PROPERTIY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS
 WITH H^{∞}-SYMBOL

SEBASTIAN SANDBERG

Communicated by Florian-Horia Vasilescu

Abstract

Suppose that g is a tuple of bounded holomorphic functions on a strictly pseudoconvex domain D in \mathbb{C}^{m} with smooth boundary. Viewed as a tuple of operators on the Hardy space $H^{p}(D), 1 \leqslant p<\infty, g$ is shown to have property $(\beta)_{\mathcal{E}}$ and therefore g possess Bishop's property (β). In the case $m=1$ it is proved that the same result also holds when $p=\infty$.

Keywords: Bishop's property (β), Hardy space, H^{p}-corona problem.
MSC (2000): 32A35, 47A11, 47A13.

1. INTRODUCTION

Suppose that X is a Banach space and that $a=\left(a_{1}, \ldots, a_{n}\right)$ is a commuting tuple of bounded linear operators on X. Let E be one of spaces $X, \mathcal{E}\left(\mathbb{C}^{n}, X\right)$ or $\mathcal{O}(U, X)$, where $U \subset \mathbb{C}^{n}$. Denote by $K_{\bullet}(z-a, E)$ the Koszul complex

$$
0 \longrightarrow \Lambda^{n} E \xrightarrow{\delta_{z-a}} \Lambda^{n-1} E \xrightarrow{\delta_{z-a}} \ldots \xrightarrow{\delta_{z-a}} \Lambda^{0} E \longrightarrow 0,
$$

with boundary map

$$
\delta_{z-a}\left(f s_{I}\right)=2 \pi \mathrm{i} \sum_{k=1}^{p}(-1)^{k-1}\left(z_{i_{k}}-a_{i_{k}}\right) f s_{i_{1}} \wedge \cdots \wedge \widehat{s}_{i_{k}} \wedge \cdots \wedge s_{i_{p}},
$$

where $I=\left(i_{1}, \ldots, i_{p}\right)$ and p is an integer. Let $H_{\bullet}(z-a, E)$ be the corresponding homology groups.

The Taylor spectrum of $a, \sigma(a)$, is defined as the set of all $z \in \mathbb{C}^{n}$ such that $K_{\bullet}(z-a, X)$ is not exact. If for all Stein open sets U in \mathbb{C}^{n} the natural quotient topology of $H_{0}(z-a, \mathcal{O}(U, X))$ is Hausdorff and $H_{p}(z-a, \mathcal{O}(U, X))=0$ for all $p>0$, then a is said to have Bishop's property (β). It has property $(\beta)_{\mathcal{E}}$ if the natural quotient topology of $H_{0}\left(z-a, \mathcal{E}\left(\mathbb{C}^{n}, X\right)\right)$ is Hausdorff and if $H_{p}\left(z-a, \mathcal{E}\left(\mathbb{C}^{n}, X\right)\right)=0$ for all $p>0$.

By Theorem 6.2.4 in [9], the tuple a has Bishop's property (β) if and only if there exists a decomposable resolution, that is, if and only if there are Banach spaces X_{i} and decomposable tuples (see [9] for the definition) of operators a_{i} on X_{i} such that

$$
0 \longrightarrow X \xrightarrow{d} X_{0} \xrightarrow{d} \cdots \xrightarrow{d} X_{r} \longrightarrow 0
$$

is exact, $d a=a_{0} d$ and $d a_{i}=a_{i+1} d$. Property $(\beta)_{\mathcal{E}}$ is equivalent to the existence of a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar tuples (that is tuples which admit a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus), see Theorem 6.4.15 in [9]. Property $(\beta)_{\mathcal{E}}$ implies Bishop's property (β), see [9].

Suppose that D is a strictly pseudoconvex domain in \mathbb{C}^{m} with smooth boundary. We consider the tuple $T_{g}=\left(T_{g_{1}}, \ldots, T_{g_{n}}\right), g_{k} \in H^{\infty}(D)$, of operators on $H^{p}(D)$ defined by $T_{g_{k}} f=g_{k} f, f \in H^{p}(D)$. The main theorem of this paper is the following.

Theorem 1.1. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^{m} with C^{∞}-boundary and that $g \in H^{\infty}(D)^{n}$. Then the tuple T_{g} of Toeplitz operators on $H^{p}(D), 1 \leqslant p<\infty$, satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β).

In case g has bounded derivative this theorem has previously been proved in [14], [16] and [17]. In case D is the unit disc in \mathbb{C}, Theorem 1.1 also holds when $p=\infty$; this is proved in Section 4. As a corollary to Theorem 1.1 we have that T_{g} on the Bergman space $\mathcal{O} L^{p}(D)$ has property $(\beta)_{\mathcal{E}}$, see Corollary 3.4.

Let us recall how one can prove that T_{g} on the Bergman space $\mathcal{O} L^{2}(D)$ has property $(\beta)_{\mathcal{E}}$ under the extra assumption that g has bounded derivative. Define the Banach spaces B_{k} as the spaces of locally integrable $(0, k)$-forms u such that

$$
\|u\|_{B_{k}}:=\|u\|_{L^{2}(D)}+\|\bar{\partial} u\|_{L^{2}(D)}<\infty .
$$

Since g has bounded derivate we have the inequality

$$
\|(\varphi \circ g) u\|_{B_{k}} \lesssim \sup _{z \in g(D)}(|\varphi(z)|+|\bar{\partial} \varphi(z)|)\|u\|_{B_{k}}
$$

for all $\varphi \in C^{\infty}\left(\mathbb{C}^{n}\right)$. Hence $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_{k}. Since we have the resolution

$$
0 \longrightarrow \mathcal{O} L^{2}(D) \rightarrow B_{0} \xrightarrow{\bar{\partial}} B_{1} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_{m} \longrightarrow 0
$$

by Hörmander's L^{2}-estimate of the $\bar{\partial}$ equation, the tuple T_{g} on $\mathcal{O} L^{2}(D)$ has property $(\beta)_{\mathcal{E}}$ by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex

$$
\begin{equation*}
0 \longrightarrow H^{p}(D) \xrightarrow{i} B_{0} \xrightarrow{\bar{\partial}} B_{1} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_{m} \longrightarrow 0, \tag{1.1}
\end{equation*}
$$

where B_{k} are Banach spaces of $(0, k)$-forms on D. The spaces B_{k} are defined in terms of tent norms. We prove that $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_{k}. If the complex (1.1) were exact the proof of Theorem 1.1 would be finished. As we can solve the $\bar{\partial}$ equation with appropiate estimates we will be able to prove that T_{g} on H^{p} has property $(\beta)_{\mathcal{E}}$ anyway. More precisely (1.1) is exact at $B_{k}, k \geqslant 3$. If $f \in B_{2}$ and
$\bar{\partial} f=0$ then there is a function u in another Banach space B_{1}^{\prime} such that $\bar{\partial} u=f$. Mutiplication by g is a bounded operator on B_{1}^{\prime}. If $f \in B_{1}$ and $f^{\prime} \in B_{1}^{\prime}$ such that $\bar{\partial} f+\bar{\partial} f^{\prime}=0$ then there is a solution $u \in L^{p}(\partial D)$ to the equation $\bar{\partial}_{\mathrm{b}} u=f+f^{\prime}$.

The construction of the complex (1.1) in the case $p<\infty$ is inspired by the construction in [5] and in the case $p=\infty$ and $m=1$ it is inspired by Tom Wolff's proof of the corona theorem. Let us recall the proof of the H^{p}-corona theorem in the unit disc of \mathbb{C}. Suppose that $g=\left(g_{1}, \ldots, g_{n}\right) \in H^{\infty}(D)^{n}$, where D is the unit disc in \mathbb{C}, and that $0 \notin \overline{g(D)}$. Consider the complex (1.1); the definitions of the B_{k}-spaces can be found in the beginning of Section 3 and Section 4. Suppose that $f \in H^{p}(D)$. Then the equation $\delta_{g} u_{1}=f$ has a solution in $K_{1}\left(g, B_{0}\right)$, namely $u_{1}=\sum_{k} \bar{g}_{k} f s_{k} /|g|^{2}$. Hence $\delta_{g} \bar{\partial} u_{1}=0$ as δ_{g} and $\bar{\partial}$ anticommute, and we can solve the equation $\delta_{g} u_{2}=\bar{\partial} u_{1}$ by defining $u_{2} \in K_{2}\left(g, B_{1}\right)$ as $u_{1} \wedge \bar{\partial} u_{1}$. Since u_{2} satisfies the condition

$$
\left\|(1-|z|) u_{2}\right\|_{T_{2}^{p}}+\left\|(1-|z|)^{2} \partial u_{2}\right\|_{T_{1}^{p}}<\infty
$$

by a Wolff type estimate there is a solution v in $K_{2}\left(g, L^{p}(\partial D)\right)$ to the equation $\bar{\partial}_{\mathrm{b}} v=u_{2}$ (here T_{2}^{p} and T_{1}^{p} denote certain tent spaces). Let $u_{1}^{\prime}=u_{1}^{*}-\delta_{g} v \in$ $K_{1}\left(g, L^{p}(\partial D)\right)$, where u_{1}^{*} is the boundary values of u_{1}. Since $\bar{\partial}_{\mathrm{b}} u_{1}^{\prime}=0$ there is a holomorphic extension U_{1}^{\prime} of u_{1}^{\prime} to D which satisfies the equation $\delta_{g} U_{1}^{\prime}=f$.

The above proof also yields that $\sigma\left(T_{g}\right)=\overline{g(D)}$; the exactness of higher order in the Koszul complex follows by similar resoning. That $\sigma\left(T_{g}\right)=\overline{g(D)}$ is proved in [5] for the case D strictly pseudoconvex and $p<\infty$. One main difference of the proof of that T_{g} has property $(\beta)_{\mathcal{E}}$ and the proof of that $\sigma\left(T_{g}\right)=\overline{g(D)}$ is the following. As a substitution of the explicit choices of u_{1} and u_{2} one uses the fact that T_{g} considered as an operator on B_{k} has property $(\beta)_{\mathcal{E}}$, which in turn follows from the fact that T_{g} on B_{k} has a $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus.

2. PRELIMIARIES

Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^{m} with C^{∞} _ boundary given by a strictly plurisubharmonic defining function ρ. Let $r=-\rho$. All norms below are with respect to the metric $\Omega=r i \partial \bar{\partial} \log (1 / r)$, and we have

$$
|f|^{2} \sim r^{2}|f|_{\beta}^{2}+r|f \wedge \partial r|_{\beta}^{2}+r|f \wedge \bar{\partial} r|_{\beta}^{2}+|f \wedge \partial r \wedge \bar{\partial} r|_{\beta}^{2}
$$

where $\beta=\mathrm{i} \partial \bar{\partial} r$, which is equivalent to the Euclidean metric.
The Hardy space H^{p} is the Banach space of all holomorphic functions f on D such that

$$
\|f\|_{H^{p}}=\sup _{\varepsilon>0} \int_{r(z)=\varepsilon}|f(z)|^{p} \mathrm{~d} \sigma(z)<\infty
$$

where σ is the surface measure. It is wellknown that a function u in $L^{p}(\partial D)$ is the boundary value of a function U in H^{p} if and only if $\int_{\partial D} u h=0$ for all $h \in C_{n, n-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$.

Let $d(\cdot, \cdot)$ be the Korányi pseudometric on ∂D and let z^{\prime} be the point on ∂D closest to $z \in D_{\varepsilon}$, where D_{ε} is a small enough neighbourhood of ∂D in D. For
a point ζ on the boundary let $A_{\zeta}=\left\{z \in D_{\varepsilon}: d\left(z^{\prime}, \zeta\right)<r(z)\right\} \cup\left(D \backslash D_{\varepsilon}\right)$. For a ball B defined by $B=\{z \in \partial D: d(z, \zeta)<t\}$ let, for small $t, \widehat{B}=\left\{z \in D_{\varepsilon}: d\left(z^{\prime}, \zeta\right)<\right.$ $t-r(z)\}$, and, for large t, let $\widehat{B}=\left\{z \in D_{\varepsilon}: d\left(z^{\prime}, \zeta\right)<t-r(z)\right\} \cup\left(D \backslash D_{\varepsilon}\right)$. A function f is in the tent space T_{q}^{p}, where $p<\infty$ and $q<\infty$, if

$$
\|f\|_{T_{q}^{p}}:=\left(\int_{\partial D}\left(\int_{z \in A_{\zeta}}|f(z)|^{q} r(z)^{-m-1}\right)^{p / q} \mathrm{~d} \sigma(\zeta)\right)^{1 / p}<\infty
$$

The function f is in T_{∞}^{p} if f is continuous with limits along A_{ζ} at the boundary almost everywhere and such that

$$
\|f\|_{T_{\infty}^{p}}:=\left(\int_{\partial D} \sup _{z \in A_{\zeta}}|f(z)|^{p} \mathrm{~d} \sigma(\zeta)\right)^{1 / p}<\infty
$$

A function f is in T_{q}^{∞} if

$$
\|f\|_{T_{q}^{\infty}}:=\left\|\sup _{\cdot \in B}\left(\frac{1}{|B|} \int_{z \in \widehat{B}}|f(z)|^{q} r(z)^{-1}\right)^{1 / q}\right\|_{L^{\infty}(\partial D)}<\infty
$$

Note that $f \in T_{p}^{p}$ if and only if $r^{-1 / p} f \in L^{p}(D)$ by Fubini's theorem. From [8] we have the inequality

$$
\begin{equation*}
\int_{D}|f g| r^{-1} \lesssim\|f\|_{T_{q}^{p}}\|g\|_{T_{q^{\prime}}^{p^{\prime}}} \tag{2.1}
\end{equation*}
$$

for $1 \leqslant p, q \leqslant \infty$, where p^{\prime} and q^{\prime} denote dual exponents. By [8] $T_{q^{\prime}}^{p^{\prime}}$, where $1 \leqslant p<\infty$ and $1<q<\infty$, is the dual of T_{q}^{p} with respect to the pairing $\langle f, g\rangle \rightarrow \int_{D} f g r^{-1}$. Suppose that $f \in T_{q_{0}}^{p}, g \in T_{q_{1}}^{\infty}$ and let $q=\left(q_{0}^{-1}+q_{1}^{-1}\right)^{-1}$. Then for all $h \in T_{q^{\prime}}^{p^{\prime}}$ we have

$$
\int_{D}|f g h| r^{-1} \lesssim\|f h\|_{T_{q_{1}^{\prime}}^{1}}\|g\|_{T_{q_{1}}^{\infty}} \leqslant\|f\|_{T_{q_{0}}^{p}}\|g\|_{T_{q_{1}}^{\infty}}\|h\|_{T_{q^{\prime}}^{p^{\prime}}}
$$

by (2.1) and Hölder's inequality. Thus by the duality for $T_{q^{\prime}}^{p^{\prime}}$ we get the inequality

$$
\begin{equation*}
\|f g\|_{T_{q}^{p}} \lesssim\|f\|_{T_{q_{0}}^{p}}\|g\|_{T_{q_{1}}^{\infty}} \tag{2.2}
\end{equation*}
$$

for $1<p$ and $1<q<\infty$. Since the inequality (2.2) is equivalent to

$$
\|f g\|_{T_{t q}^{t p}}^{t p} \lesssim\|f\|_{T_{t q_{0}}^{t p}}^{t p}\|g\|_{T_{t q_{1}}^{\infty}}
$$

for $0<t<\infty,(2.2)$ holds if $0<p, q_{0}, q_{1}$.
We will use the inequality (see [12])

$$
\begin{equation*}
\|f\|_{T_{\infty}^{p}} \lesssim\|f\|_{H^{p}}, \quad p>0 \tag{2.3}
\end{equation*}
$$

and (see e.g. [7] for $p<\infty$ and [3] for $p=\infty$)

$$
\begin{equation*}
\left\|r^{1 / 2} \partial f\right\|_{T_{2}^{p}} \lesssim\|f\|_{H^{p}}, \quad p>0 \tag{2.4}
\end{equation*}
$$

Moreover, we use that $|\partial f| \lesssim r^{-1 / 2}$ if $f \in H^{\infty}$.
There is an integral operator $K: C_{0, q+1}^{\infty}(\bar{D}) \rightarrow C_{0, q}(\bar{D}), q \geqslant 0$ (see [5]) such that $\bar{\partial} K u+K \bar{\partial} u=u, u \in C_{0, s}^{\infty}(\bar{D}), s \geqslant 1$,

$$
\begin{equation*}
\left\|r^{\tau} K u\right\|_{T_{1}^{p}} \lesssim\left\|r^{\tau+1 / 2} u\right\|_{T_{1}^{p}} \quad \text { and } \quad\|K u\|_{L^{p}(\partial D)} \lesssim\left\|r^{1 / 2} u\right\|_{T_{1}^{p}} \tag{2.5}
\end{equation*}
$$

if $\tau>0$ and $1 \leqslant p<\infty$. Furthermore,

$$
\begin{equation*}
\|K u\|_{L^{p}(\partial D)} \lesssim\left\|r^{1 / 2} u\right\|_{T_{2}^{p}}+\|r \partial u\|_{T_{1}^{p}} . \tag{2.6}
\end{equation*}
$$

To see that the inequality (2.5) follows from [5], note that by the definition of $W^{1-1 / p}$ in [1], $\|r u\|_{T_{1}^{p}}=\|u\|_{W^{1-1 / p}}$. By [4] the adjoint P of K satisfies

$$
\|P \psi\|_{L^{\infty}(D)} \lesssim\|\psi\|_{L^{\infty}(\partial D)} \quad \text { and } \quad\left\|r^{1 / 2} \mathcal{L} P \psi\right\|_{L^{2}(D)} \lesssim\|\psi\|_{L^{2}(\partial D)}
$$

(where \mathcal{L} is an arbitrary smooth (1,0)-vectorfield). The L^{2}-result is proven by means of a $T 1$-theorem of Christ and Journé. By [10] it now follows that

$$
\begin{equation*}
\|P \psi\|_{T_{\infty}^{p}} \lesssim\|\psi\|_{L^{p}(\partial D)}, \quad p>1 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|r \mathcal{L} P \psi\|_{T_{2}^{p}} \lesssim\|\psi\|_{L^{p}(\partial D)}, \quad p>1 . \tag{2.8}
\end{equation*}
$$

The inequality (2.6) follows from (2.7) and (2.8).
In Section 4 we use completed tensor products of locally convex Hausdorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex Hausdorff spaces. We denote by $L(E, F)$ the space of all continuous and linear maps from E to F. The topology π on $E \otimes F$ is defined as the finest locally convex topology such that the canonical bilinear map $E \times F \rightarrow E \otimes F$ is continuous. We denote by $E \otimes F$, the space $E \otimes F$ with the topology π and we denote the completion of $E \bigotimes_{\pi}^{\pi} F$ with $E \underset{\bigotimes_{\pi}}{\widehat{\otimes}} F$. There is another topology on $E \otimes F$, the topology ε; in case E is nuclear this topology coincides with the topology π and we therefore omit the index π in this case. The Fréchet space $\mathcal{E}\left(\mathbb{C}^{n}\right)$ is nuclear and we have the isomorphism $\mathcal{E}\left(\mathbb{C}^{n}, E\right) \cong \mathcal{E}\left(\mathbb{C}^{n}\right) \widehat{\otimes} E$.

3. PROPERTY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS WITH H^{∞}-SYMBOL ON H^{p}

First we need to define the sequence (1.1) and prove that there is a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus on each of the spaces B_{k}.

Define the norms $\|\cdot\|_{B_{k}}, k \geqslant 0$, by

$$
\begin{array}{ll}
\|u\|_{B_{0}}=\|u\|_{T_{\infty}^{p}}+\left\|r^{1 / 2} \mathrm{~d} u\right\|_{T_{2}^{p}}+\|r \partial \bar{\partial} u\|_{T_{1}^{p}} & \text { on } C^{\infty}(\bar{D}), \\
\|u\|_{B_{1}}=\left\|r^{1 / 2} u\right\|_{T_{2}^{p}}+\|r \mathrm{~d} u\|_{T_{1}^{p}} & \text { on } C_{0,1}^{\infty}(\bar{D}) \tag{3.2}
\end{array}
$$

and

$$
\begin{equation*}
\|u\|_{B_{k}}=\left\|r^{k / 2} u\right\|_{T_{1}^{p}}+\left\|r^{k / 2+1 / 2} \bar{\partial} u\right\|_{T_{1}^{p}} \quad \text { on } C_{0, k}^{\infty}(\bar{D}) \text { for } k \geqslant 2 \tag{3.3}
\end{equation*}
$$

Let B_{k} be the completion of $C_{0, k}^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_{k}}$. We also define B_{1}^{\prime} as the completion of $C_{0,1}^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_{1}^{\prime}}$, defined by

$$
\|u\|_{B_{1}^{\prime}}=\left\|r^{1 / 2} u\right\|_{T_{1}^{p}}+\|r \bar{\partial} u\|_{T_{1}^{p}} .
$$

The injection $i: H^{p} \rightarrow B_{0}$ is well defined and continuous by (2.3) and (2.4). That $\bar{\partial}: B_{k} \rightarrow B_{k+1}, k \geqslant 0$ is continuous follows immediately from the definitions. Thus we have defined a complex

$$
\begin{equation*}
0 \longrightarrow H^{p}(D) \xrightarrow{i} B_{0} \xrightarrow{\bar{\partial}} B_{1} \xrightarrow{\bar{\partial}} \cdots \xrightarrow{\bar{\partial}} B_{m} \longrightarrow 0 . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. Suppose that $g \in H^{\infty}(D)^{n}$. Then one can define $T_{g_{i}}: B_{k} \rightarrow B_{k}$ by $T_{g_{i}} u=g_{i} u, 1 \leqslant i \leqslant n$, for all $k \geqslant 0$. The tuple T_{g} on $B_{k}, k \geqslant 0$, has a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus and property $(\beta)_{\mathcal{E}}$.

Proof. That $T_{g_{i}}$ can be defined on B_{k} follows from the calculation below (let $\varphi(z)=z_{i}$ below). We begin with the case $k=0$. Suppose that $\varphi \in C^{\infty}\left(\mathbb{C}^{n}\right)$ and $u \in C^{\infty}(\bar{D})$. From (2.2) we have

$$
\begin{aligned}
\left\|r^{1 / 2} u \partial g\right\|_{T_{2}^{p}} & \lesssim\|u\|_{T_{\infty}^{p}}\left\|r^{1 / 2} \partial g\right\|_{T_{2}^{\infty}} \\
\|r|\mathrm{~d} u||\partial g|\|_{T_{1}^{p}} & \lesssim\left\|r^{1 / 2} \mathrm{~d} u\right\|_{T_{2}^{p}}\left\|r^{1 / 2} \partial g\right\|_{T_{2}^{\infty}}
\end{aligned}
$$

and

$$
\left\|r u|\partial g|^{2}\right\|_{T_{1}^{p}} \lesssim\|u\|_{T_{\infty}^{p}}\left\|r|\partial g|^{2}\right\|_{T_{1}^{\infty}}
$$

Since $\left\|r^{1 / 2} \partial g\right\|_{T_{2}^{\infty}}<\infty$ by the inequality (2.4) we thus get

$$
\begin{aligned}
& \|(\varphi \circ g) u\|_{B_{0}} \leqslant \sup _{z \in g(D)}|\varphi(z)|\|u\|_{B_{0}}+\left\|r^{1 / 2} d(\varphi \circ g) u\right\|_{T_{2}^{p}}+\|r \bar{\partial}(\varphi \circ g) \wedge \partial u\|_{T_{1}^{p}} \\
& +\|r \partial(\varphi \circ g) \wedge \bar{\partial} u\|_{T_{1}^{p}}+\|r \partial \bar{\partial}(\varphi \circ g) u\|_{T_{1}^{p}} \\
& \lesssim \sup _{z \in g(D)}\left(|\varphi(z)|+|D \varphi(z)|+\left|D^{2} \varphi(z)\right|\right)\|u\|_{B_{0}},
\end{aligned}
$$

where $D \varphi$ and $D^{2} \varphi$ denotes all derivates of φ of order 1 and 2 respectively. Note that $(\varphi \circ g) u \notin C^{\infty}(\bar{D})$ in general. Let $g_{l} \in C^{\infty}(\bar{D})^{n} \cap \mathcal{O}(D)^{n}$ be such that $g_{l} \rightarrow g$ in $H^{p}(D)^{n}$ with g_{l} uniformly bounded as $l \rightarrow \infty$ and suppose that u is fixed. We have the equalities

$$
d\left(\varphi \circ g_{l}-\varphi \circ g\right)=\sum_{i} \varphi_{i} \circ g_{l} \partial g_{l}^{i}-\varphi_{i} \circ g \partial g^{i}+\varphi_{\bar{i}} \circ g_{l} \overline{\partial g_{l}^{i}}-\varphi_{\bar{i}} \circ g \overline{\partial g^{i}}
$$

and

$$
\partial \bar{\partial}\left(\varphi \circ g_{l}-\varphi \circ g\right)=\sum_{i, j} \varphi_{\bar{i} j} \circ g_{l} \partial g_{l}^{j} \wedge \overline{\partial g_{l}^{i}}-\varphi_{\bar{i} j} \circ g \partial g^{j} \wedge \overline{\partial g^{i}}
$$

where the index in φ_{i} denotes partial derivate and the upper index in g_{l}^{i} and g^{i} denotes i th component. Hence we get

$$
\left|d\left(\varphi \circ g_{l}-\varphi \circ g\right)\right| \leqslant\left|D \varphi \circ g_{l}\right|\left|\partial g_{l}-\partial g\right|+\left|D \varphi \circ g_{l}-D \varphi \circ g\right||\partial g|
$$

and
$\left|\partial \bar{\partial}\left(\varphi \circ g_{l}-\varphi \circ g\right)\right| \leqslant\left|D^{2} \varphi \circ g_{l}\right|\left|\partial g_{l}-\partial g\right|\left(\left|\partial g_{l}\right|+|\partial g|\right)+\left|D^{2} \varphi \circ g_{l}-D^{2} \varphi \circ g\right||\partial g|^{2}$.
By (2.3) we have

$$
\begin{gathered}
\left\|\left(\varphi \circ g_{l}-\varphi \circ g\right) u\right\|_{T_{\infty}^{p}}+\left\|r^{1 / 2}\left(\varphi \circ g_{l}-\varphi \circ g\right) \mathrm{d} u\right\|_{T_{2}^{p}}\left\|r\left(\varphi \circ g_{l}-\varphi \circ g\right) \partial \bar{\partial} u\right\|_{T_{1}^{p}} \\
\quad \lesssim\left\|\varphi \circ g_{l}-\varphi \circ g\right\|_{T_{\infty}^{p}} \lesssim\left\|g_{l}-g\right\|_{T_{\infty}^{p}} \lesssim\left\|g_{l}-g\right\|_{H^{p}} .
\end{gathered}
$$

We also have that

$$
\begin{aligned}
& \left\|r^{1 / 2} d\left(\varphi \circ g_{l}-\varphi \circ g\right) u\right\|_{T_{2}^{p}}+\left\|r\left|d\left(\varphi \circ g_{l}-\varphi \circ g\right)\right||\mathrm{d} u|\right\|_{T_{1}^{p}} \\
& \quad \lesssim\left\|r^{1 / 2} d\left(\varphi \circ g_{l}-\varphi \circ g\right)\right\|_{T_{2}^{p}} \\
& \quad \lesssim\left\|r^{1 / 2}\left|D \varphi \circ g_{l}\right|\left|\partial g_{l}-\partial g\right|\right\|_{T_{2}^{p}}+\left\|r^{1 / 2}\left|D \varphi \circ g_{l}-D \varphi \circ g\right||\partial g|\right\|_{T_{2}^{p}} \lesssim\left\|g_{l}-g\right\|_{H^{p}}
\end{aligned}
$$

by (2.2),(2.3) and (2.4). Furthermore,

$$
\begin{aligned}
& \left\|r \partial \bar{\partial}\left(\varphi \circ g_{l}-\varphi \circ g\right) u\right\|_{T_{1}^{p}} \\
& \quad \lesssim\left\|r\left|D^{2} \varphi \circ g_{l}\right|\left|\partial g_{l}-\partial g\right|\left(\left|\partial g_{l}\right|+|\partial g|\right)\right\|_{T_{1}^{p}}+\left\|r\left|D^{2} \varphi \circ g_{l}-D^{2} \varphi \circ g\right||\partial g|^{2}\right\|_{T_{1}^{p}} \\
& \quad \lesssim\left\|g_{l}-g\right\|_{H^{p}}
\end{aligned}
$$

by (2.2),(2.3) and (2.4). Thus $\left\|\left(\varphi \circ g_{l}-\varphi \circ g\right) u\right\|_{B_{0}} \rightarrow 0$ as $l \rightarrow \infty$ and therefore we have that $(\varphi \circ g) u$ is in the completion of $C^{\infty}(\bar{D})$ with respect to the norm $\|\cdot\|_{B_{0}}$. We extend the map $u \mapsto(\varphi \circ g) u: C^{\infty}(\bar{D}) \rightarrow B_{0}$ to a continuous map $\varphi\left(T_{g}\right): B_{0} \rightarrow B_{0}$, bounded by a constant times $\sup _{z \in g(D)}\left(|\varphi(z)|+|D \varphi(z)|+\left|D^{2} \varphi(z)\right|\right)$.
Hence T_{g} on B_{0} has a continuous $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus.
Next we consider the case $k=1$. Suppose that $\varphi \in C^{\infty}\left(\mathbb{C}^{n}\right)$ and $u \in C_{0,1}^{\infty}(\bar{D})$. From (2.2) and (2.4) we have the inequality

$$
\|r|\partial g||u|\|_{T_{1}^{p}} \lesssim\left\|r^{1 / 2} \partial g\right\|_{T_{2}^{\infty}}\left\|r^{1 / 2} u\right\|_{T_{2}^{p}} \lesssim\left\|r^{1 / 2} u\right\|_{T_{2}^{p}} .
$$

Hence we get

$$
\begin{aligned}
\|(\varphi \circ g) u\|_{B_{1}} & \leqslant \sup _{z \in g(D)}|\varphi(z)|\|u\|_{B_{1}}+\|r \mathrm{~d}(\varphi \circ g) \wedge u\|_{T_{1}^{p}} \\
& \lesssim \sup _{z \in g(D)}(|\varphi(z)|+|D \varphi(z)|)\|u\|_{B_{1}} .
\end{aligned}
$$

As in the case $k=0$ we prove that $(\varphi \circ g) u$ is in the completion of $C_{0,1}^{\infty}(\bar{D})$. When we extend the map $u \mapsto(\varphi \circ g) u: C^{\infty}(\bar{D}) \rightarrow B_{1}$ by continuity to a map $\varphi\left(T_{g}\right): B_{1} \rightarrow B_{1}$ bounded by $\sup _{z \in g(D)}(|\varphi(z)|+|D \varphi(z)|)$ and hence we have proved that T_{g} on B_{1} has a $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus.

In case $k \geqslant 2$ we suppose that $\varphi \in C^{\infty}\left(\mathbb{C}^{n}\right)$ and $u \in C_{0, k}^{\infty}(\bar{D})$. Since $|\partial g| \lesssim r^{-1 / 2}$ we have

$$
\begin{aligned}
\|(\varphi \circ g) u\|_{B_{k}} & \leqslant \sup _{z \in g(D)}|\varphi(z)|\|u\|_{B_{k}}+\left\|r^{k / 2+1 / 2} \bar{\partial}(\varphi \circ g) \wedge u\right\|_{T_{1}^{p}} \\
& \lesssim \sup _{z \in g(D)}(|\varphi(z)|+|D \varphi(z)|)\|u\|_{B_{k}} .
\end{aligned}
$$

As in the case $k=0$ it follows that T_{g} on $B_{k}, k \geqslant 2$, has a $C^{\infty}\left(\mathbb{C}^{n}\right)$-functional calculus.

That each of the tuples T_{g} has property $(\beta)_{\mathcal{E}}$ now follows from Proposition 6.4.13 in [9]

We can extend the integral operator $K: C_{0, k+1}^{\infty}(\bar{D}) \rightarrow C_{0, k}(\bar{D}), k \geqslant 1$, to a continuous operator $K: B_{k+1} \rightarrow B_{k}, k \geqslant 2$, and a continuous operator $K: B_{2} \rightarrow B_{1}^{\prime}$. This because

$$
\begin{equation*}
\left\|r^{k / 2} K u\right\|_{T_{1}^{p}} \lesssim\left\|r^{k / 2+1 / 2} u\right\|_{T_{1}^{p}} \leqslant\|u\|_{B_{k+1}} \tag{3.5}
\end{equation*}
$$

and

$$
\left\|r^{k / 2+1 / 2} \bar{\partial} K u\right\|_{T_{1}^{p}}=\left\|r^{k / 2+1 / 2}(u-K \bar{\partial} u)\right\|_{T_{1}^{p}} \lesssim\|u\|_{B_{k+1}}
$$

for all $u \in C_{0, k+1}^{\infty}(\bar{D})$ by (2.5), (3.3) and (3.5). Also observe that $K u$ is in the completion of $C_{0, k}^{\infty}(\bar{D})$ under the norm $\|\cdot\|_{B_{k}}$ (or $\|\cdot\|_{B_{1}^{\prime}}$) by dominated convergence and the fact that one can find $f_{l} \in C_{0, k}^{\infty}(\bar{D})$ such that $f_{l} \rightarrow K u, \bar{\partial} f_{l} \rightarrow \bar{\partial} K u$ pointwise and $\left|f_{l}\right|,\left|\bar{\partial} f_{l}\right| \lesssim 1$ (as $K u, \bar{\partial} K u \in C(\bar{D})$). Approximation in B_{k+1} yields that $\bar{\partial} K u+K \bar{\partial} u=u$ for all $u \in B_{k+1}, k \geqslant 1$. Thus the complex (3.4) is exact in higher degrees.

Extend $K: C_{0,1}^{\infty}(\bar{D}) \rightarrow C(\partial D)$ to continuous maps $K: B_{1} \rightarrow L^{p}(\partial D)$ and $K: B_{1}^{\prime} \rightarrow L^{p}(\partial D)$, which is possible by (2.5) and (2.6). Define the (1,0)-vector field \mathcal{L} by the equation

$$
\mathcal{L}=\chi \sum|\partial r|^{-2} \frac{\partial r}{\partial \bar{z}_{k}} \frac{\partial}{\partial z_{k}}
$$

where χ is equal to 1 in a neighbourhood of ∂D and 0 on the set where $\partial r=0$. Suppose that $u \in C^{\infty}(\bar{D})$ and let $f=\bar{\partial} u$. By integration by parts we have

$$
\int_{\partial D} u h=\int_{D} f \wedge h=: V(f, h)
$$

and

$$
\int_{\partial D} u h=\int_{D} f \wedge h=\int_{D} \mathrm{O}(r) f \wedge h+\int_{D} r \mathcal{L}(f \wedge h)=: W(f, h)
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$. We extend V to elements f in B_{1}^{\prime} and W to elements in B_{1}. We say that the equation $\bar{\partial}_{\mathrm{b}} u=f+f^{\prime}$, where $u \in L^{p}(\partial D), f \in$ B_{1} and $f^{\prime} \in B_{1}^{\prime}$, holds if and only if

$$
\int_{\partial D} u h=W(f, h)+V\left(f^{\prime}, h\right)
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$.
Lemma 3.2. If $f \in B_{1}, f^{\prime} \in B_{1}^{\prime}$ and $\bar{\partial} f+\bar{\partial} f^{\prime}=0$ then $u=K f+K f^{\prime}$ solves the equation $\bar{\partial}_{\mathrm{b}} u=f+f^{\prime}$. Moreover, if $\varphi \in H^{\infty}(D)$ then $\bar{\partial}_{\mathrm{b}}(\varphi u)=T_{\varphi} f+T_{\varphi} f^{\prime}$.

Proof. Suppose that $f, f^{\prime} \in C_{0,1}^{\infty}(\bar{D})$. Since $\bar{\partial} K\left(f+f^{\prime}\right)+K \bar{\partial}\left(f+f^{\prime}\right)=f+f^{\prime}$ we have

$$
\begin{equation*}
\int_{\partial D}\left(K f+K f^{\prime}\right) h=W(f, h)+V\left(f^{\prime}, h\right)-\int_{D} K\left(\bar{\partial} f+\bar{\partial} f^{\prime}\right) \wedge h \tag{3.6}
\end{equation*}
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$. For fixed h, we can estimate each term of the above equality by a constant times $\|f\|_{B_{1}}+\left\|f^{\prime}\right\|_{B_{1}^{\prime}}$. Thus approximation in B_{1} and B_{1}^{\prime} yields that if $f \in B_{1}$ and $f^{\prime} \in B_{1}^{\prime}$ then

$$
\int_{\partial D} u h=W(f, h)+V\left(f^{\prime}, h\right)-\int_{D} K\left(\bar{\partial} f+\bar{\partial} f^{\prime}\right) \wedge h
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$. Hence the equation $\bar{\partial}_{\mathrm{b}} u=f+f^{\prime}$ holds since we also have that $\bar{\partial} f+\bar{\partial} f^{\prime}=0$. Suppose that $\varphi_{k} \in C^{\infty}(\bar{D}) \cap \mathcal{O}(D)$ are chosen such that $\varphi_{k} \rightarrow \varphi$ in $H^{1}(D)$. Replace h in (3.6) by $\varphi_{k} h$ and approximate to get

$$
\int_{\partial D} \varphi\left(K f+K f^{\prime}\right) h=W(f, h \varphi)+V\left(f^{\prime}, h \varphi\right)-\int_{D} \varphi K\left(\bar{\partial} f+\bar{\partial} f^{\prime}\right) \wedge h
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$, if $f, f^{\prime} \in C_{0,1}^{\infty}(\bar{D})$. We estimate the terms to the right,

$$
\begin{aligned}
|W(f, h \varphi)| & \lesssim \int_{D} r^{3 / 2}|f||\varphi| r^{-1}+\int_{D} r|\partial f||\varphi| r^{-1}+\int_{D} r|f||\partial \varphi| r^{-1} \\
& \lesssim\|f\|_{B_{1}}\|\varphi\|_{H^{p^{\prime}}}, \\
\left|V\left(f^{\prime}, h \varphi\right)\right| & \lesssim \int_{D} r^{1 / 2}\left|f^{\prime}\right||\varphi| r^{-1} \lesssim\left\|f^{\prime}\right\|_{B_{1}^{\prime}}\|\varphi\|_{H^{p^{\prime}}}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\int_{D} \varphi K\left(\bar{\partial} f+\bar{\partial} f^{\prime}\right) \wedge h\right| & \lesssim\left\|r^{1 / 2} K\left(\bar{\partial} f+\bar{\partial} f^{\prime}\right)\right\|_{T_{1}^{p}}\|\varphi\|_{T_{\infty}^{p^{\prime}}} \\
& \lesssim\left\|\bar{\partial} f+\bar{\partial} f^{\prime}\right\|_{B_{2}}\|\varphi\|_{H^{p^{\prime}}} \lesssim\left(\|f\|_{B_{1}}+\left\|f^{\prime}\right\|_{B_{1}^{\prime}}\right)\|\varphi\|_{H^{p^{\prime}}}
\end{aligned}
$$

for fixed h by (2.1), (2.3) and (2.4). Hence approximation in B_{1} and B_{1}^{\prime} yields that

$$
\int_{\partial D} u \varphi h=W\left(T_{\varphi} f, h\right)+V\left(T_{\varphi} f^{\prime}, h\right)
$$

for all $f \in B_{1}, f^{\prime} \in B_{1}^{\prime}$ such that $\bar{\partial} f+\bar{\partial} f^{\prime}=0$ and $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$.

Next we prove that functions in B_{0} has boundary values in $L^{p}(\partial D)$.
Lemma 3.3. There is a continuous and linear operator $u \mapsto u^{*}$ from B_{0} to $L^{p}(\partial D)$ such that u^{*} is the restriction of u to ∂D if $u \in C^{\infty}(\bar{D})$ and $\left(T_{f} u\right)^{*}=f^{*} u^{*}$ if $f \in H^{\infty}(D)$.

Proof. Suppose that $u \in C^{\infty}(\bar{D})$. Then $\|u\|_{L^{p}(\partial D)} \leqslant\|u\|_{B_{0}}$ and hence the restriction operator can be extended to a continuous operator from B_{0} to $L^{p}(\partial D)$. Suppose that $u \in B_{0}$ and $f \in H^{\infty}(D)$. Let $u_{l} \in C^{\infty}(\bar{D})$ and $f_{k} \in C^{\infty}(\bar{D}) \cap \mathcal{O}(D)$
be such that $u_{l} \rightarrow u$ in B_{0} and $f_{k} \rightarrow f$ in $H^{p}(D)$ with f_{k} uniformily bounded. Then

$$
\begin{aligned}
& \left\|f^{*} u^{*}-\left(T_{f} u\right)^{*}\right\|_{L^{p}(\partial D)} \\
& \qquad \begin{aligned}
\lesssim\left\|f^{*} u^{*}-f^{*} u_{l}^{*}\right\|_{L^{p}(\partial D)} & +\left\|f^{*} u_{l}^{*}-f_{k}^{*} u_{l}^{*}\right\|_{L^{p}(\partial D)}+\left\|\left(f_{k} u_{l}\right)^{*}-\left(f u_{l}\right)^{*}\right\|_{L^{p}(\partial D)} \\
& +\left\|\left(f u_{l}\right)^{*}-\left(T_{f} u\right)^{*}\right\|_{L^{p}(\partial D)} \rightarrow 0
\end{aligned}
\end{aligned}
$$

if one first let $k \rightarrow \infty$ and then $l \rightarrow \infty$.
Note that if $u \in B_{0}$ then

$$
\begin{equation*}
\int_{\partial D} u^{*} h=W(\bar{\partial} u, h) \tag{3.7}
\end{equation*}
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$ by approximation in B_{0} and Lemma 3.3.
Proof of Theorem 1.1. We will prove that the complex $K_{\bullet}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)\right)$ has vanishing homology groups of positive order and that $\sum_{i}\left(z_{i}-T_{g_{i}}\right) \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)$ is closed in $\mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)$.

Suppose that $u^{k} \in K_{1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)\right)$ and $\delta_{z-g} u^{k} \rightarrow u_{0}$ in $\mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)$. By Lemma 3.1 there is a $u_{1} \in K_{1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{0}\right)\right)$ such that i $u_{0}=\delta_{z-T_{g}} u_{1}$. Again by Lemma 3.1 we can recursively find $u_{i} \in K_{i}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{i-1}\right)\right)$ such that $\delta_{z-T_{g}} u_{i+1}=\bar{\partial} u_{i}$ for $i \geqslant 1$. Then we have that $\bar{\partial} u_{m+1}=0$. Define $v_{m+1} \in$ $K_{m+1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{m-2}\right)\right)$ by $v_{m+1}=K u_{m+1}$. Recursively define $v_{i}, i \geqslant 2$, by $v_{i}=K u_{i}-K \delta_{z-T_{g}} v_{i+1}$. Thus $v_{i} \in K_{i}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{i-2}\right)\right)$ if $i \geqslant 4, v_{3} \in$ $\Lambda^{3} \mathcal{E}\left(\mathbb{C}^{n}, B_{1}^{\prime}\right)$ and the equation $\bar{\partial} v_{i}=u_{i}-\delta_{z-T_{g}} v_{i+1}$ holds for $i \geqslant 3$. Furthermore $v_{2} \in \Lambda^{2} \mathcal{E}\left(\mathbb{C}^{n}, L^{p}(\partial D)\right)$ satisfies the equation $\bar{\partial}_{\mathrm{b}} v_{2}=u_{2}-\delta_{z-T_{g}} v_{3}$ by Lemma 3.2.

Let $u_{1}^{\prime}=u_{1}^{*}-\delta_{z-g^{*}} v_{2}$. By Lemma 3.2 we have that $\bar{\partial}_{\mathrm{b}} \delta_{z-g^{*}} v_{2}=\delta_{z-T_{g}} u_{2}$ and thus $\int_{\partial D} \delta_{z-g^{*}} v_{2} h=W\left(\delta_{z-T_{g}} u_{2}, h\right)$ for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$. Since by equation (3.7) $\int_{\partial D} u_{1}^{*} h=W\left(\bar{\partial} u_{1}, h\right)$ we have proved that

$$
\int_{\partial D} u_{1}^{\prime} h=0
$$

for all $h \in C_{m, m-1}^{\infty}(\bar{D})$ such that $\bar{\partial} h=0$. Thus $U_{1}^{\prime} \in K\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)\right)$, where U_{1}^{\prime} is the unique holomorphic extension of u_{1}^{\prime}. Since $u_{0}=\delta_{z-T_{g}} U_{1}^{\prime}$ by Lemma 3.3 we have proved that $\sum_{i}\left(z_{i}-T_{g_{i}}\right) \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)$ is closed in $\mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)$.

Suppose that $u_{k} \in K_{k}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{p}\right)\right)$ is $\delta_{z-T_{g}}$-closed. Then there is a $u_{k+1} \in K_{k+1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{0}\right)\right)$ such that $u_{k}=\delta_{z-T_{g}} u_{k+1}$. Let u_{i+1} solve the equation $\delta_{z-T_{g}} u_{i+1}=\bar{\partial} u_{i}$ with $u_{i+1} \in K_{i+1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{i-k}\right)\right)$. Then we have that $\bar{\partial} u_{m+k+1}=0$. Let $v_{m+k+1}=K u_{m+k+1}$ and $v_{i}=K u_{i}-K \delta_{z-T_{g}} v_{i+1}$. Thus $\bar{\partial} v_{i}=u_{i}-\delta_{z-T_{g}} v_{i+1}$ and $\bar{\partial}_{\mathrm{b}} v_{k+2}=u_{k+2}-\delta_{z-T_{g}} v_{k+3}$ since $\bar{\partial}\left(u_{i}-\delta_{z-T g} v_{i+1}\right)=0$. Define u_{k+1}^{\prime} by the equation $u_{k+1}^{\prime}=u_{k+1}^{*}-\delta_{z-T_{g}} v_{k+2}$. As in the case above we see that U_{k+1}^{\prime} is a solution of the equation $u_{k}=\delta_{z-T_{g}} U_{k+1}^{\prime}$, and hence the theorem is proved.

We now prove the analogue of Theorem 1.1 with the Hardy space replaced by the Bergman space. In the case of when g has bounded derivate this is proved in Theorem 8.1.5 in [9].

Corollary 3.4. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^{m} with C^{∞}-boundary and that $g \in H^{\infty}(D)^{n}$. Then the tuple T_{g} of Toeplitz operators on the Bergman space $\mathcal{O} L^{p}(D), 1 \leqslant p<\infty$, satisfies property $(\beta)_{\mathcal{E}}$ and Bishop's property (β).

Proof. Let ρ be a strictly plurisubharmonic defining function for D and let $\widetilde{D}=\left\{(v, w) \in \mathbb{C}^{m+1}: \rho(v)+|w|^{2}<0\right\}$. Define the operators $P: H^{p}(\widetilde{D}) \rightarrow$ $\mathcal{O} L^{p}(D)$ and $I: \mathcal{O} L^{p}(D) \rightarrow H^{p}(\widetilde{D})$ by $P f(v)=f(v, 0)$ and $I f(v, w)=f(v)$ respectively. The operator P is continuous by the Carleson-Hörmander inequality since the measure with mass uniformly distributed on $\widetilde{D} \cap\{w=0\}$ is a Carleson measure. The operator I is continuous since

$$
\begin{aligned}
\int_{\partial \widetilde{D}}|f(v)|^{p} \sigma(v, w) & \sim \lim _{\varepsilon \rightarrow 0} \varepsilon \int_{\widetilde{D}}\left(-\rho(v)-|w|^{2}\right)^{\varepsilon-1}|f(v)|^{p} \\
& \sim \lim _{\varepsilon \rightarrow 0} \int_{D}(-\rho(v))^{\varepsilon}|f(v)|^{p} \\
& =\int_{D}|f(v)|^{p}
\end{aligned}
$$

where σ is the surface measure. Let $\widetilde{g}(v, w)=g(v)$. Then $T_{\tilde{g}}$ has property $(\beta)_{\mathcal{E}}$ and since $P I=\mathrm{id}, T_{\tilde{g}} I=I T_{g}$ and $P T_{\tilde{g}}=T_{g} P$ it is easy to see that T_{g} has property $(\beta)_{\mathcal{E}}$.

4. PROPERTY $(\beta) \mathcal{E}$ FOR TOEPLITZ OPERATORS
 WITH H^{∞}-SYMBOL ON UNIT DISC

In this section we will use the Euclidean norm. Let $r(w)=1-|w|^{2}$ and let D be the unit disc in \mathbb{C}. Let B_{0} be the Banach space of all functions $u \in L^{\infty}(D)$ such that

$$
\|u\|_{B_{0}}=\|u\|_{L^{\infty}(D)}+\|r \mathrm{~d} u\|_{L^{\infty}(D)}+\|r \mathrm{~d} u\|_{T_{2}^{\infty}}+\left\|r^{2} \partial \bar{\partial} u\right\|_{T_{1}^{\infty}}<\infty .
$$

Since $\|r \mathrm{~d} u\|_{L^{\infty}(D)}<\infty, B_{0}$ consists of continuous functions on D. We define B_{1} as the Banach space of all locally integrable (0,1)-forms u such that

$$
\|u\|_{B_{1}}=\|r u\|_{L^{\infty}(D)}+\|r u\|_{T_{2}^{\infty}}+\left\|r^{2} \partial u\right\|_{T_{1}^{\infty}}<\infty .
$$

Suppose that $u \in C^{\infty}(\bar{D})$ and $h \in C^{\infty}(\partial D)$. Then the Wolff trick (see the proof of Theorem 1.1) yields

$$
\int_{\partial D} u h \mathrm{~d} w=\int_{D} \bar{\partial}(u P h \mathrm{~d} w)=\int_{D} \mathrm{O}(r) \bar{\partial}(u P h \mathrm{~d} w)+\int_{D} r \mathcal{L} \bar{\partial}(u P h \mathrm{~d} w):=S(u, h),
$$

where $P h$ is the Poisson integral of h.
As in Section 3 we need to know that functions in B_{0} has well defined boundary values.

Lemma 4.1. If $u \in B_{0}$ then there is a $u^{*} \in L^{\infty}(\partial D)$ such that

$$
\int_{\partial D} u^{*} h \mathrm{~d} w=S(u, h)
$$

for all $h \in L^{2}(\partial D)$ and $(f u)^{*}=f^{*} u^{*}$ if $f \in H^{\infty}(D)$.
Proof. We have the estimate $|S(u, h)| \lesssim\|u\|_{B_{0}}\|h\|_{L^{2}(\partial D)}$. Hence there is a function $u^{*} \in L^{2}(\partial D)$ such that $\int_{\partial D} u^{*} h \mathrm{~d} w=S(u, h)$ for all $h \in L^{2}(\partial D)$. Suppose that $h \in C^{\infty}(\partial D)$. Let u_{t} be the dilation $u_{t}(w)=u(t w)$. Since

$$
\left|S\left(u_{t}-u, h\right)\right| \lesssim \int_{D}\left|u_{t}-u\right|+\int_{D} r\left|\mathrm{~d}\left(u_{t}-u\right)\right|^{2}+\int_{D} r\left|\partial \bar{\partial}\left(u_{t}-u\right)\right|
$$

for fixed h we have that $\int_{\partial D} u_{t}^{*} h \mathrm{~d} w \rightarrow \int_{\partial D} u^{*} h \mathrm{~d} w$ as $t \nearrow 1$. Therefore $\left\|u^{*}\right\|_{L^{\infty}(\partial D)} \leqslant$ $\|u\|_{B_{0}}$ since u_{t}^{*} is uniformly bounded by $\|u\|_{L^{\infty}(D)}$. Let $f_{s}(w)=f(s w)$ be the dilation of f. Then we have that

$$
\int_{\partial D} f_{s}^{*} u_{t}^{*} h \mathrm{~d} w=\int_{\partial D}\left(f_{s}^{*}-f^{*}\right) u_{t}^{*} h \mathrm{~d} w+\int_{\partial D} f^{*} u_{t}^{*} h \mathrm{~d} w \rightarrow \int_{\partial D} f^{*} u^{*} h \mathrm{~d} w
$$

as $s, t \nearrow 1$, by dominated convergence. Since we also have $\int_{\partial D}(f u)_{t}^{*} h \mathrm{~d} w \rightarrow$ $\int_{\partial D}(f u)^{*} h \mathrm{~d} w$ as $t \nearrow 1$ we see that $(f u)^{*}=f^{*} u^{*}$.

Let

$$
W(u, h)=\int_{D} \mathrm{O}(r) u \wedge h \mathrm{~d} w+\int_{D} r \mathcal{L}(u \wedge h \mathrm{~d} w)
$$

for $u \in B_{1}$ and $h \in H^{1}$, where $\mathrm{O}(r)$ is the same $\mathrm{O}(r)$ as in the definition of $S(u, h)$.
Lemma 4.2. If $f \in \mathcal{E}\left(\mathbb{C}^{n}, B_{1}\right)$ then there is a $u \in \mathcal{E}\left(\mathbb{C}^{n}, L^{\infty}(\partial D)\right)$ such that $\bar{\partial}_{\mathrm{b}} u=f$, that is

$$
\int_{\partial D} u(z) h \mathrm{~d} w=W(f(z), h)
$$

for all $h \in H^{1}(D)$ and $z \in \mathbb{C}^{n}$.
Proof. Consider the bilinear map $W: B_{1} \times H^{1} \rightarrow \mathbb{C}$. This map is continuous since we have the estimate $|W(f, h)| \lesssim\|f\|_{B_{1}}\|h\|_{H^{1}}$, which is used in Wolff's proof of the corona theorem. By the universal property for π-tensor products (see 41.3 (1) in [13]) there is a corresponding linear and continuous map W_{1} from $B_{1} \widehat{\bigotimes_{\pi}} H^{1}$ to \mathbb{C}. Since

$$
\mathcal{E}\left(\mathbb{C}^{n}, B_{1}\right) \cong \mathcal{E}\left(\mathbb{C}^{n}\right) \widehat{\otimes} B_{1} \cong L\left(\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right), B_{1}\right)
$$

by Appendix 1 in $[9], f \otimes$ id is a continuous map $\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} H^{1} \rightarrow B_{1} \widehat{\bigotimes_{\pi}} H^{1}$. Compose with the map W_{1} to get a continuous functional on $\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} H^{1}$. The
injection $\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} H^{1} \rightarrow \mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} L^{1}(\partial D)$ is a topological monomorphism, and hence we can extend with Hahn-Banach Theorem to a continuous functional on $\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} L^{1}(\partial D)$. Since the dual space of $\mathcal{E}^{\prime}\left(\mathbb{C}^{n}\right) \widehat{\otimes} L^{1}(\partial D)$ is isomorphic to the space $\mathcal{E}\left(\mathbb{C}^{n}, L^{\infty}(\partial D)\right)$ by Theorem A1.12 in [9] we have a $u \in \mathcal{E}\left(\mathbb{C}^{n}, L^{\infty}(\partial D)\right)$. If $h \in H^{1}$ then

$$
\int u(z) h \mathrm{~d} w=W(f(z), h)
$$

and thus u is a solution to the equation $\bar{\partial}_{\mathrm{b}} u=f$ in the sense of this lemma.
THEOREM 4.3. Let D be the unit disc in \mathbb{C} and suppose that $g \in H^{\infty}(D)^{n}$. Then the tuple T_{g} of Toeplitz operators on $H^{\infty}(D)$ satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β).

Proof. The tuple T_{g} considered as operators on B_{0} or B_{1} has a $C^{\infty}\left(\mathbb{C}^{n}\right)$ functional calculus (the proof of this is similar to Lemma 3.1). Hence they satisfies property $(\beta)_{\mathcal{E}}$ by Proposition 6.4.13 in [9]. Consider the well-defined complex

$$
\begin{equation*}
0 \longrightarrow H^{\infty} \longrightarrow B_{0} \xrightarrow{\bar{\partial}} B_{1} \longrightarrow 0 \tag{4.1}
\end{equation*}
$$

Suppose that $u^{k} \in \sum_{i}\left(z_{i}-T_{g_{i}}\right) \mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)$ and $u^{k} \rightarrow u_{0}$ in $\mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)$. As T_{g} on B_{0} has property $(\beta)_{\mathcal{E}}$ there is a $u_{1} \in K_{1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{0}\right)\right)$ such that $u_{0}=\delta_{z-T_{g}} u_{1}$. Since T_{g} on B_{1} has property $(\beta)_{\mathcal{E}}$, there is a $u_{2} \in K_{2}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{1}\right)\right)$ such that $\delta_{z-T_{g}} u_{2}=\bar{\partial} u_{1}$. By Lemma 4.2 there is a $v \in \Lambda^{2} \mathcal{E}\left(\mathbb{C}^{n}, L^{\infty}(\partial D)\right)$ such that $\int_{\partial D} v h \mathrm{~d} w=W\left(u_{2}, h\right)$ for all $h \in H^{1}(D)$. Therefore we have that

$$
\int_{\partial D} \delta_{z-g^{*}} v h \mathrm{~d} w=W\left(\delta_{z-T_{g}} u_{2}, h\right)
$$

for all $h \in H^{1}(D)$. Define $u_{1}^{\prime} \in K_{1}\left(z-g^{*}, \mathcal{E}\left(\mathbb{C}^{n}, L^{\infty}(\partial D)\right)\right)$ by the equation $u_{1}^{\prime}=u_{1}^{*}-\delta_{z-g^{*}} v$. Then $\int_{\partial D} u_{1}^{\prime} h \mathrm{~d} w=0$ for all $h \in H^{1}$ since

$$
\int_{\partial D} u_{1}^{*} h \mathrm{~d} w=S\left(u_{1}, h\right)=W\left(\bar{\partial} u_{1}, h\right)
$$

by Lemma 4.1. Thus $U_{1}^{\prime} \in K_{1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)\right)$, where U_{1}^{\prime} is the holomorphic extension. Since $u_{0}=\delta_{z-T_{g}} U_{1}^{\prime}$ by Lemma 4.1 we have proved that $\delta_{z-T_{g}} K_{1}(z-$ $\left.g, \mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)\right)$ is closed.

Suppose that $u_{k} \in K_{k}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)\right)$ is $\delta_{z-T_{g}}$-closed. Then there is a solution $u_{k+1} \in K_{k+1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, B_{0}\right)\right)$ to the equation $\delta_{z-T_{g}} u_{k+1}=u_{k}$ since T_{g} on B_{0} has property $(\beta)_{\mathcal{E}}$. Continuing in exactly the same way as above we see that we can replace u_{k+1} with $U_{k+1}^{\prime} \in K_{k+1}\left(z-T_{g}, \mathcal{E}\left(\mathbb{C}^{n}, H^{\infty}\right)\right)$ such that $\delta_{z-T_{g}} U_{k+1}^{\prime}=u_{k}$. Thus the theorem is proved.

Acknowledgements. I would like to thank Mats Andersson, Jörg Eschmeier, Mihai Putinar and Roland Wolff for valuble discussions and comments on this paper.

REFERENCES

1. E. Amar, A. Bonami, Mesures de Carleson d'ordre α et solutions au bord de l'équation $\bar{\partial}$, Bull. Soc. Math. France 107(1979), 23-48.
2. M. Andersson, A division problem for $\bar{\partial}_{\mathrm{b}}$-closed forms, J. Anal. Math. 68(1996), 39-58.
3. M. Andersson, H. Carlsson, Wolff-type estimates for $\bar{\partial}_{\mathrm{b}}$ and the H^{p}-corona problem in strictly pseudoconvex domains, Ark. Mat. 32(1994), 255-276.
4. M. Andersson, H. Carlsson, H^{p}-estimates of holomorphic division formulas, $P a$ cific J. Math. 173(1996), 307-335.
5. M. Andersson, H. Carlsson, Estimates of the solutions of the H^{p} and BMOA corona problem, Math. Ann. 316(2000), 83-102.
6. P. Ahern, B. Bruna, C. Cascante, H^{p}-theory for generalized M-harmonic functions in the unit ball, Indiana Univ. Math. J., 45(1996), 103-135.
7. W. Cohn, Weighted Bergman projections and tangential area integrals, Studia Math. 106(1993), 59-76.
8. R.R. Coifman, Y. Meyer, E.M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62(1985), 304-335.
9. J. Eschmeier, M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr., vol. 10, Oxford Univ. Press, Clarendon Press, Oxford 1996.
10. E. Harboure, J.L. Torrea, B.E. Viviani, A vector-valued approach to tent space, J. Anal. Math. 56(1991), 125-140.
11. L. HÖrmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73(1967), 943-949.
12. L. Hörmander, L^{p}-estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78.
13. G. KÖтне, Topological Vector Spaces. II, Springer-Verlag, 1979.
14. M. Putinar, R. Wolff, A natural localization of Hardy spaces in several complex variables, Ann. Polon. Math. 66(1997), 183-201.
15. E.L. Stout, H^{p}-functions on strictly pseudoconvex domains, Amer. J. Math. 98 (1976), 821-852.
16. R. Wolff, Spectral theory on Hardy spaces in several complex variables, Ph.D. Thesis, 1996.
17. R. Wolff, Quasi-coherence of Hardy spaces in several complex variables, Integral Equation Operator Theory 38(2000), 120-127.

SEBASTIAN SANDBERG
Department of Mathematics
Chalmers University of Technology and University of Göteborg
SE-412 96 Göteborg SWEDEN
E-mail: sebsand@math.chalmers.se

