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Abstract. Suppose that g is a tuple of bounded holomorphic functions on
a strictly pseudoconvex domain D in Cm with smooth boundary. Viewed
as a tuple of operators on the Hardy space Hp(D), 1 6 p < ∞, g is shown
to have property (β)E and therefore g possess Bishop’s property (β). In the
case m = 1 it is proved that the same result also holds when p =∞.
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1. INTRODUCTION

Suppose that X is a Banach space and that a = (a1, . . . , an) is a commuting tuple
of bounded linear operators on X. Let E be one of spaces X, E(Cn, X) or O(U,X),
where U ⊂ Cn. Denote by K•(z − a,E) the Koszul complex

0 −→ ΛnE
δz−a−→ Λn−1E

δz−a−→ · · · δz−a−→ Λ0E −→ 0,

with boundary map

δz−a(fsI) = 2πi
p∑

k=1

(−1)k−1(zik
− aik

)fsi1 ∧ · · · ∧ ŝik
∧ · · · ∧ sip

,

where I = (i1, . . . , ip) and p is an integer. Let H•(z − a,E) be the corresponding
homology groups.

The Taylor spectrum of a, σ(a), is defined as the set of all z ∈ Cn such
that K•(z − a,X) is not exact. If for all Stein open sets U in Cn the natural
quotient topology of H0(z − a,O(U,X)) is Hausdorff and Hp(z − a,O(U,X)) = 0
for all p > 0, then a is said to have Bishop’s property (β). It has property
(β)E if the natural quotient topology of H0(z − a, E(Cn, X)) is Hausdorff and if
Hp(z − a, E(Cn, X)) = 0 for all p > 0.
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By Theorem 6.2.4 in [9], the tuple a has Bishop’s property (β) if and only
if there exists a decomposable resolution, that is, if and only if there are Banach
spaces Xi and decomposable tuples (see [9] for the definition) of operators ai on
Xi such that

0 −→ X
d−→ X0

d−→ · · · d−→ Xr −→ 0

is exact, da = a0d and dai = ai+1d. Property (β)E is equivalent to the existence of
a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar
tuples (that is tuples which admit a continuous C∞(Cn)-functional calculus), see
Theorem 6.4.15 in [9]. Property (β)E implies Bishop’s property (β), see [9].

Suppose thatD is a strictly pseudoconvex domain in Cm with smooth bound-
ary. We consider the tuple Tg = (Tg1 , . . . , Tgn

), gk ∈ H∞(D), of operators on
Hp(D) defined by Tgk

f = gkf , f ∈ Hp(D). The main theorem of this paper is the
following.

Theorem 1.1. Suppose that D is a bounded strictly pseudoconvex domain
in Cm with C∞-boundary and that g ∈ H∞(D)n. Then the tuple Tg of Toeplitz op-
erators on Hp(D), 1 6 p <∞, satisfies property (β)E , and thus Bishop’s property
(β).

In case g has bounded derivative this theorem has previously been proved in
[14], [16] and [17]. In case D is the unit disc in C, Theorem 1.1 also holds when
p = ∞; this is proved in Section 4. As a corollary to Theorem 1.1 we have that Tg

on the Bergman space OLp(D) has property (β)E , see Corollary 3.4.
Let us recall how one can prove that Tg on the Bergman space OL2(D) has

property (β)E under the extra assumption that g has bounded derivative. Define
the Banach spaces Bk as the spaces of locally integrable (0, k)-forms u such that

‖u‖Bk
:= ‖u‖L2(D) + ‖∂u‖L2(D) <∞.

Since g has bounded derivate we have the inequality

‖(ϕ ◦ g)u‖Bk
. sup

z∈g(D)

(|ϕ(z)|+ |∂ϕ(z)|)‖u‖Bk

for all ϕ ∈ C∞(Cn). Hence ϕ 7→ Tϕ◦g is a continuous C∞(Cn)-functional calculus,
where Tϕ◦g denotes multiplication by ϕ ◦ g on Bk. Since we have the resolution

0 −→ OL2(D) → B0
∂−→ B1

∂−→ · · · ∂−→ Bm −→ 0

by Hörmander’s L2-estimate of the ∂ equation, the tuple Tg on OL2(D) has prop-
erty (β)E by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex

(1.1) 0 −→ Hp(D) i−→ B0
∂−→ B1

∂−→ · · · ∂−→ Bm −→ 0,

where Bk are Banach spaces of (0, k)-forms on D. The spaces Bk are defined in
terms of tent norms. We prove that ϕ 7→ Tϕ◦g is a continuous C∞(Cn)-functional
calculus, where Tϕ◦g denotes multiplication by ϕ ◦ g on Bk. If the complex (1.1)
were exact the proof of Theorem 1.1 would be finished. As we can solve the ∂-
equation with appropiate estimates we will be able to prove that Tg on Hp has
property (β)E anyway. More precisely (1.1) is exact at Bk, k > 3. If f ∈ B2 and
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∂f = 0 then there is a function u in another Banach space B′
1 such that ∂u = f .

Mutiplication by g is a bounded operator on B′
1. If f ∈ B1 and f ′ ∈ B′

1 such that
∂f + ∂f ′ = 0 then there is a solution u ∈ Lp(∂D) to the equation ∂bu = f + f ′.

The construction of the complex (1.1) in the case p < ∞ is inspired by the
construction in [5] and in the case p = ∞ and m = 1 it is inspired by Tom Wolff’s
proof of the corona theorem. Let us recall the proof of the Hp-corona theorem
in the unit disc of C. Suppose that g = (g1, . . . , gn) ∈ H∞(D)n, where D is the
unit disc in C, and that 0 /∈ g(D). Consider the complex (1.1); the definitions of
the Bk-spaces can be found in the beginning of Section 3 and Section 4. Suppose
that f ∈ Hp(D). Then the equation δgu1 = f has a solution in K1(g,B0), namely
u1 =

∑
k

gkfsk/|g|2. Hence δg∂u1 = 0 as δg and ∂ anticommute, and we can solve

the equation δgu2 = ∂u1 by defining u2 ∈ K2(g,B1) as u1 ∧∂u1. Since u2 satisfies
the condition

‖(1− |z|)u2‖T p
2

+ ‖(1− |z|)2∂u2‖T p
1
<∞,

by a Wolff type estimate there is a solution v in K2(g, Lp(∂D)) to the equation
∂bv = u2 (here T p

2 and T p
1 denote certain tent spaces). Let u′1 = u∗1 − δgv ∈

K1(g, Lp(∂D)), where u∗1 is the boundary values of u1. Since ∂bu
′
1 = 0 there is a

holomorphic extension U ′
1 of u′1 to D which satisfies the equation δgU ′

1 = f .
The above proof also yields that σ(Tg) = g(D); the exactness of higher order

in the Koszul complex follows by similar resoning. That σ(Tg) = g(D) is proved
in [5] for the case D strictly pseudoconvex and p < ∞. One main difference of
the proof of that Tg has property (β)E and the proof of that σ(Tg) = g(D) is the
following. As a substitution of the explicit choices of u1 and u2 one uses the fact
that Tg considered as an operator on Bk has property (β)E , which in turn follows
from the fact that Tg on Bk has a C∞(Cn)-functional calculus.

2. PRELIMIARIES

Suppose that D is a bounded strictly pseudoconvex domain in Cm with C∞-
boundary given by a strictly plurisubharmonic defining function ρ. Let r = −ρ.
All norms below are with respect to the metric Ω = ri∂∂ log(1/r), and we have

|f |2 ∼ r2|f |2β + r|f ∧ ∂r|2β + r|f ∧ ∂r|2β + |f ∧ ∂r ∧ ∂r|2β ,

where β = i∂∂r, which is equivalent to the Euclidean metric.
The Hardy space Hp is the Banach space of all holomorphic functions f on

D such that
‖f‖Hp = sup

ε>0

∫
r(z)=ε

|f(z)|p dσ(z) <∞,

where σ is the surface measure. It is wellknown that a function u in Lp(∂D) is the
boundary value of a function U inHp if and only if

∫
∂D

uh = 0 for all h ∈ C∞
n,n−1(D)

such that ∂h = 0.
Let d( · , · ) be the Korányi pseudometric on ∂D and let z′ be the point on

∂D closest to z ∈ Dε, where Dε is a small enough neighbourhood of ∂D in D. For
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a point ζ on the boundary let Aζ = {z ∈ Dε : d(z′, ζ) < r(z)}∪(D\Dε). For a ball
B defined by B = {z ∈ ∂D : d(z, ζ) < t} let, for small t, B̂ = {z ∈ Dε : d(z′, ζ) <
t − r(z)}, and, for large t, let B̂ = {z ∈ Dε : d(z′, ζ) < t − r(z)} ∪ (D \Dε). A
function f is in the tent space T p

q , where p <∞ and q <∞, if

‖f‖T p
q

:=
( ∫

∂D

( ∫
z∈Aζ

|f(z)|qr(z)−m−1

)p/q

dσ(ζ)
)1/p

<∞.

The function f is in T p
∞ if f is continuous with limits along Aζ at the boundary

almost everywhere and such that

‖f‖T p
∞

:=
( ∫

∂D

sup
z∈Aζ

|f(z)|p dσ(ζ)
)1/p

<∞.

A function f is in T∞q if

‖f‖T∞q :=
∥∥∥∥ sup
· ∈B

(
1
|B|

∫
z∈B̂

|f(z)|qr(z)−1

)1/q∥∥∥∥
L∞(∂D)

<∞.

Note that f ∈ T p
p if and only if r−1/pf ∈ Lp(D) by Fubini’s theorem. From [8] we

have the inequality

(2.1)
∫
D

|fg|r−1 . ‖f‖T p
q
‖g‖

T p′
q′

for 1 6 p, q 6 ∞, where p′ and q′ denote dual exponents. By [8] T p′

q′ , where
1 6 p < ∞ and 1 < q < ∞, is the dual of T p

q with respect to the pairing
〈f, g〉 →

∫
D

fgr−1. Suppose that f ∈ T p
q0

, g ∈ T∞q1
and let q = (q−1

0 + q−1
1 )−1. Then

for all h ∈ T p′

q′ we have∫
D

|fgh|r−1 . ‖fh‖T 1
q′
1

‖g‖T∞q1
6 ‖f‖T p

q0
‖g‖T∞q1

‖h‖
T p′

q′

by (2.1) and Hölder’s inequality. Thus by the duality for T p′

q′ we get the inequality

(2.2) ‖fg‖T p
q

. ‖f‖T p
q0
‖g‖T∞q1

for 1 < p and 1 < q <∞. Since the inequality (2.2) is equivalent to

‖fg‖T tp
tq

. ‖f‖T tp
tq0
‖g‖T∞tq1

for 0 < t <∞, (2.2) holds if 0 < p, q0, q1.
We will use the inequality (see [12])

(2.3) ‖f‖T p
∞

. ‖f‖Hp , p > 0

and (see e.g. [7] for p <∞ and [3] for p = ∞)

(2.4) ‖r1/2∂f‖T p
2

. ‖f‖Hp , p > 0.
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Moreover, we use that |∂f | . r−1/2 if f ∈ H∞.
There is an integral operator K : C∞

0,q+1(D) → C0,q(D), q > 0 (see [5]) such
that ∂Ku+K∂u = u, u ∈ C∞

0,s(D), s > 1,

(2.5) ‖rτKu‖T p
1

. ‖rτ+1/2u‖T p
1

and ‖Ku‖Lp(∂D) . ‖r1/2u‖T p
1

if τ > 0 and 1 6 p <∞. Furthermore,

(2.6) ‖Ku‖Lp(∂D) . ‖r1/2u‖T p
2

+ ‖r∂u‖T p
1
.

To see that the inequality (2.5) follows from [5], note that by the definition of
W 1−1/p in [1], ‖ru‖T p

1
= ‖u‖W 1−1/p . By [4] the adjoint P of K satisfies

‖Pψ‖L∞(D) . ‖ψ‖L∞(∂D) and ‖r1/2LPψ‖L2(D) . ‖ψ‖L2(∂D)

(where L is an arbitrary smooth (1, 0)-vectorfield). The L2-result is proven by
means of a T1-theorem of Christ and Journé. By [10] it now follows that

‖Pψ‖T p
∞

. ‖ψ‖Lp(∂D), p > 1,(2.7)
and

‖rLPψ‖T p
2

. ‖ψ‖Lp(∂D), p > 1.(2.8)

The inequality (2.6) follows from (2.7) and (2.8).
In Section 4 we use completed tensor products of locally convex Hausdorff

spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex
Hausdorff spaces. We denote by L(E,F ) the space of all continuous and linear
maps from E to F . The topology π on E⊗F is defined as the finest locally convex
topology such that the canonical bilinear map E × F → E ⊗ F is continuous.
We denote by E

⊗
π
F , the space E ⊗ F with the topology π and we denote the

completion of E
⊗
π
F with E

⊗̂
π
F . There is another topology on E ⊗ F , the

topology ε; in case E is nuclear this topology coincides with the topology π and
we therefore omit the index π in this case. The Fréchet space E(Cn) is nuclear
and we have the isomorphism E(Cn, E) ∼= E(Cn) ⊗̂E.

3. PROPERTY (β)E FOR TOEPLITZ OPERATORS WITH H∞-SYMBOL ON Hp

First we need to define the sequence (1.1) and prove that there is a continuous
C∞(Cn)-functional calculus on each of the spaces Bk.

Define the norms ‖ · ‖Bk
, k > 0, by

‖u‖B0 = ‖u‖T p
∞

+ ‖r1/2 du‖T p
2

+ ‖r∂∂u‖T p
1

on C∞(D),(3.1)

‖u‖B1 = ‖r1/2u‖T p
2

+ ‖r du‖T p
1

on C∞
0,1(D)(3.2)

and
‖u‖Bk

= ‖rk/2u‖T p
1

+ ‖rk/2+1/2∂u‖T p
1

on C∞
0,k(D) for k > 2.(3.3)
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Let Bk be the completion of C∞
0,k(D) with respect to the norm ‖ · ‖Bk

. We also
define B′

1 as the completion of C∞
0,1(D) with respect to the norm ‖ · ‖B′

1
, defined

by
‖u‖B′

1
= ‖r1/2u‖T p

1
+ ‖r∂u‖T p

1
.

The injection i : Hp → B0 is well defined and continuous by (2.3) and (2.4).
That ∂ : Bk → Bk+1, k > 0 is continuous follows immediately from the definitions.
Thus we have defined a complex

(3.4) 0 −→ Hp(D) i−→ B0
∂−→ B1

∂−→ · · · ∂−→ Bm −→ 0.

Lemma 3.1. Suppose that g ∈ H∞(D)n. Then one can define Tgi
: Bk → Bk

by Tgiu = giu, 1 6 i 6 n, for all k > 0. The tuple Tg on Bk, k > 0, has a
continuous C∞(Cn)-functional calculus and property (β)E .

Proof. That Tgi
can be defined on Bk follows from the calculation below (let

ϕ(z) = zi below). We begin with the case k = 0. Suppose that ϕ ∈ C∞(Cn) and
u ∈ C∞(D). From (2.2) we have

‖r1/2u∂g‖T p
2

. ‖u‖T p
∞
‖r1/2∂g‖T∞2

,

‖r|du| |∂g| ‖T p
1

. ‖r1/2 du‖T p
2
‖r1/2∂g‖T∞2

and
‖ru|∂g|2‖T p

1
. ‖u‖T p

∞
‖r|∂g|2‖T∞1

.

Since ‖r1/2∂g‖T∞2
<∞ by the inequality (2.4) we thus get

‖(ϕ ◦ g)u‖B0 6 sup
z∈g(D)

|ϕ(z)| ‖u‖B0 + ‖r1/2 d(ϕ ◦ g)u‖T p
2

+ ‖r∂(ϕ ◦ g) ∧ ∂u‖T p
1

+ ‖r∂(ϕ ◦ g) ∧ ∂u‖T p
1

+ ‖r∂∂(ϕ ◦ g)u‖T p
1

. sup
z∈g(D)

(|ϕ(z)|+ |Dϕ(z)|+ |D2ϕ(z)|)‖u‖B0 ,

where Dϕ and D2ϕ denotes all derivates of ϕ of order 1 and 2 respectively. Note
that (ϕ ◦ g)u 6∈ C∞(D) in general. Let gl ∈ C∞(D)n ∩O(D)n be such that gl → g
in Hp(D)n with gl uniformly bounded as l →∞ and suppose that u is fixed. We
have the equalities

d(ϕ ◦ gl − ϕ ◦ g) =
∑

i

ϕi ◦ gl∂g
i
l − ϕi ◦ g∂gi + ϕi ◦ gl∂gi

l − ϕi ◦ g∂gi

and
∂∂(ϕ ◦ gl − ϕ ◦ g) =

∑
i,j

ϕij ◦ gl∂g
j
l ∧ ∂gi

l − ϕij ◦ g∂g
j ∧ ∂gi,

where the index in ϕi denotes partial derivate and the upper index in gi
l and gi

denotes ith component. Hence we get

|d(ϕ ◦ gl − ϕ ◦ g)| 6 |Dϕ ◦ gl| |∂gl − ∂g|+ |Dϕ ◦ gl −Dϕ ◦ g| |∂g|,
and
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|∂∂(ϕ ◦ gl − ϕ ◦ g)| 6 |D2ϕ ◦ gl| |∂gl − ∂g|(|∂gl|+ |∂g|) + |D2ϕ ◦ gl −D2ϕ ◦ g| |∂g|2.
By (2.3) we have

‖(ϕ ◦ gl − ϕ ◦ g)u‖T p
∞

+ ‖r1/2(ϕ ◦ gl − ϕ ◦ g) du‖T p
2
‖r(ϕ ◦ gl − ϕ ◦ g)∂∂u‖T p

1

. ‖ϕ ◦ gl − ϕ ◦ g‖T p
∞

. ‖gl − g‖T p
∞

. ‖gl − g‖Hp .

We also have that
‖r1/2d(ϕ ◦ gl − ϕ ◦ g)u‖T p

2
+ ‖r|d(ϕ ◦ gl − ϕ ◦ g)| | du| ‖T p

1

. ‖r1/2d(ϕ ◦ gl − ϕ ◦ g)‖T p
2

. ‖r1/2|Dϕ ◦ gl| |∂gl − ∂g| ‖T p
2

+ ‖r1/2|Dϕ ◦ gl −Dϕ ◦ g| |∂g| ‖T p
2

. ‖gl − g‖Hp

by (2.2),(2.3) and (2.4). Furthermore,
‖r∂∂(ϕ ◦ gl − ϕ ◦ g)u‖T p

1

. ‖r|D2ϕ ◦ gl| |∂gl − ∂g|(|∂gl|+ |∂g|)‖T p
1

+ ‖r|D2ϕ ◦ gl −D2ϕ ◦ g| |∂g|2‖T p
1

. ‖gl − g‖Hp

by (2.2),(2.3) and (2.4). Thus ‖(ϕ ◦ gl − ϕ ◦ g)u‖B0 → 0 as l → ∞ and therefore
we have that (ϕ ◦ g)u is in the completion of C∞(D) with respect to the norm
‖ · ‖B0 . We extend the map u 7→ (ϕ ◦ g)u : C∞(D) → B0 to a continuous map
ϕ(Tg) : B0 → B0, bounded by a constant times sup

z∈g(D)

(|ϕ(z)|+|Dϕ(z)|+|D2ϕ(z)|).

Hence Tg on B0 has a continuous C∞(Cn)-functional calculus.
Next we consider the case k = 1. Suppose that ϕ ∈ C∞(Cn) and u ∈ C∞

0,1(D).
From (2.2) and (2.4) we have the inequality

‖r|∂g| |u| ‖T p
1

. ‖r1/2∂g‖T∞2
‖r1/2u‖T p

2
. ‖r1/2u‖T p

2
.

Hence we get
‖(ϕ ◦ g)u‖B1 6 sup

z∈g(D)

|ϕ(z)| ‖u‖B1 + ‖r d(ϕ ◦ g) ∧ u‖T p
1

. sup
z∈g(D)

(|ϕ(z)|+ |Dϕ(z)|) ‖u‖B1 .

As in the case k = 0 we prove that (ϕ ◦ g)u is in the completion of C∞
0,1(D).

When we extend the map u 7→ (ϕ ◦ g)u : C∞(D) → B1 by continuity to a map
ϕ(Tg) : B1 → B1 bounded by sup

z∈g(D)

(|ϕ(z)|+ |Dϕ(z)|) and hence we have proved

that Tg on B1 has a C∞(Cn)-functional calculus.
In case k > 2 we suppose that ϕ ∈ C∞(Cn) and u ∈ C∞

0,k(D). Since
|∂g| . r−1/2 we have

‖(ϕ ◦ g)u‖Bk
6 sup

z∈g(D)

|ϕ(z)| ‖u‖Bk
+ ‖rk/2+1/2∂(ϕ ◦ g) ∧ u‖T p

1

. sup
z∈g(D)

(|ϕ(z)|+ |Dϕ(z)|)‖u‖Bk
.

As in the case k = 0 it follows that Tg on Bk, k > 2, has a C∞(Cn)-functional
calculus.

That each of the tuples Tg has property (β)E now follows from Proposi-
tion 6.4.13 in [9].
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We can extend the integral operator K : C∞
0,k+1(D) → C0,k(D), k > 1,

to a continuous operator K : Bk+1 → Bk, k > 2, and a continuous operator
K : B2 → B′

1. This because

‖rk/2Ku‖T p
1

. ‖rk/2+1/2u‖T p
1

6 ‖u‖Bk+1(3.5)

and
‖rk/2+1/2∂Ku‖T p

1
= ‖rk/2+1/2(u−K∂u)‖T p

1
. ‖u‖Bk+1

for all u ∈ C∞
0,k+1(D) by (2.5), (3.3) and (3.5). Also observe that Ku is in the

completion of C∞
0,k(D) under the norm ‖ · ‖Bk

(or ‖ · ‖B′
1
) by dominated conver-

gence and the fact that one can find fl ∈ C∞
0,k(D) such that fl → Ku, ∂fl → ∂Ku

pointwise and |fl|, |∂fl| . 1 (as Ku, ∂Ku ∈ C(D)). Approximation in Bk+1 yields
that ∂Ku+K∂u = u for all u ∈ Bk+1, k > 1. Thus the complex (3.4) is exact in
higher degrees.

Extend K : C∞
0,1(D) → C(∂D) to continuous maps K : B1 → Lp(∂D) and

K : B′
1 → Lp(∂D), which is possible by (2.5) and (2.6). Define the (1, 0)-vector

field L by the equation

L = χ
∑

|∂r|−2 ∂r

∂zk

∂

∂zk
,

where χ is equal to 1 in a neighbourhood of ∂D and 0 on the set where ∂r = 0.
Suppose that u ∈ C∞(D) and let f = ∂u. By integration by parts we have∫

∂D

uh =
∫
D

f ∧ h =: V (f, h)

and ∫
∂D

uh =
∫
D

f ∧ h =
∫
D

O(r)f ∧ h+
∫
D

rL(f ∧ h) =: W (f, h)

for all h ∈ C∞
m,m−1(D) such that ∂h = 0. We extend V to elements f in B′

1 and W
to elements in B1. We say that the equation ∂bu = f +f ′, where u ∈ Lp(∂D), f ∈
B1 and f ′ ∈ B′

1, holds if and only if∫
∂D

uh = W (f, h) + V (f ′, h)

for all h ∈ C∞
m,m−1(D) such that ∂h = 0.

Lemma 3.2. If f ∈ B1, f ′ ∈ B′
1 and ∂f+∂f ′ = 0 then u = Kf+Kf ′ solves

the equation ∂bu = f + f ′. Moreover, if ϕ ∈ H∞(D) then ∂b(ϕu) = Tϕf + Tϕf
′.

Proof. Suppose that f, f ′ ∈ C∞
0,1(D). Since ∂K(f+f ′)+K∂(f+f ′) = f+f ′

we have

(3.6)
∫

∂D

(Kf +Kf ′)h = W (f, h) + V (f ′, h)−
∫
D

K(∂f + ∂f ′) ∧ h
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for all h ∈ C∞
m,m−1(D) such that ∂h = 0. For fixed h, we can estimate each term

of the above equality by a constant times ‖f‖B1 + ‖f ′‖B′
1
. Thus approximation in

B1 and B′
1 yields that if f ∈ B1 and f ′ ∈ B′

1 then∫
∂D

uh = W (f, h) + V (f ′, h)−
∫
D

K(∂f + ∂f ′) ∧ h

for all h ∈ C∞
m,m−1(D) such that ∂h = 0. Hence the equation ∂bu = f + f ′ holds

since we also have that ∂f + ∂f ′ = 0. Suppose that ϕk ∈ C∞(D) ∩ O(D) are
chosen such that ϕk → ϕ in H1(D). Replace h in (3.6) by ϕkh and approximate
to get ∫

∂D

ϕ(Kf +Kf ′)h = W (f, hϕ) + V (f ′, hϕ)−
∫
D

ϕK(∂f + ∂f ′) ∧ h

for all h ∈ C∞
m,m−1(D) such that ∂h = 0, if f, f ′ ∈ C∞

0,1(D). We estimate the terms
to the right,

|W (f, hϕ)| .
∫
D

r3/2|f | |ϕ|r−1 +
∫
D

r|∂f | |ϕ|r−1 +
∫
D

r|f | |∂ϕ|r−1

. ‖f‖B1‖ϕ‖Hp′ ,

|V (f ′, hϕ)| .
∫
D

r1/2|f ′| |ϕ|r−1 . ‖f ′‖B′
1
‖ϕ‖Hp′

and∣∣∣∣ ∫
D

ϕK(∂f + ∂f ′) ∧ h
∣∣∣∣ . ‖r1/2K(∂f + ∂f ′)‖T p

1
‖ϕ‖

T p′
∞

. ‖∂f + ∂f ′‖B2‖ϕ‖Hp′ . (‖f‖B1 + ‖f ′‖B′
1
)‖ϕ‖Hp′

for fixed h by (2.1), (2.3) and (2.4). Hence approximation in B1 and B′
1 yields

that ∫
∂D

uϕh = W (Tϕf, h) + V (Tϕf
′, h)

for all f ∈ B1, f
′ ∈ B′

1 such that ∂f + ∂f ′ = 0 and h ∈ C∞
m,m−1(D) such that

∂h = 0.

Next we prove that functions in B0 has boundary values in Lp(∂D).

Lemma 3.3. There is a continuous and linear operator u 7→ u∗ from B0 to
Lp(∂D) such that u∗ is the restriction of u to ∂D if u ∈ C∞(D) and (Tfu)∗ = f∗u∗

if f ∈ H∞(D).

Proof. Suppose that u ∈ C∞(D). Then ‖u‖Lp(∂D) 6 ‖u‖B0 and hence the
restriction operator can be extended to a continuous operator from B0 to Lp(∂D).
Suppose that u ∈ B0 and f ∈ H∞(D). Let ul ∈ C∞(D) and fk ∈ C∞(D)∩O(D)
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be such that ul → u in B0 and fk → f in Hp(D) with fk uniformily bounded.
Then
‖f∗u∗ − (Tfu)∗‖Lp(∂D)

. ‖f∗u∗ − f∗u∗l ‖Lp(∂D) + ‖f∗u∗l − f∗ku
∗
l ‖Lp(∂D) + ‖(fkul)∗ − (ful)∗‖Lp(∂D)

+ ‖(ful)∗ − (Tfu)∗‖Lp(∂D) → 0

if one first let k →∞ and then l→∞.

Note that if u ∈ B0 then

(3.7)
∫

∂D

u∗h = W (∂u, h)

for all h ∈ C∞
m,m−1(D) such that ∂h = 0 by approximation in B0 and Lemma 3.3.

Proof of Theorem 1.1. We will prove that the complex K•(z−Tg, E(Cn,Hp))
has vanishing homology groups of positive order and that

∑
i

(zi − Tgi
)E(Cn,Hp)

is closed in E(Cn,Hp).
Suppose that uk ∈ K1(z − Tg, E(Cn,Hp)) and δz−gu

k → u0 in E(Cn,Hp).
By Lemma 3.1 there is a u1 ∈ K1(z − Tg, E(Cn, B0)) such that iu0 = δz−Tg

u1.
Again by Lemma 3.1 we can recursively find ui ∈ Ki(z − Tg, E(Cn, Bi−1)) such
that δz−Tg

ui+1 = ∂ui for i > 1. Then we have that ∂um+1 = 0. Define vm+1 ∈
Km+1(z − Tg, E(Cn, Bm−2)) by vm+1 = Kum+1. Recursively define vi, i > 2,
by vi = Kui − Kδz−Tg

vi+1. Thus vi ∈ Ki(z − Tg, E(Cn, Bi−2)) if i > 4, v3 ∈
Λ3E(Cn, B′

1) and the equation ∂vi = ui − δz−Tgvi+1 holds for i > 3. Furthermore
v2 ∈ Λ2E(Cn, Lp(∂D)) satisfies the equation ∂bv2 = u2 − δz−Tg

v3 by Lemma 3.2.
Let u′1 = u∗1 − δz−g∗v2. By Lemma 3.2 we have that ∂bδz−g∗v2 = δz−Tgu2

and thus
∫

∂D

δz−g∗v2h = W (δz−Tg
u2, h) for all h ∈ C∞

m,m−1(D) such that ∂h = 0.

Since by equation (3.7)
∫

∂D

u∗1h = W (∂u1, h) we have proved that∫
∂D

u′1h = 0

for all h ∈ C∞
m,m−1(D) such that ∂h = 0. Thus U ′

1 ∈ K(z − Tg, E(Cn,Hp)), where
U ′

1 is the unique holomorphic extension of u′1. Since u0 = δz−Tg
U ′

1 by Lemma 3.3
we have proved that

∑
i

(zi − Tgi)E(Cn,Hp) is closed in E(Cn,Hp).

Suppose that uk ∈ Kk(z − Tg, E(Cn,Hp)) is δz−Tg
-closed. Then there is a

uk+1 ∈ Kk+1(z − Tg, E(Cn, B0)) such that uk = δz−Tguk+1. Let ui+1 solve the
equation δz−Tg

ui+1 = ∂ui with ui+1 ∈ Ki+1(z − Tg, E(Cn, Bi−k)) . Then we have
that ∂um+k+1 = 0. Let vm+k+1 = Kum+k+1 and vi = Kui −Kδz−Tg

vi+1. Thus
∂vi = ui−δz−Tgvi+1 and ∂bvk+2 = uk+2−δz−Tgvk+3 since ∂(ui − δz−Tgvi+1) = 0.
Define u′k+1 by the equation u′k+1 = u∗k+1−δz−Tg

vk+2. As in the case above we see
that U ′

k+1 is a solution of the equation uk = δz−TgU
′
k+1, and hence the theorem is

proved.
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We now prove the analogue of Theorem 1.1 with the Hardy space replaced
by the Bergman space. In the case of when g has bounded derivate this is proved
in Theorem 8.1.5 in [9].

Corollary 3.4. Suppose that D is a bounded strictly pseudoconvex domain
in Cm with C∞-boundary and that g ∈ H∞(D)n. Then the tuple Tg of Toeplitz
operators on the Bergman space OLp(D), 1 6 p <∞, satisfies property (β)E and
Bishop’s property (β).

Proof. Let ρ be a strictly plurisubharmonic defining function for D and
let D̃ = {(v, w) ∈ Cm+1 : ρ(v) + |w|2 < 0}. Define the operators P : Hp(D̃) →
OLp(D) and I : OLp(D) → Hp(D̃) by Pf(v) = f(v, 0) and If(v, w) = f(v) re-
spectively. The operator P is continuous by the Carleson-Hörmander inequality
since the measure with mass uniformly distributed on D̃ ∩ {w = 0} is a Carleson
measure. The operator I is continuous since∫

∂D̃

|f(v)|pσ(v, w) ∼ lim
ε→0

ε

∫
D̃

(−ρ(v)− |w|2)ε−1|f(v)|p

∼ lim
ε→0

∫
D

(−ρ(v))ε|f(v)|p

=
∫
D

|f(v)|p,

where σ is the surface measure. Let g̃(v, w) = g(v). Then Tg̃ has property (β)E
and since PI = id, Tg̃I = ITg and PTg̃ = TgP it is easy to see that Tg has
property (β)E .

4. PROPERTY (β)E FOR TOEPLITZ OPERATORS

WITH H∞-SYMBOL ON UNIT DISC

In this section we will use the Euclidean norm. Let r(w) = 1− |w|2 and let D be
the unit disc in C. Let B0 be the Banach space of all functions u ∈ L∞(D) such
that

‖u‖B0 = ‖u‖L∞(D) + ‖r du‖L∞(D) + ‖r du‖T∞2
+ ‖r2∂∂u‖T∞1

<∞.

Since ‖r du‖L∞(D) <∞, B0 consists of continuous functions on D. We define B1

as the Banach space of all locally integrable (0, 1)-forms u such that

‖u‖B1 = ‖ru‖L∞(D) + ‖ru‖T∞2
+ ‖r2∂u‖T∞1

<∞.

Suppose that u ∈ C∞(D) and h ∈ C∞(∂D). Then the Wolff trick (see the
proof of Theorem 1.1) yields∫

∂D

uh dw =
∫
D

∂(uPh dw) =
∫
D

O(r)∂(uPh dw) +
∫
D

rL∂(uPh dw) := S(u, h),

where Ph is the Poisson integral of h.
As in Section 3 we need to know that functions in B0 has well defined bound-

ary values.
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Lemma 4.1. If u ∈ B0 then there is a u∗ ∈ L∞(∂D) such that∫
∂D

u∗hdw = S(u, h)

for all h ∈ L2(∂D) and (fu)∗ = f∗u∗ if f ∈ H∞(D).

Proof. We have the estimate |S(u, h)| . ‖u‖B0‖h‖L2(∂D). Hence there is a
function u∗ ∈ L2(∂D) such that

∫
∂D

u∗hdw = S(u, h) for all h ∈ L2(∂D). Suppose

that h ∈ C∞(∂D). Let ut be the dilation ut(w) = u(tw). Since

|S(ut − u, h)| .
∫
D

|ut − u|+
∫
D

r|d(ut − u)|2 +
∫
D

r|∂∂(ut − u)|

for fixed h we have that
∫

∂D

u∗thdw →
∫

∂D

u∗h dw as t↗ 1. Therefore ‖u∗‖L∞(∂D) 6

‖u‖B0 since u∗t is uniformly bounded by ‖u‖L∞(D). Let fs(w) = f(sw) be the
dilation of f . Then we have that∫

∂D

f∗s u
∗
thdw =

∫
∂D

(f∗s − f∗)u∗th dw +
∫

∂D

f∗u∗th dw →
∫

∂D

f∗u∗hdw

as s, t ↗ 1, by dominated convergence. Since we also have
∫

∂D

(fu)∗th dw →∫
∂D

(fu)∗hdw as t↗ 1 we see that (fu)∗ = f∗u∗.

Let
W (u, h) =

∫
D

O(r)u ∧ hdw +
∫
D

rL(u ∧ hdw)

for u ∈ B1 and h ∈ H1, where O(r) is the same O(r) as in the definition of S(u, h).

Lemma 4.2. If f ∈ E(Cn, B1) then there is a u ∈ E(Cn, L∞(∂D)) such that
∂bu = f , that is ∫

∂D

u(z)h dw = W (f(z), h)

for all h ∈ H1(D) and z ∈ Cn.

Proof. Consider the bilinear map W : B1 ×H1 → C. This map is continu-
ous since we have the estimate |W (f, h)| . ‖f‖B1‖h‖H1 , which is used in Wolff’s
proof of the corona theorem. By the universal property for π-tensor products
(see 41.3 (1) in [13]) there is a corresponding linear and continuous map W1 from
B1

⊗̂
π
H1 to C. Since

E(Cn, B1) ∼= E(Cn) ⊗̂B1
∼= L(E ′(Cn), B1)

by Appendix 1 in [9], f ⊗ id is a continuous map E ′(Cn) ⊗̂H1 → B1

⊗̂
π
H1.

Compose with the map W1 to get a continuous functional on E ′(Cn) ⊗̂H1. The
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injection E ′(Cn) ⊗̂H1 → E ′(Cn) ⊗̂L1(∂D) is a topological monomorphism, and
hence we can extend with Hahn-Banach Theorem to a continuous functional on
E ′(Cn) ⊗̂L1(∂D). Since the dual space of E ′(Cn) ⊗̂L1(∂D) is isomorphic to the
space E(Cn, L∞(∂D)) by Theorem A1.12 in [9] we have a u ∈ E(Cn, L∞(∂D)). If
h ∈ H1 then ∫

u(z)hdw = W (f(z), h)

and thus u is a solution to the equation ∂bu = f in the sense of this lemma.

Theorem 4.3. Let D be the unit disc in C and suppose that g ∈ H∞(D)n.
Then the tuple Tg of Toeplitz operators on H∞(D) satisfies property (β)E , and
thus Bishop’s property (β).

Proof. The tuple Tg considered as operators on B0 or B1 has a C∞(Cn)-
functional calculus (the proof of this is similar to Lemma 3.1). Hence they satisfies
property (β)E by Proposition 6.4.13 in [9]. Consider the well-defined complex

(4.1) 0 −→ H∞ −→ B0
∂−→ B1 −→ 0.

Suppose that uk ∈
∑
i

(zi−Tgi)E(Cn,H∞) and uk → u0 in E(Cn,H∞). As Tg on B0

has property (β)E there is a u1 ∈ K1(z − Tg, E(Cn, B0)) such that u0 = δz−Tg
u1.

Since Tg on B1 has property (β)E , there is a u2 ∈ K2(z − Tg, E(Cn, B1)) such
that δz−Tg

u2 = ∂u1. By Lemma 4.2 there is a v ∈ Λ2E(Cn, L∞(∂D)) such that∫
∂D

vhdw = W (u2, h) for all h ∈ H1(D). Therefore we have that

∫
∂D

δz−g∗vhdw = W (δz−Tg
u2, h)

for all h ∈ H1(D). Define u′1 ∈ K1(z − g∗, E(Cn, L∞(∂D))) by the equation
u′1 = u∗1 − δz−g∗v. Then

∫
∂D

u′1hdw = 0 for all h ∈ H1 since

∫
∂D

u∗1hdw = S(u1, h) = W (∂u1, h)

by Lemma 4.1. Thus U ′
1 ∈ K1(z − Tg, E(Cn,H∞)), where U ′

1 is the holomorphic
extension. Since u0 = δz−Tg

U ′
1 by Lemma 4.1 we have proved that δz−Tg

K1(z −
g, E(Cn,H∞)) is closed.

Suppose that uk ∈ Kk(z − Tg, E(Cn,H∞)) is δz−Tg
-closed. Then there is a

solution uk+1 ∈ Kk+1(z − Tg, E(Cn, B0)) to the equation δz−Tguk+1 = uk since
Tg on B0 has property (β)E . Continuing in exactly the same way as above we
see that we can replace uk+1 with U ′

k+1 ∈ Kk+1(z − Tg, E(Cn,H∞)) such that
δz−Tg

U ′
k+1 = uk. Thus the theorem is proved.
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