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INTRODUCTION

In [14], Takesaki showed the remarkable duality for crossed products of von Neu-
mann algebras by actions of locally compact abelian groups. As is well-known, it
played an essential part in the structure theorem of von Neumann algebras of type
III. Since then, the Takesaki duality has been largely extended even to the case
of actions of the so-called “quantum groups” (cf. [3], [15]). This duality theory
generally involves three objects: (von Neumann) algebras, actions and weights.
In the literature cited above, while the duality for both algebras and actions was
completely described, the duality for weights was not treated in a satisfactory
manner. As one can see from the papers [2], [4], [5], [3] and [15], the main concern
on weights so far was only the construction of dual weights and identification of
their modular objects. To the best of author’s knowledge, the most recent result
which treats a “true” duality for weights (i.e., a relationship between a weight and
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its bidual weight) can be found in the paper by Strătilă, Voiculescu and Zsidó
(see Theorem III.3.1 in [12] and also Theorem 19.18 in [11] ). According to their
result, the duality for weights was phrased as follows: let α be an action of a
locally compact group G on a von Neumann algebra A, and φ be a faithful normal

semifinite weight on A. Then the bidual weight ˜̃
φ satisfies

(D˜̃
φ : D(φ⊗ Tr))t = (1⊗∆it

G)Ut, t ∈ R,

where Tr is the usual trace on B(L2(G)), ∆G is the modular function of G, and
Ut is the unitary in A⊗ L∞(G) defined by

g ∈ G 7→ Ut(g) := (D(φ ◦ αg) : Dφ)t ∈ A.

Even in their paper, they were engaged only in the case of a locally compact group
action, and in the case of a group coaction. Neddless to say, the case of a general
quantum group action was left untouched. It seems that the main difficulty in
dealing with these untouched cases is that we do have elements of the form αg

around when we treat an action α of a group G, while we do not have such an
object any more in the general case. So, for example, the unitary (D(φ◦αg) : Dφ)t,
which we believe plays a key role in duality for weights, no longer makes sense in
the general situation. Also, analysis such as is done for the proof of Theorem III.3.1
from [12] appears to be inapplicable to the general case. Therefore, in order to
obtain a general duality for weights, it seems that one has to find a new proof
which can be equally applied to every situation.

The purpose of this paper is to establish a complete duality for weights
on covariant systems based on actions of locally compact quantum groups. Our
approach to achieve this goal is new and based heavily on Connes’ theory of spatial
derivatives.

The organization of the paper is as follows. Section 1 is concerned with ter-
minology and notation used throughout this paper. We review fundamental facts
on locally compact quantum groups (in the von Neumann algebraic setting) intro-
duced by Kustermans and Vaes ([10]). Actions of locally compact quantum groups
are discussed too. We also give a quick review on theory of spatial derivatives. In
Section 2, we prepare some results that will be applied in the following sections.
In Section 3, to every pair of an action of a locally compact quantum group G
on a von Neumann algebra and a faithful normal semifinite weight on the alge-
bra where G acts, we associate a family of unitaries, called the Radon-Nikodym
derivative with respect to the action and the weight. In the final section, we prove
the Takesaki duality for weights in full generality.
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1. TERMINOLOGY AND NOTATION

This section is devoted to introduction of terminology and notation used in the sec-
tions that follow. We mainly discuss two things: locally compact quantum groups
recently introduced by Kustermans and Vaes and Connes’ spatial derivatives.

Given a von Neumann algebra A and a faithful normal semifinite weight φ
on A, we introduce the subsets nφ, mφ and m+

φ of A by

nφ = {x ∈ A : φ(x∗x) <∞}, mφ = n∗φnφ, m+
φ = mφ ∩A+.

We denote by πφ the standard (GNS) representation associated with φ. Its rep-
resentation space is denoted by Hφ. We use the symbol Λφ for the canonical
embedding of nφ into Hφ. Let aφ := nφ ∩ n∗φ and set Aφ := Λφ(aφ), which is the
full left Hilbert algebra associated with φ. For a left bounded vector ξ ∈ Hφ with
respect to the left Hilbert algebra Aφ, we write πl(ξ) for the left multiplication
operator corresponding to ξ. For a right bounded vector η, we use πr(η) for the
corresponding right multiplication operator. The Tomita algebra associated to the
left Hilbert algebra Aφ is denoted by Tφ. The other relevant modular objects as-
sociated to φ are denoted by Jφ, ∇φ, Sφ, Fφ, σφ, . . .. (Since we follow the notation
employed in [15], the symbol ∇ will be used to denote the modular operator of a
weight.) Since πφ(A)′ = Jφπφ(A)Jφ, the equation

φ′(y) := φ(π−1
φ (JφyJφ)), y ∈ (πφ(A)′)+

defines a faithful normal semifinite weight φ′ on πφ(A)′.
For a linear operator T on a vector space, D(T ) designates the domain of T .

We let B(H) stand for the algebra of all bounded operators on a Hilbert space H.

1.1. Locally compact quantum groups.

Definition 1.1.1. Following [10] (see [9] also), we say that a quadruple
G = (M,∆, ϕ, ψ) is a locally compact quantum group (in the von Neumann algebra
setting) or a von Neumann algebraic quantum group if

(i) M is a von Neumann algebra;
(ii) ∆ is a unital normal injective ∗-homomorphism from M into M ⊗M

satisfying (∆⊗ id) ◦∆ = (id⊗∆) ◦∆;
(iii) ϕ is a faithful normal semifinite weight on M , called the left invariant

weight of G, such that

ϕ((ω ⊗ id)(∆(x))) = ϕ(x)ω(1) ∀ω ∈M+
∗ , ∀x ∈ m+

ϕ ;

(iv) ψ is a faithful normal semifinite weight on M , called the right invariant
weight of G, such that

ψ((id⊗ ω)(∆(x))) = ψ(x)ω(1), ∀ω ∈M+
∗ , ∀x ∈ m+

ψ .

Let us fix a locally compact quantum group G = (M,∆, ϕ, ψ) throughout the
rest of this section. We will always think of M as represented on the GNS-Hilbert
space Hϕ obtained from ϕ. By the left invariance of ϕ, one gets a unitary W (G)
on Hϕ ⊗Hϕ characterized by

W (G)∗(Λϕ(x)⊗ Λϕ(y)) = Λϕ⊗ϕ(∆(y)(x⊗ 1)), x, y ∈ nϕ.
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This unitary is called the Kac-Takesaki operator of G, and is denoted simply by
W if there is no danger of confusion. The modular operator and the modular
conjugation of ϕ will be denoted simply by J and ∇.

According to [10], there canonically exists another locally compact quantum
group Ĝ = (M̂, ∆̂, ϕ̂, ψ̂), called the locally compact quantum group dual to G such
that {M̂,Hϕ} is a standard representation. So we always regard M̂ as acting on
Hϕ. There is a canonical identification (= the Fourier transform) of H

ϕ̂
with Hϕ.

So we consider the modular operator and the modular conjugation of ϕ̂, denoted
by ∇̂ and Ĵ , as acting on Hϕ. For the definitions of locally compact quantum
groups such as the commutant G′, the opposite Gop etc., we refer the readers to
Section 4 of [10].

A (left) action of G on a von Neumann algebra A is a normal injective unital
∗-homomorphim α from A into M ⊗ A satisfying (idM ⊗ α) ◦ α = (∆⊗ idM ) ◦ α
([15]). If one wishes to work with right actions, with which we believe most of the
readers are familiar, then all the results established in [15] need to be translated
in terms of right actions. Roughly speaking, this can be done by substituting the
opposite Gop for G in the results of [15].

Fix an action α of G on a von Neumann algebra A. By Proposition 1.3 from
[15], the equation

Tα(a) := (ψ ⊗ id)(α(a)), a ∈ A+

defines a faithful normal operator valued weight Tα from A onto Aα := {a ∈ A :
α(a) = 1 ⊗ a}, the fixed-point algebra Aα of α. We call Tα the operator valued
weight associated to the action α.

The crossed product of A by the action α is the von Neumann algebra gen-
erated by α(A) and M̂ ⊗ C. We denote the crossed product by G αnA. By
Proposition 2.2 from [15], there exists a unique action α̂ of Ĝop on G αnA, called
the dual action of α, such that

α̂(α(a)) = 1⊗ α(a), α̂(z ⊗ 1) = ∆̂op(z)⊗ 1 a ∈ A, z ∈ M̂.

We have (G αnA)α̂ = α(A). For every faithful normal semifinite weight φ on A,
the equation

φ̃ := φ ◦ α−1 ◦ T
α̂

defines a faithful normal semifinite weight φ̃ on G αnA. The weight φ̃ is called the
dual weight of φ. In [15], Vaes studied dual weights in great detail. The Hilbert
space H

φ̃
is identified with Hϕ ⊗Hφ. The unitary Uφ on Hϕ ⊗Hφ defined by

Uφ := Jφ̃(Ĵ ⊗ Jφ)

is called the canonical implementation of α (see [15]). It satisfies

α(a) = Uφ(1⊗ a)U∗φ , a ∈ A.

By Theorem 2.6 of [15], there is a unital ∗-isomorphism Θ from the double
crossed product Ĝop

α̂
n(G αnA) onto B(Hϕ)⊗A, and an action γ of G on B(Hϕ)⊗

A such that

γ := Ad (ΣV ∗Σ⊗ 1) ◦ (σ ⊗ idA) ◦ (idB(Hϕ) ⊗ α), (Ad (JĴ)⊗Θ) ◦ ̂̂α = γ ◦Θ,
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where V := (Ĵ ⊗ Ĵ)ΣW ∗Σ(Ĵ ⊗ Ĵ), and Σ : Hϕ ⊗Hϕ → Hϕ ⊗Hϕ is the flip. The
above result is usually referred to as (the Takesaki) duality for crossed products

(see Theorem 2.6 in [15] for example). The bidual weight ˜̃
φ of φ is by definition

defined on Ĝop
α̂
n(G αnA), but, through the above isomorphism Θ in the Takesaki

duality, we may view it as a weight on B(Hϕ)⊗A. In what follows, we often take
this point of view. Hence we have

(1.1.1) ˜̃
φ = φ̃ ◦ Tγ .

2.1 Connes’ spatial derivatives. Let A be a von Neumann algebra acting on
a Hilbert space K. Let φ be a faithful normal semifinite weight on A. A vector
ξ ∈ K is said to be φ-bounded if there exists a positive constant C such that

‖aξ‖ 6 C‖Λφ(a)‖ ∀a ∈ nφ.

We let D(K,φ) be the subspace of φ-bounded vectors in K. Then, for any ξ ∈
D(K,φ), there exists a unique bounded operator Rφ(ξ) from Hφ into K such that

Rφ(ξ)Λφ(a) = aξ, a ∈ nφ.

The operator Rφ(ξ)Rφ(η)∗, ξ, η ∈ D(K,φ), then belongs to the commutant A′ of
A in B(K). For a faithful normal semifinite weight Φ on A′, the equation

q(ξ) := Φ(Rφ(ξ)Rφ(ξ)∗), ξ ∈ D(K,φ)

defines a lower semicontinuous quadratic form on K with dense domain D(q) :=
{ξ ∈ D(K,φ) : q(ξ) < ∞}. By the general theory of quadratic forms on Hilbert
spaces (see Appendix A.10 in [11] for example), there exists a greatest nonsingular
positive self-adjoint operator S on K such that

(i) D(q) ⊆ D(S1/2);
(ii) q(ξ) = ‖S1/2ξ‖2 ∀ ξ ∈ D(q).
The operator S is called the spatial derivative of Φ with respect to φ, and

denoted by dΦ
dφ (see [1] for fundamental properties of spatial derivatives).

By using the theory of spatial derivatives, it is well-konwn that Haagerup’s
order-reversing bijection T 7→ T−1 (Theorem 6.13 in [6]) of operator valued weights
can be constructed in a canonical manner (cf. Remarque in p. 164 of [7], Section 1.2
of [8] or Corollary 12.11 of [11]). Let A ⊆ B be von Neumann algebras acting on a
Hilbert space K, and B′ ⊆ A′ be their commutants in B(K). The set of all faithful
normal semifinite operator valued weights from B to A is denoted by P (B,A). The
set P (A′, B′) is defined similarly. Then there exists a bijection

T ∈ P (B,A) 7→ T−1 ∈ P (A′, B′)

uniquely determined by the property that

dψ
d(φ ◦ T )

=
d(ψ ◦ T−1)

dφ
,

where ψ and φ are any faithful normal semifinite weights on A and B′, respectively.
This fact will be crucial in the discussion that follows.
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2. PRELIMINARY RESULTS

This section is devoted to establishing a result that will be needed to prove our
main theorem. The result is concerned with the tensor product formula of two
spatial derivatives. It might be known to specialists, but the author was unable to
find a proof in the literature of the relevant subject. So we include a proof for the
formula here for readers’ convenience. We also include a proposition which states
a relationship between operator valued weights (S ⊗ T )−1 and S−1 ⊗ T−1. This
result too might be known to specialists.

Proposition 2.1. Let A and B be von Neumann algebras acting on Hilbert
spaces H and K, respectively. Suppose that ω (respectively ψ) is a faithful normal
weight on A (respectively B), and that Ω (respectively Ψ) is a faithful normal
semifinite weight on A′ (respectively B′). Then we have

d(Ω⊗Ψ)
d(ω ⊗ ψ)

=
dΩ
dω

⊗ dΨ
dψ

.

Proof. Let a := dΩ
dω , b := dΨ

dψ and c := d(Ω⊗Ψ)
d(ω⊗ψ) . Denote by q the lower

semicontinuous quadratic form on H ⊗K defined by

q(ζ) := (Ω⊗Ψ)(Rω⊗ψ(ζ)Rω⊗ψ(ζ)∗), ζ ∈ D(H ⊗K,ω ⊗ ψ).

It is easy to see that D(H ⊗ K,ω ⊗ ψ) contains the algebraic tensor product
D(H,ω)�D(K,ψ). Set

DΩ := {ξ ∈ D(H,ω) : Rω(ξ)Rω(ξ)∗ ∈ m+
Ω},

DΨ := {η ∈ D(K,ψ) : Rψ(η)Rψ(η)∗ ∈ m+
Ψ}.

If ζ =
n∑
j=1

ξj ⊗ ηj is in DΩ � DΨ, then, by the density theorem for left Hilbert

algebras, we have Rω⊗ψ(ζ) =
n∑
j=1

Rω(ξj)⊗Rψ(ηj). This implies that ζ belongs to

the domain D(q) of the quadratic form q and

q(ζ) = ‖(a1/2 ⊗ b1/2)ζ‖2.

Hence we get

‖c1/2ζ‖2 = q(ζ) = ‖(a1/2 ⊗ b1/2)ζ‖2, ∀ζ ∈ DΩ �DΨ.

Since DΩ�DΨ is a core for a1/2⊗b1/2 (see equation (6) on p. 95 of [11]), D(a1/2⊗
b1/2) is contained in D(c1/2), and we obtain

(2.1.1) ‖c1/2ζ‖ = ‖(a1/2 ⊗ b1/2)ζ‖, ∀ζ ∈ D(a1/2 ⊗ b1/2).

For any y ∈ A⊗B, by Theorem 9 of [1], we have

(a−1 ⊗ b−1)itσω⊗ψt (y) = (a−it ⊗ b−it)(σωt ⊗ σψt )(y)

= (a−it ⊗ b−it)(ait ⊗ bit)y(a−it ⊗ b−it)

= y(a−1 ⊗ b−1)it.
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From this and Theorem 13 of [1], it results that there is a unique faithful normal
semifinite weight Θ on A′ ⊗B′ such that

a⊗ b =
dΘ

d(ω ⊗ ψ)
.

Since, for all z ∈ A′ ⊗B′

σΩ⊗Ψ
t (z) = (σΩ

t ⊗ σΨ
t )(z) = Ad(a⊗ b)it(z) = Ad

[
dΘ

d(ω ⊗ ψ)

]it

(z) = σΘ
t (z)

there exists a nonsingular positive self-adjoint operator k affiliated with the center
Z(A⊗B) of A⊗B such that

(D(Ω⊗Ψ) : DΘ)t = kit, Ω⊗Ψ = Θ(k · ).
By Theorem 9 from [1], we have

(2.1.2) cit = kit(a⊗ b)it.

Meanwhile, from Proposition 8 of [1] and the fact that kit belongs to Z(A ⊗ B),
one has

kit(a⊗ b)k−it = kit dΘ
d(ω ⊗ ψ)

k−it =
dΘ(k−it · kit)

d(ω ⊗ ψ)
=

dΘ
d(ω ⊗ ψ)

= a⊗ b.

Hence (a⊗b)is commutes with kit for any s, t ∈ R. In other words, k commutes with

a⊗b in the sense of Exercise 9.24 in [13]. Let k =
∞∫
0

λ dp(λ) and a⊗b =
∞∫
0

λ de(λ) be

the spectral decompositions of k and a⊗b. Set pn :=
n∫
0

λ dp(λ) and en :=
n∫
0

λ de(λ),

n = 1, 2, . . .. Then put

D0 :=
∞⋃

n,m=1

pnem(H ⊗K),

which is a dense subspace of H ⊗K. If we define a linear operator k(a⊗ b) with
D(k(a⊗ b)) = D0 by

k(a⊗ b)ζ := k((a⊗ b)ζ), ζ ∈ D0,

then, by Appendix A.6 of [11], k(a ⊗ b) is preclosed and the closure k(a⊗ b) is a
positive self-adjoint operator on H ⊗K such that k(a⊗ b) = (a⊗ b)k and(

k(a⊗ b)
)it = kit(a⊗ b)it, t ∈ R.

It then follows from (2.1.2) that c = k(a⊗ b). Similarly, one can show that the
closure k1/2(a⊗ b)1/2 is c1/2. In particular, D((a ⊗ b)1/2) is a core for c1/2. But
then, Equation (2.1.1) entails that D((a ⊗ b)1/2) equals D(c1/2). Therefore, we
obatin

‖c1/2ζ‖ = ‖(a1/2 ⊗ b1/2)ζ‖, ∀ζ ∈ D(a1/2 ⊗ b1/2) = D(c1/2).

By the uniqueness of the polar decomposition, we conclude that c1/2 = (a⊗ b)1/2,
i.e., c = a⊗ b.
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Proposition 2.2. Let A and B be von Neumann algebras acting on Hilbert
spaces H and K, respectively. Let C (respectively D) be a (unital) von Neumann
subalgebra of A (respectively B), and S (respectively T ) a faithful normal semifinite
operator valued weight from A onto C (respectively from B onto D). Then we have

(S ⊗ T )−1 = S−1 ⊗ T−1.

Proof. Let ω (respectively ψ) be a faithful normal semifinite weight on C
(respectively D) and Ω (respectively Ψ) a faithful normal semifinte weight on C ′

(respectively D′). Then, by Proposition 2.1 and Theorem 5.5 from [5], we have

d(Ω⊗Ψ) ◦ (S ⊗ T )−1

d(ω ⊗ ψ)
=

d(Ω⊗Ψ)
d(ω ⊗ ψ) ◦ (S ⊗ T )

=
d(Ω⊗Ψ)

d(ω ◦ S ⊗ ψ ◦ T )

=
dΩ

dω ◦ S
⊗ dΨ

dψ ◦ T
=

dΩ ◦ S−1

dω
⊗ dΨ ◦ T−1

dψ

=
d(Ω ◦ S−1 ⊗Ψ ◦ T−1)

d(ω ⊗ ψ)
=

d(Ω⊗Ψ) ◦ (S−1 ⊗ T−1)
d(ω ⊗ ψ)

.

Hence we obtain (Ω ⊗ Ψ) ◦ (S ⊗ T )−1 = (Ω ⊗ Ψ) ◦ (S−1 ⊗ T−1). From this and
Lemma 4.8 of [4], it follows that (S ⊗ T )−1 = S−1 ⊗ T−1.

3. THE RADON-NIKODYM DERIVATIVE ASSOCIATED TO AN ACTION

In the remainder of the paper, we fix a locally compact quantum group G =
(M,∆, ϕ, ψ) and an action α of G on a von Neumann algebra A. We will freely
employ the notation introduced in Section 1. We also fix a faithful normal semifi-
nite weight φ on A once and for all. Let φ̃ be the dual weight of φ on the crossed
product G αnA. We write S̃, J̃ , ∇̃, . . . for Sφ̃, Jφ̃,∇φ̃, . . .. (I.e., the modular ob-

jects of φ̃.) We also denote by U the canonical implementation of α on Hϕ ⊗Hφ.
Hence we have U = J̃(Ĵ ⊗ Jφ).

Lemma 3.1. For any t ∈ R, the unitary ∇̃it(∇̂−it⊗1) belongs to M⊗B(Hφ).

Proof. As in the proof of Proposition 3.12 in [15], let {µt}t∈R be the one-
parameter automorphism group of M defined by µt(x) := J∇̂itJxJ∇̂−itJ . From
the proof of Proposition 3.12 in [15], we have

∇̃it(JxJ ⊗ 1)∇̃−it = Jµt(x)J ⊗ 1, ∀x ∈M, ∀t ∈ R,
which is equivalent to

(3.1.1) ∇̃it(y ⊗ 1)∇̃−it = ∇̂ity∇̂−it ⊗ 1, ∀y ∈M ′, ∀t ∈ R.
From this, it follows that, for any y ∈M ′,

∇̃it(∇̂−it ⊗ 1)(y ⊗ 1) = ∇̃it(∇̂−ity∇̂it ⊗ 1)(∇̂−it ⊗ 1)

= ∇̃it · ∇̃−it(y ⊗ 1)∇̃it · (∇̂−it ⊗ 1) = (y ⊗ 1)∇̃it(∇̂−it ⊗ 1).

This completes the proof.
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Lemma 3.2. We have

J̃α(a)J̃ = 1⊗ JφaJφ

for all a ∈ A.

Proof. The assertion immediately follows from the identities α(a) = U(1 ⊗
a)U∗ and U = J̃(Ĵ ⊗ Jφ).

Lemma 3.3. Let b ∈ A′. Then we have

∇̃it(1⊗ b)∇̃−it = 1⊗∇it
φ b∇−it

φ

for any t ∈ R.

Proof. Let η ∈ Tφ. Then we have

∇̃it(1⊗ πr(η))∇̃−it = ∇̃it(1⊗ Jφπl(Jφη)Jφ)∇̃−it = ∇̃itJ̃α(πl(Jφη))J̃∇̃−it

= J̃σφ̃t (α(πl(Jφη)))J̃ = J̃α(σφt (πl(Jφη)))J̃

= J̃α(πl(∇it
φJφη))J̃ = 1⊗ Jφπl(∇it

φJφη)Jφ

= 1⊗ πr(∇it
φη) = 1⊗∇it

φπr(η)∇−it
φ .

The second and the sixth steps are due to the previous lemma. The fourth step is
guaranteed by Proposition 3.7 of [15]. Since πr(Tφ) is dense in A′ in the strong-
operator topology, we obtain the desired identity.

Proposition 3.4. For any t ∈ R, the unitary ∇̃it(∇̂−it ⊗ ∇−it
φ ) belongs to

M ⊗A.

Proof. Thanks to Lemma 3.1, it suffices to show that ∇̃it(∇̂−it ⊗∇−it
φ ) be-

longs to B(Hϕ)⊗A. Let b ∈ A′. Then, by the previous lemma, we have

∇̃it(∇̂−it ⊗∇−it
φ )(1⊗ b) = ∇̃it(1⊗∇−it

φ b∇it
φ)(∇̂−it ⊗∇−it

φ )

= (1⊗ b)∇̃it(∇̂−it ⊗∇−it
φ ).

This completes the proof.

Definition 3.5. With the notation as above, we set

(dφ ◦ α : dφ)t := ∇̃it(∇̂−it ⊗∇−it
φ ), t ∈ R.

We call this strong-operator continous function (dφ◦α : dφ)t on R into the unitary
group of M ⊗A the Radon-Nikodym derivative derived from the action α and the
weight φ. Thus we may regard (dφ ◦ α : dφ) as an element of M ⊗A⊗ L∞(R).

Remark. If the locally compact quantum group M comes from a locally
compact group G, namely, M = L∞(G), then the action α is an action of G on
A in the ordinary sense. In this case, it can be easily checked that the Radon-
Nikodym derivative (dφ◦α : dφ), considered as belonging to L∞(G)⊗A⊗L∞(R) =
L∞(G× R, A), is the function

(g, t) ∈ G× R 7→ (Dφ ◦ αg : Dφ)t ∈ A,
where (Dφ ◦ αg : Dφ)t of course stands for Connes’ Radon-Nikodym derivative of
φ ◦ αg with respect to φ. This justifies our terminology in some sense.
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4. TAKESAKI DUALITY FOR WEIGHTS

We retain the notation established in the preceding section.
Let Φ be the faithful normal semifinite weight on B(Hϕ) ⊗ A defined by

Φ := Tr(∇̂ · ) ⊗ φ, where Tr is the usual trace on B(Hϕ). With this notation, we
have

Lemma 4.1. The function t ∈ R 7→ (dφ ◦ α : dφ)t ∈M ⊗A ⊆ B(Hϕ)⊗A is
a σΦ-cocycle, i.e.,

(dφ ◦ α : dφ)s+t = (dφ ◦ α : dφ)sσΦ
s ((dφ ◦ α : dφ)t), s, t ∈ R.

Proof. Since σΦ
t = Ad (∇̂it ⊗ ∇it

φ), the assertion follows from a direct com-
putation.

From the above lemma, there uniquely exists a faithful normal semifinite
weight Ψ on B(Hϕ)⊗A such that

(DΨ : DΦ)t = (dφ ◦ α : dφ)t, t ∈ R.

Lemma 4.2. The modular automorphism group σΨ of the weight Ψ is given
by σΨ

t = Ad ∇̃it|B(Hϕ)⊗A. In particular, we have σΨ
t

∣∣ G αnA = σφ̃t for any
t ∈ R.

Proof. By the definition of Ψ, we have

(DΨ : D(Tr⊗ φ))t = (DΨ : DΦ)t(DΦ : D(Tr⊗ φ))t

= (dφ ◦ α : dφ)t(∇̂it ⊗ 1) = ∇̃it(1⊗∇−it
φ ).

From this, we get

σΨ
t = Ad ∇̃it(1⊗∇−it

φ ) ◦ (id⊗ σφt ) = Ad ∇̃it|B(Hϕ)⊗A.

The last assertion is now obvious.

Corollary 4.3. The modular automorphism σΨ
t of Ψ is characterized by

the following identities:

σΨ
t (X) = σφ̃t (X), X ∈ G αnA;(4.3.1)

σΨ
t (y ⊗ 1) = ∇̂ity∇̂−it ⊗ 1, y ∈M ′.(4.3.2)

Proof. The first identity is due to the preceding lemma. The second identity
follows from (3.1.1). By Theorem 2.6 of [15], we have G αnA∨M ′⊗C = B(Hϕ)⊗A.
Hence σΨ

t is determined by the above identities.

Lemma 4.4. There uniquely exists a faithful normal semifinite operator val-
ued weight P from B(Hϕ)⊗A onto G αnA such that Ψ = φ̃ ◦ P .

Proof. The assertion follows from the preceding corollary and Theorem 5.1
in [6]
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In what follows, tK stands for the faithful state on C1K := {c · 1K : c ∈ C}
defined by tK(c · 1K) := c, where K is a (separable) Hilbert space and 1K is the
identity operator on K.

Lemma 4.5. Let P be the operator valued weight obtained in Lemma 4.4.
Then we have

φ̃ ′ = (tHϕ
⊗ φ′) ◦ P−1.

We also have
∇̃ =

dΨ
d(tHϕ

⊗ φ′)
.

Proof. By Lemma 4.2 and Theorem 13 of [1], there exists a faithful normal
semifinite weight ρ on A′ such that, with the notation introduced before this
lemma,

∇̃ =
dΨ

d(tHϕ
⊗ ρ)

.

Then we have
dφ̃ ′

dφ̃
= ∇̃−1 =

d(tHϕ ⊗ ρ)
dΨ

=
d(tHϕ ⊗ ρ)

d(φ̃ ◦ P )

=
d(tHϕ

⊗ ρ) ◦ P−1

dφ̃
.

Thus we have obtained φ̃ ′ = ρ ◦ P−1. In the meantime, by Theorem 9 of [1] and
Proposition 2.1, we have[

dΨ
d(tHϕ

⊗ φ′)

]it

=(DΨ : DΦ)t

[
dΦ

d(tHϕ
⊗ φ′)

]it

=(dφ ◦ α : dφ)t

[
d(Tr(∇̂· )⊗ φ)
d(tHϕ

⊗ φ′)

]it

=(dφ ◦ α : dφ)t(∇̂it ⊗∇it
φ)=∇̃it =

[
dΨ

d(tHϕ ⊗ ρ)

]it

.

From this, it follows that ρ = φ′.

As usual, let T
α̂

be the faithful normal semifinite operator valued weight
from G αnA onto α(A) associated to the dual action α̂. Since B(Hϕ) ⊗ A is the
basic extension of the inclusion α(A) ⊆ G αnA, i.e., B(Hϕ) ⊗ A = J̃α(A)′J̃ on
Hϕ⊗Hφ, it follows from Section 5 of [15] that there exists a unique faithful normal
semifinite operator valued weight S from B(Hϕ)⊗A onto G αnA such that

d(ψ ◦ S)
dω′

=
dψ

d(ω ◦ T
α̂
)′

for all faithful normal semifinite weights ψ on G αnA and ω on α(A), where η′ in
general denotes the faithful normal semifinite weight on J̃BJ̃ given by the formula
η′(x) := η(J̃xJ̃) for all x ∈ (J̃BJ̃)+, whenever η is a faithful normal semifinite
weight on a von Neumann algebra B ⊆ B(Hϕ⊗Hφ). Indeed, one can easily show
that S is given by

S(X) = J̃(T
α̂
)−1(J̃XJ̃)J̃ , ∀X ∈ (B(Hϕ)⊗A)+.
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For any faithful normal semifinite operator valued weight T from G αnA onto
α(A) or from α(A)′ onto (G αnA)′, put

T̃ (x) := J̃T (J̃xJ̃)J̃ .

Thus we get a faithful normal semifinite operator valued weight T̃ from (G αnA)′

onto J̃α(A)J̃ = C⊗A′ or from J̃α(A)′J̃ = B(Hϕ)⊗A onto G αnA. By Lemma 1.3
of [8], one has

(T̃ )−1 = T̃−1.

Lemma 4.6. With the notation as above and the one in Section 1.1, we have
S = Tγ . Namely,

Tγ = (T̃
α̂
)−1 = ˜(T

α̂
)−1.

Proof. First we apply Proposition 5.12 from [15] to the dual action α̂ of Ĝop

on N := G αnA. Then we see that the ∗-homomorphism ρ in Theorem 5.3 of
[15] is faithful. By Proposition 5.7 of [15], S can be identified with the operator
valued weight T˜̃α associated with the bidual action ˜̃α through the isomorphism
ρ. Hence it will suffice to show that ρ is exactly the isomorphism Θ introduced
in Section 1.1. By Theorem 2.6 of [15] and Theorem 5.3 of [15], ρ and Θ are
equal on α̂(N). Suppose for the moment that the canonical implementation of
α̂ obtained from the dual weight φ̃ is W (Ĝop)∗ ⊗ 1. Then, by Theorem 2.6 of
[15] and Theorem 5.3 in [15] again, ρ and Θ equal on M ′ ⊗ C ⊗ C. Thus we
can conclude that ρ coincides with Θ. Therefore we have only to prove that the
canonical implementation of α̂ is W (Ĝop)∗ ⊗ 1. From Proposition 2.5 of [15], we
see that φ̃ is a δ̂-invariant weight. Hence, by virtue of Proposition 4.3 from [15],
the unitary Vφ̃ constructed by applying Proposition 2.4 of [15] to the pair (α̂, φ̃)
is the desired canonical implementation. But one can easily check with the aid of
Proposition 7.2 from [15] that Vφ̃ is exactly W (Ĝop)∗ ⊗ 1. The details are left to
the readers.

Lemma 4.7. As in Section 1.1, regard the bidual weight ˜̃
φ as a weight on

B(Hϕ) ⊗ A. Then, with the notation so far, we have ˜̃
φ = Ψ. In particular, one

has

∇̃ =
d˜̃
φ

d(tHϕ ⊗ φ′)

Proof. To prove the lemma, we freely use the formulae obtained in the proof
of Lemma 1.3 from [8]. First we consider the weight φ ◦ α−1 on α(A). Note that
J̃α(A)J̃ = C⊗A′. For any b ∈ (A′)+, we have

(φ ◦ α−1)′(1⊗ b) = φ ◦ α−1(J̃(1⊗ b)J̃) = φ ◦ α−1(α(JφbJφ))

= φ′(b) = (tHϕ
⊗ φ′)(1⊗ b).
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Thus we have (φ ◦ α−1)′ = tHϕ
⊗ φ′. In the meantime, by (1.1.1) and Lemma 4.6,

one has
(φ̃ ′ ◦ (T

α̂
)−1)′ = φ̃ ◦ ˜(T

α̂
)−1 = φ̃ ◦ Tγ = ˜̃

φ.

Hence we obtain

∇̃−1 = J̃∇̃J̃ = J̃
dφ̃

dφ̃′
J̃ = J̃

d(φ ◦ α−1) ◦ T
α̂

dφ̃′
J̃

= J̃
d(φ ◦ α−1)

d(φ̃ ′ ◦ (T
α̂
)−1)

J̃ =
d(φ ◦ α−1)′

d(φ̃′ ◦ (T
α̂
)−1)′

=
d(tHϕ

⊗ φ′)

d˜̃
φ

.

By Lemma 4.5, we have Ψ = ˜̃
φ.

Theorem 4.8. (Takesaki duality for weights) Let α be an action of a locally
compact quantum group G = (M,∆, ϕ, ψ) on a von Neumann algebra A. Suppose

that φ is a faithful normal semifinite weight on A. Let ˜̃
φ be the bidual weight of φ,

regarded as a weight on B(Hϕ) ⊗ A by the Takesaki duality for crossed products.

Namely, with the notation in Section 1.1, ˜̃
φ = φ̃ ◦ Tγ . Then it satisfies

(D˜̃
φ : D(Tr(∇̂ · )⊗ φ))t = (dφ ◦ α : dφ)t, t ∈ R.

Proof. Recall that the weight Ψ was chosen so that (DΨ : DΦ)t = (dφ ◦ α :

dφ)t. But, by the previous lemma, we now know that Ψ = ˜̃
φ. Therefore we obtain

the required result.
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