0 ⊂ range(D) ⊂ [ker(D∗)]⊥ ⊂ K⊥0 .

Thus ker(D) ⊃ SK0. Repeating the above argument with the fact that ker(D) ⊃
SK0, we see that ker(D) ⊃ S2K0. By iteration, ker(D) ⊃ SnK0 for n > 0. That
is, D = 0. Therefore H1H2 is a Hankel operator.

Proposition 2.4. Let H1,H2 and H3 be three Hankel operators. Then
H1H2H3 is also a Hankel operator if and only if

S∗H1H2∆H3 = H1∆H2H3S.

Proof. Note that

H1H2H3S = H1SS
∗H2H3S +H1∆H2H3S

= S∗H1H2SS
∗H3 +H1∆H2H3S

= S∗H1H2(I −∆)H3 +H1∆H2H3S

= S∗H1H2H3 − S∗H1H2∆H3 +H1∆H2H3S.

The lemma follows immediately from the above identity.
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Theorem 2.5. Let H1,H2,H3 and H4 be four Hankel operators on K. Then
H1H2 = H3H4 if and only if

H1∆H2 −H3∆H4 = 0

(H1H2 −H3H4)∆ = 0

(H1H2 −H3H4)∗∆ = 0.

Proof. Note that

H1H2 = H1SS
∗H2 +H1∆H2 = S∗(H1H2)S +H1∆H2

H3H4 = H3SS
∗H4 +H3∆H4 = S∗(H3H4)S +H3∆H4.

Let D = H1H2 −H3H4. Subtracting the above two equations gives

D = S∗DS +H1∆H2 −H3∆H4.

The rest of the proof is similar to that of Theorem 2.3.

Proposition 2.6. Let H be a Hankel operator and T be a Toeplitz operator
on K. Then HT is a Hankel operator if and only if

H∆TS = 0.

Proof. Note that

HTS = H(SS∗ + ∆)TS = HSS∗TS +H∆TS = S∗HT +H∆TS.

The result follows immediately from the above identity.

3. COMMUTING TOEPLITZ AND HANKEL OPERATORS

Let L2 be the space of Lebesgue square integrable functions on the unit circle
and L∞ be the space of essentially bounded functions on the unit circle. The
Hardy space H2(D) is the closed linear span of analytic polynomials in L2. In
this section we apply Theorem 2.2 to Toeplitz and Hankel operators on the vector
valued Hardy space H2

n(D) which is the direct sum of n copies of (scalar) Hardy
space H2(D). Let L∞n×n be the space of all n × n matrices with entries in L∞.
Let P be the projection from L2

n(D) onto H2
n(D). The Toeplitz operator TΦ with

symbol Φ ∈ L∞n×n is defined by

TΦh = P (Φh), h ∈ H2
n(D)

and the Hankel operator HΨ with symbol Ψ ∈ L∞n×n is defined by

HΨh = P [zΨ(z)h(z)], h ∈ H2
n(D).

It is clear that HΨ depends only on (I−P )Ψ. So unless otherwise stated, if Ψ is the
symbol of the Hankel operator HΨ, we will assume Ψ is such that (I − P )Ψ = Ψ.
Let S be the unilateral shift on H2

n(D), or S = TzI where I stands for the n × n

identity matrix. For F (z) ∈ L∞n×n, let F ∗ be the adjoint of F and F̃ = F ∗(z). It is
well known (and easy to see that) TΦTG = TΦG and HΨTG = HΨG if G ∈ H∞n×n;
T ∗Φ = TΦ∗ and H∗Ψ = H

Ψ̃
.

We will make use of the following definition.
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Definition 3.1. Let Φ be an n× n matrix with entries in L2. The matrix-
valued function Φ is said to be regular if the n column vectors of Φ are linearly
independent in L2

n(D).

Theorem 3.2. Assume both P [zΦ(z)] and P [zΦ∗(z)] are regular. Then
TΦHΨ = HΨTΦ if and only if Ψ = (I − P )[Φ(z)A] for some constant n × n
matrix A with Φ such that both Φ(z)A+AΦ(z) and Φ(z)AΦ(z) are analytic.

Proof. Let e0, . . . , en−1 be the standard basis of the n dimensional Euclidean
space Cn. Note

∆ = I − SS∗ = I − TzIT
∗
zI = e0 ⊗ e0 + e1 ⊗ e1 + · · ·+ en−1 ⊗ en−1.

We first prove the necessity. We will assume n = 2 since the proof for the general
case is analogous. By Theorem 2.2, TΦHΨ = HΨTΦ implies that

HΨ(e0 ⊗ e0 + e1 ⊗ e1)TΦS + S∗TΦ(e0 ⊗ e0 + e1 ⊗ e1)HΨ = 0.

Equivalently

(3.1) HΨe0 ⊗ S∗T ∗Φe0 +HΨe1 ⊗ S∗T ∗Φe1 = −S∗TΦe0 ⊗H∗Ψe0 − S∗TΦe1 ⊗H∗Ψe1.

By assumption, P [zΦ∗(z)] are regular, thus S∗T ∗Φe0 and S∗T ∗Φe1 are linearly in-
dependent. By equating the ranges of the operators on two sides of the above
equation, we see that there exists a constant 2× 2 matrix A = (aij) such that

(3.2) [HΨe0 HΨe1 ] = [S∗TΦe0 S∗TΦe1 ]
[
a11 a12

a21 a22

]
.

Plugging the above equation into (3.1), we have

(a11S
∗TΦe0 + a21S

∗TΦe1)⊗ S∗2T ∗Φe0 + (a12S
∗TΦe0 + a22S

∗TΦe1)⊗ S∗2T ∗Φe1

= S∗TΦe0 ⊗ (a11S
∗2T ∗Φe0 + a12S

∗2T ∗Φe1) + S∗TΦe1 ⊗ (a21S
∗2T ∗Φe0 + a22S

∗2T ∗Φe1)

= −S∗TΦe0 ⊗ S∗zH
∗
Ψe0 − S∗TΦe1 ⊗ S∗zH

∗
Ψe1.

By assumption, S∗TΦe0 and S∗TΦe1 are also linearly independent, thus

(3.3)
[H∗Ψe0 H∗Ψe1 ] = − [S∗T ∗Φe0 S∗T ∗Φe1 ]

[
a11 a21

a12 a22

]
= − [S∗T ∗Φe0 S∗T ∗Φe1 ]A∗.

Now equation (3.2) reads as

[HΨe0 HΨe1 ] =
[
P

[
zΨ(z)

[
1
0

]]
P

[
zΨ(z)

[
0
1

]] ]
= P [zΨ(z)]

= [S∗TΦe0 S∗TΦe1 ]
[
a11 a12

a21 a22

]
= P [zΦ(z)A],

equivalently,
Ψ = (I − P )[Φ(z)A] or HΨ = HΦ(z)A.

Next by equation (3.3) and H∗Ψ = H∗Φ(z)A = HA∗Φ(z)∗ , we have

[H∗Ψe0 H∗Ψe1 ] = [HA∗Φ(z)∗e0 HA∗Φ(z)∗e1 ] = P [zA∗Φ∗(z)]

= − [S∗T ∗Φe0 S∗T ∗Φe1 ]A∗ = −P [zΦ∗(z)A∗].
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Thus
P [zA∗Φ∗(z)] = −P [zΦ∗(z)A∗].

That is, P [z(A∗Φ∗(z) + zΦ∗(z)A∗)] = 0. This implies that A∗Φ∗(z) + Φ∗(z)A∗ is
conjugate analytic. Equivalently, Φ(z)A+AΦ(z) is analytic.

Now by equation (2.2) and HΨ = HΦ(z)A,

0 = [ (TΦHΨ −HΨTΦ)e0 (TΦHΨ −HΨTΦ)e1 ]

= [ (TΦHΦ(z)A −HΦ(z)ATΦ)e0 (TΦHΦ(z)A −HΦ(z)ATΦ)e1 ]

= P [ΦP [zΦ(z)A]]− P [zΦ(z)A[PΦ](z)]

= P [zΦzP [zΦ(z)A]]− P [zαΦ(z)A[PΦ](z)]

= P [zΦ(z)[zP [zΦ(z)A]−A[PΦ](z)]]

= −P [zΦ(z)AΦ(z)].

In the last equality we note that

zP [zΦ(z)A]−A[PΦ](z) = −P [AΦ(z)]− (I − P )[AΦ(z)] = −AΦ(z),

since
A[PΦ](z) = (I − P )[AΦ(z)] +AΦ(0)

and Φ(z)A+AΦ(z) being conjugate analytic implies that

zP [zΦ(z)A] = −zP [zAΦ(z)] = −P [AΦ(z)] +AΦ(0).

Thus Φ(z)AΦ(z) is conjugate analytic. Replacing z by z, we see that Φ(z)AΦ(z)
is analytic.

The sufficiency is clear from the above arguments and Theorem 2.2. This
completes the proof.

Remark 3.3. If Ψ is regular and TΦHΨ = HΨTΦ, then, by equation (3.1),
P [zΦ(z)] = 0 implies that P [zΦ∗(z)] = 0. Without the assumption that both
P [zΦ(z)] and P [zΦ∗(z)] are regular, the characterization for TΦHΨ = HΨTΦ is
more complicated.

In the scalar case the above theorem reduces to the following result of
R.A. Mart́ınez-Avendaño ([7]).

Corollary 3.4. ([7]) Assume ϕ and ψ are scalar functions and ϕ is not a
constant. TϕHψ = HϕTψ, if and only if ψ(z) = α(I − P )[ϕ(z)] for some constant
α and both ϕ(z) + ϕ(z) and ϕ(z)ϕ(z) are analytic.

A description of functions ϕ and ψ with properties as in the above corollary
was given by Lemma 9 in [7]. We are not successful in giving an explicit description
of matrix-valued functions with those properties as in Theorem 3.2. We now state
the following characterization for commuting Toeplitz and Hankel operators which
is Theorem 10 in [7]. Let m be the Lebesgue measure on the unit circle ∂D. For
subsets E,E1 and E2 of ∂D, let

E∗ = {z : z ∈ E}, Ec = ∂D \ E and E1 4 E2 = (E1 \ E2) ∪ (E2 \ E1).

Let κE denote the characteristic function of the set E.
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Theorem 3.5. ([7]) Let ϕ ∈ L∞. The nonzero Hankel operator H commutes
with the Toeplitz operators Tϕ (not a multiple of the identity operator) if and only
if H = Hαϕ(z) where α is a constant and ϕ(z) = aκE + b, with constants a and b,
and E ⊂ ∂D such that m(E∗ 4 Ec) = 0.

It is well-known that for scalar functions ϕ and ψ, HψTϕ(z) = T
ϕ(z)

Hψ if and
only if ϕ is analytic, see a proof of this in [7]. Indeed this fact plays an important
role in the proof of Corollary 3.4 above by Mart́ınez-Avendaño’s approach. There
seems no such an analogous result for block Toeplitz and Hankel operators because
of the non-commutativity of matrices. If ϕ is analytic, then HψTϕ(z) = Hψϕ(z). A
related question is to ask when the product of a Hankel and Toeplitz operator is
also a Hankel operator. The following proposition answers this question.

Proposition 3.6. If Φ is regular, then HΦTΨ is a Hankel operator if and
only if Ψ is analytic.

Proof. If Ψ is analytic, it is clear that HΦTΨ = HΦΨ. So we need to prove
the necessity. We again prove the result by assuming n = 2. By Proposition 2.6,
HΦTΨ is a Hankel operator implies that

HΦ(e0 ⊗ e0 + e1 ⊗ e1)TΨS = 0.
Equivalently

HΦe0 ⊗ S∗T ∗Ψe0e0 +HΦe1 ⊗ S∗T ∗Ψe1 = 0.
By the assumption, Φ is regular, thus HΦe0 and HΦe1 are linearly independent.
Therefore

0 = [S∗T ∗Ψe0 S∗T ∗Ψe1 ] = P [zΨ∗(z)].
Therefore Ψ is analytic. This completes the proof.

4. PRODUCT OF TWO HANKEL OPERATORS

If A is a constant n × n matrix whose eigenvalues are inside the unit disk, then
(I−zA)−1 is analytic inside the disk and has the following power series expansion

(4.1) (I − zA)−1 =
∞∑
i=0

Aizi.

To see this, let A0 be the Jordan form of A and C is an invertible matrix such
that

CAC−1 = A0 = D + E,

where D is a diagonal matrix and E is a matrix such that En = 0. Then for i > n

Ai = C−1Ai0C = C−1(D + E)iC = C−1

[ n−1∑
j=0

[(
i

j

)]
Di−jEj

]
C.

Since D is a strict contraction, we see that the series in (4.1) is indeed convergent
in |z| 6 1. In the scalar case, for |α| < 1, (1 − αz)−1 is an eigenvector of S∗. In
the vector-valued case, (I − zA)−1 acts like an eigenvector of S∗ since

S∗(I− zA)−1 = P [z(I− zA)−1] = P

[
z

( ∞∑
i=0

Aizi
)]

=
∞∑
i=0

Aizi−1 = A(I− zA)−1.

By the above discussion, it is easy to verify the following lemma.
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Lemma 4.1. Let A be a constant n×n matrices whose eigenvalues are inside

the unit disk. Let F (z) =
∞∑
i=0

Fiz
i ∈ H∞n×n. Then

P [F (z)(I − zA)−1] = F (A)(I − zA)−1

where F (A) =
∞∑
i=0

FiA
i.

Now we prove the main result of this section.

Theorem 4.2. Assume Φ and Ψ are regular. HΦHΨ is a Hankel operator if
and only if there exist constant n×n matrices A,L and R such that the eigenvalues
of A are inside the unit disk and

(4.2) Φ(z) = zL(I − zA)−1, Ψ(z) = z(I − zA)−1R.

If this is the case, then HΦHΨ = HΘ where

(4.3) Θ(z) = zL(I − zA)−1(I −A2)−1R.

Proof. We first prove the necessity. Without loss of generality, we assume
n = 2. Note

∆ = I − SS∗ = e0 ⊗ e0 + e1 ⊗ e1.

By Theorem 2.3, HΦHΨ is a Hankel operator implies that

HΦ(e0 ⊗ e0 + e1 ⊗ e1)HΨS = S∗HΦ(e0 ⊗ e0 + e1 ⊗ e1)HΨ.

Equivalently

(4.4) HΦe0 ⊗ S∗H∗Ψe0 +HΦe1 ⊗ S∗H∗Ψe1 = S∗HΦe0 ⊗H∗Ψe0 + S∗HΦe1 ⊗H∗Ψe1.

By equating the ranges of the operators on two sides and using the independence
of H∗Ψe0 and H∗Ψe1, we see that there exists a constant 2×2 matrix A = (aij) such
that

(4.5) [S∗HΦe0 S∗HΦe1 ] = [HΦe0 HΦe1 ]
[
a11 a12

a21 a22

]
.

We now show that all the eigenvalues of A have modulus less than 1. We
will do this by proving that any eigenvalue of A is also an eigenvalue of S∗ (as an
operator on H2). Without loss of generality, assume

C−1AC =
[
α 0
1 α

]
for some invertible matrix C. Write

[HΦe0 HΦe1 ]C =
[
b11(z) b12(z)
b21(z) b22(z)

]
and note that by assumption the column vectors of the above matrix is linearly
independent. Multiplying equation (4.5) by C, we have[

S∗b11(z) S∗b12(z)
S∗b21(z) S∗b22(z)

]
=

[
αb11(z) + b12(z) αb12(z)
αb21(z) + b22(z) αb22(z)

]
.
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Therefore α is an eigenvalue of S∗ (as an operator on H2).
Plugging equation (4.5) into (4.4), we have

HΦe0⊗S∗H∗Ψe0 +HΦe1 ⊗ S∗H∗Ψe1

= S∗HΦe0 ⊗H∗Ψe0 + S∗HΦe1 ⊗H∗Ψe1

= (a11HΦe0 + a21HΦe1)⊗H∗Ψe0 + (a12HΦe0 + a22HΦe1)⊗H∗Ψe1

= HΦe0 ⊗ (a11H
∗
Ψe0 + a12H

∗
Ψe1) +HΦe1 ⊗ (a21H

∗
Ψe0 + a22H

∗
Ψe1).

Therefore, by the assumption that HΦe0 and HΦe1 are linearly independent,

(4.6) [S∗H∗Ψe0 S∗H∗Ψe1 ] = [H∗Ψe0 H∗Ψe1 ]A∗.

It follows from equation (4.5) that

[S∗HΦe0 S∗HΦe1 ] = [HzΦe0 HzΦSe1 ] = P [z2Φ(z)]

= [HΦe0 HΦe1 ]A = P [zΦ(z)A].

That is

(4.7) P [zΦ(z)(zI −A)] = 0.

We claim there exists a constant n× n matrix L such that

(4.8) Φ(z) = zL(I − zA)−1.

Let F (z) =
∞∑
i=0

Fiz
i := zΦ(z). F (z) is analytic since we are assuming Φ(z) =

(I − P )[Φ(z)]. Now equation (4.7) becomes

P [zF (z)] =
∞∑
i=1

Fiz
i−1 =

∞∑
i=0

Fi+1z
i = P [F (z)A] =

∞∑
i=0

FiAz
i.

Therefore Fi+1 = FiA for i > 0. So we have

F (z) := zΦ(z) =
∞∑
i=0

F0A
izi = F0(I − zA)−1.

This proves our claim (4.8) with L = F0.
Similarly, equation (4.6) implies that

P [z2Ψ∗(z)] = P [zΨ∗(z)A∗].

Therefore, there exists a constant matrix R such that

Ψ(z) = z(I − zA)−1R.

Next we prove the sufficiency. Assume Φ and Ψ can be represented as in
(4.2). The above arguments show that equation (2.3) holds. To verify equation
(2.4), we note that

[HΨSe0 HΨSe1 ] = P [zΨ(z)zI] = P [z(I − zA)−1R] = (I − zA)−1AR

and
[HΦHΨSe0 HΦHΨSe1 ] = P [zΦ(z)A(I − zA)−1R]

= P [L(I − zA)−1(I − zA)−1AR]

= L(I − zA)−1(I −A2)−1AR,
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where the last equality follows from Lemma 4.1. Similarly

[S∗HΦHΨe0 S∗HΦHΨe1 ] = P [zL(I − zA)−1(I − zA)−1R]

= L(I − zA)−1(I −A2)−1AR.

Equation (2.5) can be established analogously. By Theorem 2.3, HΦHΨ is a Hankel
operator. Set HΦHΨ = HΘ.

P [zΘ(z)] = [HΘe0 HΘe1 ] = [HΦHΨe0 HΦHΨe1 ]

= L(I − zA)−1(I −A2)−1R.

Thus Θ is represented as in (4.3). This completes the proof.

Theorem 4.3. Assume Φ1 and Φ2 are regular. HΦ1HΨ1 = HΨ2HΦ2 if and
only if Ψ2 = Φ1A and Ψ1 = AΦ2 for some constant matrix A.

Proof. We will prove the theorem for n = 2. By Theorem 2.5, HΦ1HΨ1 =
HΨ2HΦ2 implies that

HΦ1(e0 ⊗ e0 + e1 ⊗ e1)HΨ1 = HΨ2(e0 ⊗ e0 + e1 ⊗ e1)HΦ2 .

Equivalently

(4.9) HΦ1e0 ⊗H∗Ψ1
e0 +HΦ1e1 ⊗H∗Ψ1

e1 = HΨ2e0 ⊗H∗Φ2
e0 +HΨ2e1 ⊗H∗Φ2

e1.

Since by assumption H∗Φ2
e0 and H∗Φ2

e1 are linearly independent, there exists a
constant matrix A such that

[HΨ2e0 HΨ2e1 ] = P [zΨ2(z)] = zΨ2(z) = [HΦ1e0 HΦ1e1 ]A = zΦ1(z)A.

Therefore Ψ2 = Φ1A. Plugging this relation into equation (4.9) and using the
linear independence of HΦ1e0 and HΦ1e1, we conclude that[

H∗Ψ1
e0 H∗Ψ1

e1
]

= P [zΨ∗1(z)] = zΨ∗1(z) =
[
H∗Φ2

e0 H∗Φ2
e1

]
A∗ = zΦ∗2(z)A,

thus Ψ1(z) = AΦ2(z).
On the other hand, if Ψ2 = Φ1A and Ψ1 = AΦ2, then

HΦ1HΨ1 = HΦ1HAΦ2 = HΦ1TAHΦ2 = HΦ1AHΦ2 = HΨ2HΦ2 .

This completes the proof.

Corollary 4.4. Assume Φ is regular.
(i) HΦHΨ = HΨHΦ if and only if Ψ = ΦA = AΦ for some constant ma-

trix A.
(ii) HΦHΨ = 0 if and only if Ψ = 0.

Corollary 4.5. ([2]) Let ϕ and ψ be two scalar functions. HϕHψ = 0 if
and only if either Hϕ = 0 or Hψ = 0.
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5. PRODUCT OF THREE HANKEL OPERATORS

In this section we discuss when the product of three Hankel operators is also a
Hankel operator. This question can be answer readily by using Proposition 2.4.

Theorem 5.1. Assume Φ1 and Φ3 is regular. H∗Φ1
HΦ2H

∗
Φ3

is a Hankel op-
erator if and only if there exist a constant matrix A such that

(5.1) [Φ∗2(z)−A∗]Φ1(z), Φ3(z)[Φ∗2(z)−A∗] ∈ H2
n×n.

In this case, if we write

F1(z) := [Φ∗2(z)−A∗]Φ1(z)(5.2)
F2(z) := Φ3(z)[Φ∗2(z)−A∗],(5.3)

then

(5.4) H∗Φ1
HΦ2H

∗
Φ3

= HΦ∗1(z)F∗2 (z) = HF∗1 (z)Φ∗3(z).

Proof. Again we assume n = 2. By Theorem 2.2, H∗Φ1
HΦ2H

∗
Φ3

is a Hankel
operator implies that

H∗Φ1
(e0 ⊗ e0 + e1 ⊗ e1)HΦ2H

∗
Φ3
S = S∗H∗Φ1

HΦ2(e0 ⊗ e0 + e1 ⊗ e1)H∗Φ3
.

By the assumption of the linear independence of H∗Φ1
e0 and H∗Φ1

e1, and HΦ3e0
and HΦ3e1, there exists a constant matrix A such that[

S∗H∗Φ1
HΦ2e0 S∗H∗Φ1

HΦ2e1
]

=
[
H∗Φ1

e0 H∗Φ1
e1

]
A[

S∗HΦ3H
∗
Φ2
e0 S∗HΦ3H

∗
Φ2
e1

]
= [HΦ3e0 HΦ3e1 ]A∗.

Equivalently
P [zΦ∗1(z)Φ2(z)− zΦ∗1(z)A] = 0

P [zΦ3(z)Φ∗2(z)− zΦ3(z)A∗] = 0.

That is, (5.1) holds.
Assume now equations (5.2) and (5.3) hold. Multiplying (5.2) by Φ3(z) on

the left and applying (5.3), we see that

Φ3(z)F1(z) = F2(z)Φ1(z).

This shows that HΦ∗1(z)F∗2 (z) = HF∗1 (z)Φ∗3(z).

To show that H∗Φ1
HΦ2H

∗
Φ3

= HΦ∗1(z)F∗2 (z), we note that by (5.3)[
HΦ2H

∗
Φ3
e0 H∗Φ2

HΦ3e1
]

=
[
HΦ2−AH

∗
Φ3
e0 HΦ2−AH

∗
Φ3
e1

]
= P [(Φ2(z)−A)Φ∗3(z)] = F ∗2 (z).

Therefore [
H∗Φ1

HΦ2H
∗
Φ3
e0 H∗Φ1

HΦ2H
∗
Φ3
e1

]
= P [zΦ∗1(z)F

∗
2 (z)] =

[
HΦ∗1(z)F∗2 (z)e0 HΦ∗1(z)F∗2 (z)e1

]
.

This completes the proof.
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If Φ1 and Φ3 are matrix-valued inner functions, the conditions in the above
theorem can be expressed in terms of the divisibilities of matrix-valued analytic
functions. We state this result for the scalar case.

Corollary 5.2. Assume θ1 and θ3 are scalar inner functions. H∗
θ1
Hθ2

H∗
θ3

is a Hankel operator if and only if for some constant α

(5.5) θ1|(θ2(z)− α) and θ3(z)|(θ2(z)− α).

Recall an n × n matrix-valued analytic function Θ is inner if Θ∗(z)Θ(z) =
In×n. If Θ is inner, we also have Θ(z)Θ∗(z) = In×n.

Proposition 5.3. Assume Θ1 and Θ3 are matrix-valued inner functions
and Θ2 ∈ H∞n×n. H∗Θ∗1HΘ∗2

H∗Θ∗3
is zero if and only if there exist a constant matrix

A and F (z) ∈ H∞n×n such that

Θ2(z)−A = Θ3(z)F (z)Θ1(z).

Proof. Without loss of generality, we assume Θ1(0) = Θ3(0) = 0. Otherwise
applying the previous theorem to H∗Θ∗1−Θ∗1(0)HΘ∗2

H∗Θ∗3−Θ∗3(0) (= H∗Θ∗1
HΘ∗2

H∗Θ∗3
). By

the previous theorem, H∗Θ∗1HΘ∗2
H∗Θ∗3

is zero implies that

F2(z) := Θ∗3(z)[Θ2(z)−A] ∈ H∞n×n
for some constant matrix A. Multiplying the above equation on the left by Θ3(z),
we have

[Θ2(z)−A] = Θ3(z)F2(z).

Now H∗Θ∗1
HΘ∗2

H∗Θ∗3
= HΘ1(z)F∗2 (z) = 0 implies that Θ1(z)F ∗2 (z) = F ∗(z) for some

F (z) ∈ H∞n×n. Thus F2(z) = F (z)Θ1(z). Combining this and the above equa-
tion, we prove the necessity. The sufficiency follows by a direct application of
Theorem 5.1.

An immediate corollary is the following result from Xia and Zheng ([8]).

Corollary 5.4. ([8]) Assume θ1, θ2 and θ3 are scalar inner functions.
H∗
θ1
Hθ2

H∗
θ3

is zero if and only if for some constant α

θ1θ3|(θ2(z)− α).

It is interesting to compare the condition for H∗
θ1
Hθ2

H∗
θ3

being a Hankel
operator from Corollary 5.2 to the conditions for H∗

θ1
Hθ2

H∗
θ3

being zero from the
above corollary.

For the product of two Hankel operators to be a Hankel operator, their
symbols have to take a very special form as seen from the last section. However
for the product of three Hankel operators to be a Hankel, their symbols can be
quite general as shown in Theorem 5.1. A similar phenomenon occurs in the
question of when the product of several Hankel operators is zero. If the product
of two Hankel operators is zero, then Brown and Halmos (Corollary 4.5 above)
showed that one of them has to be zero. But there are three nonzero Hankel
operators whose product is zero as seen from Proposition 5.3 above. However the
following result was proved by Xia and Zheng ([8]).
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Theorem 5.5. ([8]) Let ϕ1, ϕ2 and ϕ3 be three functions. If H∗ϕ1
Hϕ2H

∗
ϕ3

,
H∗ϕ1

Hϕ2H
∗
ϕ3

and H∗ϕ1
Hϕ2H

∗
ϕ3

are all zero, then one of Hϕ1 ,Hϕ2 and Hϕ3 is zero.

Yet another similar situation is when the product of several Hankel operators
is of finite rank. Axler, Chang and Sarason ([1]) showed that if the product of
two Hankel operators is of finite rank, then one of them has to be of finite rank.
Furthermore, in this case, the rank of the product of the two Hankel operator is
equal to the minimum of the ranks of the two Hankel operators. For an operator
A, let rank(A) denote the rank of A. The following analogue was obtained by the
author ([4]).

Theorem 5.6. ([4]) Let ϕ1, ϕ2 and ϕ3 be three scalar functions. Then

max{rank(H∗ϕ1
Hϕ2H

∗
ϕ3

), rank(H∗ϕ2
Hϕ1H

∗
ϕ3

), rank(H∗ϕ1
Hϕ3H

∗
ϕ2

)}
= min{rank(Hϕ1), rank(Hϕ2), rank(Hϕ3)}.

In other words if H∗ϕ1
Hϕ2H

∗
ϕ3
,H∗ϕ2

Hϕ1H
∗
ϕ3

and H∗ϕ1
Hϕ3H

∗
ϕ2

are all of finite
rank, then one of Hϕ1 ,Hϕ2 and Hϕ3 is of finite rank. In fact a version of the above
result for products of an arbitrary finite number of Hankel operators was proved
by the author ([6]) by using a result on the kernel of the product of several Hankel
operators. Inspired by these recent results we prove the following theorem.

Theorem 5.7. Let ϕ1, ϕ2, ϕ3 ∈ zH∞. Then H∗ϕ1
Hϕ2H

∗
ϕ3
,H∗ϕ2

Hϕ1H
∗
ϕ3

and
H∗ϕ1

Hϕ3H
∗
ϕ2

are all Hankel operators if and only if

(5.6) ϕ1 = α[θ − θ(0)], ϕ2 = β[θ − θ(0)], ϕ3 = γ[θ − θ(0)]

for some constants α, β, γ and inner function θ. In this case

H∗ϕ1
Hϕ2H

∗
ϕ3

= H∗ϕ1
Hϕ2H

∗
ϕ3

= H∗ϕ1
Hϕ2H

∗
ϕ3

= αβγH∗
θ
.

Proof. If ϕ1, ϕ2 and ϕ3 are given by (5.6), then

H∗ϕ1
Hϕ2H

∗
ϕ3

= αβγH∗
θ
HθH

∗
θ

= αβγH∗
θ
,

since H∗
θ
Hθ is the projection onto the range of H∗

θ
. This proves the sufficiency.

Now we prove the necessity. By Proposition 2.4, H∗ϕ1
Hϕ2H

∗
ϕ3

is a Hankel
operator implies that

H∗ϕ1
(e0 ⊗ e0)Hϕ2H

∗
ϕ3
S = S∗H∗ϕ1

Hϕ2(e0 ⊗ e0)H∗ϕ3
.

Therefore there exists a constant a such that

P [zϕ∗1(z)ϕ2(z)] = S∗H∗ϕ1
Hϕ2e0 = aH∗ϕ1

e0 = aP [zϕ∗1(z)]

P [zϕ3(z)ϕ∗2(z)] = S∗Hϕ3H
∗
ϕ2
e0 = aHϕ3e0 = aP [zϕ3(z)].

Equivalently there exists y1, y2 ∈ H2 such that

ϕ1(z)ϕ2(z)− aϕ1(z) = y1(5.7)

ϕ3(z)ϕ2(z)− aϕ3(z) = y2.(5.8)
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Similarly, H∗ϕ2
Hϕ1H

∗
ϕ3

and H∗ϕ1
Hϕ3H

∗
ϕ2

are Hankel operators implies that there
exist constants b and c, and y3, y4, y5, y6 ∈ H2 such that

ϕ2(z)ϕ1(z)− bϕ2(z) = y3(5.9)

ϕ3(z)ϕ1(z)− bϕ3(z) = y4(5.10)

ϕ1(z)ϕ3(z)− cϕ1(z) = y5(5.11)

ϕ2(z)ϕ3(z)− cϕ2(z) = y6.(5.12)

Write equations (5.7) and (5.9) as

(ϕ1(z)− b)(ϕ2(z)− a) = y1 − b(ϕ2(z)− a) := x1

(ϕ2(z)− a)(ϕ1(z)− b) = y2 − a(ϕ1(z)− b) := x2

where x1, x2 ∈ H2. Note that

x1 = [(ϕ1(z)− b)(ϕ2(z)− a)] = (ϕ2(z)− a)(ϕ1(z)− b) = x2.

Therefore x1 and x2 are constant functions. That is

(5.13) (ϕ1(z)− b)(ϕ2(z)− a) = d1

for some constant d1. Similarly, equations (5.8) and (5.12), and equations (5.10)
and (5.11) imply that

(ϕ3(z)− c)(ϕ2(z)− a) = d2(5.14)

(ϕ3(z)− c)(ϕ1(z)− b) = d3(5.15)

for some constants d2 and d3. It follows from equations (5.13), (5.14) and (5.15)
that

(ϕ3(z)− c) =
d2(ϕ1(z)− b)

d1

(ϕ2(z)− a) =
d1d2(ϕ1(z)− b)

d1d3

.

Therefore by (5.13),
(ϕ1(z)− b)(ϕ1(z)− b) = d

for some constant d. Since ϕ1(z) ∈ zH2, ϕ1(z) − b is a constant multiple of an
inner function θ. This completes the proof.

We remark that in the above theorem the natural product is H∗ϕ1
Hϕ2H

∗
ϕ3

in-
stead ofHϕ1Hϕ2Hϕ3 . SinceH∗ϕ3

Hϕ2H
∗
ϕ1
,H∗ϕ1

Hϕ2H
∗
ϕ3

andH∗ϕ1
Hϕ2H

∗
ϕ3

are the ad-
joints of H∗ϕ1

Hϕ2H
∗
ϕ3
,H∗ϕ1

Hϕ2H
∗
ϕ3

and H∗ϕ1
Hϕ2H

∗
ϕ3

. The condition that
H∗ϕ1

Hϕ2H
∗
ϕ3
,H∗ϕ2

Hϕ1H
∗
ϕ3

and H∗ϕ1
Hϕ3H

∗
ϕ2

are all Hankel operators is equivalent
to the condition that all possible six products of three Hankel operators are Hankel
operators. It is curious to note that unlike the questions of when products of sev-
eral Hankel operators are zero or of finite rank, the question of when the products
of Hankel operators are Hankel operators admits different answers depending if
the number of Hankel operators involved is even or odd. We make the following
conjecture.
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Conjecture 5.8. If for any permutation σ of {1, 2, . . . , 2n − 1, 2n},
H∗ϕσ(1)

Hϕσ(2) · · ·H∗ϕσ(2n−1)
Hϕσ(2n) is a Hankel operator, then

ϕi = αi[θ − θ(0)], θ =
z − α

(1− αz)

for some constants αi and α such that |α| < 1. If for any permutation σ of
{1, 2, . . . , 2n, 2n+ 1}, H∗ϕσ(1)

Hϕσ(2) · · ·Hϕσ(2n)H
∗
ϕσ(2n+1)

is a Hankel operator, then

ϕi = αi[θ − θ(0)]

for some inner function θ and constants αi.
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