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Abstract. It is shown how one may use operator space tensor product
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1. INTRODUCTION

The convolution algebra L1(G) of a locally compact group G provides a Banach
algebraic generalization of the classical group algebra C[G] of a discrete group G.
In particular, the uniformly bounded Banach space representations of G are in one-
to-one correspondence with the bounded Banach space representations of L1(G)
(see [30]). On the other hand, in contrast to group algebras, convolution algebras
are generally not provided with a comultiplication, i.e., a “Hopf structure” (see
Section 2).

One may define natural analogues of the convolution algebra for quantum
groups. Perhaps the simplest example is provided by the Fourier algebra of a
non-commutative group G, which may be thought of as the convolution algebra of
the “dual quantum group” Ĝ (see [13]). In this more general context, the lack of
a Hopf structure is a serious flaw, since a natural comultiplication enables one to
define the tensor product of representations. As a result, functional analysts have
instead used various alternative “dual” constructions, such as Hopf C∗-algebras,
Hopf von Neumann algebras, and multiplicative unitaries (see [25], [23], [22], [31],
[2], [42], [43], [44], [20] and [27]).
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Although considerable progress has been made in the functional analytic
theory of quantum groups, there are still good reasons for considering a convolution
algebraic approach. Perhaps the most important of these is that various group
theoretic notions, such as amenability, are most conveniently described in terms
of the convolution algebras (see, e.g., [36]). It can also be argued that convolution
algebras would enable one to avoid some of the technicalities associated with the
corepresentations and coactions of the existing theory (see the discussion in [28]).

It is evident from the existing theory that in order to define a Hopf convo-
lution algebra for quantum groups, one must first replace the classical L1-Banach
spaces by their “non-commutative L1-space” analogues, the preduals of von Neu-
mann algebras. If one wishes to consider algebraic operations on such spaces it
is also necessary to use their underlying operator space structure (for a general
survey of this subject see [21]).

Approximately ten years ago the authors showed that one can define Hopf
algebraic operations on non-commutative L1-spaces by using the operator space
projective and extended Haagerup tensor products. These results were circulated
in an unpublished manuscript ([19]). In the intervening years the tensor product
theory has become more familiar to specialists (for a recent example see [29]). In
addition the Hopf algebra techniques have proved to be quite useful in formulating
the notion of amenability for Kac algebras ([36]).

Since an increasing number of authors have referred to the manuscript, we
believe that it would be useful to make this material available to a wider audience.
We have modified the paper in several ways. We have substantially improved
the discussion of the extended Haagerup tensor product by using a more precise
limiting technique. This has enabled us to give a simple proof of the multivariable
version of an important embedding result of Blecher and Smith ([7]; see (5.20)).
We have shortened the discussion of the operator nuclear, projective and Haagerup
tensor products, since many of the details can now be found elsewhere (see, e.g.,
[21]). We have also postponed much of the discussion of Fourier-Stieltjes algebras
to a subsequent paper.

We begin in Section 2 by considering how operator space tensor products
naturally arise in the theory of Hopf algebras. In Section 3 we briefly discuss
some infinite matrix manipulations. The relevant tensor products are described in
Section 4 and Section 5, and an important “shuffle theorem” is proved in Section 6.
In Section 7 we conclude the discussion in Section 2, and in particular we indicate
how one can construct tensor products of representations of Hopf convolution
algebras.

Given a Hilbert space H, we use the expression “weak∗ topology” for the
usual σ-weak operator topology on B(H).

Unless otherwise indicated, we assume that all operator spaces are norm
complete.
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2. HOPF ALGEBRAS

Analysts use the Hopf algebraic terminology in a more inclusive and less precise
sense than that found in the algebraic literature (for the elementary algebraic
theory see [3] and [40]). In general, a Hopf algebra (A,m, δ) consists of a linear
space A with norms or matrix norms, an associative bilinear multiplication m =
mA : A×A→ A, and a coassociative comultiplication δ = δA : A→ A ⊗̃A, where
⊗̃ is a suitable tensor product, and δ is an algebraic homomorphism (this links
the two operations). The maps are assumed to be bounded in some appropriate
sense.

A Hopf von Neumann algebra (R,m, δ) is a von Neumann algebra R together
with its multiplication operation m, and a weak∗ continuous ∗-isomorphic unital
coassociative injection

δ : R→ R⊗R,

whereR⊗R is the usual von Neumann algebraic tensor product. We may associate
two Hopf von Neumann algebras with a locally compact group G. Let us fix a left
invariant Haar measure on G. We have that (L∞(G),m, δ) is a Hopf von Neumann
algebra, where m is the point-wise multiplication and δf(x, y) = f(xy). On the
other hand if R(G) is the von Neumann algebra generated by the left regular
representation λ : G → L2(G), and the normal homomoprhism δ : R → R⊗R is
determined by the map λ(s) 7→ λ(s)⊗ λ(s) (see [31], Section 2 for the details).

From the finite-dimensional theory one might expect that the predual R∗ of
a Hopf von Neumann algebra R is again a Hopf algebra. Using the fact that

(R⊗R)∗ = R∗ ⊗̂R∗,

where ⊗̂ is the operator space projective tensor product (see Section 4), the pread-
joint of δ = δR is a natural associative multiplication

m = mR∗ : R∗ ⊗̂R∗ → R∗.

In particular, if R = R(G), this is the usual multiplication of the Fourier algebra
A(G) = R∗. If G is abelian, the Banach algebra A(G) may be identified with the
usual convolution algebra L1(Ĝ) of the dual group Ĝ, whereas for non-commutative
groups and more generally quantum groups, it is thought of as the “convolution
algebra of the dual quantum group”.

In order to complete the duality, and most importantly, to define the tensor
product for representations of the algebra R∗, it is also necessary to define a
comultiplication on R∗ which is dual to the multiplication map m = mR : R×R→
R. Our first task is to linearize m by using a suitable tensor product. Even if
R is commutative, m does not extend to a contractive linear map R⊗R → R.
Fortunately there is a natural operator space tensor product, the normal Haagerup

tensor product R
σh
⊗ R (introduced in [12]), which is ideally suited for linearizing

bilinear functions of this type on R. The map m extends uniquely to a weak∗

continuous completely contractive map m : R
σh
⊗ R→ R.
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The space R
σh
⊗ R has a natural predual, the extended Haagerup tensor

product R∗
eh
⊗ R∗. We define the comultiplication δ : R∗ → R∗

eh
⊗ R∗ to be the

preadjoint of m : R
σh
⊗ R→ R. We call a Hopf algebra (A = R∗,m, δ) which arises

in this manner a Hopf convolution algebra. We may summarize these constructions
with the diagram

(2.1)

Hopf von Neumann algebra R Hopf convolution algebra R∗
δ = δR : R→ R ⊗ R m = (δR)∗ : R∗⊗̂R∗ → R∗

←→
m = mR : R

σh
⊗ R→ R δ = (mR)∗ : R∗ → R∗

eh
⊗ R∗

.

In order to verify that R∗ is a Hopf algebra, we must also prove the non-trivial
fact that

δ : R∗ → R∗
eh
⊗ R∗

is an algebraic homomorphism. To make sense of this we must first prove that the
“shuffle” linear map of algebraic tensor products

S : (R∗ ⊗R∗)⊗ (R∗ ⊗R∗)→ (R∗ ⊗R∗)⊗ (R∗ ⊗R∗)

defined by

(x⊗ y)⊗ (u⊗ v) 7→ (x⊗ u)⊗ (y ⊗ v)

has a natural extension to a complete contraction

(2.2) Se : (R∗
eh
⊗ R∗) ⊗̂ (R∗

eh
⊗ R∗)→ (R∗ ⊗̂R∗)

eh
⊗ (R∗ ⊗̂R∗).

This result was proved in [15]. In Section 6 we show that it follows from a
shuffle result for arbitrary operator spaces. For this purpose it is necessary to use
the nuclear tensor product V

nuc
⊗ W , which is a natural complete quotient of the

projective tensor product V ⊗̂W (see Section 4). For von Neumann algebras R

and S we have that R∗
nuc
⊗ S∗ = R∗ ⊗̂S∗. Given operator spaces V1, V2,W1 and

W2, we show in Theorem 6.1 that S extends to a complete contraction

(2.3) Se : (V1

eh
⊗ W1)

nuc
⊗ (V2

eh
⊗ W2)→ (V1

nuc
⊗ V2)

eh
⊗ (W1

nuc
⊗ W2).

Since we have a natural complete quotient map

(R∗
eh
⊗ R∗) ⊗̂ (R∗

eh
⊗ R∗)→ (R∗

eh
⊗ R∗)

nuc
⊗ (R∗

eh
⊗ R∗),

(2.2) is an immediate consequence of (2.3).
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3. INFINITE MATRICES

Given an operator space V and index sets I and J , we let MI,J(V ) denote the
vector space of matrices [vi,j ], i ∈ I, j ∈ J , for which the finite submatrices are
uniformly bounded in norm (this is again an operator space; [14], [16]), and as
usual we let MJ(V ) = MJ,J(V ) and MJ = MJ(C) = B(`2(J)). We also use the
notation TI,J(V ) = TI,J ⊗̂V , where TI,J is the predual of MI,J .

Products of bounded infinite scalar matrices must be handled with some care.
Given a ∈MI,K , b ∈MK,J , we have that the series

∑
k

aikbkj converges absolutely,

and thus unconditionally since∑
k

|aikbkj | 6
( ∑

k

|aik|2
)1/2( ∑

k

|bkj |2
)1/2

= ‖a∗(ei)‖ ‖b(ej)‖ <∞.

The series involved in products of more than two matrices need not converge
absolutely. As a result one must justify changes in the order of summation of
series of this type. Fortunately there is a modified form of unconditionality that
is valid. To illustrate this, let us suppose that we are given a ∈ MI,K , b ∈ MK,L,
and c ∈ML,J for index sets I, J,K,L. Given a subset S ⊆ K, we let P (S) be the
corresponding projecton on `2(K). This determines a projection valued measure
on K. Similarly we let Q(T ) be the projection on `2(L) determined by a subset
T ⊆ L. If we restrict to finite sets F ⊆ K and G ⊆ L, we may regard F → P (F )
and G → Q(G) as nets of projections, each of which converges to the identity
in the strong operator topology. Since multiplication is jointly continuous in the
strong operator topology on bounded sets of operators, we have that

abc = lim
F,G

aP (F )bQ(G)c

and thus we get a limit of finite sums

(abc)i,j = lim
F,G

∑
k∈F,l∈G

ai,kbk,lcl,j .

Similarly we have
abc = lim

F
aP (F )bc

and therefore
(abc)i,j = lim

F

∑
k∈F

ai,k(bc)k,j .

We conclude this section with a review of certain operator space conventions
and results. Given operator spaces V andW , we let CB(V,W ) denote the operator
space of completely bounded maps ϕ : V → W . If V and W are the duals
of operator spaces, then we let CBσ(V,W ) be the weak∗ continuous maps in
CB(V,W ).

If H and K are Hilbert spaces with bases (ej)j∈J and (fi)i∈I indexed by sets
J and I, we may identify B(H,K) with MI,J .

We have a natural complete isometry

(3.1) CB(V,MI,J) ∼= MI,J(V ∗),
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where given a matrix f = [fij ] ∈MI,J(V ∗), the corresponding map ϕf : V →MI,J

is defined by ϕf (v) = [fij(v)]. This is immediate from the identifications

MI,J(V ∗) = (TI,J ⊗̂V )∗ = CB(V,MI,J)

(see [21], (10.1.8)).
On the other hand, we have the natural complete isometry

(3.2) CBσ(V ∗,MI,J) ∼= MI,J(V ).

This is proved as follows. Let us suppose that ϕ ∈ CBσ(V ∗,MI,J). Then from
(3.1) there is a matrix F = [Fi,j ] ∈ MI,J(V ∗∗) such that ϕ(f) = [Fij(f)]. By
hypothesis, f 7→ [Fij(f)] is continuous in the weak∗ topologies. It follows that
each function Fij is weak∗ continuous, and thus has the form Fij(f) = f(vij)
for some element vij ∈ V , and thus F = [vi,j ]. Conversely, if F = [vi,j ] where
vi,j ∈ V , then we claim that ϕF ∈ CBσ(V ∗,MI,J). To prove this it suffices to
show that the restriction of f 7→ F (f) to the unit ball B of V ∗ is continuous in
those topologies. Since F (B) is bounded, the weak∗ topology coincides with the
weak operator topology on F (B). In turn, it suffices to show that f 7→ F ′(f) is
weak∗ continuous for finite submatrices F ′ of F , and this is immediate from the
weak∗ continuity of the entries vi,j .

Given operator spaces Vk, k = 1, . . . , p, index sets Ik and Jk and rectangular
matrices vk = [v(k)

ik,jk
] ∈MIk,Jk

(Vk), we define the Kronecker product by

v1 ⊗ · · · ⊗ vp = [v(1)
i1,j1
⊗ · · · ⊗ v(p)

ip,jp
] ∈MI,J(V1 ⊗ · · · ⊗ Vp),

where I = I1 × · · · × Ip and J = J1 × · · · × Jp. In particular given vk = [v(k)
ik,jk

] ∈
Mmk,nk

(Vk), we have

(3.3) v1 ⊗ · · · ⊗ vp ∈Mm,n(V1 ⊗ · · · ⊗ Vp),

where m = m1 · · ·mp and n = n1 · · ·np.
Given v ∈ MJ1,J2(V ) and f ∈ MI1,I2(V

∗), we shall use often the “pairing”
notation

(3.4) 〈f, v〉 = fJ1J2(v) = [fi1,i2(vj1j2)] ∈MI1×J1,I2×J2 .

This formalism is particularly useful for considering dual operator spaces. Given
an operator space V and matrices v ∈Mn(V ∗), we have

(3.5) ‖f‖ = sup{‖〈f, v〉‖ : ‖v‖ 6 1, v ∈Mn(V )}

and

(3.6) ‖v‖ = sup{‖〈f, v〉‖ : ‖f‖ 6 1, f ∈Mn(V ∗)}.
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4. THE PROJECTIVE AND NUCLEAR TENSOR PRODUCTS

We use the tensor product terminology in the usual functorial sense. Thus given
operator spaces V1, . . . , Vp, a tensor product ⊗̃ determines a corresponding oper-
ator space V1 ⊗̃ · · · ⊗̃Vp, and given completely contractive maps ϕk : Vk → Wk

we have a corresponding complete contraction

ϕ = ϕ1 ⊗̃ · · · ⊗̃ϕp : V1 ⊗̃ · · · ⊗̃Vp →W1 ⊗̃ · · · ⊗̃Wp.

We say that ⊗̃ is injective if completely isometric injections ϕk determine a com-
pletely isometric injection ϕ, and that ⊗̃ is projective if complete quotient maps
ϕk determine a complete quotient map ϕ.

We will make only peripheral use of the operator space injective tensor prod-
uct

∨
⊗ for operator spaces (see [21]). We begin by reviewing the notion of complete

boundedness for multilinear maps and their linearization via the operator space
projective tensor product ⊗̂ .

Given another operator space W and a multilinear map

(4.1) ϕ : V1 × · · · × Vp →W,

we also write ϕ for its linear extension

ϕ : V1 ⊗ · · · ⊗ Vp →W,

as well as the the multilinear and linear maps

ϕ : MI1,J1(V1)× · · · ×MIp,Jp
(Vp)→MI,J(W )

and
ϕ : MI1,J1(V1)⊗ · · · ⊗MIp,Jp(Vp)→MI,J(W )

determined by

ϕ(v1, . . . , vp) = ϕ(v1 ⊗ · · · ⊗ vp) = [ϕ(v(1)
i1,j1
⊗ · · · ⊗ v(p)

ip,jp
)].

ϕ is said to be completely bounded (in the sense of Choi [8]) if there is a constant
K such that

‖ϕ(v1 ⊗ · · · ⊗ vp)‖ =
∥∥[ϕ(v(1)

i1,j1
⊗ · · · ⊗ v(p)

ip,jp
))]

∥∥ 6 K‖v1‖ · · · ‖vp‖

for all vk ∈Mmk,nk
(V ), where mk and nk are arbitrary integers. If ϕ is completely

bounded, we define its completely bounded norm ‖ϕ‖cb to be the least such constant
K, i.e.,

‖ϕ‖cb = sup {‖ϕ(v1 ⊗ · · · ⊗ vp)‖ : ‖v1‖ · · · ‖vp‖ 6 1} .
Given operator spaces Vk, k = 1, . . . , p and a matrix u ∈Mm(V1 ⊗ · · · ⊗ Vp),

we define operator space projective tensor norm ‖u‖∧ by

‖u‖∧ = inf{‖α‖ ‖v1‖ · · · ‖vn‖ ‖β‖ : u = α(v1 ⊗ · · · ⊗ vn)β},
where vk ∈ Mnk

(Vk), α ∈ Mm,n, and β ∈ Mn,m with n = n1 · · ·np. We let
V1⊗∧· · ·⊗∧Vp denote the corresponding (incomplete) operator space, and we define
the operator space projective tensor product V1 ⊗̂ · · · ⊗̂Vp to be its completion.

We may also represent a matrix in Mm(V1 ⊗̂ · · · ⊗̂Vp) by using infinite ma-
trices (see [21]). Given u ∈ Mm(V1 ⊗̂ · · · ⊗̂Vp) and ε > 0, there exist index sets
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Jk and matrices vk ∈MJk
(Vk) with k = 1, . . . , p, α ∈Mm,J , and β ∈MJ,m, where

J = J1 × · · · × Jp, such that
(4.2) u = α(v1 ⊗ · · · ⊗ vp)β and ‖u‖∧ 6 ‖α‖ ‖v1‖ · · · ‖vp‖ ‖β‖ 6 ‖u‖∧ + ε.

If we let Fk range over the finite subsets of Jk, and we let F = F1 × · · · × Fp,
and we define vFk

k , αF and βF to be the corresponding finite truncated ma-
trices in MFk

(Vk), Mm,F , and MF,m, respectively, then u is the norm limit in
Mm(V1 ⊗̂ · · · ⊗̂Vp) of the net

F 7→ αF (vF1 ⊗ · · · ⊗ vFp)βF .

Furthermore an element u ∈ Mm(V1 ⊗̂ · · · ⊗̂Vp) may always be written in the
form (4.2) with vk ∈ K∞(Vk) and α ∈ Km,∞p and β ∈ K∞p,m, where K∞(Vk)
(respectively, Km,∞p and K∞p,m) consists of the norm limits of finitely non-zero
matrices in M∞(Vk) (respectively, Mm,∞p and M∞p,m).

Any completely contractive multilinear map
ϕ : V1 × · · · × Vp →W

determines a completey contractive linear map
ϕ̃ : V1 ⊗̂ · · · ⊗̂Vp →W

with ‖ϕ̃‖cb = ‖ϕ‖cb, and this in turn provides us with a natural identification

(4.3) CB(V1 × · · · × Vp,W ) ∼= CB(V ⊗̂ · · · ⊗̂Vp,W ).

Given an element u = α(v1 ⊗ · · · ⊗ vp)β ∈ V1 ⊗̂ · · · ⊗̂Vp, it is easily verified that
ϕ̃(u) = αϕ(v1, . . . , vp)β.

If we are given complete contractions ϕk : Vk →Wk, then we let
(4.4) ϕ1 ⊗̂ · · · ⊗̂ϕp : V1 ⊗̂ · · · ⊗̂Vp →W1 ⊗̂ · · · ⊗̂Wp

be the linear map determined by the completely contractive multilinear map
(v1, . . . , vp) 7→ ϕ1(v1)⊗ · · · ⊗ ϕp(vp) ∈W1 ⊗̂ · · · ⊗̂Wp.

In particular, if fk ∈ V ∗
k , and u = α(v1 ⊗ · · · ⊗ vp)β ∈ V1 ⊗̂ · · · ⊗̂Vp, then the

linear functional
f1 ⊗ · · · ⊗ fp : V1 ⊗̂ · · · ⊗̂Vp → C

satisfies
(4.5) 〈f1 ⊗ · · · ⊗ fp, u〉 = α(〈f1, v1〉 ⊗ · · · ⊗ 〈fp, vp〉)β,

where 〈fk, vk〉 = [fk(v(k)
(i,j))] ∈MJk

.
If V ∗ is a dual operator space, it has a weak∗ faithful representation, i.e.,

there is a Hilbert space H and a weak∗ homeomorphic complete isometry of V ∗

onto a weak∗ closed subspace of B(H) ([17], Proposition 5.1). Given weak∗ closed
subspaces V ∗

k ⊆ B(Hk), k = 1, . . . , p, we define the normal spatial tensor product
V ∗

1 ⊗ · · · ⊗V ∗
p to be the weak∗ closure of V ∗

1 ⊗ · · · ⊗ V ∗
p in B(H1 ⊗ · · · ⊗Hp). We

define the Fubini tensor product V ∗
1 ⊗F · · · ⊗FV

∗
p to be the space of all operators

b ∈ B(H1 ⊗ · · · ⊗ Hp) such that for each k with 1 6 k 6 p and functionals
ωj ∈ B(Hj)∗, j 6= k the “slice”

〈b, ω1 ⊗ · · · ⊗ ωk−1 ⊗ idk ⊗ · · · ⊗ ωp〉
lies in V ∗

k . From the following result we see that neither of these tensor products
depends upon the given weak∗ faithful representations V ∗

k ⊆ B(Hk).
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Theorem 4.1. For any operator spaces V1, . . . , Vp and arbitrary weak∗ closed
representations V ∗

k ⊆ B(Hk), we have a completely isometric weak∗ homeomor-
phism

(4.6) (V1 ⊗̂ · · · ⊗̂Vp)∗ = V ∗
1 ⊗F · · · ⊗FV

∗
p .

V ∗
1 ⊗ · · · ⊗ V ∗

p is dense in V ∗
1 ⊗F · · · ⊗FV

∗
p in the V1 ⊗ · · · ⊗ Vp topology.

Proof. This may be found in [13] and [21].

It follows from Theorem 4.1 that the identification of the Fubini tensor
product with the dual of V1 ⊗̂ · · · ⊗̂Vp carries the normal spatial tensor prod-
uct V ∗

1 ⊗ · · · ⊗V ∗
p onto the closure of V ∗

1 ⊗· · ·⊗V ∗
p in the topology determined by

the completion V1 ⊗̂ · · · ⊗̂Vp. We conclude that the normal spatial tensor prod-
uct does not depend on the embeddings V ∗

k ⊆ B(Hk). However, there is a more
explicit way of seeing this.

We define the nuclear tensor product V1

nuc
⊗ · · ·

nuc
⊗ Vp of operator spaces

V1, . . . , Vp by

V1

nuc
⊗ · · ·

nuc
⊗ Vp = (V1 ⊗̂ · · · ⊗̂Vp)/ ker Ψ,

where Ψ is the canonical complete contraction

(4.7) Ψ : V1 ⊗̂ · · · ⊗̂Vp → V1

∨
⊗ · · ·

∨
⊗ Vp.

Theorem 4.2. For any dual operator spaces V ∗
1 , . . . , V

∗
p we have a com-

pletely isometric weak∗ homeomorphism

(4.8) (V1

nuc
⊗ · · ·

nuc
⊗ Vp)∗ ∼= V ∗

1 ⊗ · · · ⊗V ∗
p .

Proof. The inclusion

V ∗
1 ⊗ · · · ⊗V ∗

p ↪→ V ∗
1 ⊗F · · · ⊗FV

∗
p

determines a complete quotient map

V1 ⊗̂ · · · ⊗̂Vp → (V ∗
1 ⊗ · · · ⊗V ∗

p )∗ ,

and thus

(4.9) (V ∗
1 ⊗ · · · ⊗V ∗

p )∗ ∼= V1 ⊗̂ · · · ⊗̂Vp/N

where

(4.10) N = [V ∗
1 ⊗ · · · ⊗V ∗

p ]⊥ = [V ∗
1 ⊗ · · · ⊗ V ∗

p ]⊥.

On the other hand, since the natural map

V1

∨
⊗ · · ·

∨
⊗ Vp → (V ∗

1 ⊗̂ · · · ⊗̂V ∗
p )∗

is completely isometric ([6]), we have that

ker Ψ = [V ∗
1 ⊗ · · · ⊗ V ∗

p ]⊥ ,

and our result follows from (4.9) and (4.10).



140 Edward G. Effros and Zhong-Jin Ruan

Proposition 4.3. Given dual operator spaces V ∗
k and W ∗

k and weak∗ con-

tinuous completely contractive maps ϕk : V ∗
k → W ∗

k , 1 6 k 6 p, the algebraic

tensor product ϕ1 ⊗ · · · ⊗ ϕp extends uniquely to a complete contraction

(4.11) ϕ1 ⊗ · · · ⊗ ϕp : V ∗
1 ⊗F · · · ⊗FV

∗
p →W ∗

1 ⊗F · · · ⊗FW
∗
p ,

which is continuous in the V1 ⊗̂ · · · ⊗̂Vp, W1 ⊗̂ · · · ⊗̂Wp topologies. Similarly,

there is a unique extension

(4.12) ϕ1 ⊗ · · · ⊗ ϕp : V ∗
1 ⊗ · · · ⊗V ∗

p →W ∗
1 ⊗ · · · ⊗W ∗

p ,

which is continuous in the V1

nuc
⊗ · · ·

nuc
⊗ Vp, W1

nuc
⊗ · · ·

nuc
⊗ Wp topologies.

Proof. For each k we have that ϕk = (ϕk∗)∗ for some complete contraction

ϕk∗ : Wk → Vk. The corresponding map

ϕ∧ = ϕ1∗ ⊗ · · ·ϕp∗ : W1 ⊗̂ · · · ⊗̂Wp → V1 ⊗̂ · · · ⊗̂Vp

is a complete contraction for which the adjoint is (4.11), and which is obviously

continuous in the stated topology. On the other hand, the maps ϕk∗ determine a

commutative diagram

W1 ⊗̂ · · · ⊗̂Wp
ϕ∧=ϕ1∗⊗···⊗ϕp∗−−−−−−−−−−→ V1 ⊗̂ · · · ⊗̂VpyΨW

yΨV

W1

∨
⊗ · · ·

∨
⊗ Wp

ϕ∨=ϕ1∗⊗···⊗ϕp∗−−−−−−−−−−→ V1

∨
⊗ · · ·

∨
⊗ Vp

and in particular, we have that ϕ∧(ker ΨW ) ⊆ ker ΨV . It follows that ϕ∧ induces

a completely contractive map

ϕnuc : W1

nuc
⊗ · · ·

nuc
⊗ Wp → V1

nuc
⊗ · · ·

nuc
⊗ Vp.

We obtain from this the desired map

ϕ1 ⊗ · · · ⊗ ϕp = ϕ∗nuc : V ∗
1 ⊗ · · · ⊗V ∗

p →W ∗
1 ⊗ · · · ⊗W ∗

p ,

which is again continuous in the weak∗ topologies.

It is immediate that (4.10) and (4.11) extend the algebraic tensor product,

and they are unique because the algebraic tensor products are dense in the corre-

sponding topologies.
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5. THE EXTENDED AND NORMAL HAAGERUP TENSOR PRODUCTS

The Haagerup tensor product was first considered in unpublished notes of Haa-
gerup (see [24]). An early discussion of Haagerup’s theory appeared in [10]. We
begin by reviewing this material.

Given matrices vk =
[
v
(k)
jk−1,jk

]
∈ Mnk−1,nk

(Vk), k = 1, . . . , p, we define the
multiplicative product

v1 � · · · � vp ∈Mn0,np
(V1 ⊗ · · · ⊗ Vp)

by “matrix multiplication”, i.e.,

(5.1) (v1 � · · · � vp)j0,jp
=

∑
j1,...,jp−1

v
(1)
j0,j1
⊗ · · · ⊗ v(p)

jp−1jp
.

In particular, if j0 = jp = n, then v1 � · · · � vp ∈Mn(V1 ⊗ · · · ⊗ Vp).
Given operator spaces V1, . . . , Vp and W and a multilinear map

ϕ : V1 × · · · × Vp →W,

or equivalently a linear map

ϕ : V1 ⊗ · · · ⊗ Vp →W,

we say that ϕ is multiplicatively bounded if there is a constant K such that for all
n ∈ N

‖ϕn(v1 � · · · � vp)‖ =
∥∥∥[ ∑

j1···jp−1

ϕ(v(1)
j0,j1
⊗ · · · ⊗ v(p)

jp−1jp
)
]∥∥∥ 6 K‖v1‖ · · · ‖vp‖

for all vk ∈ Mnk−1,nk
(V ), where n0 = np = n, and n1, . . . , np−1 are arbitrary. If

ϕ is multiplicatively bounded, we define its multiplicative norm ‖ϕ‖mb to be the
least such constant K, i.e.,

‖ϕ‖mb = sup {‖ϕn(v1 � · · · � vp)‖ : ‖v1‖ · · · ‖vp‖ 6 1} .
These matrix norms determine an operator space structure on the linear space
CBm(V1 × · · · × Vp,W ) of all such maps. If the Vk and W are dual operator
spaces, we again say that ϕ is normal if it is weak∗ continuous in each variable,
and we let CBσ

m(V1×· · ·×Vp,W ) be the operator subspace of normal maps. These
notions were introduced by Christensen and Sinclair ([9]).

Theorem 5.1. A multilinear map

ϕ : V1 × · · · × Vp → B(Hp,H0),

is multiplicatively contractive if and only if there exist Hilbert spaces H1, . . . ,Hp−1

and complete contractions ϕk : Vk → B(Hk,Hk−1) such that

(5.2) ϕ(v1, . . . , vp) = ϕ1(v1) · · ·ϕp(vp).

If each Vk is a dual space and ϕ is normal, then we may assume that each ϕk is
weak∗ continuous.

Proof. The representation (5.2) is just a restatement of the Christensen-
Sinclair theorem [9] as generalized to operator spaces by Paulsen and Smith (see
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[32] or [21]). The theorem for normal maps is well-known to specialists. We have
included a simple proof for the convenience of the reader.

Let us assume that for fixed vi ∈ Vi, i 6= k, and ξp ∈ Hp, η0 ∈ H0

(5.3) vk 7→ 〈s1(v1) · · · sk(vk) · · · sp(vp)ξp | η0〉
is weak∗ continuous. We begin by noting that

〈s1(v1)s2(v2) · · · sr(vp)ξp | η0〉
= 〈sk(vk)sk+l(vk+l) · · · sp(vp)ξp | sk−1(vk−1)∗ · · · s1(v1)∗η0〉.

We may assume that

H ′
k = {sk+1(vk+1) · · · sp(vp)ξp : vi ∈ Vi(i > k + 1), ξp ∈ Hp}

is dense in Hk, since otherwise we may replace Hk by the norm closure cl(H ′
k) and

sk by sk |cl(H′
k
) without affecting the equality in (3.2) or the continuity that might

be assumed in any of the variables. Similarly we may assume that

H ′′
k−1 = {sk−1(vk−1)∗ · · · s1(v1)∗η0 : vi ∈ Vi (i 6 k − 1), η0 ∈ H0}

is dense in Hk−1.
By hypothesis we have that vk 7→ 〈sk(vk)ξ | η〉 is weak∗ continuous for ξ ∈ H ′

k
and η ∈ H ′′

k−1. If we let ξn ∈ H ′
k and ηn ∈ H ′′

k−1 be sequences converging to vectors
ξ ∈ Hk and η ∈ Hk−1, then the functions vk 7→ 〈sk(vk)ξn|ηn〉 converge uniformly
on the closed unit ball of Vk to the function vk 7→ 〈sk(vk)ξ | η〉. It follows that the
latter function is weak∗ continuous on that ball and thus on all of Vk.

Given operator spaces Vk, k = 1, . . . , p, and a matrix u ∈Mn(V1⊗ · · · ⊗ Vp),
we define the Haagerup norm of u by

(5.4) ‖u‖h = inf
{
‖v1‖ · · · ‖vp‖ : u = v1 � · · · � vp, vk ∈Mnk−1,nk

(Vk)
}
,

where n0 = n, np = n, and nk is arbitary for 1 6 k 6 p− 1. These matrix norms
determine an operator space structure on V1⊗· · ·⊗Vp, and we call its completion

V1

h
⊗ · · ·

h
⊗ Vp the Haagerup tensor product.

A multilinear map ϕ : V1 × · · · × Vp → W is multiplicatively contractive if

and only if there is a completely contractive map ϕ̃ :V1

h
⊗ · · ·

h
⊗ Vp →W with

ϕ(v1, . . . , vp) = ϕ̃(v1 ⊗ · · · ⊗ vp).

In this manner we obtain the completely isometric identification

(5.5) CBm(V1 × · · · × Vp,W ) ∼= CB(V1

h
⊗ · · ·

h
⊗ Vp,W ).

Given complete contractions ϕk : Vk →Wk, we have that

ϕ1 ⊗ · · · ⊗ ϕp : V1 × · · · × Vp −→W1

h
⊗ · · ·

h
⊗Wp

is multiplicatively contractive, and thus determines a complete contraction

ϕ1

h
⊗ · · ·

h
⊗ ϕp : V1

h
⊗ · · ·

h
⊗ Vp −→W1

h
⊗ · · ·

h
⊗Wp

(see, e.g., [21], Proposition 9.2.5). The Haagerup tensor product is both injective
and projective. Furthermore, it is associative, but it is generally not commutative.
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We define the extended Haagerup tensor product V1

eh
⊗ · · ·

eh
⊗ Vp to be the

space of all normal multiplicatively bounded maps u : V ∗
1 × · · · × V ∗

p → C, i.e.,

(5.6) V1

eh
⊗ · · ·

eh
⊗ Vp = (V1

h
⊗ · · ·

h
⊗ Vp)∗σ = CBσ

m(V ∗
1 × · · · × V ∗

p ,C)

(see [11], [12], and [15]) and we let ‖ · ‖eh denote the relative matrix norms inherited
from the operator space CBm(V ∗

1 × · · · × V ∗
p ,C). Equivalently, the matrix norms

are determined by the identification

Mn(CBσ
m(V ∗

1 × · · · × V ∗
p ,C)) = CBσ

m(V ∗
1 × · · · × V ∗

p ,Mn).

We may use Theorem 5.1 to write the elements u ∈ Mn(V1

eh
⊗ · · ·

eh
⊗ Vp) in

terms of infinite matrices over the Vk. It follows from the normal mapping result
in Theorem 5.1 and (3.2) that if ‖u‖eh 6 1, then there exist contractive matrices
vk ∈MJk−1,Jk

(Vk), where J0 = Jp = {1, . . . , n}, for which

(5.7) u(f1, . . . , fp) = 〈f1, v1〉 · · · 〈fp, vp〉.
If that is the case, we use the notation

(5.8) u = v1 � · · · � vp = v1 �J1 · · · �Jp−1 vp.

Changing to matrix notation, we have from the discussion in Section 3 that

(5.9)
〈f1 ⊗ · · · ⊗ fk, u〉 = 〈f1, v1〉 · · · 〈fp, vp〉

= lim
F1···Fp−1

[ ∑
i1∈F1,...,ip−1∈Fp−1

f1(v
(1)
i0,i1

) · · · fp(v
(p)
ip−1,ip

)
]

where the limit is taken over finite subsets Fk ⊆ Jk, 1 6 k 6 p − 1. If we let
F = F1 × · · · ×Fp and vF

k ∈MFk−1,Fk
(Vk) be the obvious truncation of vk, we see

that the net
F → uF = vF

1 � · · · � vF
p ∈ V1 ⊗ · · · ⊗ Vp

converges to u in the topology determined by V ∗
1 ⊗ · · · ⊗ V ∗

p . Since it is evident
that

‖uF ‖eh 6 ‖uF ‖h 6 ‖v1‖ · · · ‖vp‖

it also converges in the topology determined by V ∗
1

h
⊗ · · ·

h
⊗ V ∗

p .
It is clear from our discussion above that

(5.10) ‖u‖eh = inf{‖v1‖ · · · ‖vp‖},
where the infimum extends over all representations (5.8).

Given completely bounded maps ϕk : Vk →Wk, the corresponding map

ϕ = (ϕ∗1
h
⊗ · · ·

h
⊗ ϕ∗n)∗ : (V ∗

1

h
⊗ · · ·

h
⊗ V ∗

n )∗ → (W ∗
1

h
⊗ · · ·

h
⊗W ∗

n)∗

satisfies
ϕ((V ∗

1

h
⊗ · · ·

h
⊗ V ∗

p )∗σ) ⊆ (W ∗
1

h
⊗ · · ·

h
⊗W ∗

p )∗σ
since each map ϕ∗j : W ∗

j → V ∗
j is weak∗ continuous. We let

(5.11) ϕ1

eh
⊗ · · ·

eh
⊗ ϕp : V1

eh
⊗ · · ·

eh
⊗ Vp →W1

eh
⊗ · · ·

eh
⊗ Wp
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be the restriction of ϕ to V1

eh
⊗ · · ·

eh
⊗ Vp. We note that if the ϕk are complete

contractions, then the same is true for ϕ and thus for ϕ1

eh
⊗ · · ·

eh
⊗ ϕp.

Lemma 5.2. Suppose that Vj ,Wj, j = 1, . . . , p, are operator spaces, and that
ϕj : Vj →Wj are completely bounded. Then given index sets Jj with J0 = Jp = {1}
and vj ∈MJj−1Jj

(Vj) we have

(ϕ1

eh
⊗ · · ·

eh
⊗ ϕp)(v1 � · · · � vp) = ϕ1(v1)� · · · � ϕp(vp).

Proof. If we let ϕ = ϕ1

eh
⊗ · · ·

eh
⊗ ϕp, then for gj ∈W ∗

j we have

〈ϕ(v1 � · · · � vp), g1 ⊗ · · · ⊗ gp〉 = 〈v1 � · · · � vp, ϕ
∗
1(g1)⊗ · · · ⊗ ϕ∗p(gp)〉

= 〈v1, ϕ∗1(g1)〉 · · · 〈vp, ϕ
∗
p(gp)〉

= 〈(ϕ)J1J2(v1), g1〉 · · · 〈(ϕp)Jp−1Jp(vp), gp〉
= 〈ϕ1(v1)� · · · � ϕp(vp), g1 ⊗ · · · ⊗ gp〉.

Since elements of W1

eh
⊗ · · ·

eh
⊗ Wn are determined by the values they assume on

elements of W ∗
1

h
⊗ · · ·

h
⊗ W ∗

n , or equivalently, on elements of W ∗
1 ⊗ · · · ⊗W ∗

n , we
conclude that

ϕ(v1 � · · · � vn) = ϕ1(v1)� · · · � ϕn(vn).

We conclude that
eh
⊗ is a tensor product in the sense described in the previous

section. We will prove that it is associative below.
In [7] Blecher and Smith characterized the dual of the Haagerup tensor prod-

uct in terms of what they called the weak∗ Haagerup tensor product. In the fol-
lowing we see that this coincides with the extended Haagerup tensor product of
dual operator spaces. It should be noted that Stephen Allen has studied the weak∗
Haagerup tensor product for operator spaces that are not necessarily dual spaces
([1]).

Theorem 5.3. Suppose that V1, . . . , Vp are operator spaces. Then we have
the complete isometry

(V1

h
⊗ · · ·

h
⊗ Vp)∗ ∼= V ∗

1

eh
⊗ · · ·

eh
⊗ V ∗

p .

Proof. From Theorem 5.1 and (5.7), elements f of both

Mn((V1

h
⊗ · · ·

h
⊗ Vp)∗) = CB(V1

h
⊗ · · ·

h
⊗ Vp,Mn)

and of
Mn(V ∗

1

eh
⊗ · · ·

eh
⊗ V ∗

p ) = CBσ
m(V ∗∗

1

h
⊗ · · ·

h
⊗ V ∗∗

p ,Mn)

have representations of the form

(5.12) f(v1, . . . , vp) = 〈f1, v1〉 · · · 〈fp, vp〉,
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where in the first case vk ∈ Vk and fk : Vk → B(Hk,Hk−1) is completely bounded,
and in the second case vk ∈ V ∗∗

k and fk : V ∗∗
k → B(Hk,Hk−1) is weak∗ contin-

uous and completely bounded. Thus it suffices to show that we have a natural
identification

CBσ(V ∗∗, B(H,K)) ∼= CB(V,B(H,K)).

Changing to matrix notation, this is evident from (3.2) and (3.1) since we have

CBσ(V ∗∗,MI,J) = MI,J(V ∗) = CB(V,MI,J).

We note that if we are given f = f1 � · · · � fp ∈ Mn(V ∗
1

eh
⊗ · · ·

eh
⊗ V ∗

p ) and
vk ∈ Vk, then from (5.12) we have the matrix product

(5.13)
〈f, v1 ⊗ · · · ⊗ vp〉 = 〈f1, v1〉 · · · 〈fp, vp〉

= lim
G1···Gp−1

[ ∑
j1∈G1,...,jp−1∈Gp−1

f
(1)
j0j1

(v1) · · · f (p)
jp−1jp

(vp)
]
,

where the limit is taken over finite subsets Gk ⊆ Jk, 1 6 k 6 p− 1.

Lemma 5.4. Suppose that Vk,Wk, k = 1, . . . , p, are operator spaces, and
that for each k, ϕk : Vk → Wk is completely isometric. Then (5.11) is completely
isometric.

Proof. Let us suppose that the ϕk are completely isometric. Then the maps
ϕk : W ∗

k → V ∗
k are complete quotient maps, and since the Haagerup tensor product

is projective, the same is true for the map

ϕ∗1
h
⊗ · · ·

h
⊗ ϕ∗p : W ∗

1

h
⊗ · · ·

h
⊗W ∗

p → V ∗
1

h
⊗ · · ·

h
⊗ V ∗

p .

It follows that the bottom row of the following diagram is a completely isometric
injection, and thus the same is true for the top row:

V1

eh
⊗ · · ·

eh
⊗ Vp

ϕ1⊗···⊗ϕp−−−−−−−−−−→ W1

eh
⊗ · · ·

eh
⊗ Wp⋂

||
⋂
||

(V ∗
1

h
⊗ · · ·

h
⊗ V ∗

p )∗
(ϕ∗1⊗···⊗ϕ∗p)∗

−−−−−−−−−−→ (W ∗
1

h
⊗ · · ·

h
⊗W ∗

p )∗

.

We conclude that the extended Haagerup tensor product is injective. In
contrast to the Haagerup tensor product, the extended Haagerup tensor product
is not projective, i.e., if one is given an operator space X and a complete quotient

map Y → Y1, then the induced map X
eh
⊗ Y → X

eh
⊗ Y1 need not be a quotient

map. We are indebted to David Blecher for the following argument.

Proposition 5.5. The extended Haagerup tensor product is not projective.

Proof. We recall from [4] that an operator space X is said to be projective if
given operator spaces V and W and a complete quotient map π : V → W , then
any map ϕ : X → W with ‖ϕ‖cb < 1 can be lifted to a map ϕ̃ : X → V with
‖ϕ̃‖cb < 1. Equivalently, the induced map CB(X,V ) → CB(X,W ) is a Banach
space quotient map. IfX is projective, then the latter is in fact a complete quotient
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map since we may identify πn : Mn(CB(X,Mn(X)))→Mn(CB(X,Mn(W ))) with
the complete quotient map CB(X,Mn(V ))→ CB(X,Mn(W )).

Taking adjoint maps, it is evident that an operator space X is projective if
and only if for any weak∗ homeomorphic completely isometric injection ψ : W ∗ →
V ∗, the corresponding map

CBσ(W ∗, X∗)→ CBσ(V ∗, X∗)

is isometric (or completely isometric). In other words, any weak∗ continuous
complete contraction ψ : W ∗ → X∗ has a weak∗ continuous completely contractive
extension ψ : V ∗ → X∗. This is the case if X = Tm,n = (Mm,n)∗. On the other
hand this weak∗ version of injectivity was shown to be false for M∞ in [14], and
thus T∞ = (M∞)∗ is not projective.

If X and Y are projective operator spaces, then the same is true for X ⊗̂Y .
To see this we note that if we are given a complete quotient map, then the induced
map CB(Y, V )→ CB(Y,W ) is a complete quotient map, and therefore

CB(X ⊗̂Y, V ) = CB(X,CB(Y, V ))→ CB(X,CB(Y,W )) = CB(X ⊗̂Y,W )

is a complete quotient map. It follows that the column Hilbert space M∞,1 is
not projective, since if it were, then its conjugate operator space M1,∞ would
also be projective, and therefore T∞ = M∞,1 ⊗̂M1,∞ would also be projective, a
contradiction (see [21] for a discussion of the conjugate operator space).

Changing notation, we have that M∞,1 = Hc, where H = `2. For any
operator space V , we have the complete isometries

M∞,1

eh
⊗ V = ((Hc)∗

h
⊗ V ∗)∗σ ∼= ((Hc)∗ ⊗̂V ∗)∗σ ∼= CBσ(V ∗,Hc) ∼= CB((Hc)∗, V )

(see [5], [6], [16], [18], and [21], (9.3.5)), where the identification on the right is the
inverse of the adjoint map ϕ 7→ ϕ∗.

Let us suppose that
eh
⊗ is projective in the second variable. It follows from

the above relation that for any complete quotient map V →W , the corresponding
map

(5.14) CB((Hc)∗, V )→ CB((Hc)∗,W )

is a complete quotient map, i.e., (Hc)∗ = M1,∞ and therefore its conjugate oper-
ator space M∞,1 is projective, a contradiction.

It is evident that the identity map V1⊗· · ·⊗Vp → V1⊗· · ·⊗Vp is completely
contractive with respect to the Haagerup and extended Haagerup tensor products
since the extended product norm uses more decompositions. In fact the map

(5.15) V1

h
⊗ · · ·

h
⊗ Vp → V1

eh
⊗ · · ·

eh
⊗ Vp

is a completely isometric injection. This is apparent from the diagram

V1

h
⊗ · · ·

h
⊗ Vp

↓ ↘
V1

eh
⊗ · · ·

eh
⊗ Vp → (V ∗

1

h
⊗ · · ·

h
⊗ V ∗

p )∗
,
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where the diagonal map is a completely isometric injection owing to the “self-
duality” of the Haagerup tensor product ([5], [18]) and the bottom map is com-
pletely isometric by definition.

We turn next to a surprising result of Blecher and Smith (see [7] for the case

p = 2). If f ∈ V ∗
1

eh
⊗ · · ·

eh
⊗ V ∗

p = (V1

h
⊗ · · ·

h
⊗ Vp)∗, then we may extend it to

elements u ∈ V1

eh
⊗ · · ·

eh
⊗ Vp. In fact, we may define a pairing of n×nmatrices f and

u over these two spaces as follows. If f = f1�· · ·�fp, and u = v1�· · ·�vp, where
vk ∈ MJk−1,Jk

(Vk) and fk ∈ MIk−1,Ik
(V ∗

k ), and I0 = Ip = J0 = Jp = {1, . . . , n},
we wish to define
(5.16) 〈f, u〉 = 〈f1, v1〉 · · · 〈fp, vp〉.
The right hand side makes sense because it is the product of the bounded scalar
matrices
(5.17) 〈fk, vk〉 ∈MIk−1×Jk−1,Ik×Jk

.

Proposition 5.6. The pairing (5.16) does not depend upon the decomposi-
tions f = f1 � · · · � fp and u = v1 � · · · � vp.

Proof. If we let Fk range over the finite sets in Ik, 1 6 k 6 p − 1, then the
projections P (Fk × Jk) converge to the identity operator in the strong operator
topology. It follows from (5.9) that

(5.18)

〈f, u〉 = lim
F1···Fp−1

〈f1, v1〉P (F1 × J1) · · ·P (Fp−1 × Jp−1)〈fp, vp〉

= lim
F1···Fp−1

[ ∑
ik∈Fk

∑
jk∈Jk

f
(1)
i0i1

(v(1)
j0j1

) · · · f (p)
ip−1ip

(v(p)
jp−1jp

)
]

= lim
F1···Fp−1

∑
ik∈Fk

〈f (1)
i0i1
⊗ · · · ⊗ f (p)

ip−1ip
, v1 � · · · � vp〉

= lim
F1···Fp−1

∑
ik∈Fk

〈f (1)
i0i1
⊗ · · · ⊗ f (p)

ip−1ip
, u〉

(this is a norm limit of matrices in MI0×J0,Ip×Jp
∼= Mn2) and thus (5.16) does not

depend upon the decomposition u = v1 � · · · � vp.
On the other hand if we let Gk range over the finite sets in Jk, then the

projections P (Ik × Gk) converge to the identity operator in the strong operator
topology. Thus from (5.13),

(5.19)

〈f, u〉 = lim
G1···Gp−1

〈f1, v1〉P (I1 ×G1) · · ·P (Ip−1 ×Gp−1)〈fp, vp〉

= lim
G1···Gp−1

[ ∑
jk∈Gk

∑
ik∈Ik

f
(1)
i0i1

(v(1)
j0j1

) · · · f (p)
ip−1,1

(v(p)
jp−1,jp

)
]

= lim
G1···Gp−1

∑
jk∈Gk

〈f1 � · · · � fp, v
(1)
i0,j1
⊗ · · · ⊗ v(p)

jp−1,jp
〉

= lim
G1···Gp−1

∑
jk∈Gk

〈f, v(1)
j0,j1
⊗ · · · ⊗ v(p)

jp−1,jp
〉

and (5.16) does not depend upon the decomposition f = f1 � · · · � fp.
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We conclude from these considerations the following result.

Theorem 5.7. (see [7] for the case p = 2) For any operator spaces V1, . . . , Vp,
the pairing (5.16) determines a completely isometric inclusion

(5.20) V ∗
1

eh
⊗ · · ·

eh
⊗ V ∗

p ↪→ (V1

eh
⊗ · · ·

eh
⊗ Vp)∗.

Proof. Given f ∈ Mn(V ∗
1

eh
⊗ · · ·

eh
⊗ V ∗

p ) and u ∈ Mn(V1

eh
⊗ · · ·

eh
⊗ Vp), we have

from (5.19) that
〈f, u〉 = lim

G1···Gp−1
〈f, v(1)

G � · · · � v(p)
G 〉,

where we let G = G1×· · ·×Gp, and v(k)
G ∈MGk−1,Gk

(Vk) be the obvious truncation
of v(k). If ‖u‖eh 6 1, then we may assume that ‖v(k)‖ 6 1, and thus ‖v(k)

Gk
‖ 6 1.

If we let uG = v
(1)
G � · · · � v(p)

G , then from Theorem 5.3,

‖〈f, uG〉‖ 6 ‖f‖eh‖uG‖h 6 ‖f‖eh‖v(1)
G ‖ · · · ‖v

(p)
G ‖ 6 ‖f‖eh.

It follows that ‖〈f, u〉‖ 6 ‖f‖eh and thus from (3.5), (5.20) is completely contrac-
tive. It is immediate from (5.15) that this mapping is a complete isometry.

Given dual operator spaces V ∗
1 , . . . , V

∗
r the normal Haagerup tensor product

(see [12]) is defined by

V ∗
1

σh
⊗ · · ·

σh
⊗ V ∗

p = (V1

eh
⊗ · · ·

eh
⊗ Vp)∗.

Lemma 5.8. If V1, . . . , Vp are operator spaces, then V ∗
1 ⊗ · · · ⊗ V ∗

p is dense

in V ∗
1

σh
⊗ · · ·

σh
⊗ V ∗

p in the weak∗ topology defined by V1

eh
⊗ · · ·

eh
⊗ Vp.

Proof. If u ∈ V1

eh
⊗ · · ·

eh
⊗ Vp satisfies

〈f1 ⊗ · · · ⊗ fp, u〉 = 0

for all fk ∈ V ∗
k then from (5.6) it is evident that u = 0, and thus from the bipolar

theorem, we have the density result.

Proposition 5.9. Given a normal multiplicatively bounded multilinear map
ϕ : V ∗

1 × · · · × V ∗
p → W ∗ there is a unique weak∗ continuous completely bounded

map ϕσh : V ∗
1

σh
⊗ · · ·

σh
⊗ V ∗

p →W ∗ such that

ϕ(f1, . . . , fn) = ϕσh(f1 ⊗ · · · ⊗ fn).

Proof. If w ∈W , then w◦ϕ : V ∗
1 ×· · ·×V ∗

p → C is normal and multiplicatively

contractive, and thus an element of V1

eh
⊗ · · ·

eh
⊗ Vp. This determines a complete

contraction map

ϕ∗ : W → V1

eh
⊗ · · ·

eh
⊗ Vp, w 7→ w ◦ ϕ,

and we may let ϕσh = (ϕ∗)∗.
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In particular, if H,K and L are Hilbert spaces, the multiplication map

B(K,L)×B(H,K)→ B(H,L)

is both normal and multiplicatively contractive, and thus determines a weak∗
continuous complete contraction

(5.21) B(K,L)
σh
⊗ B(H,K)→ B(H,L).

Using a simple elaboration of the proof of Proposition 5.1, we obtain the
natural identification

(5.22) CBσ
m(V ∗

1 × · · · × V ∗
n ,W

∗) = CBσ(V ∗
1

σh
⊗ · · ·

σh
⊗ V ∗

n ,W
∗).

In particular, weak∗ continuous complete contractions ϕk : V ∗
k → W ∗

k determines
a weak∗ continuous complete contraction

ϕ1

σh
⊗ · · ·

σh
⊗ ϕp = (ϕ1∗

eh
⊗ · · ·

eh
⊗ ϕp∗)∗ : V ∗

1

σh
⊗ · · ·

σh
⊗ V ∗

p →W ∗
1

σh
⊗ · · ·

σh
⊗ W ∗

p .

Owing to the injectivity of the extended Haagerup tensor product, the normal
tensor product is projective for weak∗ closed subspaces. On the other hand, since
extended Haagerup tensor product is not projective, the normal Haagerup tensor
product is not injective.

We may use the normal tensor product to prove that the extended Haagerup
tensor product is associative. It suffices to consider the case p = 3. Given operator

spaces V,W,X, the tensor product (V
eh
⊗ W )

eh
⊗ X by definition consists of the

normal multiplicatively bounded maps

u : (V
eh
⊗ W )∗ ×X∗ → C.

But any such map has the form u = u1 �J x where

u1 : V ∗ σh
⊗ W ∗ = (V

eh
⊗ W )∗ →MI,J

is weak∗ continuous and completely bounded. It follows that u1 corresponds to a
normal multiplicatively bounded map of V ∗ ×W ∗ into C, and from Theorem 5.1
there are elements v ∈MI,J(V ) and w ∈MI,J(W ) for which

u1(f, g) = 〈v, f〉 〈w, g〉
(this is a matrix product). It follows that u uniquely determines a unique element

ũ = v �I w �J x ∈ V
eh
⊗ W

eh
⊗ X.

Since the reverse argument is also clear, we obtain a canonical identification of

(V
eh
⊗ W )

eh
⊗ X with V

eh
⊗ W

eh
⊗ X, and a similar argument applies to V

eh
⊗ (W

eh
⊗

X).
Finally, we note that (5.20) provides us with a natural inclusion

(5.23) V ∗
1

eh
⊗ · · ·

eh
⊗ V ∗

p ⊆ V ∗
1

σh
⊗ · · ·

σh
⊗ V ∗

p ,

and the adjoint of (5.15) determines a natural weak∗ continuous projection of the
second space onto the first.
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6. THE SHUFFLE THEOREM

The following theorem was proved for von Neumann algebras in [15], and a varia-
tion of this result was proved for operator spaces in [13].

Theorem 6.1. Suppose that Vk,Wk, k = 1, 2, are operator spaces. Then
the shuffle map

(6.1) S : (V ∗
1 ⊗ V ∗

2 )⊗ (W ∗
1 ⊗W ∗

2 )→ (V ∗
1 ⊗W ∗

1 )⊗ (V ∗
2 ⊗W ∗

2 )

extends uniquely to a weak∗ continuous complete contraction

(6.2) Sσ : (V ∗
1 ⊗V ∗

2 )
σh
⊗ (W ∗

1 ⊗W ∗
2 )→ (V ∗

1

σh
⊗ W ∗

1 )⊗ (V ∗
2

σh
⊗ W ∗

2 ).

On the other hand, the shuffle map

(6.3) S : (V1 ⊗W1)⊗ (V2 ⊗W2)→ (V1 ⊗ V2)⊗ (W1 ⊗W2)

may be extended to a complete contraction

(6.4) Se : (V1

eh
⊗ W1)

nuc
⊗ (V2

eh
⊗ W2)→ (V1

nuc
⊗ V2)

eh
⊗ (W1

nuc
⊗ W2).

Proof. We may fix faithful weak∗ representations

Φ : V ∗
1

σh
⊗ W ∗

1 ↪→ B(H1) and Ψ : V ∗
2

σh
⊗ W ∗

2 ↪→ B(H2).

Since the normal spatial tensor product of dual operator spaces is independent of

the choice of Hilbert spaces, we may identify (V ∗
1

σh
⊗ V ∗

2 )⊗ (W ∗
1

σh
⊗ W ∗

2 ) with the
weak∗ closure

clw∗{Φ(V ∗
1

σh
⊗ W ∗

1 )⊗Ψ(V ∗
2

σh
⊗ W ∗

2 )} ⊆ B(H1 ⊗H2).

From Theorem 5.1 there exist Hilbert spaces H
′

k and weak∗ continuous com-
plete contractions sk : V ∗

k → B(H
′

k,Hk) and tk : W ∗
k → B(Hk,H

′
k), k = 1, 2, for

which

(6.5) Φ(f1 ⊗ g1) = s1(f1)t1(g1) and Ψ(f2 ⊗ g2) = s2(f2)t2(g2).

These induce weak∗ continuous maps

s = s1 ⊗ s2 : V ∗
1 ⊗V ∗

2 → B(H ′
1 ⊗H ′

2,H1 ⊗H2)

and
t = t1 ⊗ t2 : W ∗

1 ⊗W ∗
2 → B(H1 ⊗H2,H

′
1 ⊗H ′

2)

and thus a weak∗ continuous complete contraction

Sσ = st : (V ∗
1 ⊗V ∗

2 )
σh
⊗ (W ∗

1 ⊗W ∗
2 )→ B(H1 ⊗H2).

We claim that Sσ extends S. We may use Φ and Ψ to identify fi ⊗ gi with
their images si(fi)ti(gi), i = 1, 2. It follows that

Sσ((f1 ⊗ f2)⊗ (g1 ⊗ g2)) = s(f1 ⊗ f2)t(g1 ⊗ g2)
= (s1(f1)⊗ s2(f2))(t1(g1)⊗ t2(g2)) = s1(f1)t1(g1)⊗ s2(f2)t2(g2)
= (f1 ⊗ g1)⊗ (f2 ⊗ g2) = S((f1 ⊗ f2)⊗ (g1 ⊗ g2)).
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It is obvious that S has range in (V ∗
1

σh
⊗ W ∗

1 )⊗ (V ∗
2

σh
⊗ W ∗

2 ), and thus to
show that the same is true for Sσ = st it suffices to prove that

X0 = V ∗
1 ⊗ V ∗

2 ⊗W ∗
1 ⊗W ∗

2

is weak∗ dense in

X = (V ∗
1 ⊗V ∗

2 )
σh
⊗ (W ∗

1 ⊗W ∗
2 ).

We have that V ∗
1 ⊗ V ∗

2 and W ∗
1 ⊗W ∗

2 are weak∗ dense in V ∗
1 ⊗V ∗

2 and W ∗
1 ⊗W ∗

2 ,
respectively. Since the bilinear map

(V ∗
1 ⊗V ∗

2 )× (W ∗
1 ⊗W ∗

2 )→ (V ∗
1 ⊗V ∗

2 )
σh
⊗ (W ∗

1 ⊗W ∗
2 )

is weak∗ continuous in each variable, it follows that X0 is weak∗ dense in

(V ∗
1 ⊗V ∗

2 )⊗ (W ∗
1 ⊗W ∗

2 )

and thus from Lemma 5.8 it is dense in X.
Since Sσ is weak∗ continuous, we have that Sσ = T ∗ for some complete

contraction

T : (V1

eh
⊗ W1)

nuc
⊗ (V2

eh
⊗ W2)→ (V1

nuc
⊗ V2)

eh
⊗ (W1

nuc
⊗ W2).

To check that this extends (6.3), we note that for vk ∈ Vk and wk ∈Wk we have

〈T ((v1 ⊗ w1)⊗ (v2 ⊗ w2)), (f1 ⊗ f2)⊗ (g1 ⊗ g2)〉
= 〈(v1 ⊗ w1)⊗ (v2 ⊗ w2)),Sσ((f1 ⊗ f2)⊗ (g1 ⊗ g2))〉
= 〈(v1 ⊗ w1)⊗ (v2 ⊗ w2), (f1 ⊗ g1)⊗ (f2 ⊗ g2)〉
= 〈S((v1 ⊗ w1)⊗ (v2 ⊗ w2)), (f1 ⊗ f2)⊗ (g1 ⊗ g2)〉 .

Since we have already seen that V ∗
1 ⊗ V ∗

2 ⊗W ∗
1 ⊗W ∗

2 is weak∗ dense in

(V ∗
1 ⊗V ∗

2 )
σh
⊗ (W ∗

1 ⊗W ∗
2 ),

we obtain (6.4).

We note that a simple induction may be used to show that the multiple
shuffle map S : (V1 ⊗ · · · ⊗ Vp)⊗ (W1 ⊗ · · · ⊗Wp)→ (V1 ⊗W1)⊗ · · · ⊗ (Vp ⊗Wp)
determined by

(6.6) S((v1 ⊗ · · · ⊗ vp)⊗ (w1 ⊗ · · · ⊗ wp)) = (v1 ⊗ w1)⊗ · · · ⊗ (vp ⊗ wp)

extends to a completely contractive map

Sσ : (V1

eh
⊗ · · ·

eh
⊗ Vp)

nuc
⊗ (W1

eh
⊗ · · ·

eh
⊗ Wp)→ (V1

nuc
⊗ W1)

eh
⊗ · · ·

eh
⊗ (Vp

nuc
⊗ Wp).
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7. HOPF CONVOLUTION ALGEBRAS

Finally we return to the discussion of Hopf convolution algebras begun in
Section 2. Given a Hopf von Neumann algebra (R,m, δ), we have a corresponding
triple (A = R∗,m, δ) defined by the diagram (2.1). We note that if A = R∗ and

B = S∗ are two such convolution algebras, then A
eh
⊗ B is a completely contractive

Banach algebra, i.e., the multiplication map

m : (A
eh
⊗ B)⊗̂(A

eh
⊗ B)→ (A

eh
⊗ B)

is completely contractive, since m is the composition of the complete contractions

(A
eh
⊗ B) ⊗̂ (A

eh
⊗ B)→ (A

eh
⊗ B)

nuc
⊗ (A

eh
⊗ B) Se−→ (A

nuc
⊗ A)

eh
⊗ (B

nuc
⊗ B)

and
(A

nuc
⊗ A)

eh
⊗ (B

nuc
⊗ B) = (A ⊗̂A)

eh
⊗ (B ⊗̂B) mA⊗mB−−−−−→A

eh
⊗ B.

Theorem 7.1. If (A = R∗,m, δ) is a Hopf convolution algebra, then δ is a
completely contractive homomorphism.

Proof. The hypothesis that δR is an algebraic homomorphism is encoded in
the commutative diagram

(7.1)

R
σh
⊗ R

δR⊗δR−−−−−→ (R⊗R)
σh
⊗ (R⊗R) Sσ−−−−−→ (R

σh
⊗ R)⊗ (R

σh
⊗ R)ymR

ymR⊗mR

R
δR−−−−−→ R⊗R

.

Taking the preadjoint of (7.1), we find that δA is again a homomorphism:

(7.2)

A
eh
⊗ A

mA⊗mA←−−−−− (A
nuc
⊗ A)

eh
⊗ (A

nuc
⊗ A) Se←−−−−− (A

eh
⊗ A)

nuc
⊗ (A

eh
⊗ A)xδA

xδA⊗δA

A
mA←−−−−− A ⊗̂A = A

nuc
⊗ A

.

We define a representation π : A → B(H) of a Hopf convolution algebra
A on a Hilbert space H to be a completely bounded homomorphism π : A →
B(H). The comultiplication δ = δA may be used to define the tensor product of
completely bounded representations of A. Given representations π1 : A → B(H)
and π2 : A→ B(K) we define π1 × π2 : A→ B(H ⊗K) to be the composition

(7.3) A
δ→ A

eh
⊗ A

π1⊗π2→ B(H)
eh
⊗ B(K) ⊆ B(H)

σh
⊗ B(K) θ→ B(H ⊗K),

where θ is determined by taking the product of the maps

B(H)→ B(H ⊗K) : T 7→ T ⊗ IK and B(K)→ B(H ⊗K) : T 7→ Ih ⊗ T
(see (5.23) and (5.21)).

Turning to some examples, if G is a locally compact group with Haar measure
µ, then both L∞(G) = L∞(G,µ) and the left regular von Neumann algebra L(G)
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are Hopf von Neumann algebras (see [31] and [39]). The corresponding Hopf
convolution algebras are the usual convolution algebra L1(G) = L1(G,µ) and the
Fourier algebra A(G). We note that since L∞(G) is a commutative von Neumann
algebra, the operator space structure on L1(G) is just the maximal operator space
structure associated with the underlying Banach space (see [6]). Thus we have
that any bounded map ϕ from L1(G) to an operator space X is automatically
completely bounded with ‖ϕ‖cb = ‖ϕ‖.

Given a Hopf convolution algebra A, a completely bounded representation
π : A −→ B(Hπ), and vectors ξ, η ∈ Hπ, we say that the functional c(a) =
〈π(a)ξ | η〉 ∈ R = A∗ is a coefficient operator of π, and if π is completely con-
tractive, we say that c is a Fourier-Stieltjes coefficient operator. Letting C(A)
(respectively, B(A)) be all coefficient operators (respectively, all Fourier-Stieltjes
coefficient operators), we have

B(A) ⊆ C(A) ⊆ R = A∗.

If A = L1(G) for G a locally compact group, any contractive representation π
of A is automatically completely contractive. Given a Fourier-Stieltjes coefficient
operator

b(a) = 〈π(a)ξ | η〉,

we may assume that π is non-degenerate, i.e., that π(A)Hπ is dense in Hπ. To see
this, let H0 be the closure of π(A)Hπ, and let π0 be the corresponding subrepre-
sentation of π. π0 is non-degenerate since L1(G) has a contractive approximate
identity uγ . Letting ξ0 ∈ H0 be a weak limit point of the net π(uγ)ξ and η0 be
the orthogonal projection of η onto H0, it is evident that

b(a) = 〈π0(a)ξ0 | η0〉.

The usual argument (see [30], Section 32) shows that π uniquely determines a
contractive unital representation π0 of G. Given s ∈ G, we have that both π0(s)
and π0(s−l) are contractive and thus unitary. It follows that B(A) coincides with
B(G), the usual Fourier-Stieltjes algebra of the group G.

If A = A(G) is the Fourier algebra of a non-commutative locally compact
group G, then a completely contractive representation π : A(G) → B(H) corre-
sponds to a contraction W ∈ L(G)⊗B(H) since we have the natural isomorphism

CB(A(G), B(H)) ∼= (A(G) ⊗̂B(H)∗)∗ ∼= L(G)⊗B(H).

It is easy to see that W satisfies the Nakagami-Takesaki “associativity” condition
(A.2) in the Appendix of their monograph [31]. If we could prove thatW is unitary,
we would have that π determines a “corepresentation” of G on H (see [28]). Of
course if G is abelian, this is true since we then have that A(G) = L1(Ĝ).

Returning to the general theory we have
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Theorem 7.2. If A is a Hopf convolution algebra, then C(A) is a subalgebra
of R = A∗.

Proof. Given coefficient functions

ck(a) = 〈πk(a)ξk | ηk〉 ∈ R, k = 1, 2

and λ ∈ C, we have that

(c1 + c2)(a) = 〈π1 ⊗ π2(a)(ξ1 ⊕ ξ2) | (η1 ⊕ η2)〉
(λc1)(a) = 〈π1(a)(λξ1) | η1〉.

Turning to multiplication, the functionals ωk ∈ B(Hk)∗ defined by ωk(bk) =
〈bkξk | ηk〉, determine linear functionals ω1 ⊗ ω2 in the commutative diagram

B(H)
eh
⊗ B(K) ⊆ B(H)

σh
⊗ B(K) θ−→ B(H ⊗K)

↘ ω1⊗ω2 ω1⊗ω2
y ω1⊗ω2 ↙
C

.

Thus since the multiplication operation on R is the adjoint of the coffiultlplication

δ : A→ A
eh
⊗ A, and ck = ωk ◦ πk, we have c1

eh
⊗ c2 = (ω1 ⊗ ω2) ◦ (π1

eh
⊗ π2) and

(c1c2)(a) = c1
eh
⊗ c2(δ(a)) = 〈(π1

eh
⊗ π2)(δ(a)), ω1 ⊗ ω2〉

= 〈π1 ⊗ π2(δ(a))(ξ1 ⊗ ξ2)| η1 ⊗ η2〉 = 〈(π1 × π2)(a)(ξ1 ⊗ ξ2) | η1 ⊗ η2〉,

where π1 × π2 is again a completely bounded representation of A.

If πk : A → B(Hk) are completely contractive representations, then it is
evident that the same is true for π1 × π2. It follows that B(A) is a subalgebra of
C(A), and we shall refer to it as the Fourier-Stieltjes algebra of A.

In order to go further, it is necessary to introduce more structure. In par-
ticular, if one wishes to obtain a satisfactory duality theory, one must introduce
∗-algebraic structure, and ultimately a discussion of antipodes. Since this would
take us far afield from the present discussion, we shall consider this theory in a
subsequent paper.
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de C∗-algebres, Ann. Sci. École Norm. Sup. (4) 26(1993), 425–488.



Hopf Convolution Algebras 155

3. R. Blattner, S. Montegomery, A duality theory for Hopf module algebras, J.
Algebra 95(1985), 153–172.

4. D. Blecher, The standard dual of an operator space, Pacific J. Math. 153(1992),
15–30.

5. D. Blecher, Tensor products of operator spaces. II, Canad. J. Math. 44(1992),
75–90.

6. D. Blecher, V. Paulsen, Tensor products of operator spaces, J. Funct. Anal.
99(1991), 262–292.

7. D. Blecher, R. Smith, The dual of the Haagerup tensor product, J. London Math.
Soc. 45(1992), 126–144.

8. M. Choi, unpublished note.
9. E. Christensen, A. Sinclair, Representations of completely bounded multilinear

operators, J. Funct. Anal. 72(1987), 151–181.
10. E. Effros, On multilinear completely bounded module maps, Contemp. Math., vol.

62, Amer. Math. Soc., Providence, RI, 1987, pp. 479–501.
11. E. Effros, R. Exel, On multilinear double commutant theorems, in Operator Alge-

bras and Applications, vol. 1 (Eds. Evans and Takesaki), London Math. Soc.
Lecture Notes Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp.
81–94.

12. E. Effros, A. Kishimoto, Module maps and Hochschild-Johnson cohomology, In-
diana Univ. Math. J. 36(1987), 257–276.

13. E. Effros, J. Kraus, Z-J. Ruan, On two quantum tensor products, in Operator
Algebras, Mathematical Physics, and Low Dimensional Topology, (Istanbul
1991), Res. Math. Notes, vol. 5, A K Peters, Wellesley, MA, 1993, pp. 125–
145.

14. E. Effros, Z-J. Ruan, Representations of operator bimodules and their applica-
tions, J. Operator Theory 19(1988), 137–157.

15. E. Effros, Z-J. Ruan, Multivariable multipliers for groups and their operator al-
gebras, Proc. Sympos. Pure Math., vol. 51, Part I, Amer. Math. Soc., Provi-
dence, RI, 1990, pp. 197–218.

16. E. Effros, Z-J. Ruan, On approximation properties for operator spaces, Internat.
J. Math. 1(1990), 163–187.

17. E. Effros, Z-J. Ruan, A new approach to operator spaces, Canad Math. Bull.
34(1991), 329–337.

18. E. Effros, Z-J. Ruan, Self-duality for the Haagerup tensor product, J. Funct. Anal.
100(1991), 257–284.

19. E. Effros, Z-J. Ruan, Operator convolution algebras: an approach to quantum
groups, unpublished manuscript, 1991.

20. E. Effros, Z-J. Ruan, Discrete quantum groups. I. The Haar measure, Internat.
J. Math. 5(1994), 681–723.

21. E. Effros, Z-J. Ruan, Operator Spaces, London Math. Soc. Monogr. (N.S.), vol.
23, Oxford Univ. Press, New York 2000.

22. M. Enock, J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups,
Springer-Verlag, Berlin 1992.

23. J. Ernest, Hopf-von Neumann Algebras, Functional Analysis (Proc. Conf., Irvine,
Calif., 1966), Academic Press, London; Thompson Book Co., Washington,
D.C., pp. 195–215

24. U. Haagerup, Decomposition of completely bounded maps on operator algebras,
unpublished manuscript, 1980.

25. G. Kac, A generalization of the principle of duality for groups [Russian], Dokl. Akad.
Nauk SSSR 138(1961), 275–278.

26. E. Kirchberg, Representations of coinvolutive Hopf-W ∗-algebras and non-Abelian
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