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1. INTRODUCTION

In this notes, we will study, as a natural continuation of [31], actions of the fol-
lowing type: Let P , Q and N be von Neumann algebras and α be an action on
N of a group-like object G such as groups or Kac algebras. Our objective here is
to analyze the natural extended action α̃ of G on the free product von Neumann
algebra M := (P ⊗N) ∗Q defined by α̃ = (IdP ⊗ α) ∗ IdQ.

As a simple application, we would like to point out that every interpolated
free group factor L(Fr) (with arbitrary r ∈ (1,∞]) has continuously many non-
outer conjugate aperiodic automorphisms whose crossed-products are all isomor-
phic. This is a simple supplementary remark to a famous result of J. Phillips
([16]; also see [17]). The same is true for a large class of free Araki-Woods fac-
tors (including all the unique type IIIλ cases with λ 6= 0, 1) too. We also discuss
an explicit relationship between the (minimal) action of compact co-commutative
Kac algebra KG (coming from a discrete group G) considered in [31] and a certain
G-free shift action. This simple but interesting observation by the first-named
author was the starting point of this joint work.
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2. APERIODIC AUTOMORPHISMS OF INTERPOLATED FREE GROUP FACTORS

Let us assume that (Q, τQ) is one of the following:

(1) an interpolated free group factor L(Fr), 1 < r 6 ∞, with the unique
tracial state;

(2) the group von Neumann algebra L(Z) with the canonical tracial state;
(3) a finite direct sum of the trivial algebra C with a faithful (tracial) state,

whose free dimension (see [7], [9]) is in (0, 1).

Then we will consider the free product (see [36])

(2.1) (M, τM ) := (R⊗ L∞(T), τR ⊗ µ) ∗ (Q, τQ),

where R is the hyperfinite type II1 factor and µ is the expectation by the Haar
probability measure on the 1-dimensional torus T. A result of K. Dykema (see
[7]) says that every interpolated free group factor (see [8] and [22]) can be realized
in this way. Note that the algebra L∞(T) has the canonical generator u(z) = z,
z ∈ T, being a Haar unitary, i.e., µ(un) = 0 as long as n 6= 0.

Then the free product von Neumann algebra M has the following natural
action of the 1-dimensional torus T:

αz|R ∪Q := the trivial action, αz(u) := zu (the multiplication of z)

for z ∈ T. This action is nothing less than a free product action considered in [31]
and [33] (also see [28]) for the other purpose.

Lemma 2.1. (i) The action α is continuous in the p-topology (or equivalently,
in the u-topology).

(ii) The action α is outer, that is, αz /∈ Int(M) for any z 6= 1.

Proof. (i) Straightforward.
(ii) It suffices to show that (M (α,T))′ ∩M = C1, where M (α,T) denotes the

fixed-point algebra of the action α of T. By Corollary 2 of [34] (based on the idea
of Lemma 2.5 in [18], or the use of Theorem 4.1 of [19]) we have (R⊗C1)′ ∩M =
C1R ⊗ L∞(T). Since both the free components do never commute with and since
R⊗C and Q sit in M (α,T), the relative commutant in question must be trivial.

Remark 2.2. (The free group factor version of Blattner’s result in [1]) Let
G be a separable locally compact group G. If the torus action on L∞(T) was
replaced, in the above construction, by a faithful action of G on a hyperfinite von
Neumann algebra, then one would get an outer (continuous) action of G on an
interpolated free group factor L(Fr) with arbitrary r ∈ (1,∞]. Note here that
R.-J. Blattner ([1]; also see [30], p. 47) showed that any separable locally compact
group can outerly act on the hyperfinite type II1 factor R so that the construction
does really work. Hence, Blattner’s result mentioned just above remains still valid
for any interpolated free group factor. This observation was the initial motivation
of the work ([31]).
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Lemma 2.3. (cf. [16]) Let z1, z2 ∈ T be irrationals, i.e., zk = e2πiθk with
θk /∈ Q, k = 1, 2. If neither z1 = z2 nor z1 = z2 holds, then the corresponding
aperiodic automorphisms αz1 and αz2 never become outer conjugate to each other.

Proof. We make use of the idea given in [16]. Namely the τ -invariant (an in-
variant for outer conjugacy introduced in [3] for modular actions) will be used
to distinguish. The τ -invariant τ(M,αzk

), k = 1, 2, is the weakest topology
on Z making the mapping n 7→ αnzk

∈ Out(M) continuous, where the quo-
tient Out(M) = Aut(M)/Int(M) has the perfect topological sense since M is
known to be a full factor. It is straightforward to see that τ(M,αzk

) is cap-
tured as the weak topology on Z induced by the mapping n 7→ znk ∈ T thanks to
Lemma 2.1 (i). Hence Lemma 1.3 in [16] does work. Here, note that z1 6= z2, z2

means {zn1 : n ∈ Z} 6= {zn2 : n ∈ Z}.

Here we should mention that the τ -invariant has been examined in Section 8
of [27] by D. Shlyakhtenko for some automorphisms on free products of von Neu-
mann algebras. The result there may be useful for further investigations.

Lemma 2.4. (cf. Proposition 1, [34]) If z is irrational, i.e., z = e2πiθ with
θ /∈ Q, then the crossed-product M oαz Z is isomorphic to the amalgamated free
product (see [19], [32], [36])

(2.2) (R⊗ (L∞(T) oαz
Z)) ∗C o Z(Q⊗ L(Z)),

and its isomorphism class does not depend on the choice of z (or say θ). Here,
the amalgamated free product in (2.2) is taken with respect to the conditional ex-
pectations τR ⊗ Eθ and τQ ⊗ IdL(Z) with the canonical conditional expectation
Eθ : L∞(T) oαz

Z → C o Z.

Proof. By Proposition 1 of [34], it suffices to show that the amalgamated
free product in (2.2) does not depend on the choice of z. We first note that

L∞(T) oαz
Z = {u, v}′′ ∼= A′′θ ,

where v denotes the generator of Z in the crossed-product so that vu = zuv =
e2πiθuv, and A′′θ means the weak-closure of the irrational rotation algebra Aθ via
the GNS-representation associated with the unique tracial state. Both the abelian
subalgebras {u}′′ and {v}′′ are known to be Cartan subalgebras in A′′θ , and hence
the inclusion

L∞(T) oαz
Z ⊇ C o Z

forms a pair of the hyperfinite type II1 factor and a Cartan subalgebra. A. Connes,
J. Feldman and B. Weiss’ result ([5]) says that all the Cartan subalgebras in any
fixed hyperfinite factor are conjugate, which implies the assertion.

Summing up the above three lemmas, we get the following theorem.
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Theorem 2.5. Every interpolated free group factor has continuously many
non-outer conjugate aperiodic automorphisms whose crossed-products are all iso-
morphic type II1 factors.

We further investigate the crossed-product of M by an aperiodic automor-
phism of the form αz with irrational z ∈ T. Thanks to Lemma 2.4 (and the proof),
we may investigate the following amalgamated free product:

N := (R⊗R0) ∗D (Q⊗D),

where R0 ⊇ D is a (unique) pair of the hyperfinite type II1 factor and a Cartan
subalgebra.

Theorem 2.6. (cf. Theorem 8, [35]) Let ω be a free ultrafilter. Then the
crossed-product N = M oαz

Z with irrational z satisfies

(2.3) Nω = N ′ ∩Nω = R′0 ∩Dω,

which implies that N has the property Γ (i.e., not full) but not McDuff ([13]).

Proof. We make use of the same idea as in [35]. Since R is a type II1 factor,
we can choose a unitary u in R (= R⊗C1 ⊆M) with τR(un) = 0 as long as n 6= 0.
Towards making use of the above-mentioned idea, we have to choose an invertible
element y in Q with τQ(y) = 0. If (Q, τQ) is as in the case (1) or (2), then one can
choose a Haar unitary so that there is no problem. When (Q, τQ) is as in the case
(3), we write

Q = C⊕ C⊕ · · · ⊕ C (n times),

and the (faithful) tracial state comes from a vector of weights λ = (λ1, λ2, . . . , λn)

with λi > 0,
n∑
i=1

λi = 1. The above invertible y should be a vector µ = (µ1, µ2, . . .

. . . , µn) in Cn ∼= Q such that all the µi’s are non-zero and µ is orthogonal to λ with
respect to the usual inner product on Cn. For choosing such a vector µ, it suffices
to show that the complement (Cλ)⊥ is not contained in any proper subspace
generated by a part of the standard basis {e1, e2, . . . , en} of Cn. If so was, then
there would be a subset {ei1 , . . . , eij} such that [ei1 , . . . , eij ] ⊆ ((Cλ)⊥)⊥ = Cλ,
which is a contradiction to the condition that all the λi 6= 0. Hence we have shown
the existence of an invertible y in Q with τQ(y) = 0.

As in Proposition 5 of [35] we have, for each x ∈ {u}′ ∩Nω,

‖y(x− (END )ω(x))‖τω
N

6 ‖yx− xy‖τω
N
,

and hence if x furthermore commutes with y, then x = (END )ω(x) ∈ Dω since y is
invertible. Therefore, we have obtained the formula (2.3).

The relative commutant R′0 ∩ Dω can be identified (abstractly) with the
von Neumann algebra generated by equivalence classes of ω-centralizing sequences
(under the action of an ergodic finite-measure preserving transformation) consist-
ing of Borel subsets in a non-atomic Lebesgue space X with D = L∞(X). In
this case, the set of those ω-centralizing sequences is known to be very large (see
Theorems 3.1 and 3.3, [24]), and thus the latter assertion follows.
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The pair R0 ⊇ D is known to be constructed from the type II1 amenable
discrete equivalence relation R over a non-atomic Lebesgue space X, that is,

R0 = W ∗(R) ⊇ D = L∞(X).

(See [5] and [11].) The Galois group Gal(R0 ⊇ D) := {α ∈ Aut(R0) : α|D =
Id} is identified with the group Z1(R; T) of 1-cocycles on R via the mapping
c ∈ Z1(R; T) 7→ Mc ∈ Gal(R0 ⊇ D), where Mc is the multiplier defined on
R0 = W ∗(R) (see [11]). We define the homomorphism Φ : Z1(R; T) → Aut(N)
(or more precisely into Gal(N ⊇ D)) by

Φ(c) := (IdR ⊗Mc) ∗D (IdQ ⊗ IdD), c ∈ Z1(R; T).

We first point out that Φ(B1(R; T)) = Int(N,D) (:= {Adu ∈ Aut(N) : u ∈
U(D)}), and that if β is an approximate inner automorphism on N , then it must be
of the form α = AdX ◦β0 with X ∈ U(N), β0 ∈ Int(N,D) thanks to Theorem 2.6
and Connes’ method (see Subsection 2.3, [35], for summary). Then β0 should act
on both R and Q trivially and satisfy that its restriction to R0 is in Int(R0, D), and
hence β0 = (IdR ⊗Mc) ∗D (IdQ ⊗ IdD) = Φ(c) for some c ∈ B1(R; T). What we
explained here is exactly the same as in Section 4 of [35], and we get the following
proposition in this way (see [35], Section 4) for details.

Proposition 2.7. (cf. Theorem 14, [35]) The crossed-product N = M oαz
Z

with irrational z satisfies

χ(N) = Int(N)/Int(N) ∼= H1(R; T),

and the isomorphism is induced by Φ. Here, χ(N) is the χ-group ([4]) and H1(R; T)
is the first cohomology group of the type II1 ergodic amenable discrete equivalence
relation (see [24]).

The free Araki-Woods factor Γ(HR, Ut)′′ (equipped with the so-called free
quasi-free state ϕU ) associated with a (non-trivial) one-parameter group of orthog-
onal transformations on a real Hilbert space HR was introduced by D. Shlyakht-
enko ([25]). It was shown in [25] and [26] that Γ(HR, Ut)′′ is a factor of type IIIλ,
0 < λ < 1, if Ut is periodic with period 2π/ log λ and a factor of type III1 if Ut is
non-periodic. Replacing in (2.1) (Q, τQ) by (Γ(HR, Ut)′′, ϕU ), we consider

(M,ϕ) := (R⊗ L∞(T), τR ⊗ µ) ∗ (Γ(HR, Ut)′′, ϕU )

and aperiodic automorphisms αz for irrational z ∈ T defined as above. If Ut has
an eigenvalue not equal to 1, then we notice, by Corollary 5.5, [25] and [7], the
following state-preserving isomorphisms:

(M,ϕ) ∼= (R⊗ L∞(T), τR ⊗ µ) ∗ (L(F∞), τ) ∗ (Γ(HR, Ut)′′, ϕU )
∼= (L(F∞), τ) ∗ (Γ(HR, Ut)′′, ϕU )
∼= (Γ(HR, Ut)′′, ϕU ),

and all the arguments above can work in this setting as well. With R0 ⊇ D as
above, we hence have

M oαz
Z ∼= (R⊗R0) ∗D (Γ(HR, Ut)′′ ⊗D),

which is a factor of the same IIIλ-type, 0 < λ 6 1, as Γ(HR, Ut)′′ (see e.g. Theo-
rem 2.6, Corollary 4.5, [32]). The following theorem is obtained in this way.
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Theorem 2.8. The free Araki-Woods factor Γ(HR, Ut)′′ with Ut having an
eigenvalue not equal to 1 has continuously many non-outer conjugate aperiodic
automorphisms, all of whose crossed-products are isomorphic to a non-full factor
of the same IIIλ-type as Γ(HR, Ut)′′, not McDuff and having the same χ-group as
in Proposition 2.7.

3. DUALITY BETWEEN FREE PRODUCT ACTIONS AND FREE SHIFT ACTIONS

We are now in turn going to deal with actions whose crossed-products still stay
in the “category” consisting of interpolated free group factors. It is probably
well-known that free shift actions are such typical examples.

We would like here to point out an explicit relationship between the action
of a compact (co-commutative) Kac algebra KG considered in [31] and a certain
free shift action (or free permutation action associated with G).

Let P,Q be von Neumann algebras with specific faithful normal states ϕP , ϕQ,
respectively. Let G be a discrete (countable) group, and λg, g ∈ G, means
its left regular representation. Let L(G) be the group von Neumann algebra
with the canonical trace τG. The compact co-commutative Kac algebra KG =
(L(G), δG, κG, τG) can act on the free product

(M,ϕ) := (P ⊗ L(G), ϕP ⊗ τG) ∗ (Q,ϕQ)

by the free product (co-)action

ΓG = (IdP ⊗ δG) ∗ (IdQ ⊗ 1L(G))

in the sense of [31]. This action is nothing less than that considered in Section 4
of [31].

Consider P,Q and L(G) as subalgebras of M naturally, and set

N :=
(
P ∪

⋃
g∈G

λgQλ
∗
g

)′′
.

Since Adλg(x) = x, x ∈ P , and Ad λg(λhyλ∗h) = λghyλ
∗
gh, y ∈ Q, h ∈ G, we can

define the action α of G on N by αg := Adλg|N , g ∈ G.
It is rather easy to show that {P, {λgQλ∗g}g∈G} forms a free family with

respect to ϕ and that each λg, g 6= e, is orthogonal to L2(N,ϕ) in L2(M,ϕ).
(See [2] for example, where a slightly generalized situation was treated in the
C∗-algebraic setting.) Note here that σϕt (λg) = λg and σϕt (N) = N (globally
invariant) so that there exists the ϕ-conditional expectation E : M → N satisfying
E(λg) = 0 as long as g 6= e. Therefore, we see that

(N,ϕ|N) ∼= (P,ϕP ) ∗
(
∗g∈G(Q,ϕQ)g

)
, M ∼= N oαG,

and that α can be naturally identified with the free product action IdP ∗γG under
the above identification, where γG denotes the G-free shift action on ∗g∈G(Q,ϕQ)g.
What we want to point out here is the following “duality” between the G-free shift
action γG and the free product action ΓG:
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Theorem 3.1. In the current setting, the following assertions hold:
(i) (M,ΓG) ∼= (N oαG, α̂) with the dual action α̂ (= ̂IdP ∗ γG) (see [15]);
(ii) N = MΓG

;
(iii) M oΓG KG

∼= N ⊗B(`2(G)).

Proof. (i) Under the identification M = N oαG explained above, the dual
action α̂ acts on M in the following manner:

α̂(y) = y ⊗ 1L(G), y ∈ N,
α̂(λg) = λg ⊗ λg, g ∈ G.

On the other hand, the definition of δG gives

ΓG(λg) = λg ⊗ λg, g ∈ G,
ΓG(x) = x⊗ 1L(G), x ∈ P,
ΓG(λgyλ∗g) = (λgyλ∗g)⊗ 1L(G), y ∈ Q, g ∈ G,

and hence ΓG = α̂ follows.
(ii) comes from (i) and the well-known formula N = (N oαG)α̂ (see [15]).
(iii) comes from (i), (ii) and the Takesaki duality (see [15]).

Furthermore, similarly to Lemma 2.1 (ii), one can see that if the centralizer
PϕP

is diffuse and Q 6= C, then the action α is outer.

Remarks 3.2. (i) According to Proposition 1 of [33] (or the proof of Propo-
sition 3.2, [28]) one has

M oΓG KG
∼=

(
(P ⊗ L(G)) oIdP⊗δG

KG

)
∗`∞(G)

(
QoIdQ⊗1L(G) KG

)
∼=

(
P ⊗B(`2(G))) ∗`∞(G) (Q⊗ `∞(G)

)
.

In the above, we omitted the mention of the specific conditional expectations since
they are clear from the context. (And, in what follows, we will do omit it as long
as when no confusion is possible.) The above computation says the following
(probably known) simple fact: If A is a (unique) atomic MASA in B(H) with
arbitrary dimH, then(

P ⊗B(H)) ∗A (Q⊗A) ∼=
(
P ∗

(
Q∗(dimH)

))
⊗B(H).

(Compare with Theorem 3.3 of [21].) Note here that this can be directly shown
by simple algebraic method (without any random matrix type technique). What
we explained here was one of the motivations of the works [33] and [28].

(ii) Theorem 3.1 suggests us what “free shift actions” associated with the
duals of compact quantum groups (e.g., ̂SUq(N)) should be. In fact, the theorem
says that the minimal free product action of SUq(2) given in [33] (P = C in that
case) can be regarded as the dual (co-)action of the “free ̂SUq(2)-shift” action. We
will return in the future to this point of view.

As mentioned before, the action α is the free product action IdP ∗ γG, and
one has

M = (P ⊗ L(G)) ∗Q ∼= (P ∗ (∗g∈GQg)) oαG

∼= (P ⊗ L(G)) ∗L(G)

(
(∗g∈GQg) oγG G

)
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with Qg := Q, g ∈ G. This, in particular, says that (∗g∈GQg) oγG G ∼= L(G) ∗Q,
and hence we get

(3.1) (P ⊗ L(G)) ∗Q ∼= (P ⊗ L(G)) ∗L(G) (L(G) ∗Q) .

In fact, we have the following slightly more general fact.

Fact 3.3. (A special case of Proposition 2.7 in [14]) Let P,Q and A be von
Neumann algebras with faithful normal states ϕP , ϕQ and ϕA, respectively. Then

(P ⊗A,ϕP ⊗ ϕA) ∗A (A ∗Q,ϕA ∗ ϕQ) ∼= ((P ⊗A) ∗Q, (ϕP ⊗ ϕA) ∗ ϕQ) .

This can be shown by checking a suitable freeness; the proof is straightfor-
ward. Quite recently, A. Nica, D. Shlyakhtenko and R. Speicher ([14]) showed a
more general fact as a corollary of what they developed on the operator-valued
R-transform.

For each amenable group G and each r ∈ (1,∞], let us specify (P, τP ) and
(Q, τQ) for which we have

M ∼= L(Fr), N ∼= L(F(r−1)|G|+1).

To do so, it suffices, for example, to assume that P is the hyperfinite type II1
factor R, (Q, τQ) is one of those given at the beginning of Section 2 and the free
dimension of (Q, τQ) is r − 1. Then the above realization of M,N can be easily
seen by simple computations of free dimensions based on results of K. Dykema
([7]). In this way, we have obtained the following result.

Proposition 3.4. For each amenable (countable) group G and each r ∈
(1,∞], there exists an outer action α of G on L(F(r−1)|G|+1) such that

L(F(r−1)|G|+1) oαG ∼= L(Fr).

In particular, for each r ∈ (1,∞], there exists an aperiodic automorphism α on
L(F∞) such that

L(F∞) oα Z ∼= L(Fr).

Remark 3.5. When G is an amenable group and P,Q are specified as above,
the fact (3.1) says that the formula of free dimension for a certain class of amal-
gamated free products (including the multi-matrix algebra situation) given in [9]
is valid even in a case where the amalgamation subalgebra is non-atomic.

Finally, we would like to give small comments on the free analogs of Bernoulli
shifts, introduced by replacing the tensor product “⊗” by the free product “∗”.

The “free Bernoulli shift” consisting of the free group factor L(F∞) and its
ergodic, aperiodic automorphism σp associated with a (non-degenerate) probabil-
ity vector p = (p1, . . . , pn) is the free analog of Connes-Størmer’s Bernoulli shift
([6]), and it is constructed in the following manner (see e.g. [20]): Let

(3.2) (N,ψ) := ∗k∈Z(Mn(C), ϕp)k

be the free product, where the state ϕp has the diagonal density matrix diag(p1, . . .
. . . , pn). Then the Z-free shift α preserves the free product state ψ so that one
can consider its restriction σp := α|Nψ to the centralizer Nψ. (Note that, in the
case of equal probabilities, i.e., p1 = · · · = pn = 1/n, the state ψ itself is a trace
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and N ∼= L(F∞) due to [7] so that we simply set σp := α.) According to [10], the
centralizer Nψ is isomorphic to L(F∞) (when ψ is not a trace). The discussion
given before Theorem 3.1 tells us that the crossed-product N oα Z is isomorphic
to the free product

(M,ϕ) := (L(Z), τZ) ∗ (Mn(C), ϕp),

which is known to be isomorphic to L(F2−1/n2) in the case of equal probabilities
(see [7]), or otherwise to the free Araki-Woods factor whose Connes’ Sd invariant
is the multiplicative group generated by pi/pj , 1 6 i, j 6 n, (see [25], p. 365). In
fact, N,ψ and α are realized as

N =
( ⋃
k∈Z

λkMn(C)λ∗k
)′′ (

⊆M
)
, ψ = ϕ|N, α = Adλ,

where λ is the generating unitary of L(Z). Moreover, note that ϕ = ψ ◦ E and
σϕt |N = σψt , where E : M (∼= N oα Z) → N is the canonical conditional expecta-
tion. Now, let Eϕ be the ϕ-conditional expectation from M onto the centralizer
Mϕ, and Eψ the ψ-conditional expectation from N onto Nψ. Then it is easy to see
that Eϕ(λ) = λ (thanks to λ ∈ Mϕ) and Eϕ|N = Eψ (by the commuting square
property thanks to E(Mϕ) ⊆ Nψ). Therefore, we notice

Mϕ = (Nψ ∪ {λ})′′ ∼= Nψ oσp
Z.

Since Mϕ
∼= L(F∞) (see [10], [23], [25], [26]), we have obtained the following

proposition.

Proposition 3.6. Let (L(F∞), σp) be the free Bernoulli shift associated with
a probability vector p = (p1, . . . , pn) defined above. Then

L(F∞) oσp Z ∼=
{
L(F2−1/n2) if p1 = · · · = pn = 1/n,
L(F∞) otherwise.

One can also define a more direct free analog of the classical Bernoulli shift,
which may be called the free “commutative” Bernoulli shift associated with a
probability vector p = (p1, . . . , pn). It consists of L(F∞) and its ergodic, aperiodic
automorphism γp again, provided by replacing the full matrix algebra Mn(C) in
(3.2) by its diagonal subalgebra Cn. Since no type III situation appears in this case,
we simply define γp by the Z-free shift α. Similarly to the above consideration, we
see that the crossed-product L(F∞) oγp Z is isomorphic to the free product

(L(Z), τZ) ∗ (Cn, p),

which is isomorphic to L(F2−‖p‖22) due to [7]. Here, ‖p‖2 denotes the `2-norm of
the probability vector p. Therefore, the following proposition is obtained.

Proposition 3.7. Let (L(F∞), γp) be the above free Bernoulli shift associ-
ated with a probability vector p = (p1, . . . , pn). Then

L(F∞) oγp Z ∼= L(F2−‖p‖22),

where ‖p‖2 is the `2-norm of p.
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Remarks 3.8. (i) It is interesting to note that aperiodic automorphisms
on L(F∞) given in this section have the characteristic very different from that of
automorphisms given in Section 2. More precisely, if α is a Z-free shift on L(F∞)
as in Propositions 3.4, 3.6 and 3.7, then the crossed-product L(F∞) oα Z is a
certain interpolated free group factor and hence full. This means (see [12], [16],
[17]) that {αn : n ∈ Z} forms a discrete subgroup of Out(L(F∞)). On the other
hand, aperiodic automorphisms in Theorem 2.5 have non-full crossed-products as
stated in Theorem 2.6.

(ii) As proved in [8] and [22] independently, the interpolated free group factors
are either all isomorphic or all non-isomorphic (i.e., L(Fr) 6∼= L(Fr′) for r 6= r′).
If the latter case were true, then one would have a continuous family of non-
cocycle conjugate (or equivalently non-outer conjugate) Z-free shifts on L(F∞)
by Proposition 3.4 as well as some cocycle conjugacy classification results for free
Bernoulli shifts σp and γp given in Propositions 3.6 and 3.7. In this connection, it
may be pointed out that the classification up to conjugacy by means of Connes-
Størmer’s dynamical entropy ([6]) is meaningless for these free Bernoulli shifts
since all such free shifts have zero entropy (see e.g. [29]).
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