PROPERTIY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS WITH H^{∞} -SYMBOL

SEBASTIAN SANDBERG

Communicated by Florian-Horia Vasilescu

ABSTRACT. Suppose that g is a tuple of bounded holomorphic functions on a strictly pseudoconvex domain D in \mathbb{C}^m with smooth boundary. Viewed as a tuple of operators on the Hardy space $H^p(D)$, $1 \leq p < \infty$, g is shown to have property $(\beta)_{\mathcal{E}}$ and therefore g possess Bishop's property (β) . In the case m = 1 it is proved that the same result also holds when $p = \infty$.

KEYWORDS: Bishop's property (β), Hardy space, H^p -corona problem. MSC (2000): 32A35, 47A11, 47A13.

1. INTRODUCTION

Suppose that X is a Banach space and that $a = (a_1, \ldots, a_n)$ is a commuting tuple of bounded linear operators on X. Let E be one of spaces $X, \mathcal{E}(\mathbb{C}^n, X)$ or $\mathcal{O}(U, X)$, where $U \subset \mathbb{C}^n$. Denote by $K_{\bullet}(z - a, E)$ the Koszul complex

$$0 \longrightarrow \Lambda^{n} E \xrightarrow{\delta_{z-a}} \Lambda^{n-1} E \xrightarrow{\delta_{z-a}} \cdots \xrightarrow{\delta_{z-a}} \Lambda^{0} E \longrightarrow 0,$$

with boundary map

$$\delta_{z-a}(fs_I) = 2\pi i \sum_{k=1}^p (-1)^{k-1} (z_{i_k} - a_{i_k}) fs_{i_1} \wedge \dots \wedge \widehat{s}_{i_k} \wedge \dots \wedge s_{i_p},$$

where $I = (i_1, \ldots, i_p)$ and p is an integer. Let $H_{\bullet}(z - a, E)$ be the corresponding homology groups.

The Taylor spectrum of a, $\sigma(a)$, is defined as the set of all $z \in \mathbb{C}^n$ such that $K_{\bullet}(z - a, X)$ is not exact. If for all Stein open sets U in \mathbb{C}^n the natural quotient topology of $H_0(z - a, \mathcal{O}(U, X))$ is Hausdorff and $H_p(z - a, \mathcal{O}(U, X)) = 0$ for all p > 0, then a is said to have Bishop's property (β). It has property $(\beta)_{\mathcal{E}}$ if the natural quotient topology of $H_0(z - a, \mathcal{E}(\mathbb{C}^n, X))$ is Hausdorff and if $H_p(z - a, \mathcal{E}(\mathbb{C}^n, X)) = 0$ for all p > 0.

By Theorem 6.2.4 in [9], the tuple a has Bishop's property (β) if and only if there exists a decomposable resolution, that is, if and only if there are Banach spaces X_i and decomposable tuples (see [9] for the definition) of operators a_i on X_i such that

$$0 \longrightarrow X \xrightarrow{d} X_0 \xrightarrow{d} \cdots \xrightarrow{d} X_r \longrightarrow 0$$

is exact, $da = a_0 d$ and $da_i = a_{i+1} d$. Property $(\beta)_{\mathcal{E}}$ is equivalent to the existence of a resolution of Fréchet spaces with Mittag-Leffler inverse limit of generalized scalar tuples (that is tuples which admit a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus), see Theorem 6.4.15 in [9]. Property $(\beta)_{\mathcal{E}}$ implies Bishop's property (β) , see [9].

Suppose that D is a strictly pseudoconvex domain in \mathbb{C}^m with smooth boundary. We consider the tuple $T_g = (T_{g_1}, \ldots, T_{g_n}), g_k \in H^{\infty}(D)$, of operators on $H^p(D)$ defined by $T_{g_k}f = g_kf, f \in H^p(D)$. The main theorem of this paper is the following.

THEOREM 1.1. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^{∞} -boundary and that $g \in H^{\infty}(D)^n$. Then the tuple T_g of Toeplitz operators on $H^p(D)$, $1 \leq p < \infty$, satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β) .

In case g has bounded derivative this theorem has previously been proved in [14], [16] and [17]. In case D is the unit disc in \mathbb{C} , Theorem 1.1 also holds when $p = \infty$; this is proved in Section 4. As a corollary to Theorem 1.1 we have that T_g on the Bergman space $\mathcal{O}L^p(D)$ has property $(\beta)_{\mathcal{E}}$, see Corollary 3.4.

Let us recall how one can prove that T_g on the Bergman space $\mathcal{O}L^2(D)$ has property $(\beta)_{\mathcal{E}}$ under the extra assumption that g has bounded derivative. Define the Banach spaces B_k as the spaces of locally integrable (0, k)-forms u such that

$$||u||_{B_k} := ||u||_{L^2(D)} + ||\partial u||_{L^2(D)} < \infty.$$

Since g has bounded derivate we have the inequality

$$\|(\varphi \circ g)u\|_{B_k} \lesssim \sup_{z \in g(D)} (|\varphi(z)| + |\overline{\partial}\varphi(z)|) \|u\|_{B_k}$$

for all $\varphi \in C^{\infty}(\mathbb{C}^n)$. Hence $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_k . Since we have the resolution

$$0 \longrightarrow \mathcal{O}L^2(D) \to B_0 \xrightarrow{\overline{\partial}} B_1 \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} B_m \longrightarrow 0$$

by Hörmander's L^2 -estimate of the $\overline{\partial}$ equation, the tuple T_g on $\mathcal{O}L^2(D)$ has property $(\beta)_{\mathcal{E}}$ by the above mentioned Theorem 6.4.15 in [9].

To prove Theorem 1.1 we will construct a complex

(1.1)
$$0 \longrightarrow H^p(D) \xrightarrow{i} B_0 \xrightarrow{\overline{\partial}} B_1 \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} B_m \longrightarrow 0,$$

where B_k are Banach spaces of (0, k)-forms on D. The spaces B_k are defined in terms of tent norms. We prove that $\varphi \mapsto T_{\varphi \circ g}$ is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus, where $T_{\varphi \circ g}$ denotes multiplication by $\varphi \circ g$ on B_k . If the complex (1.1) were exact the proof of Theorem 1.1 would be finished. As we can solve the $\overline{\partial}$ equation with appropriate estimates we will be able to prove that T_g on H^p has property $(\beta)_{\mathcal{E}}$ anyway. More precisely (1.1) is exact at $B_k, k \geq 3$. If $f \in B_2$ and Property $(\beta)_{\mathcal{E}}$ for Toeplitz operators with H^{∞} -symbol

 $\overline{\partial} f = 0$ then there is a function u in another Banach space B'_1 such that $\partial u = f$. Mutiplication by g is a bounded operator on B'_1 . If $f \in B_1$ and $f' \in B'_1$ such that $\overline{\partial} f + \overline{\partial} f' = 0$ then there is a solution $u \in L^p(\partial D)$ to the equation $\overline{\partial}_{\mathbf{b}} u = f + f'$.

The construction of the complex (1.1) in the case $p < \infty$ is inspired by the construction in [5] and in the case $p = \infty$ and m = 1 it is inspired by Tom Wolff's proof of the corona theorem. Let us recall the proof of the H^p -corona theorem in the unit disc of \mathbb{C} . Suppose that $g = (g_1, \ldots, g_n) \in H^{\infty}(D)^n$, where D is the unit disc in \mathbb{C} , and that $0 \notin \overline{g(D)}$. Consider the complex (1.1); the definitions of the B_k -spaces can be found in the beginning of Section 3 and Section 4. Suppose that $f \in H^p(D)$. Then the equation $\delta_g u_1 = f$ has a solution in $K_1(g, B_0)$, namely $u_1 = \sum_k \overline{g}_k f s_k / |g|^2$. Hence $\delta_g \overline{\partial} u_1 = 0$ as δ_g and $\overline{\partial}$ anticommute, and we can solve

the equation $\delta_g u_2 = \overline{\partial} u_1$ by defining $u_2 \in K_2(g, B_1)$ as $u_1 \wedge \overline{\partial} u_1$. Since u_2 satisfies the condition

$$\|(1-|z|)u_2\|_{T_2^p} + \|(1-|z|)^2 \partial u_2\|_{T_1^p} < \infty,$$

by a Wolff type estimate there is a solution v in $K_2(g, L^p(\partial D))$ to the equation $\overline{\partial}_b v = u_2$ (here T_2^p and T_1^p denote certain tent spaces). Let $u'_1 = u_1^* - \delta_g v \in K_1(g, L^p(\partial D))$, where u_1^* is the boundary values of u_1 . Since $\overline{\partial}_b u'_1 = 0$ there is a holomorphic extension U'_1 of u'_1 to D which satisfies the equation $\delta_g U'_1 = f$.

The above proof also yields that $\sigma(T_g) = \overline{g(D)}$; the exactness of higher order in the Koszul complex follows by similar resoning. That $\sigma(T_g) = \overline{g(D)}$ is proved in [5] for the case D strictly pseudoconvex and $p < \infty$. One main difference of the proof of that T_g has property $(\beta)_{\mathcal{E}}$ and the proof of that $\sigma(T_g) = \overline{g(D)}$ is the following. As a substitution of the explicit choices of u_1 and u_2 one uses the fact that T_g considered as an operator on B_k has property $(\beta)_{\mathcal{E}}$, which in turn follows from the fact that T_g on B_k has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

2. PRELIMIARIES

Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^{∞} boundary given by a strictly plurisubharmonic defining function ρ . Let $r = -\rho$. All norms below are with respect to the metric $\Omega = ri\partial\overline{\partial}\log(1/r)$, and we have

$$|f|^2 \sim r^2 |f|_{\beta}^2 + r |f \wedge \partial r|_{\beta}^2 + r |f \wedge \overline{\partial} r|_{\beta}^2 + |f \wedge \partial r \wedge \overline{\partial} r|_{\beta}^2,$$

where $\beta = i\partial \overline{\partial} r$, which is equivalent to the Euclidean metric.

The Hardy space H^p is the Banach space of all holomorphic functions f on D such that

$$\|f\|_{H^p} = \sup_{\varepsilon > 0} \int_{r(z)=\varepsilon} |f(z)|^p \,\mathrm{d}\sigma(z) < \infty,$$

where σ is the surface measure. It is wellknown that a function u in $L^p(\partial D)$ is the boundary value of a function U in H^p if and only if $\int_{\partial D} uh = 0$ for all $h \in C^{\infty}_{n,n-1}(\overline{D})$

such that $\overline{\partial}h = 0$.

Let $d(\cdot, \cdot)$ be the Korányi pseudometric on ∂D and let z' be the point on ∂D closest to $z \in D_{\varepsilon}$, where D_{ε} is a small enough neighbourhood of ∂D in D. For

a point ζ on the boundary let $A_{\zeta} = \{z \in D_{\varepsilon} : d(z',\zeta) < r(z)\} \cup (D \setminus D_{\varepsilon})$. For a ball B defined by $B = \{z \in \partial D : d(z,\zeta) < t\}$ let, for small t, $\hat{B} = \{z \in D_{\varepsilon} : d(z',\zeta) < t - r(z)\}$, and, for large t, let $\hat{B} = \{z \in D_{\varepsilon} : d(z',\zeta) < t - r(z)\} \cup (D \setminus D_{\varepsilon})$. A function f is in the tent space T_q^p , where $p < \infty$ and $q < \infty$, if

$$||f||_{T^p_q} := \left(\int\limits_{\partial D} \left(\int\limits_{z \in A_{\zeta}} |f(z)|^q r(z)^{-m-1} \right)^{p/q} \mathrm{d}\sigma(\zeta) \right)^{1/p} < \infty.$$

The function f is in T^p_{∞} if f is continuous with limits along A_{ζ} at the boundary almost everywhere and such that

$$||f||_{T^p_{\infty}} := \left(\int_{\partial D} \sup_{z \in A_{\zeta}} |f(z)|^p \,\mathrm{d}\sigma(\zeta)\right)^{1/p} < \infty.$$

A function f is in T_q^{∞} if

$$\|f\|_{T^{\infty}_{q}} := \left\| \sup_{\cdot \in B} \left(\frac{1}{|B|} \int_{z \in \widehat{B}} |f(z)|^{q} r(z)^{-1} \right)^{1/q} \right\|_{L^{\infty}(\partial D)} < \infty$$

Note that $f \in T_p^p$ if and only if $r^{-1/p} f \in L^p(D)$ by Fubini's theorem. From [8] we have the inequality

(2.1)
$$\int_{D} |fg|r^{-1} \lesssim ||f||_{T^{p}_{q}} ||g||_{T^{p'}_{q'}}$$

for $1 \leq p, q \leq \infty$, where p' and q' denote dual exponents. By [8] $T_{q'}^{p'}$, where $1 \leq p < \infty$ and $1 < q < \infty$, is the dual of T_q^p with respect to the pairing $\langle f, g \rangle \rightarrow \int_D fgr^{-1}$. Suppose that $f \in T_{q_0}^p$, $g \in T_{q_1}^\infty$ and let $q = (q_0^{-1} + q_1^{-1})^{-1}$. Then for all $h \in T_{q'}^{p'}$ we have

$$\int_{D} |fgh|r^{-1} \lesssim \|fh\|_{T^{1}_{q'_{1}}} \|g\|_{T^{\infty}_{q_{1}}} \leqslant \|f\|_{T^{p}_{q_{0}}} \|g\|_{T^{\infty}_{q_{1}}} \|h\|_{T^{p'}_{q'}}$$

by (2.1) and Hölder's inequality. Thus by the duality for $T_{q'}^{p'}$ we get the inequality

(2.2)
$$\|fg\|_{T^p_q} \lesssim \|f\|_{T^p_{q_0}} \|g\|_{T^\infty_{q_1}}$$

for 1 < p and $1 < q < \infty$. Since the inequality (2.2) is equivalent to

$$\|fg\|_{T^{tp}_{tq}} \lesssim \|f\|_{T^{tp}_{tq_0}} \|g\|_{T^{\infty}_{tq_1}}$$

for $0 < t < \infty$, (2.2) holds if $0 < p, q_0, q_1$. We will use the inequality (see [12])

(2.3)
$$||f||_{T^p_{\infty}} \lesssim ||f||_{H^p}, \quad p > 0$$

and (see e.g. [7] for $p < \infty$ and [3] for $p = \infty$)

(2.4) $||r^{1/2}\partial f||_{T_2^p} \lesssim ||f||_{H^p}, \quad p > 0.$

Property $(\beta)_{\mathcal{E}}$ for Toeplitz operators with H^{∞} -symbol

Moreover, we use that $|\partial f| \leq r^{-1/2}$ if $f \in H^{\infty}$.

There is an integral operator $K: C^{\infty}_{0,q+1}(\overline{D}) \to C_{0,q}(\overline{D}), q \ge 0$ (see [5]) such that $\overline{\partial}Ku + K\overline{\partial}u = u, u \in C^{\infty}_{0,s}(\overline{D}), s \ge 1$,

(2.5)
$$||r^{\tau}Ku||_{T_1^p} \lesssim ||r^{\tau+1/2}u||_{T_1^p} \text{ and } ||Ku||_{L^p(\partial D)} \lesssim ||r^{1/2}u||_{T_1^p}$$

if $\tau > 0$ and $1 \leq p < \infty$. Furthermore,

(2.6)
$$\|Ku\|_{L^p(\partial D)} \lesssim \|r^{1/2}u\|_{T_2^p} + \|r\partial u\|_{T_1^p}$$

To see that the inequality (2.5) follows from [5], note that by the definition of $W^{1-1/p}$ in [1], $||ru||_{T^p_r} = ||u||_{W^{1-1/p}}$. By [4] the adjoint P of K satisfies

$$\|P\psi\|_{L^{\infty}(D)} \lesssim \|\psi\|_{L^{\infty}(\partial D)}$$
 and $\|r^{1/2}\mathcal{L}P\psi\|_{L^{2}(D)} \lesssim \|\psi\|_{L^{2}(\partial D)}$

(where \mathcal{L} is an arbitrary smooth (1,0)-vectorfield). The L^2 -result is proven by means of a T1-theorem of Christ and Journé. By [10] it now follows that

- (2.7) $\|P\psi\|_{T^p_{\infty}} \lesssim \|\psi\|_{L^p(\partial D)}, \quad p > 1,$
- (2.8) $\|r\mathcal{L}P\psi\|_{T^p_p} \lesssim \|\psi\|_{L^p(\partial D)}, \quad p>1.$

The inequality (2.6) follows from (2.7) and (2.8).

In Section 4 we use completed tensor products of locally convex Hausdorff spaces, see e.g. Appendix 1 in [9]. Suppose that E and F are locally convex Hausdorff spaces. We denote by L(E, F) the space of all continuous and linear maps from E to F. The topology π on $E \otimes F$ is defined as the finest locally convex topology such that the canonical bilinear map $E \times F \to E \otimes F$ is continuous. We denote by $E \bigotimes_{\pi} F$, the space $E \otimes F$ with the topology π and we denote the completion of $E \bigotimes_{\pi} F$ with $E \bigotimes_{\pi} F$. There is another topology on $E \otimes F$, the topology ε ; in case E is nuclear this topology coincides with the topology π and we therefore omit the index π in this case. The Fréchet space $\mathcal{E}(\mathbb{C}^n)$ is nuclear and we have the isomorphism $\mathcal{E}(\mathbb{C}^n, E) \cong \mathcal{E}(\mathbb{C}^n) \otimes E$.

3. PROPERTY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS WITH H^{∞} -SYMBOL ON H^p

First we need to define the sequence (1.1) and prove that there is a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus on each of the spaces B_k . Define the norms $\|\cdot\|_{\mathcal{D}} = k \ge 0$ by

Define the norms $\|\cdot\|_{B_k}$, $k \ge 0$, by

- (3.1) $||u||_{B_0} = ||u||_{T^p_{\infty}} + ||r^{1/2} \, \mathrm{d}u||_{T^p_2} + ||r\partial\overline{\partial}u||_{T^p_1} \text{ on } C^{\infty}(\overline{D}),$
- (3.2) $||u||_{B_1} = ||r^{1/2}u||_{T_2^p} + ||r \, \mathrm{d}u||_{T_1^p}$ on $C_{0,1}^{\infty}(\overline{D})$
- and

and

(3.3) $||u||_{B_k} = ||r^{k/2}u||_{T_1^p} + ||r^{k/2+1/2}\overline{\partial}u||_{T_1^p}$ on $C_{0,k}^{\infty}(\overline{D})$ for $k \ge 2$.

Let B_k be the completion of $C_{0,k}^{\infty}(\overline{D})$ with respect to the norm $\|\cdot\|_{B_k}$. We also define B'_1 as the completion of $C_{0,1}^{\infty}(\overline{D})$ with respect to the norm $\|\cdot\|_{B'_1}$, defined by

$$\|u\|_{B_1'} = \|r^{1/2}u\|_{T_1^p} + \|r\overline{\partial}u\|_{T_1^p}.$$

The injection $i: H^p \to B_0$ is well defined and continuous by (2.3) and (2.4). That $\overline{\partial}: B_k \to B_{k+1}, k \ge 0$ is continuous follows immediately from the definitions. Thus we have defined a complex

$$(3.4) 0 \longrightarrow H^p(D) \xrightarrow{i} B_0 \xrightarrow{\overline{\partial}} B_1 \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} B_m \longrightarrow 0.$$

LEMMA 3.1. Suppose that $g \in H^{\infty}(D)^n$. Then one can define $T_{g_i} : B_k \to B_k$ by $T_{g_i}u = g_iu$, $1 \leq i \leq n$, for all $k \geq 0$. The tuple T_g on B_k , $k \geq 0$, has a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus and property $(\beta)_{\mathcal{E}}$.

Proof. That T_{g_i} can be defined on B_k follows from the calculation below (let $\varphi(z) = z_i$ below). We begin with the case k = 0. Suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}(\overline{D})$. From (2.2) we have

$$\begin{aligned} \|r^{1/2}u\partial g\|_{T_{2}^{p}} &\lesssim \|u\|_{T_{\infty}^{p}} \|r^{1/2}\partial g\|_{T_{2}^{\infty}}, \\ \|r|\mathrm{d}u|\,|\partial g|\,\|_{T_{1}^{p}} &\lesssim \|r^{1/2}\,\mathrm{d}u\|_{T_{2}^{p}} \|r^{1/2}\partial g\|_{T_{2}^{\infty}} \end{aligned}$$

and

$$||ru|\partial g|^2||_{T_1^p} \lesssim ||u||_{T_\infty^p} ||r|\partial g|^2||_{T_1^\infty}.$$

Since $||r^{1/2}\partial g||_{T_2^{\infty}} < \infty$ by the inequality (2.4) we thus get

$$\begin{aligned} \|(\varphi \circ g)u\|_{B_0} &\leqslant \sup_{z \in g(D)} |\varphi(z)| \, \|u\|_{B_0} + \|r^{1/2} \, d(\varphi \circ g)u\|_{T_2^p} + \|r\overline{\partial}(\varphi \circ g) \wedge \partial u\|_{T_1^p} \\ &+ \|r\partial(\varphi \circ g) \wedge \overline{\partial}u\|_{T_1^p} + \|r\partial\overline{\partial}(\varphi \circ g)u\|_{T_1^p} \\ &\lesssim \sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)| + |D^2\varphi(z)|) \|u\|_{B_0}, \end{aligned}$$

where $D\varphi$ and $D^2\varphi$ denotes all derivates of φ of order 1 and 2 respectively. Note that $(\varphi \circ g)u \notin C^{\infty}(\overline{D})$ in general. Let $g_l \in C^{\infty}(\overline{D})^n \cap \mathcal{O}(D)^n$ be such that $g_l \to g$ in $H^p(D)^n$ with g_l uniformly bounded as $l \to \infty$ and suppose that u is fixed. We have the equalities

$$d(\varphi \circ g_l - \varphi \circ g) = \sum_i \varphi_i \circ g_l \partial g_l^i - \varphi_i \circ g \partial g^i + \varphi_{\overline{i}} \circ g_l \overline{\partial g_l^i} - \varphi_{\overline{i}} \circ g \overline{\partial g^i}$$

and

$$\partial\overline{\partial}(\varphi\circ g_l-\varphi\circ g)=\sum_{i,j}\varphi_{\bar{i}j}\circ g_l\partial g_l^j\wedge\overline{\partial g_l^i}-\varphi_{\bar{i}j}\circ g\partial g^j\wedge\overline{\partial g^i}$$

where the index in φ_i denotes partial derivate and the upper index in g_l^i and g^i denotes *i*th component. Hence we get

 $|d(\varphi \circ g_l - \varphi \circ g)| \leqslant |D\varphi \circ g_l| \, |\partial g_l - \partial g| + |D\varphi \circ g_l - D\varphi \circ g| \, |\partial g|,$ and

Property $(\beta)_{\mathcal{E}}$ for Toeplitz operators with H^{∞} -symbol

 $\begin{aligned} \|r^{1/2}d(\varphi \circ g_{l} - \varphi \circ g)u\|_{T_{2}^{p}} + \|r|d(\varphi \circ g_{l} - \varphi \circ g)| |du| \|_{T_{1}^{p}} \\ &\lesssim \|r^{1/2}d(\varphi \circ g_{l} - \varphi \circ g)\|_{T_{2}^{p}} \\ &\lesssim \|r^{1/2}|D\varphi \circ g_{l}| |\partial g_{l} - \partial g| \|_{T_{2}^{p}} + \|r^{1/2}|D\varphi \circ g_{l} - D\varphi \circ g| |\partial g| \|_{T_{2}^{p}} \lesssim \|g_{l} - g\|_{H^{p}} \\ & \text{by (2.2),(2.3) and (2.4). Furthermore,} \end{aligned}$

$$\begin{aligned} \|r\partial\overline{\partial}(\varphi \circ g_{l} - \varphi \circ g)u\|_{T_{1}^{p}} \\ \lesssim \|r|D^{2}\varphi \circ g_{l}| |\partial g_{l} - \partial g|(|\partial g_{l}| + |\partial g|)\|_{T_{1}^{p}} + \|r|D^{2}\varphi \circ g_{l} - D^{2}\varphi \circ g| |\partial g|^{2}\|_{T_{1}^{p}} \\ \lesssim \|g_{l} - g\|_{H^{p}} \end{aligned}$$

by (2.2),(2.3) and (2.4). Thus $\|(\varphi \circ g_l - \varphi \circ g)u\|_{B_0} \to 0$ as $l \to \infty$ and therefore we have that $(\varphi \circ g)u$ is in the completion of $C^{\infty}(\overline{D})$ with respect to the norm $\|\cdot\|_{B_0}$. We extend the map $u \mapsto (\varphi \circ g)u : C^{\infty}(\overline{D}) \to B_0$ to a continuous map $\varphi(T_g) : B_0 \to B_0$, bounded by a constant times $\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)| + |D^2\varphi(z)|)$.

Hence T_g on B_0 has a continuous $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

Next we consider the case k = 1. Suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}_{0,1}(\overline{D})$. From (2.2) and (2.4) we have the inequality

$$\|r|\partial g| |u| \|_{T_1^p} \lesssim \|r^{1/2} \partial g\|_{T_2^\infty} \|r^{1/2} u\|_{T_2^p} \lesssim \|r^{1/2} u\|_{T_2^p}.$$

Hence we get

$$\begin{aligned} \|(\varphi \circ g)u\|_{B_1} &\leq \sup_{z \in g(D)} |\varphi(z)| \, \|u\|_{B_1} + \|r \operatorname{d}(\varphi \circ g) \wedge u\|_{T_1^p} \\ &\lesssim \sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|) \, \|u\|_{B_1}. \end{aligned}$$

As in the case k = 0 we prove that $(\varphi \circ g)u$ is in the completion of $C_{0,1}^{\infty}(\overline{D})$. When we extend the map $u \mapsto (\varphi \circ g)u : C^{\infty}(\overline{D}) \to B_1$ by continuity to a map $\varphi(T_g) : B_1 \to B_1$ bounded by $\sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|)$ and hence we have proved

that T_g on B_1 has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

In case $k \ge 2$ we suppose that $\varphi \in C^{\infty}(\mathbb{C}^n)$ and $u \in C^{\infty}_{0,k}(\overline{D})$. Since $|\partial g| \lesssim r^{-1/2}$ we have

$$\begin{aligned} \|(\varphi \circ g)u\|_{B_k} &\leq \sup_{z \in g(D)} |\varphi(z)| \, \|u\|_{B_k} + \|r^{k/2+1/2}\overline{\partial}(\varphi \circ g) \wedge u\|_{T_1^F} \\ &\lesssim \sup_{z \in g(D)} (|\varphi(z)| + |D\varphi(z)|) \|u\|_{B_k}. \end{aligned}$$

As in the case k = 0 it follows that T_g on B_k , $k \ge 2$, has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus.

That each of the tuples T_g has property $(\beta)_{\mathcal{E}}$ now follows from Proposition 6.4.13 in [9].

We can extend the integral operator $K : C_{0,k+1}^{\infty}(\overline{D}) \to C_{0,k}(\overline{D}), k \ge 1$, to a continuous operator $K : B_{k+1} \to B_k, k \ge 2$, and a continuous operator $K : B_2 \to B'_1$. This because

(3.5)
$$||r^{k/2}Ku||_{T_1^p} \lesssim ||r^{k/2+1/2}u||_{T_1^p} \leqslant ||u||_{B_{k+1}}$$

and

$$\|r^{k/2+1/2}\overline{\partial}Ku\|_{T_1^p} = \|r^{k/2+1/2}(u-K\overline{\partial}u)\|_{T_1^p} \lesssim \|u\|_{B_{k+2}}$$

for all $u \in C_{0,k+1}^{\infty}(\overline{D})$ by (2.5), (3.3) and (3.5). Also observe that Ku is in the completion of $C_{0,k}^{\infty}(\overline{D})$ under the norm $\|\cdot\|_{B_k}$ (or $\|\cdot\|_{B'_1}$) by dominated convergence and the fact that one can find $f_l \in C_{0,k}^{\infty}(\overline{D})$ such that $f_l \to Ku$, $\overline{\partial}f_l \to \overline{\partial}Ku$ pointwise and $|f_l|, |\overline{\partial}f_l| \leq 1$ (as $Ku, \overline{\partial}Ku \in C(\overline{D})$). Approximation in B_{k+1} yields that $\overline{\partial}Ku + K\overline{\partial}u = u$ for all $u \in B_{k+1}, k \geq 1$. Thus the complex (3.4) is exact in higher degrees.

Extend $K: C_{0,1}^{\infty}(\overline{D}) \to C(\partial D)$ to continuous maps $K: B_1 \to L^p(\partial D)$ and $K: B'_1 \to L^p(\partial D)$, which is possible by (2.5) and (2.6). Define the (1,0)-vector field \mathcal{L} by the equation

$$\mathcal{L} = \chi \sum |\partial r|^{-2} \frac{\partial r}{\partial \overline{z}_k} \frac{\partial}{\partial z_k},$$

where χ is equal to 1 in a neighbourhood of ∂D and 0 on the set where $\partial r = 0$. Suppose that $u \in C^{\infty}(\overline{D})$ and let $f = \overline{\partial}u$. By integration by parts we have

$$\int_{DD} uh = \int_{D} f \wedge h =: V(f, h)$$

and

έ

$$\int_{\partial D} uh = \int_{D} f \wedge h = \int_{D} \mathcal{O}(r)f \wedge h + \int_{D} r\mathcal{L}(f \wedge h) =: W(f,h)$$

for all $h \in C_{m,m-1}^{\infty}(\overline{D})$ such that $\overline{\partial}h = 0$. We extend V to elements f in B'_1 and W to elements in B_1 . We say that the equation $\overline{\partial}_{\mathbf{b}}u = f + f'$, where $u \in L^p(\partial D), f \in B_1$ and $f' \in B'_1$, holds if and only if

$$\int_{\partial D} uh = W(f,h) + V(f',h)$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$.

LEMMA 3.2. If $f \in B_1$, $f' \in B'_1$ and $\overline{\partial}f + \overline{\partial}f' = 0$ then u = Kf + Kf' solves the equation $\overline{\partial}_{\mathbf{b}}u = f + f'$. Moreover, if $\varphi \in H^{\infty}(D)$ then $\overline{\partial}_{\mathbf{b}}(\varphi u) = T_{\varphi}f + T_{\varphi}f'$.

Proof. Suppose that $f, f' \in C^{\infty}_{0,1}(\overline{D})$. Since $\overline{\partial}K(f+f') + K\overline{\partial}(f+f') = f+f'$ we have

(3.6)
$$\int_{\partial D} (Kf + Kf')h = W(f,h) + V(f',h) - \int_{D} K(\overline{\partial}f + \overline{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$. For fixed h, we can estimate each term of the above equality by a constant times $||f||_{B_1} + ||f'||_{B'_1}$. Thus approximation in B_1 and B'_1 yields that if $f \in B_1$ and $f' \in B'_1$ then

$$\int_{\partial D} uh = W(f,h) + V(f',h) - \int_{D} K(\overline{\partial}f + \overline{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$. Hence the equation $\overline{\partial}_{b}u = f + f'$ holds since we also have that $\overline{\partial}f + \overline{\partial}f' = 0$. Suppose that $\varphi_k \in C^{\infty}(\overline{D}) \cap \mathcal{O}(D)$ are chosen such that $\varphi_k \to \varphi$ in $H^1(D)$. Replace h in (3.6) by $\varphi_k h$ and approximate to get

$$\int_{\partial D} \varphi(Kf + Kf')h = W(f, h\varphi) + V(f', h\varphi) - \int_{D} \varphi K(\overline{\partial}f + \overline{\partial}f') \wedge h$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$, if $f, f' \in C^{\infty}_{0,1}(\overline{D})$. We estimate the terms to the right,

$$|W(f,h\varphi)| \lesssim \int_{D} r^{3/2} |f| |\varphi| r^{-1} + \int_{D} r |\partial f| |\varphi| r^{-1} + \int_{D} r |f| |\partial \varphi| r^{-1}$$
$$\lesssim ||f||_{B_1} ||\varphi||_{H^{p'}},$$
$$|V(f',h\varphi)| \lesssim \int_{D} r^{1/2} |f'| |\varphi| r^{-1} \lesssim ||f'||_{B_1'} ||\varphi||_{H^{p'}}$$

and

$$\left| \int_{D} \varphi K(\overline{\partial}f + \overline{\partial}f') \wedge h \right| \lesssim \|r^{1/2} K(\overline{\partial}f + \overline{\partial}f')\|_{T_{1}^{p}} \|\varphi\|_{T_{\infty}^{p'}}$$
$$\lesssim \|\overline{\partial}f + \overline{\partial}f'\|_{B_{2}} \|\varphi\|_{H^{p'}} \lesssim (\|f\|_{B_{1}} + \|f'\|_{B_{1}'}) \|\varphi\|_{H^{p}}$$

for fixed h by (2.1), (2.3) and (2.4). Hence approximation in B_1 and B'_1 yields that

$$\int_{\partial D} u\varphi h = W(T_{\varphi}f,h) + V(T_{\varphi}f',h)$$

for all $f \in B_1, f' \in B'_1$ such that $\overline{\partial}f + \overline{\partial}f' = 0$ and $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$.

Next we prove that functions in B_0 has boundary values in $L^p(\partial D)$.

LEMMA 3.3. There is a continuous and linear operator $u \mapsto u^*$ from B_0 to $L^p(\partial D)$ such that u^* is the restriction of u to ∂D if $u \in C^{\infty}(\overline{D})$ and $(T_f u)^* = f^* u^*$ if $f \in H^{\infty}(D)$.

Proof. Suppose that $u \in C^{\infty}(\overline{D})$. Then $||u||_{L^{p}(\partial D)} \leq ||u||_{B_{0}}$ and hence the restriction operator can be extended to a continuous operator from B_{0} to $L^{p}(\partial D)$. Suppose that $u \in B_{0}$ and $f \in H^{\infty}(D)$. Let $u_{l} \in C^{\infty}(\overline{D})$ and $f_{k} \in C^{\infty}(\overline{D}) \cap \mathcal{O}(D)$

be such that $u_l \to u$ in B_0 and $f_k \to f$ in $H^p(D)$ with f_k uniformily bounded. Then

$$\begin{aligned} \|f^*u^* - (T_f u)^*\|_{L^p(\partial D)} \\ \lesssim \|f^*u^* - f^*u_l^*\|_{L^p(\partial D)} + \|f^*u_l^* - f_k^*u_l^*\|_{L^p(\partial D)} + \|(f_k u_l)^* - (fu_l)^*\|_{L^p(\partial D)} \\ &+ \|(fu_l)^* - (T_f u)^*\|_{L^p(\partial D)} \to 0 \end{aligned}$$

if one first let $k \to \infty$ and then $l \to \infty$.

Note that if $u \in B_0$ then

(3.7)
$$\int_{\partial D} u^* h = W(\overline{\partial}u, h)$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$ by approximation in B_0 and Lemma 3.3.

Proof of Theorem 1.1. We will prove that the complex $K_{\bullet}(z-T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ has vanishing homology groups of positive order and that $\sum_i (z_i - T_{g_i}) \mathcal{E}(\mathbb{C}^n, H^p)$ is closed in $\mathcal{E}(\mathbb{C}^n, H^p)$.

Suppose that $u^k \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ and $\delta_{z-g}u^k \to u_0$ in $\mathcal{E}(\mathbb{C}^n, H^p)$. By Lemma 3.1 there is a $u_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $iu_0 = \delta_{z-T_g}u_1$. Again by Lemma 3.1 we can recursively find $u_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-1}))$ such that $\delta_{z-T_g}u_{i+1} = \overline{\partial}u_i$ for $i \ge 1$. Then we have that $\overline{\partial}u_{m+1} = 0$. Define $v_{m+1} \in K_{m+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{m-2}))$ by $v_{m+1} = Ku_{m+1}$. Recursively define $v_i, i \ge 2$, by $v_i = Ku_i - K\delta_{z-T_g}v_{i+1}$. Thus $v_i \in K_i(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-2}))$ if $i \ge 4, v_3 \in \Lambda^3 \mathcal{E}(\mathbb{C}^n, B_1')$ and the equation $\overline{\partial}v_i = u_i - \delta_{z-T_g}v_{i+1}$ holds for $i \ge 3$. Furthermore $v_2 \in \Lambda^2 \mathcal{E}(\mathbb{C}^n, L^p(\partial D))$ satisfies the equation $\overline{\partial}_b v_2 = u_2 - \delta_{z-T_g}v_3$ by Lemma 3.2.

Let $u'_1 = u_1^* - \delta_{z-g^*} v_2$. By Lemma 3.2 we have that $\overline{\partial}_{\mathbf{b}} \delta_{z-g^*} v_2 = \delta_{z-T_g} u_2$ and thus $\int_{\partial D} \delta_{z-g^*} v_2 h = W(\delta_{z-T_g} u_2, h)$ for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial} h = 0$. Since by equation (3.7) $\int_{\partial D} u_1^* h = W(\overline{\partial} u_1, h)$ we have proved that

$$\int_{\partial D} u_1' h = 0$$

for all $h \in C^{\infty}_{m,m-1}(\overline{D})$ such that $\overline{\partial}h = 0$. Thus $U'_1 \in K(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$, where U'_1 is the unique holomorphic extension of u'_1 . Since $u_0 = \delta_{z-T_g}U'_1$ by Lemma 3.3 we have proved that $\sum (z_i - T_{g_i})\mathcal{E}(\mathbb{C}^n, H^p)$ is closed in $\mathcal{E}(\mathbb{C}^n, H^p)$.

Suppose that $u_k \in K_k(z - T_g, \mathcal{E}(\mathbb{C}^n, H^p))$ is δ_{z-T_g} -closed. Then there is a $u_{k+1} \in K_{k+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $u_k = \delta_{z-T_g} u_{k+1}$. Let u_{i+1} solve the equation $\delta_{z-T_g} u_{i+1} = \overline{\partial} u_i$ with $u_{i+1} \in K_{i+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_{i-k}))$. Then we have that $\overline{\partial} u_{m+k+1} = 0$. Let $v_{m+k+1} = Ku_{m+k+1}$ and $v_i = Ku_i - K\delta_{z-T_g} v_{i+1}$. Thus $\overline{\partial} v_i = u_i - \delta_{z-T_g} v_{i+1}$ and $\overline{\partial}_b v_{k+2} = u_{k+2} - \delta_{z-T_g} v_{k+3}$ since $\overline{\partial}(u_i - \delta_{z-T_g} v_{i+1}) = 0$. Define u'_{k+1} by the equation $u'_{k+1} = u^*_{k+1} - \delta_{z-T_g} v_{k+2}$. As in the case above we see that U'_{k+1} is a solution of the equation $u_k = \delta_{z-T_g} U'_{k+1}$, and hence the theorem is proved.

We now prove the analogue of Theorem 1.1 with the Hardy space replaced by the Bergman space. In the case of when g has bounded derivate this is proved in Theorem 8.1.5 in [9].

COROLLARY 3.4. Suppose that D is a bounded strictly pseudoconvex domain in \mathbb{C}^m with C^∞ -boundary and that $g \in H^\infty(D)^n$. Then the tuple T_g of Toeplitz operators on the Bergman space $\mathcal{O}L^p(D)$, $1 \leq p < \infty$, satisfies property $(\beta)_{\mathcal{E}}$ and Bishop's property (β) .

Proof. Let ρ be a strictly plurisubharmonic defining function for D and let $\widetilde{D} = \{(v,w) \in \mathbb{C}^{m+1} : \rho(v) + |w|^2 < 0\}$. Define the operators $P : H^p(\widetilde{D}) \to \mathcal{O}L^p(D)$ and $I : \mathcal{O}L^p(D) \to H^p(\widetilde{D})$ by Pf(v) = f(v,0) and If(v,w) = f(v) respectively. The operator P is continuous by the Carleson-Hörmander inequality since the measure with mass uniformly distributed on $\widetilde{D} \cap \{w = 0\}$ is a Carleson measure. The operator I is continuous since

$$\int_{\partial \widetilde{D}} |f(v)|^p \sigma(v, w) \sim \lim_{\varepsilon \to 0} \varepsilon \int_{\widetilde{D}} (-\rho(v) - |w|^2)^{\varepsilon - 1} |f(v)|^p$$
$$\sim \lim_{\varepsilon \to 0} \int_{D} (-\rho(v))^{\varepsilon} |f(v)|^p$$
$$= \int_{D} |f(v)|^p,$$

where σ is the surface measure. Let $\tilde{g}(v, w) = g(v)$. Then $T_{\tilde{g}}$ has property $(\beta)_{\mathcal{E}}$ and since PI = id, $T_{\tilde{g}}I = IT_g$ and $PT_{\tilde{g}} = T_gP$ it is easy to see that T_g has property $(\beta)_{\mathcal{E}}$.

4. PROPERTY $(\beta)_{\mathcal{E}}$ FOR TOEPLITZ OPERATORS WITH $H^\infty\text{-}\mathrm{SYMBOL}$ ON UNIT DISC

In this section we will use the Euclidean norm. Let $r(w) = 1 - |w|^2$ and let D be the unit disc in \mathbb{C} . Let B_0 be the Banach space of all functions $u \in L^{\infty}(D)$ such that

$$||u||_{B_0} = ||u||_{L^{\infty}(D)} + ||r \, \mathrm{d}u||_{L^{\infty}(D)} + ||r \, \mathrm{d}u||_{T_2^{\infty}} + ||r^2 \partial \overline{\partial}u||_{T_1^{\infty}} < \infty.$$

Since $||r du||_{L^{\infty}(D)} < \infty$, B_0 consists of continuous functions on D. We define B_1 as the Banach space of all locally integrable (0, 1)-forms u such that

$$|u||_{B_1} = ||ru||_{L^{\infty}(D)} + ||ru||_{T_2^{\infty}} + ||r^2 \partial u||_{T_1^{\infty}} < \infty$$

Suppose that $u \in C^{\infty}(\overline{D})$ and $h \in C^{\infty}(\partial D)$. Then the Wolff trick (see the proof of Theorem 1.1) yields

$$\int_{\partial D} uh \, \mathrm{d}w = \int_{D} \overline{\partial} (uPh \, \mathrm{d}w) = \int_{D} \mathcal{O}(r)\overline{\partial} (uPh \, \mathrm{d}w) + \int_{D} r\mathcal{L}\overline{\partial} (uPh \, \mathrm{d}w) := S(u,h),$$

where Ph is the Poisson integral of h.

As in Section 3 we need to know that functions in B_0 has well defined boundary values. LEMMA 4.1. If $u \in B_0$ then there is a $u^* \in L^{\infty}(\partial D)$ such that

$$\int_{\partial D} u^* h \, \mathrm{d}w = S(u, h)$$

for all $h \in L^2(\partial D)$ and $(fu)^* = f^*u^*$ if $f \in H^{\infty}(D)$.

Proof. We have the estimate $|S(u,h)| \leq ||u||_{B_0} ||h||_{L^2(\partial D)}$. Hence there is a function $u^* \in L^2(\partial D)$ such that $\int_{\partial D} u^*h \, dw = S(u,h)$ for all $h \in L^2(\partial D)$. Suppose that $h \in C^{\infty}(\partial D)$. Let u_t be the dilation $u_t(w) = u(tw)$. Since

$$|S(u_t - u, h)| \lesssim \int_D |u_t - u| + \int_D r |\mathbf{d}(u_t - u)|^2 + \int_D r |\partial\overline{\partial}(u_t - u)|$$

for fixed h we have that $\int_{\partial D} u_t^* h \, dw \to \int_{\partial D} u^* h \, dw$ as $t \nearrow 1$. Therefore $||u^*||_{L^{\infty}(\partial D)} \leq ||u||_{B_0}$ since u_t^* is uniformly bounded by $||u||_{L^{\infty}(D)}$. Let $f_s(w) = f(sw)$ be the dilation of f. Then we have that

$$\int_{\partial D} f_s^* u_t^* h \, \mathrm{d}w = \int_{\partial D} (f_s^* - f^*) u_t^* h \, \mathrm{d}w + \int_{\partial D} f^* u_t^* h \, \mathrm{d}w \to \int_{\partial D} f^* u^* h \, \mathrm{d}w$$

as $s, t \nearrow 1$, by dominated convergence. Since we also have $\int_{\partial D} (fu)_t^* h \, dw \to \int_{\partial D} (fu)^* h \, dw$ as $t \nearrow 1$ we see that $(fu)^* = f^* u^*$.

Let

$$W(u,h) = \int_{D} \mathcal{O}(r)u \wedge h \, \mathrm{d}w + \int_{D} r\mathcal{L}(u \wedge h \, \mathrm{d}w)$$

for $u \in B_1$ and $h \in H^1$, where O(r) is the same O(r) as in the definition of S(u, h).

LEMMA 4.2. If $f \in \mathcal{E}(\mathbb{C}^n, B_1)$ then there is a $u \in \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D))$ such that $\overline{\partial}_{\mathbf{b}} u = f$, that is

$$\int_{\partial D} u(z)h \,\mathrm{d}w = W(f(z),h)$$

for all $h \in H^1(D)$ and $z \in \mathbb{C}^n$.

Proof. Consider the bilinear map $W : B_1 \times H^1 \to \mathbb{C}$. This map is continuous since we have the estimate $|W(f,h)| \leq ||f||_{B_1} ||h||_{H^1}$, which is used in Wolff's proof of the corona theorem. By the universal property for π -tensor products (see 41.3 (1) in [13]) there is a corresponding linear and continuous map W_1 from $B_1 \bigotimes H^1$ to \mathbb{C} . Since

$$\mathcal{E}(\mathbb{C}^n, B_1) \cong \mathcal{E}(\mathbb{C}^n) \widehat{\otimes} B_1 \cong L(\mathcal{E}'(\mathbb{C}^n), B_1)$$

by Appendix 1 in [9], $f \otimes id$ is a continuous map $\mathcal{E}'(\mathbb{C}^n) \widehat{\otimes} H^1 \to B_1 \widehat{\bigotimes} H^1$. Compose with the map W_1 to get a continuous functional on $\mathcal{E}'(\mathbb{C}^n) \widehat{\otimes} H^1$. The

injection $\mathcal{E}'(\mathbb{C}^n) \otimes H^1 \to \mathcal{E}'(\mathbb{C}^n) \otimes L^1(\partial D)$ is a topological monomorphism, and hence we can extend with Hahn-Banach Theorem to a continuous functional on $\mathcal{E}'(\mathbb{C}^n) \otimes L^1(\partial D)$. Since the dual space of $\mathcal{E}'(\mathbb{C}^n) \otimes L^1(\partial D)$ is isomorphic to the space $\mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D))$ by Theorem A1.12 in [9] we have a $u \in \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D))$. If $h \in H^1$ then

$$\int u(z)h\,\mathrm{d}w = W(f(z),h)$$

and thus u is a solution to the equation $\overline{\partial}_{\mathbf{b}} u = f$ in the sense of this lemma.

THEOREM 4.3. Let D be the unit disc in \mathbb{C} and suppose that $g \in H^{\infty}(D)^n$. Then the tuple T_g of Toeplitz operators on $H^{\infty}(D)$ satisfies property $(\beta)_{\mathcal{E}}$, and thus Bishop's property (β) .

Proof. The tuple T_g considered as operators on B_0 or B_1 has a $C^{\infty}(\mathbb{C}^n)$ -functional calculus (the proof of this is similar to Lemma 3.1). Hence they satisfies property $(\beta)_{\mathcal{E}}$ by Proposition 6.4.13 in [9]. Consider the well-defined complex

$$(4.1) 0 \longrightarrow H^{\infty} \longrightarrow B_0 \xrightarrow{\overline{\partial}} B_1 \longrightarrow 0.$$

Suppose that $u^k \in \sum_i (z_i - T_{g_i}) \mathcal{E}(\mathbb{C}^n, H^\infty)$ and $u^k \to u_0$ in $\mathcal{E}(\mathbb{C}^n, H^\infty)$. As T_g on B_0 has property $(\beta)_{\mathcal{E}}$ there is a $u_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ such that $u_0 = \delta_{z - T_g} u_1$. Since T_g on B_1 has property $(\beta)_{\mathcal{E}}$, there is a $u_2 \in K_2(z - T_g, \mathcal{E}(\mathbb{C}^n, B_1))$ such that $\delta_{z - T_g} u_2 = \overline{\partial} u_1$. By Lemma 4.2 there is a $v \in \Lambda^2 \mathcal{E}(\mathbb{C}^n, L^\infty(\partial D))$ such that $\int_{\partial D} vh \, dw = W(u_2, h)$ for all $h \in H^1(D)$. Therefore we have that

$$\int_{\partial D} \delta_{z-g^*} vh \, \mathrm{d}w = W(\delta_{z-T_g} u_2, h)$$

for all $h \in H^1(D)$. Define $u'_1 \in K_1(z - g^*, \mathcal{E}(\mathbb{C}^n, L^{\infty}(\partial D)))$ by the equation $u'_1 = u_1^* - \delta_{z-g^*} v$. Then $\int_{\partial D} u'_1 h \, dw = 0$ for all $h \in H^1$ since

$$\int_{\partial D} u_1^* h \, \mathrm{d}w = S(u_1, h) = W(\overline{\partial} u_1, h)$$

by Lemma 4.1. Thus $U'_1 \in K_1(z - T_g, \mathcal{E}(\mathbb{C}^n, H^\infty))$, where U'_1 is the holomorphic extension. Since $u_0 = \delta_{z-T_g}U'_1$ by Lemma 4.1 we have proved that $\delta_{z-T_g}K_1(z - g, \mathcal{E}(\mathbb{C}^n, H^\infty))$ is closed.

Suppose that $u_k \in K_k(z - T_g, \mathcal{E}(\mathbb{C}^n, H^\infty))$ is δ_{z-T_g} -closed. Then there is a solution $u_{k+1} \in K_{k+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, B_0))$ to the equation $\delta_{z-T_g}u_{k+1} = u_k$ since T_g on B_0 has property $(\beta)_{\mathcal{E}}$. Continuing in exactly the same way as above we see that we can replace u_{k+1} with $U'_{k+1} \in K_{k+1}(z - T_g, \mathcal{E}(\mathbb{C}^n, H^\infty))$ such that $\delta_{z-T_g}U'_{k+1} = u_k$. Thus the theorem is proved.

Acknowledgements. I would like to thank Mats Andersson, Jörg Eschmeier, Mihai Putinar and Roland Wolff for valuble discussions and comments on this paper.

REFERENCES

- 1. E. AMAR, A. BONAMI, Mesures de Carleson d'ordre α et solutions au bord de l'équation $\overline{\partial}$, Bull. Soc. Math. France **107**(1979), 23–48.
- 2. M. ANDERSSON, A division problem for $\overline{\partial}_b$ -closed forms, J. Anal. Math. **68**(1996), 39–58.
- M. ANDERSSON, H. CARLSSON, Wolff-type estimates for ∂_b and the H^p-corona problem in strictly pseudoconvex domains, Ark. Mat. 32(1994), 255–276.
- M. ANDERSSON, H. CARLSSON, H^p-estimates of holomorphic division formulas, Pacific J. Math. 173(1996), 307–335.
- M. ANDERSSON, H. CARLSSON, Estimates of the solutions of the H^p and BMOA corona problem, Math. Ann. 316(2000), 83–102.
- P. AHERN, B. BRUNA, C. CASCANTE, H^p-theory for generalized M-harmonic functions in the unit ball, Indiana Univ. Math. J., 45(1996), 103–135.
- W. COHN, Weighted Bergman projections and tangential area integrals, *Studia Math.* 106(1993), 59–76.
- 8. R.R. COIFMAN, Y. MEYER, E.M. STEIN, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62(1985), 304–335.
- J. ESCHMEIER, M. PUTINAR, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr., vol. 10, Oxford Univ. Press, Clarendon Press, Oxford 1996.
- E. HARBOURE, J.L. TORREA, B.E. VIVIANI, A vector-valued approach to tent space, J. Anal. Math. 56(1991), 125–140.
- L. HÖRMANDER, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73(1967), 943–949.
- L. HÖRMANDER, L^p-estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65–78.
- 13. G. KÖTHE, Topological Vector Spaces. II, Springer-Verlag, 1979.
- M. PUTINAR, R. WOLFF, A natural localization of Hardy spaces in several complex variables, Ann. Polon. Math. 66(1997), 183–201.
- E.L. STOUT, H^p-functions on strictly pseudoconvex domains, Amer. J. Math. 98 (1976), 821–852.
- R. WOLFF, Spectral theory on Hardy spaces in several complex variables, Ph.D. Thesis, 1996.
- R. WOLFF, Quasi-coherence of Hardy spaces in several complex variables, *Integral Equation Operator Theory* 38(2000), 120-127.

SEBASTIAN SANDBERG Department of Mathematics Chalmers University of Technology and University of Göteborg SE-412 96 Göteborg SWEDEN

E-mail: sebsand@math.chalmers.se

Received February 19, 2001.