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Abstract. Let U be a bounded invertible linear mapping of the Hilbert
space K onto itself. Let W = {(U j)∗U j}∞j=−∞, and denote by `2(W) the
corresponding weighted Hilbert space. Our main result shows that the right
bilateral shift R on `2(W) serves as a model for spectral decomposability of
U . Further aspects of this for multiplier transference are treated, and lead to
an example wherein the discrete Hilbert kernel defines a bounded convolu-
tion operator on `2(W(0)), but the analogues of the classical Marcinkiewicz
Multiplier Theorem and the classical Littlewood-Paley Theorem fail to hold
for `2(W(0)).
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1. INTRODUCTION AND NOTATION

Given a Banach space X, we shall denote by B(X) the algebra of all continuous
linear mappings of X into X. The identity operator on X will be symbolized by
I. Suppose that V ∈ B(X) is invertible, and that q : T → C is a trigonometric

polynomial. Thus, q(z) ≡
∞∑

j=−∞
q̂(j)zj , where q̂(j) = 0 for all but finitely many

values of j, and we define q(V ) by writing

q(V ) =
∞∑

j=−∞
q̂(j)V j .

The notion of trigonometrically well-bounded operator, introduced in [2], will
play a central role in our considerations below because of the intimate connection
between trigonometrically well-bounded operations and spectral decomposability,
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which we outline here, leaving precise details for the review of spectral theory
included in Section 3. A continuous linear mapping T of the Banach space X
into itself is trigonometrically well-bounded if and only if T has a “unitary-like”
spectral representation

(1.1) T =

2π∫
0−

eit dE(t),

where E( · ) : R → B(X) is a unique idempotent-valued function (possessing vari-
ous properties weaker than those associated with a countably additive Borel spec-
tral measure), and the integral in (1.1) is a Riemann-Stieltjes integral existing in
the strong operator topology. As shown in Corollary 2.17 of [2], when X is reflex-
ive an operator V ∈ B(X) is trigonometrically well-bounded if and only if V is
invertible, and there is a constant γ such that for every trigonometric polynomial q,

(1.2) ‖q(V )‖ 6 γ‖q‖BV (T),

where ‖q‖BV (T) designates the norm of q in the Banach algebra BV (T):

‖q‖BV (T) = |q(1)|+ var (q,T).

Trigonometrically well-bounded operators will also be useful below, because they
are closely related to discrete Hilbert averages (see [3], Theorem (2.4)), and con-
stitute a ready vehicle for the transference of Fourier multipliers (see, e.g., [1], [6],
[7], and [8]).

Throughout all that follows, K will be an arbitrary Hilbert space with in-
ner product 〈 · , · 〉. An operator-valued weight sequence on K will be a bilateral
sequence W = {Wk}∞k=−∞ ⊆ B(K) such that for each k ∈ Z, Wk is a positive,
invertible, self-adjoint operator. We associate with W the weighted Hilbert space
`2(W) consisting of all sequences x = {xk}∞k=−∞ ⊆ K such that

∞∑
k=−∞

〈Wkxk, xk〉 <∞,

and furnished with the inner product 〈〈 · , · 〉〉 specified by

〈〈x, y〉〉 =
∞∑

k=−∞

〈Wkxk, yk〉.

Thus, `2(W) is a generalization to non-commutative analysis of the `2-spaces de-
fined by scalar-valued weight sequences in the special case where K = C. (For the
continuous variable generalization from scalar-valued weights to operator-valued
weights, see [19], [20].) We shall be especially concerned with avenues for interplay
between `2(W) and the discrete Hilbert kernel h : Z → R, specified by

h(k) =
{
k−1 if k 6= 0,
0 if k = 0.

The formal operator of convolution by h on `2(W) will be referred to as the
discrete Hilbert transform, and will be symbolized by D. If h defines a bounded
convolution operator mapping `2(W) into `2(W), we shall say that W possesses
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the Treil-Volberg Property (see [9], [19], [20] for background facts-in particular, the
reasoning in [19], [20] shows that if W has the Treil-Volberg Property, then W

satisfies an operator-valued analogue of the A2 weight condition).
Suppose now that U ∈ B(K) is an invertible operator, let W be the operator-

valued weight sequence on K given by W = {(Uk)∗Uk}∞k=−∞, and let R be the
right bilateral shift on `2(W). Our main result (Theorem 2.3) asserts that for
every trigonometric polynomial q,

(1.3) ‖q(R)‖B(`2(W)) = sup
z∈T

‖q(zU)‖B(K).

In view of the characterization in (1.2), it follows directly from (1.3) that the right
shift R is trigonometrically well-bounded on `2(W) if and only if U is trigono-
metrically well-bounded on K (Corollary 2.4). In this sense, R serves as a model
for the spectral decomposability properties and the transference properties of U .
In Section 4 we take up the multiplier theory associated with operator-valued
weight sequences, including some transference consequences of the approach us-
ing R as a model (Theorems 4.8 and 4.11, Corollary 4.12). In Sections 5 and 6,
we study the interactions of the classical Marcinkiewicz multiplier functions with
`2(W), showing in Section 6 that there is an operator-valued weight sequence W

on Hilbert space such that W enjoys the Treil-Volberg Property, but the analogues
of the classical Littlewood-Paley Theorem and the classical Marcinkiewicz Multi-
plier Theorem fail to hold for `2(W). This situation is in marked contrast to the
well-known affirmative outcome for scalar-valued A2 weights ([15], [16]).

2. SHIFTS AS MODELS FOR ESTIMATING OPERATOR NORMS

We shall denote by `0(K) the space of all finitely supported K-valued functions
defined on Z. For the trivial operator-valued weight sequence W = {Wk}∞k=−∞
specified by Wk = I for all k ∈ Z, the corresponding space `2(W) will be written
as `2(K). Henceforth normalized Haar measure on T will be denoted by λ, and the
Fejér kernel for T will be symbolized by {κn}∞n=0. Given an arbitrary operator-
valued weight sequence W = {Wk}∞k=−∞ on K, for each z ∈ T we shall signify by
Mz the linear isometry of `2(W) onto `2(W) defined by

(2.1) Mzx = {zkxk}∞k=−∞, for each x = {xk}∞k=−∞ ∈ `2(W).

We also associate with W the operator-valued weight sequence W̃ defined by
putting W̃ = {W−k}∞k=−∞. Notice that the mapping ∆ which sends each x =
{xk}∞k=−∞ ∈ `2(W) to the sequence ∆x = {x−k}∞k=−∞ is a linear isometry of
`2(W) onto `2(W̃). Since the discrete Hilbert kernel is an odd function, it is read-
ily seen with the aid of ∆ that W has the Treil-Volberg property if and only if W̃

has the Treil-Volberg property, and in this case

(2.2) ‖D‖B(`2(W)) = ‖D‖B(`2(W̃)).
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Definition 2.1. If U ∈ B(K) is an invertible operator, with corresponding
operator-valued weight sequence W = {(Uk)∗Uk}∞k=−∞, let Γ be the invertible
linear isometry of `2(K) onto `2(W) specified by

Γx = {U−kxk}∞k=−∞ for all x = {xk}∞k=−∞ ∈ `2(K).

Before stating our main result, it will be convenient to dispose of the following
technical item regarding the boundedness properties of shifts.

Lemma 2.2. Let U ∈ B(K) be an invertible operator with corresponding
operator-valued weight sequence W = {(U j)∗U j}∞j=−∞. Let R and L be, respec-
tively, the right bilateral shift and the left bilateral shift defined for each x =
{xj}∞j=−∞ ∈ `2(W) by

Rx = {xj−1}∞j=−∞, Lx = {xj+1}∞j=−∞.

Then R and L are injective bounded linear mappings of `2(W) onto `2(W) such
that ‖R‖B(`2(W)) = ‖U‖B(K), ‖L‖B(`2(W)) = ‖U−1‖B(K), and L = R−1.

Proof. For each x = {xj}∞j=−∞ ∈ `2(W), we have:

‖Rx‖2`2(W) =
∞∑

j=−∞
‖U jxj−1‖2K =

∞∑
j=−∞

‖UU j−1xj−1‖2K 6 ‖U‖2
∞∑

j=−∞
‖U j−1xj−1‖2K.

This shows that ‖R‖B(`2(W)) 6 ‖U‖B(K). To see that ‖U‖B(K) 6 ‖R‖B(`2(W)), let
α ∈ K, and let x = {xj}∞j=−∞ ∈ `0(K) be specified by putting x0 = α, and xj = 0
for j ∈ Z \ {0}. Thus,

‖Uα‖2K = ‖Rx‖2`2(W) 6 ‖R‖2B(`2(W))‖α‖
2
K.

Similar reasoning shows that ‖L‖B(`2(W)) = ‖U−1‖B(K), after which the remaining
conclusions of the lemma are evident.

Our main result can now be formulated as follows.

Theorem 2.3. Let K be a Hilbert space, and let U ∈ B(K) be invertible. Let
W be the operator-valued weight sequence on K defined by W = {(U j)∗U j}∞j=−∞.
Then the right bilateral shift R on `2(W) has the property that

(2.3) ‖q(R)‖B(`2(W)) = sup
z∈T

‖q(zU)‖B(K),

for every trigonometric polynomial q.

Proof. For each y = {yj}∞j=−∞ ∈ `2(K), let ŷ ∈ L2(T,K) be the Fourier
transform of y defined by putting

ŷ(z) =
∞∑

j=−∞
z−jyj ,

with series convergence in the norm topology of L2(T,K). Clearly the Parseval
formula holds:

(2.4)
∫
T

‖ŷ(z)‖2K dλ(z) = ‖y‖2`2(K).
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Let q(z) ≡
N∑

k=−N
q̂(k)zk be a trigonometric polynomial defined on T. Trivial

estimates using the triangle inequality show that sup
z∈T

‖q(zU)‖B(K) < ∞. Now

let x = {xj}∞j=−∞ ∈ `0(K). Observe that for each j ∈ Z, the isometry Γ in
Definition 2.1 satisfies

(2.5) (Γ−1q(R)Γx)(j) =
N∑

k=−N

q̂(k)Ukxj−k.

This shows, in particular, that Γ−1q(R)Γx ∈ `0(K). Moreover, for each z ∈ T, we
have

(2.6)

(Γ−1q(R)Γx)∧(z) =
∞∑

j=−∞
z−j

N∑
k=−N

q̂(k)Ukxj−k

=
∞∑

j=−∞

N∑
k=−N

q̂(k)z−kUk(zk−jxj−k).

We infer from (2.6) and the Parseval formula (2.4) that

(2.7)

‖Γ−1q(R)Γx‖2`2(K) =
∫
T

∥∥∥∥ ∞∑
j=−∞

N∑
k=−N

q̂(k)z−kUk(zk−jxj−k)
∥∥∥∥2

K

dλ(z)

=
∫
T

∥∥∥∥ N∑
k=−N

q̂(k)z−kUk
( ∞∑
j=−∞

zk−jxj−k

)∥∥∥∥2

K

dλ(z).

Since for each z ∈ T and each k ∈ Z,
∞∑

j=−∞
zk−jxj−k =

∞∑
j=−∞

z−jxj = x̂(z),

we can write (2.7) in the form

‖Γ−1q(R)Γx‖2`2(K) =
∫
T

∥∥∥∥ N∑
k=−N

q̂(k)z−kUk(x̂(z))
∥∥∥∥2

K

dλ(z)

6
(
sup
z∈T

‖q(zU)‖B(K)

)2
∫
T

‖x̂(z)‖2Kdλ(z)

=
(
sup
z∈T

‖q(zU)‖B(K)

)2‖x‖2`2(K).

This shows that
(2.8) ‖q(R)‖B(`2(W)) 6 sup

z∈T
‖q(zU)‖B(K).

For α ∈ K, and M ∈ N, define x = {xj}∞j=−∞ ∈ `0(K) by writing for each
j ∈ Z,

(2.9) xj =
{
α, if |j| 6 M +N ,
0, if |j| > M +N .
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With the aid of (2.5) we see that

(2.10)

M∑
j=−M

∥∥∥∥ N∑
k=−N

q̂(k)Ukxj−k

∥∥∥∥2

K

6 ‖Γ−1q(R)Γx‖2`2(K)

6 ‖q(R)‖2
B(`2(W))

‖x‖2`2(K)

= ‖q(R)‖2
B(`2(W))

(2M + 2N + 1)‖α‖2K.

Employing in the left-hand member of (2.10) the definition in (2.9) for x =
{xj}∞j=−∞, we arrive at the inequality

(2M + 1)‖q(U)α‖2K 6 ‖q(R)‖2
B(`2(W))

(2M + 2N + 1)‖α‖2K.

After dividing this estimate by (2M + 1) and letting M →∞, we infer that

(2.11) ‖q(U)‖B(K) 6 ‖q(R)‖B(`2(W)).

For each w ∈ T, it is easily seen by direct calculation that the surjective
isometry Mw of `2(W), defined in (2.1), satisfies

(2.12) MwRM−1
w = wR.

Applying (2.11) to the trigonometric polynomial qw in place of q, where qw(z) =
q(wz) for all z ∈ T, we find with the aid of (2.12) that for each w ∈ T,

‖q(wU)‖B(K) 6 ‖q(wR)‖B(`2(W)) = ‖q(R)‖B(`2(W)).

This, together with (2.8), completes the proof of (2.3).

Corollary 2.4. Under the hypotheses and notation of Theorem 2.3 the fol-
lowing assertions are equivalent:

(i) U is trigonometrically well-bounded on K;
(ii) R is trigonometrically well-bounded on `2(W);
(iii) W has the Treil-Volberg Property.

Proof. If U is trigonometrically well-bounded, then there is a constant δ
such that for every trigonometric polynomial q, ‖q(U)‖B(K) 6 δ‖q‖BV (T), and
hence sup

z∈T
‖q(zU)‖B(K) 6 2δ‖q‖BV (T). This, together with (2.3) shows that R

is trigonometrically well-bounded. Conversely, if R is trigonometrically well-
bounded, then there is a constant η such that for every trigonometric polynomial
q, ‖q(R)‖B(`2(W)) 6 η‖q‖BV (T), and it follows by (2.3) that U is trigonometrically
well-bounded. The equivalence of conditions (ii) and (iii) above is a special case
of the following result ([9], Theorem 4.12).

Theorem 2.5. Suppose that W is an operator-valued weight sequence on the
arbitrary Hilbert space K. Then W has the Treil-Volberg Property if and only if
the right bilateral shift is a trigonometrically well-bounded operator on `2(W).
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3. BACKGROUND ITEMS FROM SPECTRAL THEORY

In this section we recall the requisite features of trigonometrically well-bounded
operators, and develop some useful items tailored to our purposes (Theorem 3.8
and Corollaries 3.9 and 3.10). In what follows, X will denote an arbitrary Banach
space. Our basic tool for expressing spectral decomposability will be the follow-
ing notion of a spectral family in X, which will be used in conjunction with its
associated theory of spectral integration.

Definition 3.1. A spectral family in X is an idempotent-valued function
E( · ) : R → B(X) with the following properties:

(i) E(s)E(t) = E(t)E(s) = E(s) if s 6 t;
(ii) sup{‖E(t)‖ : t ∈ R} <∞;
(iii) with respect to the strong operator topology of B(X), E( · ) is right

continuous and has a left-hand limit E(t−) at each point t ∈ R;
(iv) E(t) → I as t→∞ and E(t) → 0 as t→ −∞, where each limit is with

respect to the strong operator topology.
If, in addition, there exist a, b ∈ R with a 6 b such that E(t) = 0 for t < a

and E(t) = I for t > b, E( · ) is said to be concentrated on [a, b].

Given a spectral family E( · ) in X concentrated on a compact interval J =
[a, b], we can develop an associated theory of spectral integration as follows. For
each bounded function ϕ : J → C and each partition P = (t0, t1, . . . , tn) of J ,
where we take t0 = a and tn = b, set

S(P;ϕ,E) =
n∑
k=1

ϕ(tk){E(tk)− E(tk−1)}.

If the net {S(P;ϕ,E)} converges in the strong operator topology of B(X) as P
increases by refinement through the set of partitions of J , then the strong limit is
called the spectral integral of ϕ with respect to E(·) and is denoted by

∫
J

ϕ(t) dE(t).

In this case, we define
⊕∫
J

ϕ(t) dE(t) by writing

⊕∫
J

ϕ(t) dE(t) ≡ ϕ(a)E(a) +
∫
J

ϕ(t) dE(t).

Denote by BV (J) the Banach algebra of functions ϕ : J → C of bounded varia-
tion on J , with norm ‖ϕ‖BV (J) = |ϕ(b)| + var (ϕ, J). It can be shown (see [12],
Chapter 17 or the simplified account in [4], Section 2) that the spectral integral∫
J

ϕ(t) dE(t) exists for each ϕ ∈ BV (J), and that the mapping ϕ →
⊕∫
J

ϕ(t) dE(t)

is an identity-preserving algebra homomorphism of BV (J) into B(X) satisfying

(3.1)
∥∥∥∥

⊕∫
J

ϕ(t) dE(t)
∥∥∥∥ 6 ‖ϕ‖BV (J) sup{‖E(t)‖ : t ∈ R}.
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As indicated in Section 1, we shall also be concerned with the Banach algebra
BV (T), which consists of all F : T → C such that the function F̃ (t) ≡ F (eit)
belongs to BV ([0, 2π]), and which is furnished with the norm

‖F‖BV (T)=‖F̃‖BV ([0,2π]).

Definition 3.2. An operator U ∈ B(X) is said to be trigonometrically well-
bounded if there is a spectral family E( · ) in X concentrated on [0, 2π] such that

U =

⊕∫
[0,2π]

eit dE(t).

In this case, it is possible to arrange that E((2π)−) = I, and with this additional
property the spectral family E( · ) is uniquely determined by U , and is called the
spectral decomposition of U.

Notice that if U ∈ B(X) is a trigonometrically well-bounded operator with
spectral decomposition E( · ), then the multiplicativity property for spectral inte-
gration of functions having bounded variation shows that for z ∈ C \ T,

⊕∫
[0,2π]

1
z − eit

dE(t) = (z − U)−1,

and hence the spectrum of U is a subset of T. In particular, U is invertible, with

U−1 =
⊕∫

[0,2π]

e−it dE(t), and for every trigonometric polynomial q,

q(U) =

⊕∫
[0,2π]

q(eit) dE(t).

The class of trigonometrically well-bounded operators was introduced in [2],
and its fundamental structural theory further developed in [3]. In particular, it
follows from [2], Corollary 2.17, that an invertible operator on a Banach space
is trigonometrically well-bounded if and only if its inverse is trigonometrically
well-bounded. For examples of trigonometrically well-bounded operators and of
integration with respect to their associated spectral families, see, e.g., [3], [4], [7],
[8], and [11]. In particular, the powers of a trigonometrically well-bounded op-
erator on X need not be uniformly bounded (even when X is a Hilbert space).
As indicated by our earlier discussion of the condition in (1.2), when X is re-
flexive trigonometrically well-bounded operators can be characterized by suitable
boundedness conditions. The following proposition, which incorporates (1.2) in its
statement, describes this state of affairs.
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Proposition 3.3. Suppose that X is a reflexive Banach space, and U ∈
B(X) is invertible. The following assertions are equivalent:

(i) U is trigonometrically well-bounded;
(ii) sup{‖ψ(U)‖ : ψ is a trigonometric polynomial, ‖ψ‖BV (T) 6 1} <∞;

(iii) sup
{∥∥∥ ∑

0<|k|6n

(
1− |k|

n+1

)
zkUk

k

∥∥∥ : n ∈ N, z ∈ T
}
<∞.

The characterization of the notion of trigonometrically well-bounded oper-
ator in the reflexive space setting expressed by condition (ii) (respectively, con-
dition (iii)) of Proposition 3.3 follows from [2], Corollary 2.17 (respectively, [3],
Theorem (2.4)), and indicates the “trigonometric” (respectively, ergodic Hilbert
transform) aspects of the associated spectral decomposability. Notice that the
sums appearing in Proposition 3.3 (iii) are the (C, 1) means of the ergodic Hilbert
averages for the operators zU , z ∈ T. The use of these (C, 1) means rather than
the ergodic Hilbert averages per se for the operators zU , z ∈ T, is essential for the
generality asserted in Proposition 3.3 (see [3], Example (3.1)).

Remark 3.4. Without the hypothesis that X is reflexive, each of the con-
ditions in Proposition 3.3 (ii)–(iii) is necessary for U to be trigonometrically well-
bounded (see [10], Theorems 2.1 and 5.2).

The following variant of Fejér’s Theorem is valid for trigonometrically well-
bounded operators (see [4], Theorem (3.10) (i)).

Proposition 3.5. Suppose that U is a trigonometrically well-bounded op-
erator on a Banach space X, and E( · ) is the spectral decomposition of U. Let
ψ ∈ BV (T), and define ψ‡ ∈ BV ([0, 2π]) by putting

ψ‡(t) =
1
2
{

lim
s→t+

ψ(eis) + lim
s→t−

ψ(eis)
}
.

Then the formal series
∞∑

k=−∞
ψ̂(k)Uk is (C, 1) summable in the strong operator

topology to (that is, the sequence
{ n∑
k=−n

(
1 − |k|

n+1

)
ψ̂(k)Uk

}∞
n=1

converges in the

strong operator topology to)
⊕∫

[0,2π]

ψ‡(t) dE(t).

In the general Banach space setting, the spectral decomposition of a trigono-
metrically well-bounded operator U has the following description in terms of av-
erages of U ([10], Theorem 5.3).

Theorem 3.6. Suppose that U is a trigonometrically well-bounded operator
on a Banach space X, and E( · ) is the spectral decomposition of U. Then, with all
convergence in the strong operator topology of B(X), we have for each t such that
0 6 t < 2π,

(3.2)

E(t) = (2πi)−1{tiI − St + S0}+ lim
n

1
n

n∑
k=1

(
1− k

n+ 1

)
e−iktUk

+ lim
n

1
n

n∑
k=1

(
1− k

n+ 1

)
Uk,
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where St = lim
n

∑
0<|k|6n

(
1− |k|

n+1

)
e−ikt

k Uk for 0 6 t < 2π.

The significance of the last two terms on the right of (3.2) is exhibited in the
following theorem (see [4], Theorem (3.14) and [10], Corollary 4.4).

Theorem 3.7. Under the hypotheses of Theorem 3.6, for each t such that
0 6 t < 2π, we have, with convergence in the strong operator topology of B(X),

2
n

n∑
k=1

(
1− k

n+ 1

)
e−iktUk → E(t)− E(t−)

and
{E(t)− E(t−)}X={x ∈ X : Ux=eitx}.

When the point spectrum of a trigonometrically well-bounded operator is
empty, Theorem 3.7 can be used to eliminate the last two terms from the right-
hand side of (3.3). For our later convenience, we illustrate this situation with the
following example.

Theorem 3.8. Let W = {Wk}∞k=−∞ be an operator-valued weight sequence
on the arbitrary Hilbert space K, and suppose that W has the Treil-Volberg Prop-
erty. Then the right bilateral shift R and the left bilateral shift L = R−1 are
trigonometrically well-bounded operators on `2(W), each having empty point spec-
trum.

Proof. By Theorem 2.5, R is trigonometrically well-bounded on `2(W) (and
hence so is L = R−1). In order to complete the proof, it suffices to show that R
has no eigenvalues. Suppose to the contrary that γ ∈ C is an eigenvalue for R,
and let x = {xk}∞k=−∞ ∈ `2(W) \ {0} be an eigenvector associated with γ. Since
R is trigonometrically well-bounded, σ(R) ⊆ T, and so |γ| = 1. From Rx = γx
we infer that for all k ∈ Z, R−kx = γ−kx, whence xk = (R−kx)(0) = γ−kx0. It
follows, in particular, that x0 6= 0. We now have:

(3.3) ∞ > ‖x‖2`2(W) =
∞∑

k=−∞

〈Wkxk, xk〉 =
∞∑

k=−∞

〈Wkx0, x0〉.

We claim that for each α ∈ K \ {0}, the sequence {〈Wkα, α〉}∞k=−∞ is a
scalar-valued A2 weight sequence. In order to see this, let f : Z → C be finitely
supported, and put y = {f(k)α}∞k=−∞ ∈ `2(W). Thus for each k ∈ Z,

(Dy)(k) =
∞∑

j=−∞
h(k − j)f(j)α = ((h ∗ f)(k))α.

Hence the inequality ‖Dy‖2`2(W) 6 ‖D‖2B(`2(W))‖y‖
2
`2(W) can be written as

∞∑
k=−∞

|(h ∗ f)(k)|2〈Wkα, α〉 6 ‖D‖2B(`2(W))

∞∑
k=−∞

|f(k)|2〈Wkα, α〉.
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Our claim follows directly from this by Theorem 10 of [15]. (We remark that
an alternate proof of the claim can be obtained by careful adaptation of the in-
gredients used to establish Lemma 3.6 of [20].) Specializing α to be the vector
x0 ∈ K \ {0} which occurs in (3.3), we now see that {〈Wkx0, x0〉}∞k=−∞ is a scalar-
valued A2 weight sequence, and hence by the Scholium in Section 4 of [5] we must

have
∞∑

k=−∞
〈Wkx0, x0〉 = ∞. This contradiction to (3.3) completes the proof of

Theorem 3.8.

Corollary 3.9. Assume the hypotheses and notation of Theorem 3.8, and
let E( · ) be the spectral decomposition of the trigonometrically well-bounded oper-
ator L on `2(W). Then for each t such that 0 6 t < 2π,

(3.4) E(t) = (2πi)−1{tiI − St + S0},
where, with convergence in the strong operator topology of B(`2(W)),

(3.5) St = lim
n

∑
0<|k|6n

(
1− |k|

n+ 1

)e−ikt

k
Lk for 0 6 t < 2π.

Moreover,

(3.6) sup
t∈R

‖E(t)‖B(`2(W)) 6 1 + π−1‖D‖B(`2(W)).

Proof. In view of Theorems 3.6, 3.7, and 3.8, it remains only to show that
(3.6) holds. Suppose that 0 6 t < 2π. In terms of the notation introduced in
conjunction with (2.2), it is easy to see from the (C, 1) means on the right of (3.5)
that we have for x ∈ `2(W̃) and j ∈ Z,

(∆St∆−1x)(j) = e−ijt(Dy)(j),

where y = {yk}∞k=−∞ ∈ `2(W̃) is given by yk = eiktxk for all k ∈ Z. Consequently,
we see with the aid of (2.2) that

(3.7) ‖St‖B(`2(W)) = ‖D‖
B(`2(W̃))

= ‖D‖B(`2(W)).

Since E( · ) is concentrated on [0, 2π], application of (3.7) to (3.4) suffices to estab-
lish (3.6).

As a corollary of the method of proof for Theorem 3.8, we also have the
following result.

Corollary 3.10. Let W = {Wk}∞k=−∞ be an operator-valued weight se-
quence on the Hilbert space K 6= {0}, and suppose that W has the Treil-Volberg
Property. Then the discrete Hilbert transform D satisfies the estimate

π 6 ‖D‖B(`2(W)).

Proof. Choose α ∈ K\{0}. The method of proof for Theorem 3.8 shows that
w = {〈Wkα, α〉}∞k=−∞ is a scalar-valued A2 weight sequence such that the discrete
Hilbert transform Dw ∈ B(`2(w)) satisfies

‖Dw‖B(`2(w)) 6 ‖D‖B(`2(W)).
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So we shall complete the proof by establishing that π does not exceed the spectral
radius r(Dw) of Dw. Application of Theorem (4.2) and Corollary (4.8) from [5]
shows that the right bilateral shift Rw : `2(w) → `2(w) is a trigonometrically
well-bounded operator satisfying

(3.8) −Rw = e−Dw .

For each z ∈ T, we find by easy direct calculations with the operator Mz ∈
B(`2(w)) in (2.1) that

MzRwM−1
z = zRw.

It follows that the spectrum Λ(Rw) of Rw satisfies

(3.9) Λ(Rw) = zΛ(Rw) for all z ∈ T.

Since Rw is trigonometrically well-bounded, we have Λ(Rw) ⊆ T, and this fact
together with (3.9) shows that

(3.10) Λ(Rw) = T.

Applying (3.10) to (3.8), we readily deduce by spectral mapping that Λ(Dw) is
pure-imaginary, and that r(Dw) > π.

4. MULTIPLIERS FOR `2(W) AND TRANSFERENCE

For a function ψ belonging to L1(T) (respectively, belonging to L2(T)), we shall
denote the Fourier transform (respectively, inverse Fourier transform) of ψ by ψ̂

(respectively,
∨

ψ). Thus, for ψ ∈ L2(T),
∨

ψ (k) = ψ̂(−k), for all k ∈ Z.

Definition 4.1. Let W = {Wj}∞j=−∞ be an operator-valued weight se-
quence on the Hilbert space K. A bounded, Haar measurable function ψ : T → C
is called a multiplier for `2(W) (in symbols, ψ ∈M`2(W)) provided that:

(i) for each x = {xj}∞j=−∞ ∈ `2(W), and each k ∈ Z, the series

(
∨

ψ ∗x)(k) ≡
∞∑

j=−∞

∨

ψ (j)xk−j

converges unconditionally in the norm topology of K, and

(ii) the operator Tψ : x ∈ `2(W) →
∨

ψ ∗x is a bounded linear mapping
of `2(W) into `2(W). If this is the case, then the multiplier norm ‖ψ‖M`2(W)

is
defined by

‖ψ‖M`2(W)
= ‖Tψ‖B(`2(W)).

The notation introduced in Definition 4.1 we remain in effect henceforth. The
relationship between multiplier theory for `2(W) and spectral decomposability is
described in the next two theorems.
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Theorem 4.2. Suppose that W = {Wj}∞j=−∞ is an operator-valued weight
sequence on K which has the Treil-Volberg Property, and let L be the left bilateral
shift on `2(W). For 0 6 t < 2π, let ψt be the characteristic function, defined on
T, of the arc

{eis : 0 6 s 6 t}.

Then ψt ∈ M`2(W), and the spectral decomposition E( · ) of the trigonometrically
well-bounded operator L ∈B(`2(W)) satisfies

E(t) = Tψt for 0 6 t < 2π.

(In particular, E(0) = 0.)

Proof. Suppose that 0 6 t < 2π, and x = {xj}∞j=−∞ ∈ `0(K). Straightfor-
ward coordinatewise calculations proceeding from (3.4) and the (C, 1) means on
the right of (3.5) show that

E(t)x =
∨

(ψt) ∗ x.

The desired conclusions follow from this by using the density of `0(K) in `2(W).

Theorem 4.3. Assume the hypotheses and notation of Theorem 4.2. Sup-
pose that ψ : T → C is a bounded function such that ψ is continuous λ-a.e. on T,
and the spectral integral

(4.1)
∫

[0,2π]

ψ(eit) dE(t)

exists. Then ψ is a multiplier for `2(W), and Tψ, the multiplier transform of ψ
on `2(W), coincides with the spectral integral in (4.1).

Proof. Let x = {xj}∞j=−∞ ∈ `0(K) (say, L ∈ N, and xj = 0 for |j| >
L), and let {Pn}∞n=1 be a sequence of partitions of [0, 2π] with mesh-fineness
tending to 0 such that the corresponding Riemann-Stieltjes approximating sums
S(Pn;ψ(ei(·)), E)x tend to

∫
[0,2π]

ψ(eit) dE(t)x in the norm topology of K. Let

Pn = (s(n)
0 , s

(n)
1 , . . . , s

(n)
Nn

). Then in view of Theorem 4.2 we have for each n ∈ N,

(4.2) S(Pn;ψ(ei(·)), E)x =
Nn∑
k=1

ψ(eis
(n)
k )

∨
χ
J

(n)
k

∗x,

where χ
J

(n)
k

denotes the characteristic function, defined on T of the arc J (n)
k spec-

ified by
J

(n)
k = {eit : s(n)

k−1 < t 6 s
(n)
k }.

Let ψn ∈ BV (T) be defined by writing

ψn =
Nn∑
k=1

ψ(eis
(n)
k )χ

J
(n)
k

,
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and notice that by our hypotheses, {ψn}∞n=1 is a uniformly bounded sequence
of functions on T which converges λ-a.e. on T to ψ. Consequently, by bounded
convergence,

lim
n

∨

ψn (k) =
∨

ψ (k) for all k ∈ Z.

By (4.2), we have for each j ∈ Z,

(S(Pn;ψ(ei(·)), E)x)(j) = (
∨

ψn ∗x)(j) =
L∑

k=−L

∨

ψn (j − k)xk.

It obviously follows from this by letting n→∞ that for x = {xj}∞j=−∞ ∈ `0(K),∫
[0,2π]

ψ(eit) dE(t)x =
∨

ψ ∗x.

The desired conclusions follow from this by using the density of `0(K) in `2(W).

As noted in (3.1) functions of bounded variation can be integrated with
respect to a spectral family. In view of this fact and the estimates in (3.1), (3.6),
and Corollary 3.10, we see that Theorem 4.3 has the following corollary, which
transfers the classical Fourier multiplier theorem of Stečkin ([12], Theorem 20.7)
to `2(W).

Corollary 4.4. Suppose that W = {Wj}∞j=−∞ is an operator-valued weight
sequence on K which has the Treil-Volberg Property. Then each ψ ∈ BV (T) is
a multiplier for `2(W) whose corresponding multiplier transform Tψ satisfies the
estimate

(4.3) ‖Tψ‖B(`2(W)) 6 (1 + π−1)‖D‖B(`2(W)) ‖ψ‖BV (T).

We now pass to transference estimates for Rademacher averages. Rademacher
averages will be expressed in terms of Haar integration over the group DN , which
is defined as follows. Let D denote the multiplicative group consisting of the
real numbers 1 and −1. For each N ∈ N, we denote by DN the direct prod-
uct of N copies of D. The generic element ε of DN will be written in the form
ε = (ε1, ε2, . . . , εN ), and normalized Haar measure on DN will be denoted by dε.
It is easily seen from Khinchin’s Inequality and the Khinchin-Kahane Inequality
(see [17], Theorem 2.b.3, and [18], Theorem 1.e.13, respectively) that Lp norms
of square functions can be generalized from the Lebesgue space framework to the
setting of an arbitrary Banach space X by replacing the square function norms
with expressions of the form( ∫

DN

∥∥∥∥ N∑
n=1

εnαn

∥∥∥∥2

X

dε
)1/2

for N ∈ N, {αn}Nn=1 ⊆ X.

In view of this fact, the following notion is a generalization to the Banach space
setting of the classical M. Riesz Property for square functions defined by Riesz
projections (see, e.g., Theorem 6.5.2, [13] for the classical case).
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Definition 4.5. ([6], Definition (2.4)). A family F of bounded linear op-
erators mapping a Banach space X into itself is said to have the R-property pro-
vided there is a constant KF such that for all N ∈ N, all {Tn}Nn=1 ⊆ F , and all
{αn}Nn=1 ⊆ X, we have( ∫

DN

∥∥∥∥ N∑
n=1

εnTnαn

∥∥∥∥2

X

dε
)1/2

6 KF

( ∫
DN

∥∥∥∥ N∑
n=1

εnαn

∥∥∥∥2

X

dε
)1/2

.

While the R-property plays an important role in abstract versions of the
Marcinkiewicz Multiplier Theorem (see [6], Section 4, which includes Proposi-
tion 5.1 below), and will accordingly be useful to us in subsequent discussions, we
note for our purposes that the R-property has the following particularly simple
characterization in the Hilbert space setting.

Proposition 4.6. A family F of bounded linear operators mapping a Hilbert
space K into itself has the R-property if and only if F is uniformly bounded.

Proof. We can assume without loss of generality that K = L2(µ), for some
measure µ. Since the Rademacher functions form an orthonormal sequence in
L2([0, 1]), it is clear that∫

DN

∥∥∥∥ N∑
n=1

εnfn

∥∥∥∥2

L2(µ)

dε =
N∑
n=1

‖fn‖2L2(µ).

This permits us to recast the R-property in terms of square function estimates as
follows. F has the R-property if and only if there is a constant CF such that for
all N ∈ N, all {Tn}Nn=1 ⊆ F , and all {fn}Nn=1 ⊆ L2(µ), we have

N∑
n=1

∫
Ω

|Tnfn|2 dµ 6 CF

N∑
n=1

∫
Ω

|fn|2 dµ.

The desired conclusion is evident from this.

Corollary 4.7. Suppose that U is a trigonometrically well-bounded opera-
tor on the arbitrary Hilbert space K, and let E( · ) be the spectral decomposition of
U . Then {E(t) : t ∈ R} has the R-property.

With obvious modifications, the methods used to establish Theorem 2.3 read-
ily furnish it with the following generalization to Rademacher averages.

Theorem 4.8. Suppose that K is a Hilbert space, and U ∈ B(K) is an in-
vertible operator. Denote by W the operator-valued weight sequence on K defined
by putting W = {(U j)∗U j}∞j=−∞, and denote by R the right bilateral shift on
`2(W). Let N ∈ N and let trigonometric polynomials qn, 1 6 n 6 N , be given. Let
ξ1 be the smallest constant such that( ∫

DN

∥∥∥∥ N∑
n=1

εnqn(zU)α
∥∥∥∥2

K

dε
)1/2

6 ξ1‖α‖K, for all z ∈ T, and all α ∈ K.
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Let ξ2 be the smallest constant such that( ∫
DN

∥∥∥∥ N∑
n=1

εnqn(R)x
∥∥∥∥2

`2(W)

dε
)1/2

6 ξ2‖x‖`2(W), for all x ∈ `2(W).

Then ξ1 = ξ2.

After setting the stage with the next two propositions regarding convolutions,
we shall use Theorem 4.8 as a vehicle for transference of multiplier estimates from
`2(W̃) to the Hilbert space of reference K in the context of Theorem 2.3 and
Corollary 2.4, with U ∈ B(K) trigonometrically well-bounded (see Theorem 4.11
and Corollary 4.12 below).

Proposition 4.9. Let W = {Wj}∞j=−∞ be an operator-valued weight se-
quence on K. Suppose that k ∈ L1(T), and ψ is a multiplier for `2(W). Then
the convolution k ∗ ψ is a multiplier for `2(W) whose corresponding multiplier
transform Tk∗ψ on `2(W) has the following description in terms of `2(W)-valued
Bochner integration:

(4.4) Tk∗ψx =
∫
T

k(z)MzTψMzxdλ(z), for each x = {xj}∞j=−∞ ∈ `2(W),

where Mz is the isometry of `2(W) given by (2.1). Moreover,

(4.5) ‖Tk∗ψ‖B(`2(W)) 6 ‖k‖L1(λ)‖Tψ‖B(`2(W)).

Proof. For x ∈ `2(W), let Ωx denote the Bochner integral on the right in
(4.4). Clearly Ω ∈ B(`2(W)), with

(4.6) ‖Ω‖B(`2(W)) 6 ‖k‖L1(λ)‖Tψ‖B(`2(W)).

Since projection onto each coordinate is continuous on `2(W), we see that for each
x = {xj}∞j=−∞ ∈ `0(K), and each j ∈ Z,

(4.7)

(Ωx)(j) =
∫
T

k(z)zj
∞∑

m=−∞

∨

ψ (j −m)z−mxm dλ(z)

=
∞∑

m=−∞

∫
T

k(z)zj
∨

ψ (j −m)z−mxm dλ(z)

=
∞∑

m=−∞

∨

k(j −m)
∨

ψ (j −m)xm.

For each x = {xj}∞j=−∞ ∈ `2(W), ‖x−x(n)‖`2(W) → 0, where, for each n ∈ N, the

vector x(n) = {x(n)
j }∞j=−∞ ∈ `0(K) is obtained by taking x(n)

j = xj when |j| 6 n,

and x(n)
j = 0 otherwise. In view of this, the desired conclusions are now apparent

from (4.6) and (4.7).
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Proposition 4.10. Let W = {Wj}∞j=−∞ be an operator-valued weight se-
quence on K. Suppose that k ∈ L1(T), N ∈ N, and ψn, 1 6 n 6 N are multipliers
for `2(W). Let ρ be any constant such that

(4.8)
( ∫

DN

∥∥∥∥ N∑
n=1

εnTψnx

∥∥∥∥2

`2(W)

dε
)1/2

6 ρ‖x‖`2(W),

for all x ∈ `2(W). Then( ∫
DN

∥∥∥∥ N∑
n=1

εnTk∗ψnx

∥∥∥∥2

`2(W)

dε
)1/2

6 ρ‖k‖L1(λ)‖x‖`2(W),

for all x ∈ `2(W).

Proof. We start by observing with the aid of (4.4) that for x ∈ `2(W),( ∫
DN

∥∥∥∥ N∑
n=1

εnTk∗ψnx

∥∥∥∥2

`2(W)

dε
)1/2

=
( ∫

DN

∥∥∥∥∫
T

k(z)
N∑
n=1

εnMzTψn
Mzxdλ(z)

∥∥∥∥2

`2(W)

dε
)1/2

6

( ∫
DN

( ∫
T

|k(z)|
∥∥∥∥ N∑
n=1

εnMzTψn
Mzx

∥∥∥∥
`2(W)

dλ(z)
)2

dε
)1/2

.

Applying Minkowski’s Inequality for integrals to the right member, we find that

(4.9)

( ∫
DN

∥∥∥∥ N∑
n=1

εnTk∗ψn
x

∥∥∥∥2

`2(W)

dε
)1/2

6
∫
T

|k(z)|
( ∫

DN

∥∥∥∥ N∑
n=1

εnMzTψnMzx

∥∥∥∥2

`2(W)

dε
)1/2

dλ(z)

=
∫
T

|k(z)|
( ∫

DN

∥∥∥∥ N∑
n=1

εnTψn
Mzx

∥∥∥∥2

`2(W)

dε
)1/2

dλ(z).

Using (4.8) in the right member of (4.9) completes the proof.

Theorem 4.11. Suppose that U ∈ B(K) is trigonometrically well-bounded
with spectral decomposition E(·), and let W ={Wj}∞j=−∞ be the operator-valued
weight sequence on K defined by putting W = {(U j)∗U j}∞j=−∞. Let

W̃ = {(U−j)∗U−j}∞j=−∞
be the operator-valued weight sequence corresponding to the trigonometrically well-
bounded operator U−1. Suppose that we are given N ∈ N, and functions ψn, 1 6
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n 6 N , belonging to BV (T). If ρ is any constant such that

(4.10)
( ∫

DN

∥∥∥∥ N∑
n=1

εnTψn
x

∥∥∥∥2

`2(W̃)

dε
)1/2

6 ρ‖x‖
`2(W̃)

,

for all x ∈ `2(W̃), then, in the notation of Proposition 3.5, we have for all α ∈ K,( ∫
DN

∥∥∥∥ N∑
n=1

εn

⊕∫
[0,2π]

ψ‡n(t) dE(t)α
∥∥∥∥2

K

dε
)1/2

6 ρ‖α‖K.

Proof. Let m ∈ N, and let κm be the Fejér kernel of order m for T. For
1 6 n 6 N , let qmn : T → C be specified by putting

qmn = κm ∗ ψn.
It is easy to see for each of these trigonometric polynomials qmn, that, in terms of
the right bilateral shift R ∈ B(`2(W̃)), the operator Tqmn ∈ B(`2(W̃)) coincides
with qmn(R−1). Hence we can apply Proposition 4.10 (in the setting of W̃) to κm
and (4.10) to infer that( ∫

DN

∥∥∥∥ N∑
n=1

εnqmn(R−1)x
∥∥∥∥2

`2(W̃)

dε
)1/2

6 ρ‖x‖
`2(W̃)

,

for all x ∈ `2(W̃). Using the isometry ∆ described at the outset of Section 2, we
can rewrite this in the form( ∫

DN

∥∥∥∥ N∑
n=1

εnqmn(R)x
∥∥∥∥2

`2(W)

dε
)1/2

6 ρ‖x‖`2(W),

for all x ∈ `2(W). We now invoke Theorem 4.8 to infer that for m ∈ N,

(4.11)
( ∫

DN

∥∥∥∥ N∑
n=1

εnqmn(U)α
∥∥∥∥2

K

dε
)1/2

6 ρ‖α‖K,

for all α ∈ K. To complete the proof of Theorem 4.11, let m→∞ in (4.11), while
applying Proposition 3.5 to ψn and qmn = κm ∗ ψn, for 1 6 n 6 N.

Taking N = 1 in Theorem 4.11, we arrive at the following result on trans-
ference of single multiplier estimates.

Corollary 4.12. Suppose that U ∈ B(K) is trigonometrically well-bounded
with spectral decomposition E( · ), and let

W̃ = {(U−j)∗U−j}∞j=−∞
be the operator-valued weight sequence on K corresponding to the trigonometrically
well-bounded operator U−1. Suppose that ψ ∈ BV (T). Then∥∥∥∥

⊕∫
[0,2π]

ψ‡(t) dE(t)
∥∥∥∥

B(K)

6 ‖Tψ‖B(`2(W̃))
.
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5. THE MARCINKIEWICZ FUNCTION CLASS

Let {tk}∞k=−∞ be the bilateral sequence of dyadic points in the interval (0, 2π):

(5.1) tk =
{

2k−1π if k 6 0,
2π − 2−kπ, if k > 0.

A function ψ : T → C is said to be a Marcinkiewicz function (in symbols, ψ ∈
M(T)) provided

‖ψ‖M(T) ≡ sup
z∈T

|ψ(z)|+ sup
k∈Z

var (ψ(ei( · )), [tk, tk+1]) <∞.

As is well-known, M(T) is a unital Banach algebra under pointwise operations and
the norm ‖ · ‖M(T). For the role accorded the Marcinkiewicz functions as Fourier
multipliers by the classical Marcinkiewicz Multiplier Theorem (see Theorem 8.4.2,
[13]).

In the Banach space setting the following result ([6], Theorem (4.4)) provides
a link between the function class M(T) and spectral integration.

Proposition 5.1. Let E( · ) be a spectral family in a Banach space X. Sup-
pose that: E( · ) is concentrated on [0, 2π]; {E(s) : 0 6 s 6 2π} has the R-property;
and

(5.2) sup
{∥∥∥∥ M∑

n=N

εn{E(tn+1)− E(tn)}
∥∥∥∥

B(X)

}
<∞,

where {tk}∞k=−∞ is the sequence of dyadic points in (0, 2π), and the supremum is
extended over all N ∈ Z, M ∈ Z such that N 6 M , and all choices of εn = ±1 for
N 6 n 6 M. Then there is a constant ϑ such that for each ψ ∈ M(T) the spectral
integral ∫

[0,2π]

ψ(eis) dE(s)

exists, and ∥∥∥∥
⊕∫

[0,2π]

ψ(eis) dE(s)
∥∥∥∥ 6 ϑ‖ψ‖M(T).

In the setting of `2(W) we introduce the following definition, which formu-
lates the natural analogue of the classical Marcinkiewicz Multiplier Theorem.

Definition 5.2. Suppose that W ={Wj}∞j=−∞ is an operator-valued weight
sequence on the Hilbert space K. We say that W has the Marcinkiewicz Multiplier
Property provided that there is a constant ζ such that each ψ ∈ M(T) is a multiplier
for `2(W) having multiplier transform Tψ satisfying

(5.3) ‖Tψ‖B(`2(W)) 6 ζ‖ψ‖M(T).

The following theorem lists some pleasant consequences which arise when W
enjoys the Marcinkiewicz Multiplier Property.
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Theorem 5.3. Suppose that W ={Wj}∞j=−∞ is an operator-valued weight
sequence on K such that W possesses the Marcinkiewicz Multiplier Property. Then
W has the Treil-Volberg Property, and the left bilateral shift L is a trigonometri-
cally well-bounded operator on `2(W). Let E( · ) denote the spectral decomposition
of L. Then if N ∈ Z, M ∈ Z, N 6 M , and εn = ±1 for N 6 n 6 M , we have in
the notation (5.1) for the dyadic points of (0, 2π):

(5.4)
∥∥∥∥ M∑
n=N

εn{E(tn+1)− E(tn)}
∥∥∥∥

B(`2(W))

6 3ζ,

where ζ is the constant appearing in (5.3). For each ψ ∈ M(T), the spectral integral∫
[0,2π]

ψ(eit) dE(t)

exists and coincides with the corresponding multiplier transform Tψ ∈ B(`2(W)).

Proof. Clearly BV (T) ⊆ M(T), with each φ ∈ BV (T) satisfying
(5.5) ‖φ‖M(T) 6 2‖φ‖BV (T).

Specializing φ to be the trigonometric polynomial q1(z) ≡ z (respectively, q2(z) ≡
z−1), we see from the Marcinkiewicz Multiplier Property that L =Tq1 ∈ B(`2(W)))
(respectively, R =Tq2 ∈ B(`2(W))). For each trigonometric polynomial q, it is now
clear that q(L) = Tq, and so by (5.3) and (5.5),

‖q(L)‖B(`2(W)) 6 2ζ‖q‖BV (T).

In view of Proposition 3.3, this shows that L is a trigonometrically well-bounded
operator on `2(W), and hence so is R = L−1. An application of Theorem 2.5 now
furnishes the Treil-Volberg Property for W.

Suppose next that N ∈ Z, M ∈ Z, N 6 M , and εn = ±1 for N 6 n 6 M.
Using the bilateral sequence {tk}∞k=−∞ of dyadic points in the interval (0, 2π), let
χn, N 6 n 6 M , be the characteristic function, defined on T, of the arc

{eit : tn < t < tn+1},
and define ψ ∈ BV (T) ⊆ M(T) to be the function given by

ψ =
M∑
n=N

εnχn.

Clearly ‖ψ‖M(T) = 3, and hence application of (5.3) shows that
(5.6) ‖Tψ‖B(`2(W)) 6 3ζ.
In view of the description for E( · ) stated in Theorem 4.2, we can obviously rewrite
(5.6) as (5.4). Moreover, we know from Corollary 4.7 (applied to `2(W) in place
of K) that

{E(t) : t ∈ R}
has the R-property. It now follows from Proposition 5.1 that for each Φ ∈ M(T),
the spectral integral ∫

[0,2π]

Φ(eit) dE(t)

exists. The proof of Theorem 5.3 can now be completed by an appeal to Theo-
rem 4.3.
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Remark 5.4. In view of the characterization of E( · ) by multiplier trans-
forms (Theorem 4.2) and the standard definition of the dyadic points in (5.1), the
conclusion in Theorem 5.3 asserting the existence of a finite supremum for{∥∥∥∥ M∑

n=N

εn{E(tn+1)− E(tn)}
∥∥∥∥

B(`2(W))

: N ∈ Z,M ∈ Z, N 6 M, and εn = ±1
}

can be regarded as a direct analogue of the classical Littlewood-Paley Theorem
(see, e.g., Theorem 7.2.1, [13], for the classical setting). Hence we can view (5.4)
as asserting a Littlewood-Paley Property for E( · ). More generally, if E( · ) is a
spectral family in a Banach space X and is concentrated on [0, 2π], we shall say
that E( · ) has the Littlewood-Paley Property provided that (5.2) holds. Such a
state of affairs arises in the following corollary of Theorem 5.3.

Corollary 5.5. Suppose that K is a Hilbert space, and U ∈ B(K) is an
invertible operator. Let W ={(U j)∗U j}∞j=−∞ be the corresponding operator-valued
weight sequence on K. Suppose that W has the Marcinkiewicz Multiplier Property,
with constant ζ as in (5.3). Then U is trigonometrically well-bounded. Let E( · )
denote the spectral decomposition of U. If N ∈ Z, M ∈ Z, N 6 M , and εn = ±1
for N 6 n 6 M , then, in the notation of (5.1), we have:

(5.7)
∥∥∥∥ M∑
n=N

εn{E(tn+1)− E(tn)}
∥∥∥∥

B(K)

6 9ζ.

There is a constant ϑ such that for each ψ ∈ M(T), the spectral integral∫
[0,2π]

ψ(eit) dE(t) exists, and satisfies

(5.8)
∥∥∥∥

⊕∫
[0,2π]

ψ(eit) dE(t)
∥∥∥∥

B(K)

6 ϑ‖ψ‖M(T).

Moreover, the mapping

ψ ∈ M(T) 7−→
⊕∫

[0,2π]

ψ(eit) dE(t)

is an identity-preserving algebra homomorphism of M(T) into B(K).

Proof. Application of Theorem 5.3 to W shows that W has the Treil-Volberg
Property, and so U is trigonometrically well-bounded by Corollary 2.4. Suppose
N ∈ Z, M ∈ Z, N 6 M , and εn = ±1 for N 6 n 6 M. Let δ > 0 be small
enough so that for N 6 n 6 M , tn + δ < tn+1, and tn+1 + δ < tn+2. Denote by
χn ∈ BV (T) the characteristic function of the arc

(5.9) {eit : tn + δ 6 t 6 tn+1 + δ}.
Define ψδ ∈ BV (T) by writing

(5.10) ψδ =
M∑
n=N

εnχn,
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and notice that

(5.11) ‖ψδ‖M(T) 6 9.

We next define the auxiliary function ψ̃δ ∈ BV (T) by putting

(5.12) ψ̃δ(z) = ψδ(z) for all z ∈ T.
Clearly we have

(5.13) ‖ψ̃δ‖M(T) = ‖ψδ‖M(T) 6 9.

Since W has the Treil-Volberg Property, so does W̃ = {(U−j)∗U−j}∞j=−∞, and
it follows by Corollary 4.4 that each of ψδ and ψ̃δ is a multiplier for both `2(W)
and `2(W̃). In terms of the surjective isometry ∆ : `2(W) → `2(W̃) described in
conjunction with (2.2), it is readily seen that Tψδ

∈ B(`2(W̃)) and T
ψ̃δ
∈ B(`2(W))

satisfy the relation

(5.14) T
ψ̃δ

= ∆−1Tψδ
∆.

From (5.14), together with the Marcinkiewicz Multiplier Property for W and
(5.13), we see that

(5.15) ‖Tψδ
‖

B(`2(W̃))
= ‖T

ψ̃δ
‖B(`2(W)) 6 ζ‖ψ̃δ‖M(T) 6 9ζ.

In view of (5.15), we can invoke Corollary 4.12 to infer that

(5.16)
∥∥∥∥

⊕∫
[0,2π]

ψ‡δ(t) dE(t)
∥∥∥∥

B(K)

6 9ζ.

Simple direct calculations show that
⊕∫

[0,2π]

ψ‡δ(t) dE(t) =
M∑
n=N

εn

∫
[0,2π]

χ‡n(t) dE(t)

=
M∑
n=N

εn
2
{E(tn+1 + δ) + E((tn+1 + δ)−)− E(tn + δ)− E((tn + δ)−)}.

Hence as δ → 0+,
⊕∫

[0,2π]

ψ‡δ(t) dE(t) →
M∑
n=N

εn{E(tn+1)− E(tn)},

in the strong operator topology of B(K). Using this in (5.16) we arrive at (5.7).
By virtue of Proposition 5.1, the conclusion in (5.8) follows from (5.7) and

Corollary 4.7. All the remaining conclusions are evident except for the multiplica-
tivity of spectral integrals in the present setting. Suppose then that ψ1 ∈ M(T),
and ψ2 ∈ M(T). If

0 < a < b < 2π,
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then it is easy to see that for j = 1, 2,∫
[a,b]

ψj(eit) dE(t) =
∫

[0,2π]

ψj(eit) dE(t){E(b)− E(a)}.

Since ψj(ei( · )) ∈ BV ([a, b]) for j = 1, 2, we also have( ∫
[a,b]

ψ1(eit) dE(t)
)( ∫

[a,b]

ψ2(eit) dE(t)
)

=
∫

[a,b]

ψ1(eit)ψ2(eit) dE(t),

and so ( ∫
[0,2π]

ψ1(eit) dE(t)
)( ∫

[0,2π]

ψ2(eit) dE(t)
)

(E(b)− E(a))

=
( ∫

[0,2π]

ψ1(eit)ψ2(eit) dE(t)
)

(E(b)− E(a)).

Letting b→ (2π)− and a→ 0+, we obtain from this the relation( ∫
[0,2π]

ψ1(eit) dE(t)
)( ∫

[0,2π]

ψ2(eit) dE(t)
)

(I − E(0))

=
( ∫

[0,2π]

ψ1(eit)ψ2(eit) dE(t)
)

(I − E(0)).

But ( ∫
[0,2π]

ψ2(eit) dE(t)
)
E(0) =

( ∫
[0,2π]

ψ1(eit)ψ2(eit) dE(t)
)
E(0) = 0,

and so( ∫
[0,2π]

ψ1(eit) dE(t)
)( ∫

[0,2π]

ψ2(eit) dE(t)
)

=
∫

[0,2π]

ψ1(eit)ψ2(eit) dE(t).

Hence( ⊕∫
[0,2π]

ψ1(eit) dE(t)
)( ⊕∫

[0,2π]

ψ2(eit) dE(t)
)

=

⊕∫
[0,2π]

ψ1(eit)ψ2(eit) dE(t).

We now take up some examples where the hypotheses of Theorem 5.3 are
fulfilled. One straightforward example occurs when W ={Wj}∞j=−∞ is an operator-
valued weight sequence on K such that the right bilateral shift R is an invertible
power-bounded operator on `2(W)— that is,

(5.17) c ≡ sup
n∈Z

‖Rn‖B(`2(W)) <∞.
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Since `2(W), being a Hilbert space, is automatically a UMD space, it follows
from Theorem (4.5), [11], that R is trigonometrically well-bounded (alternatively,
by Sz.-Nagy’s Theorem for bounded abelian groups of Hilbert space operators
([12], Theorem 8.1), R is similar to a unitary operator, and so the condition in
Proposition 3.3 (ii) holds). By Theorem 2.5 W has the Treil-Volberg Property.
Using the spectral decomposition E( · ) of the power-bounded, trigonometrically
well-bounded operator L = R−1, we can apply Theorem (1.1) (ii), [6], to get a
constant η such that for each ψ ∈ M(T),∫

[0,2π]

ψ(eit) dE(t)

exists, with ∥∥∥∥ ∫
[0,2π]

ψ(eit) dE(t)
∥∥∥∥

B(`2(W))

6 η‖ψ‖M(T).

Reference to Theorem 4.3 now shows that each ψ ∈ M(T) is a multiplier for `2(W),
with

Tψ =
∫

[0,2π]

ψ(eit) dE(t).

So it is clear that in the present set-up W has the Marcinkiewicz Multiplier Prop-
erty. However, the following reasoning makes it clear that the context of this
example is rather special. Let α ∈ K, and define x = {xj}∞j=−∞ ∈ `0(K) by taking
x0 = α, and xj = 0 for j 6= 0. Then for each k ∈ Z,

‖Rkx‖2`2(W) = 〈Wkα, α〉.
Hence for N ∈ Z, j ∈ Z, M ∈ Z, with N 6 j 6 M , we have, with the aid of the
power-boundedness of R assumed in (5.17),

1
M −N + 1

M∑
k=N

〈Wkα, α〉 =
1

M −N + 1

M∑
k=N

‖Rkx‖2`2(W) 6 c2‖x‖2`2(W)

6 c4‖Rjx‖2`2(W) = c4〈Wjα, α〉.

In the terminology of [9], this shows that W ∈ A1(K). It follows by Corollary 2.31,
[9], together with another application of (5.17), that

sup
k∈Z

‖Wk‖B(K) + sup
k∈Z

‖W−1
k ‖B(K) <∞.

Consequently when (5.17) holds, the vector spaces `2(W) and `2(K) coincide,
and the norms ‖ · ‖`2(W), ‖ · ‖`2(K) are equivalent. Hence in this framework the
Marcinkiewicz Multiplier Property for W merely states the abstract Marcinkiewicz
Multiplier Theorem for `2(K) (which holds by virtue of Theorem (4.5), [6], applied
to the special case of the UMD space K).

We now take up a more delicate class of examples where the hypotheses of
Corollary 5.5, and thereby the hypotheses of Theorem 5.3, are fulfilled. We refer
the reader to [8] for the relevant terminology and background facts, which, for the
present purposes, are specialized from the case 1 < p < ∞ to the Hilbert space
setting of p = 2. The transference result in Theorem 2.3 will also play a key role.
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Theorem 5.6. Suppose that (X,µ) is a sigma-finite measure space. Let
K = L2(µ) and let U ∈ B(L2(µ)) be an invertible, separation-preserving operator
whose linear modulus |U | satisfies the condition

sup
n>0

∥∥∥∥ 1
2n+ 1

n∑
j=−n

|U |j
∥∥∥∥

B(L2(µ))

<∞.

Let W = {(U j)∗U j}∞j=−∞ be the operator-valued weight sequence on K associated
with U . Then W has the Marcinkiewicz Multiplier Property.

Proof. We begin by observing that by Theorem (4.2), [8], U is trigonometri-
cally well-bounded, and so by Corollary 2.4 above, the right bilateral shift R and
the left bilateral shift L are trigonometrically well-bounded operators on `2(W),
and W has the Treil-Volberg Property. Let {hj}∞j=−∞, {Φj}∞j=−∞, and {Jj}∞j=−∞
be associated with {Uj}∞j=−∞ as in Section 2, [8]. With suitable modifications,
we now follow the pattern of reasoning used in the proof of Lemma (5.5), [8]. Let
N ∈ Z, M ∈ Z, N 6 M , and εn = ±1 for N 6 n 6 M. Let {tk}∞k=−∞ be the
sequence of dyadic points in (0, 2π) given by (5.1). Choose δ > 0 as was done at
the outset of the proof for Corollary 5.5, and let ψδ ∈ BV (T), ψ̃δ ∈ BV (T), be
the functions defined by (5.9), (5.10), and (5.12). In particular, ψδ, ψ̃δ satisfy the
estimate in (5.13). Fix w ∈ T, and for each m ∈ N, let κm be the Fejér kernel of
order m for T, and define the trigonometric polynomial τm by writing

τm(z) = κm(wz), for all z ∈ T.

Let f ∈ K = L2(µ), and temporarily fix m ∈ N. For each L ∈ N, we have
with the aid of (2.14), [8]:

(5.18)

∫
X

∣∣∣∣ m∑
j=−m

τ̂m(j)
(
ψ̃δ

)∧(j)U jf ∣∣∣∣2 dµ

=
1

2L+ 1

∫
X

L∑
υ=−L

∣∣∣∣Φυ( m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)U−jf)∣∣∣∣2Jυ dµ

=
1

2L+ 1

∫
X

L∑
υ=−L

∣∣∣∣Φυ( m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)h−jΦ−j(f)
)∣∣∣∣2Jυ dµ

=
1

2L+ 1

∫
X

L∑
υ=−L

∣∣∣∣ m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)Φυ(h−j)Φυ−j(f)
∣∣∣∣2Jυ dµ

=
1

2L+ 1

∫
X

L∑
υ=−L

∣∣∣∣ m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)hυ−jΦυ−j(f)
∣∣∣∣2|hν |−2Jυ dµ.

We now examine the behavior of the integrand in the last member of (5.18). Denote
by χL,m the characteristic function, defined on Z, of {k ∈ Z : |k| 6 L + m}. We
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have µ-a.e. on X:

(5.19)

L∑
υ=−L

∣∣∣∣ m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)hυ−jΦυ−j(f)
∣∣∣∣2|hν |−2Jυ

=
L∑

υ=−L

∣∣∣∣ ∞∑
j=−∞

∨
τm (j)

(
ψ̃δ

)∨(j)χL,m(υ − j)hυ−jΦυ−j(f)
∣∣∣∣2|hν |−2Jυ.

In the right member of (5.19), we now apply the Marcinkiewicz Multiplier The-
orem for the Lebesgue (sequence) spaces associated with scalar-valued Ap weight
sequences, 1 < p < ∞ (see Theorem (5.1), [8], which is essentially due to Kurtz
([16])), combined with the estimate in (5.13) above and Theorems (3.2) (iii) and
(5.2), [8]. This procedure shows that there is a constant θ, depending only on U ,
such that µ-a.e. on X ,

L∑
υ=−L

∣∣∣∣ m∑
j=−m

∨
τm (j)

(
ψ̃δ

)∨(j)hυ−jΦυ−j(f)
∣∣∣∣2|hν |−2Jυ 6 θ

L+m∑
j=−L−m

|Φj(f)|2Jj .

Using this estimate on the right of (5.18), we find that∫
X

∣∣∣∣ m∑
j=−m

τ̂m(j)
(
ψ̃δ

)∧(j)U jf ∣∣∣∣2 dµ 6
θ

2L+ 1

L+m∑
j=−L−m

∫
X

|Φj(f)|2Jj dµ

=
θ

2L+ 1

L+m∑
j=−L−m

∫
X

Φj(|f |2)Jj dµ,

and so, by (2.11), [8], applied to the majorant in this estimate, we have

(5.20)
∫
X

∣∣∣∣ m∑
j=−m

τ̂m(j)
(
ψ̃δ

)∧(j)U jf ∣∣∣∣2 dµ 6 θ

(
2L+ 2m+ 1

2L+ 1

)
‖f‖2L2(µ).

We now let L→∞ on the right of (5.20) to obtain for m ∈ N, and each f ∈ L2(µ),∥∥∥∥ m∑
j=−m

τ̂m(j)
(
ψ̃δ

)∧(j)U jf∥∥∥∥
L2(µ)

6 θ1/2‖f‖L2(µ),

and so for all m ∈ N,

(5.21)
∥∥∥∥ m∑
j=−m

τ̂m(j)
(
ψ̃δ

)∧(j)U j∥∥∥∥
B(L2(µ))

6 θ1/2.

From the definition of τm, it is clear that
m∑

j=−m
τ̂m(j)

(
ψ̃δ

)∧(j)U j = (κm ∗ ψ̃δ)(wU).

Substitution of this in (5.21) yields

(5.22) sup
w∈T

‖(κm ∗ ψ̃δ)(wU)‖B(L2(µ)) 6 θ1/2.
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Using (5.22), we now apply (2.3) to the trigonometric polynomial (κm ∗ ψ̃δ), and
thereby infer that

‖(κm ∗ ψ̃δ)(R)‖B(`2(W)) 6 θ1/2.

From the relationship (5.12) between ψδ and ψ̃δ it is immediate that

(κm ∗ ψ̃δ)(R) = (κm ∗ ψδ)(L),

and so we have shown that for all sufficiently small δ > 0, we have

(5.23) ‖(κm ∗ ψδ)(L)‖B(`2(W)) 6 θ1/2 for all m ∈ N.

Letting m→∞ in (5.23) while applying Proposition 3.5 to the trigonometrically
well-bounded operator L and its spectral decomposition E( · ), we find that for all
sufficiently small δ > 0,

(5.24)
∥∥∥∥

⊕∫
[0,2π]

ψ‡δ(t) dE(t)
∥∥∥∥

B(`2(W))

6 θ1/2.

By letting δ → 0+ in (5.24) we can now use reasoning analogous to that occurring
right after (5.16) in the proof of (5.7), and thereby deduce that

(5.25)
∥∥∥∥ M∑
n=N

εn{E(tn+1)− E(tn)}
∥∥∥∥

B(`2(W))

6 θ1/2.

The proof of Theorem 5.6 can now be completed by using (5.25) and Corollary 4.7
(applied to L and E(·)) in conjunction with Proposition 5.1 and Theorem 4.3.

6. AN EXAMPLE: FAILURE OF THE MARCINKIEWICZ MULTIPLIER PROPERTY AND

THE LITTLEWOOD-PALEY PROPERTY

In classical single-variable Fourier analysis, as well as in its generalizations to
weighted norm inequalities and to Lebesgue spaces of vector-valued functions, the
boundedness of the relevant Hilbert transform insures that the natural analogues
of the Marcinkiewicz Multiplier Theorem and the Littlewood-Paley Theorem hold
([13], [15], [16], [6]). In marked contrast to this state of affairs, we shall show in
this section that there is an operator-valued weight sequence W(0) on a Hilbert
space K0 such that W(0) possesses the Treil-Volberg Property, but W(0) does not
possess the Marcinkiewicz Multiplier Property, and the natural analogue of the
Littlewood-Paley Theorem does not hold for `2(W(0)). Broadly speaking, such
an example can arise because the general framework of operator-valued weight
sequences is highly non-commutative in nature, and lacks the scope for suitable
analogues of classical maximal functions such as the Hardy-Littlewood maximal
operator.

Let K0 be the usual separable Hilbert space `2(N) consisting of all unilateral
sequences of complex numbers x = {xk}∞k=1 such that

‖x‖2`2(N) =
∞∑
k=1

|xk|2 <∞.
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The example we shall present, which continues the reasoning in (5.36), [6], has its
origins in the interplay (treated in [14]) between spectral theory and a suitable
conditional basis for K0. From the construction of this conditional basis it was
shown in [14] that there is a sequence of rank-one idempotent operators {Pn}∞n=1 ⊆
B(K0) such that:

(i) PnPm = 0 for n 6= m;

(ii)
∞∑
n=1

Pn converges to the identity operator in the strong operator topology

of B(K0);

(iii)
∥∥∥ n∑
j=1

P2j

∥∥∥
B(K0)

→∞ as n→∞.

We define the strictly decreasing sequence {ξn}∞n=1 ⊆ (0, 2π) by putting
ξn = 2−n−1π for each n ∈ N. Thus, for each n ∈ N, ξn is the dyadic point t−n
in (5.1). For t ∈ (0, ξ1], let N be the smallest N ∈ N such that ξN 6 t, and

define E0(t) to be the strongly convergent series
∞∑
n=N

Pn. We also put E0(t) = 0

for t 6 0, and E0(t) = I for t > ξ1. It is readily verified that E0(·) is a spectral
family of projections in K0 concentrated on [0, ξ1] =[0, π/4]. Now let U0 ∈ B(K0)

be defined by writing U0 =
⊕∫

[0,2π]

eit dE0(t). Thus U0 is a trigonometrically well-

bounded operator on K0 having E0( · ) as its spectral decomposition. (We remark
in passing that, as shown in (5.10), [4], sup{‖U j0‖B(K0) : j ∈ Z} = ∞.) It is easy to
see directly from the definition of E0( · ) that if ψ : T → C is a bounded function
such that

∫
[0,2π]

ψ(eit) dE0(t) exists, then we have (with series convergence in the

strong operator topology),

(6.1)

⊕∫
[0,2π]

ψ(eit) dE0(t) =
∫

[0,2π]

ψ(eit) dE0(t) =
∞∑
n=1

ψ(eiξn)Pn.

Since U0 is trigonometrically well-bounded, its associated operator-valued weight
sequence

(6.2) W(0) = {(U j0 )∗U j0}∞j=−∞
has the Treil-Volberg Property, by Corollary 2.4. Nevertheless, we have the fol-
lowing result.

Theorem 6.1. The operator-valued weight sequence W(0) given by (6.2)
does not possess the Marcinkiewicz Multiplier Property, and the spectral decomposi-
tion E( · ) of the left bilateral shift L ∈ B(`2(W(0))) does not possess the Littlewood-
Paley Property defined in Remark 5.4.

Proof. If W(0)possessed the Marcinkiewicz Multiplier Property, then by
Corollary 5.5, for each ψ ∈ M(T), the spectral integral∫

[0,2π]

ψ(eit) dE0(t)
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would exist. However, this conclusion is false, as was shown in (5.36), [6]. The
failure of this conclusion can also be readily seen as follows. For each n ∈ Z, let χn
be the characteristic function, defined on T, of the dyadic arc {eit : tn−1 < t 6 tn}.
Clearly M(T) contains the function φ specified by writing φ =

∞∑
n=−∞

(−1)nχn. If∫
[0,2π]

φ(eit) dE0(t) existed, then by (6.1) the series
∞∑
n=1

(−1)nPn would converge in

the strong operator topology. Taken in combination with Property (ii) listed above
for the sequence {Pn}∞n=1, this would imply the strong convergence of the series
∞∑
n=1

P2n, in contradiction to Property (iii) of {Pn}∞n=1.

Since E( · ) has the R-property by Corollary 4.7 (applied to L and `2(W(0))),
the failure of the Marcinkiewicz Multiplier Property for W(0) implies by Proposi-
tion 5.1 and Theorem 4.3 that E( · ) does not have the Littlewood-Paley Property.
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