J. OPERATOR THEORY © Copyright by THETA, 2003
50(2003), 131-156

OPERATOR SPACE TENSOR PRODUCTS
AND HOPF CONVOLUTION ALGEBRAS

EDWARD G. EFFROS and ZHONG-JIN RUAN

Communicated by William B. Arveson
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1. INTRODUCTION

The convolution algebra L'(G) of a locally compact group G provides a Banach
algebraic generalization of the classical group algebra C[G] of a discrete group G.
In particular, the uniformly bounded Banach space representations of G are in one-
to-one correspondence with the bounded Banach space representations of L!(G)
(see [30]). On the other hand, in contrast to group algebras, convolution algebras
are generally not provided with a comultiplication, i.e., a “Hopf structure” (see
Section 2).

One may define natural analogues of the convolution algebra for quantum
groups. Perhaps the simplest example is provided by the Fourier algebra of a
non-commutative group G, which may be thought of as the convolution algebra of
the “dual quantum group” G (see [13]). In this more general context, the lack of
a Hopf structure is a serious flaw, since a natural comultiplication enables one to
define the tensor product of representations. As a result, functional analysts have
instead used various alternative “dual” constructions, such as Hopf C*-algebras,
Hopf von Neumann algebras, and multiplicative unitaries (see [25], [23], [22], [31],
[2], [42], [43], [44], [20] and [27]).
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Although considerable progress has been made in the functional analytic
theory of quantum groups, there are still good reasons for considering a convolution
algebraic approach. Perhaps the most important of these is that various group
theoretic notions, such as amenability, are most conveniently described in terms
of the convolution algebras (see, e.g., [36]). It can also be argued that convolution
algebras would enable one to avoid some of the technicalities associated with the
corepresentations and coactions of the existing theory (see the discussion in [28]).

It is evident from the existing theory that in order to define a Hopf convo-
lution algebra for quantum groups, one must first replace the classical L'-Banach
spaces by their “non-commutative L'-space” analogues, the preduals of von Neu-

mann algebras. If one wishes to consider algebraic operations on such spaces it
is also necessary to use their underlying operator space structure (for a general
survey of this subject see [21]).

Approximately ten years ago the authors showed that one can define Hopf
algebraic operations on non-commutative L!-spaces by using the operator space

projective and extended Haagerup tensor products. These results were circulated
in an unpublished manuscript ([19]). In the intervening years the tensor product
theory has become more familiar to specialists (for a recent example see [29]). In
addition the Hopf algebra techniques have proved to be quite useful in formulating
the notion of amenability for Kac algebras ([36]).

Since an increasing number of authors have referred to the manuscript, we
believe that it would be useful to make this material available to a wider audience.
We have modified the paper in several ways. We have substantially improved
the discussion of the extended Haagerup tensor product by using a more precise
limiting technique. This has enabled us to give a simple proof of the multivariable
version of an important embedding result of Blecher and Smith ([7]; see (5.20)).
We have shortened the discussion of the operator nuclear, projective and Haagerup
tensor products, since many of the details can now be found elsewhere (see, e.g.,
[21]). We have also postponed much of the discussion of Fourier-Stieltjes algebras
to a subsequent paper.

We begin in Section 2 by considering how operator space tensor products
naturally arise in the theory of Hopf algebras. In Section 3 we briefly discuss
some infinite matrix manipulations. The relevant tensor products are described in
Section 4 and Section 5, and an important “shuffle theorem” is proved in Section 6.
In Section 7 we conclude the discussion in Section 2, and in particular we indicate
how one can construct tensor products of representations of Hopf convolution
algebras.

Given a Hilbert space H, we use the expression “weak* topology” for the
usual o-weak operator topology on B(H).

Unless otherwise indicated, we assume that all operator spaces are norm
complete.
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2. HOPF ALGEBRAS

Analysts use the Hopf algebraic terminology in a more inclusive and less precise
sense than that found in the algebraic literature (for the elementary algebraic
theory see [3] and [40]). In general, a Hopf algebra (A, m,d) consists of a linear
space A with norms or matrix norms, an associative bilinear multiplication m =
ma: Ax A — A, and a coassociative comultiplication § =4 : A — A® A, where
® is a suitable tensor product, and § is an algebraic homomorphism (this links
the two operations). The maps are assumed to be bounded in some appropriate
sense.

A Hopf von Neumann algebra (R, m,0) is a von Neumann algebra R together
with its multiplication operation m, and a weak* continuous *-isomorphic unital
coassociative injection

0:R— R®R,

where R ® R is the usual von Neumann algebraic tensor product. We may associate
two Hopf von Neumann algebras with a locally compact group G. Let us fix a left
invariant Haar measure on G. We have that (L>°(G), m, d) is a Hopf von Neumann
algebra, where m is the point-wise multiplication and §f(z,y) = f(zy). On the
other hand if R(G) is the von Neumann algebra generated by the left regular
representation A : G — L?(G), and the normal homomoprhism § : R — R® R is
determined by the map A(s) — A(s) @ A(s) (see [31], Section 2 for the details).

From the finite-dimensional theory one might expect that the predual R, of
a Hopf von Neumann algebra R is again a Hopf algebra. Using the fact that

where ® is the operator space projective tensor product (see Section 4), the pread-
joint of § = g is a natural associative multiplication

m=mg, :R,®R. — R..

In particular, if R = R(G), this is the usual multiplication of the Fourier algebra
A(G) = R.. If G is abelian, the Banach algebra A(G) may be identified with the

~

usual convolution algebra L' (@) of the dual group G, whereas for non-commutative
groups and more generally quantum groups, it is thought of as the “convolution
algebra of the dual quantum group”.

In order to complete the duality, and most importantly, to define the tensor
product for representations of the algebra R,, it is also necessary to define a
comultiplication on R, which is dual to the multiplication map m = mpr : RXR —
R. Our first task is to linearize m by using a suitable tensor product. Even if
R is commutative, m does not extend to a contractive linear map R® R — R.
Fortunately there is a natural operator space tensor product, the normal Haagerup

h
tensor product R ® R (introduced in [12]), which is ideally suited for linearizing
bilinear functions of this type on R. The map m extends uniquely to a weak*

oh
continuous completely contractive map m: R ® R — R.
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The space R %})‘ R has a natural predual, the extended Haagerup tensor
product Ry %}; R.. We define the comultiplication § : R, — R, % R, to be the
preadjoint of m : R (éz}; R — R. We call a Hopf algebra (A = R.,m,d) which arises
in this manner a Hopf convolution algebra. We may summarize these constructions

with the diagram

Hopf von Neumann algebra R Hopf convolution algebra R,
§=0r:R—R®R m = (0g)« : R.®R. — R,
(2.1) -
oh eh
m=mgp:R® R— R 0 =(mg)s: R« = Ri ® R,

In order to verify that R, is a Hopf algebra, we must also prove the non-trivial
fact that

eh
0: R, — R, ® R,

is an algebraic homomorphism. To make sense of this we must first prove that the

“shuffle” linear map of algebraic tensor products

defined by
@Y @ udv)—(z0u) & (ydv)

has a natural extension to a complete contraction

eh ~ eh —~ eh ~
(2.2) So: (Re ® Ry) ®(Ry ® Ry) — (R @ Ry) ® (R« ® Ry).
This result was proved in [15]. In Section 6 we show that it follows from a
shuffle result for arbitrary operator spaces. For this purpose it is necessary to use

the nuclear tensor product V néc W, which is a natural complete quotient of the
projective tensor product V®W (see Section 4). For von Neumann algebras R

and S we have that R, %]{)C S. = R, ®5,. Given operator spaces Vi, Vo, W; and

Ws, we show in Theorem 6.1 that S extends to a complete contraction

nuc eh nuc

eh eh nuc
(2.3) Se: (Vi) @ (VaeWs) — (Vi @ Vo) @ (W1 @ Wa).

Since we have a natural complete quotient map

nuc eh

eh —~ eh eh
(R« ® R,) ® (Ry ® Ry) = (Ry ® R,) ® (R« ® R,),

(2.2) is an immediate consequence of (2.3).
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3. INFINITE MATRICES

Given an operator space V and index sets I and J, we let M; ;(V) denote the
vector space of matrices [v; ;], ¢ € I, j € J, for which the finite submatrices are
uniformly bounded in norm (this is again an operator space; [14], [16]), and as
usual we let M;(V) = My ;(V) and M; = M;(C) = B(¢{*(J)). We also use the
notation Ty ; (V) =T 5 ®V, where Tr, is the predual of M7 ;.

Products of bounded infinite scalar matrices must be handled with some care.
Given a € My i, b € My, 7, we have that the series ) a;,b; converges absolutely,

k

and thus unconditionally since

/ /
S lawbisl < (S lauel?) (S lbwl?) =l ()l eyl < oe.
k k k

The series involved in products of more than two matrices need not converge
absolutely. As a result one must justify changes in the order of summation of
series of this type. Fortunately there is a modified form of unconditionality that
is valid. To illustrate this, let us suppose that we are given a € My g, b € Mg 1,
and ¢ € My, y for index sets I, J, K, L. Given a subset S C K, we let P(S) be the
corresponding projecton on ¢2(K). This determines a projection valued measure
on K. Similarly we let Q(T) be the projection on ¢?(L) determined by a subset
T C L. If we restrict to finite sets FF C K and G C L, we may regard F' — P(F)
and G — Q(G) as nets of projections, each of which converges to the identity
in the strong operator topology. Since multiplication is jointly continuous in the
strong operator topology on bounded sets of operators, we have that

abe = %12 aP(F)bQ(G)c
and thus we get a limit of finite sums

(abe)i,; = lim > aipbricy;.
" keF,leG

Similarly we have
abc = 1i}n aP(F)bc

and therefore

(abc)i,j = H}I?n Z ai,k(bc)k’j.
keF

We conclude this section with a review of certain operator space conventions
and results. Given operator spaces V and W, we let CB(V, W) denote the operator
space of completely bounded maps ¢ : V. — W. If V and W are the duals
of operator spaces, then we let CB?(V,W) be the weak* continuous maps in
CB(V,W).

If H and K are Hilbert spaces with bases (e;);cs and (f;)ier indexed by sets
J and I, we may identify B(H, K') with M ;.

We have a natural complete isometry

(3.1) CB(V, My, j) = M ;(V"),
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where given a matrix f = [f;;] € My ;(V*), the corresponding map s : V. — My ;
is defined by ¢f(v) = [fij(v)]. This is immediate from the identifications

My (V*) = (Tr,,@V)* = CB(V,M; ;)
(see [21], (10.1.8)).

On the other hand, we have the natural complete isometry
(3.2) CB(V*, My,y) = My 4(V).

This is proved as follows. Let us suppose that ¢ € CB?(V*, My 5). Then from
(3.1) there is a matrix F' = [F; ;] € M ;(V**) such that o(f) = [Fi;(f)]. By
hypothesis, f — [F;;(f)] is continuous in the weak* topologies. It follows that
each function F;; is weak® continuous, and thus has the form F;(f) = f(vsj)
for some element v;; € V, and thus F' = [v; ;]. Conversely, if F' = [v; ;] where
v;,; € V, then we claim that or € CB?(V*, M; ;). To prove this it suffices to
show that the restriction of f — F(f) to the unit ball B of V* is continuous in

those topologies. Since F'(B) is bounded, the weak* topology coincides with the
weak operator topology on F(B). In turn, it suffices to show that f — F’'(f) is
weak® continuous for finite submatrices F’ of F', and this is immediate from the

weak™ continuity of the entries v; ;.

Given operator spaces Vi, k =1,...,p, index sets I}, and Ji and rectangular
(k) | € My, 5, (Vi), we define the Kronecker product by

matrices vy = [v; 7
:

1o -@u=p" @ 0P e M (Ve - aV,),

i1,J1 ip,Jp

(k)

where I =1 x --- x I, and J = J; x -+ x J,. In particular given v, = [vimk

My ny, (Vi), we have

| €

(3.3) VO QU € Mpn(Vi®--- V),

where m =my ---my, and n = nq - - ny,.
Given v € My, ;,(V) and f € My, 1,(V*), we shall use often the “pairing”
notation

(34) <fa 1}> = leJz ('U) = [fil,i2 (vjljz)] € M11><J1,12><J2'

This formalism is particularly useful for considering dual operator spaces. Given
an operator space V and matrices v € M, (V*), we have

(3.5) 1£1l = sup{ll(f; o) : vl < 1,0 € Mp(V)}

and

(3.6) o]l = sup{[[(f; )|l - [l <1, f € Mn(V7)}
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4. THE PROJECTIVE AND NUCLEAR TENSOR PRODUCTS

We use the tensor product terminology in the usual functorial sense. Thus given
operator spaces Vi,..., V), a tensor product ® determines a corresponding oper-
ator space V1 ® --- ® Vp, and given completely contractive maps ¢ : Vi, — Wj
we have a corresponding complete contraction

80290159'”@%1‘/1@"'®VpHW1®'“®Wp~

We say that ® is injective if completely isometric injections ¢, determine a com-
pletely isometric injection ¢, and that ® is projective if complete quotient maps
k. determine a complete quotient map .

We will make only peripheral use of the operator space injective tensor prod-

uct @ for operator spaces (see [21]). We begin by reviewing the notion of complete
boundedness for multilinear maps and their linearization via the operator space
projective tensor product & .

Given another operator space W and a multilinear map

(4.1) p:Vix--xV, =W,
we also write ¢ for its linear extension
0 VN® -0V, =W,

as well as the the multilinear and linear maps

o My 5, (Vi) x - x My, 5, (Vp) — My (W)
and

o: M, V)@@ My, 1,(Vp) — My (W)
determined by

P(v1,..., ) = P11 @ @) = o), @ @u, ).

pyJp

¢ is said to be completely bounded (in the sense of Choi [8]) if there is a constant
K such that

o @ - ®vp)|| = |[lpwl), ® - @

W, N < Kloill-+ ol
for all vy, € My, n, (V), where my, and ny, are arbitrary integers. If ¢ is completely
bounded, we define its completely bounded norm ||¢||,, to be the least such constant
K, i.e.,
@l = sup {llp(vr @ -~ @wp)ll : floall -~ fJopll < 1}
Given operator spaces Vi, k =1,...,p and a matrix u € M, (V1 ®---®@V}),
we define operator space projective tensor norm ||ul|n by

[ullx = nf{{[af [lve]l - lon [ 8]l : v = a(vi @ --- @ va) B},
where vy, € M,, (Vi), &« € My, n, and f € M, ,, with n = ny---n,. We let
Vi®a- - -®@aV, denote the corresponding (incomplete) operator space, and we define
the operator space projective tensor product Vi R ® V), to be its completion.
We may also represent a matrix in M,,(V; ® - Vp) by using infinite ma-
trices (see [21]). Given u € M,, (Vi ® --- ®V,,) and & > 0, there exist index sets
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Ji and matrices vy, € My, (Vi) withk =1,...,p, « € My, 5, and 3 € M, where
J =Ji x -+ x Jp, such that

42) u=a1® --®u)f and |luls <l flvill-- - [[oplHIB]] < [lufl + €.

If we let Fj, range over the finite subsets of Jj, and we let F' = F} X --- X Fp,

and we define v,f * af and BF to be the corresponding finite truncated ma-
trices in Mg, (Vi), My, r, and Mp,,, respectively, then w is the norm limit in
My, (Vi ® --- ®V,) of the net

Fisaf (" - @of)ar.
Furthermore an element v € M,,(V; Q --- @)Vp) may always be written in the
form (4.2) with vy € Koo(Vi) and @ € Ky oor and 8 € Koop i, where Koo (Vy)
(respectively, K, oor and Koop m,) consists of the norm limits of finitely non-zero
matrices in Moo (Vi) (respectively, My, oor and Moor im).

Any completely contractive multilinear map

p:Vix-o-xV,—-W

determines a completey contractive linear map
GG BV, — W

with ||@]leb = ||©lleb, and this in turn provides us with a natural identification

(4.3) CB(Vi XX Vy, W)X CB(VS --- &V, W).

Given an element u = a(v; ® - ®@v,)B € VI ® -+ @V}, it is easily verified that
o(u) = ap(vr, ..., vp)0.

If we are given complete contractions py : Vi, — Wy, then we let
(4.4) 301@...@wp;{/l@...@‘/p_)wléé...@wp
be the linear map determined by the completely contractive multilinear map
(U1, -, 0p) = 01(01) @ @ @p(vp) EWLD -+ B W),

In particular, if f € V', and u = a(11 @ --- ® vp)08 € V1 R - @Vp, then the

linear functional R R
fl®"'®fp:‘/1®"'®vp_)(c

satisfies

(45) <f1 Q- ®fpau> = Oé(<f1,’l}1> SRR <fp7vp>)6a

where (fi, vx) = [fk(vgf;'))] € My,.

If V* is a dual operator space, it has a weak™ faithful representation, i.e.,
there is a Hilbert space H and a weak* homeomorphic complete isometry of V*
onto a weak™ closed subspace of B(H) ([17], Proposition 5.1). Given weak* closed
subspaces V, C B(Hy), k =1,...,p, we define the normal spatial tensor product
Vi*® .- @V to be the weak* closure of Vi* ®---® V) in B(H, ®---® H,). We
define the Fubini tensor product Vi* @ --- ®pV," to be the space of all operators
b € B(Hi ® --- ® Hp) such that for each k¥ with 1 < k¥ < p and functionals
w; € B(Hj), j # k the “slice”

(b,w1 @ Qw1 ®idk ® - ® wp)
lies in V7. From the following result we see that neither of these tensor products
depends upon the given weak* faithful representations V,* C B(Hy).
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THEOREM 4.1. For any operator spaces Vi, ..., V, and arbitrary weak™ closed
representations V,* C B(Hy), we have a completely isometric weak* homeomor-
phism

(4.6) Vi@ V) =V ®p-- QrVy.
Vi@ .- @ V) is dense in V" @p -+ @V in the V1 ®--- @V, topology.
Proof. This may be found in [13] and [21]. 1

It follows from Theorem 4.1 that the identification of the Fubini tensor
product with the dual of V; ® --- ®V,, carries the normal spatial tensor prod-
uct V" ®@ --- @V, onto the closure of Vi"®-- @V, in the topology determined by

the completion V1 ® - -- ® Vp. We conclude that the normal spatial tensor prod-
uct does not depend on the embeddings V;* C B(Hy). However, there is a more
explicit way of seeing this.
nuc nuc
We define the nuclear tensor product Vi ® --- ® V, of operator spaces
Vi,....Vp by
nuc nuc

Vi® -V :(V1®~~<§<)Vp)/ker\11,

where W is the canonical complete contraction

(4.7) T ViR RV, @V,
THEOREM 4.2. For any dual operator spaces Vi',...,V we have a com-
pletely isometric weak™ homeomorphism
(48) (‘/1 néc... néc Vp)* gvl*® @Vp*
Proof. The inclusion
Ve ...@Vp* — V' Qp--- @va*
determines a complete quotient map
Vi@ @V, — (@ ®Vi),
and thus
(4.9) (Vl*@-“@Vp*)*%Vl@~--<§>Vp/N
where
(4.10) N=[WB - BVl= o eV

On the other hand, since the natural map
i g@ é V, — (Vl*@) @V*)*
is completely isometric ([6]), we have that
ker W = [V @@V ]L,
and our result follows from (4.9) and (4.10). 1
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PROPOSITION 4.3. Given dual operator spaces V)i and W} and weak® con-
tinuous completely contractive maps ¢ : V' — Wy, 1 < k < p, the algebraic
tensor product ¢1 ® - - ® @, extends uniquely to a complete contraction

(4.11) P1® Ry VB BFV) - Wi Br - BrW,

which is continuous in the Vi & - - - 55‘/}” W& - @Wp topologies. Similarly,

there is a unique extension

(4.12) PO R, VT BV WS- SW,

nuc

. 3 . . nuc nuc nuc .
which is continuous in the Vi ® --- ® Vp, W1 ® --- ® W, topologies.
Proof. For each k we have that ¢ = (pg,)* for some complete contraction
Pky : Wi — Vi. The corresponding map
PA :Qol*@"'@p*:wl(g @Wpﬂ‘/l@ @‘/p

is a complete contraction for which the adjoint is (4.11), and which is obviously
continuous in the stated topology. On the other hand, the maps ¢y, determine a

commutative diagram

~ A=D1 P A
W1®...®Wp AT OB | V1®...®Vp
B B
v v V=1 @ B v v
Wi @ @ W, i LN Vi@ @V,

and in particular, we have that wa(ker Uy ) C ker ¥y, It follows that ¢, induces
a completely contractive map
nuc nuc nuc nuc
QPnuc:Wl XK R Wp‘)VPl R Vp.
We obtain from this the desired map

PO @y =he VBBV = WiE - BWY,

which is again continuous in the weak™ topologies.
It is immediate that (4.10) and (4.11) extend the algebraic tensor product,
and they are unique because the algebraic tensor products are dense in the corre-

sponding topologies. 1
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5. THE EXTENDED AND NORMAL HAAGERUP TENSOR PRODUCTS

The Haagerup tensor product was first considered in unpublished notes of Haa-
gerup (see [24]). An early discussion of Haagerup’s theory appeared in [10]. We

begin by reviewing this material.
Given matrices vy = [vj(lejk} € My, ,n,(Vk), k=1,...,p, we define the
multiplicative product

0O Oy € Mygn, (Vi@ ® V)
by “matrix multiplication”, i.e.,
1
(5.1) (01O Ov)ipg, = D U @@l
.jlv-':jpfl
In particular, if jo = j, =n, thenv1 ©--- Qv € Mp,(V1 ®---®V}).
Given operator spaces Vi,...,V, and W and a multilinear map

p:Vix-ox V=W,
or equivalently a linear map

(p;V1®...®Vp_,I/V7
we say that ¢ is multiplicatively bounded if there is a constant K such that for all
neN

1
len(r @ 0ol =[] 3 e, @ oo Ol < Kol vl
jl"'jpfl

for all vy, € My, | n,(V), where ng = n, = n, and nq,...,np_1 are arbitrary. If
¢ is multiplicatively bounded, we define its multiplicative norm ||¢||,,, to be the
least such constant K, i.e.,

[Pl = sup{ll@n(v1 © - ©vp)ll : floal-- - [Jop]l < 1}

These matrix norms determine an operator space structure on the linear space
CBy(Vi X -+ x V,,, W) of all such maps. If the V;, and W are dual operator
spaces, we again say that ¢ is normal if it is weak™ continuous in each variable,
and we let CBZ (V1 x - - - x V,, W) be the operator subspace of normal maps. These
notions were introduced by Christensen and Sinclair ([9]).

THEOREM 5.1. A multilinear map
gOZVl Xoee X‘/;,HB(HP,HQ),

is multiplicatively contractive if and only if there exist Hilbert spaces Hy, ..., Hp_1
and complete contractions @y, : Vi, — B(Hy, Hi—1) such that

(5.2) P(v1, .., 0p) = p1(v1) -+ - @p(vp).

If each Vi, is a dual space and @ is normal, then we may assume that each py is
weak® continuous.

Proof. The representation (5.2) is just a restatement of the Christensen-
Sinclair theorem [9] as generalized to operator spaces by Paulsen and Smith (see
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[32] or [21]). The theorem for normal maps is well-known to specialists. We have
included a simple proof for the convenience of the reader.
Let us assume that for fixed v; € V;, i # k, and &, € Hy, no € Ho

(5.3) v = (s1(vr) -+ sk(vr) - - 5p(0p)€p [ 10)
is weak™ continuous. We begin by noting that

(s1(v1)s2(v2) -+ sr(vp)&p | 10)

= (sk(vr) Skt (Vrt1) * + 8p(vp)&p [ Sk—1(vk—1)" -+~ s1(v1) o).
We may assume that
Hy, = {skg1(vns1) - 8p(vp)&p s vi € Vili 2 k+1), & € Hy}

is dense in Hy, since otherwise we may replace Hj, by the norm closure cl(Hj},) and
sk by s el ;) without affecting the equality in (3.2) or the continuity that might
be assumed in any of the variables. Similarly we may assume that

Hy_y = {sk-1(vk-1)" - s1(v1)"no v € V; (i <k —1),m0 € Ho}

is dense in Hy_1.

By hypothesis we have that vg, — (si(vi)€ | n) is weak™ continuous for § € Hj,
andn € H_,. If welet §, € H; and n,, € H}_, be sequences converging to vectors
¢ € Hy, and ) € Hy_1, then the functions vy — (si(vk)&n|nn) converge uniformly
on the closed unit ball of V}, to the function vy — (si(vg)€|n). It follows that the
latter function is weak™ continuous on that ball and thus on all of V. 1

Given operator spaces Vi, k =1,...,p, and a matrix u € M, (V1 ®---®V}),
we define the Haagerup norm of u by

(5-4) lully, = inf {Jorll - flopll cw=v1 © - © vy, 05 € My, (Vi) }

where ng = n, n, = n, and ny, is arbitary for 1 < k < p — 1. These matrix norms
determine an operator space structure on V; ® - - - ® V), and we call its completion

h h
Vi ®--- ®V, the Haagerup tensor product.
A multilinear map ¢ : Vi x -+ x V, = W is multiplicatively contractive if

h h
and only if there is a completely contractive map ¢ :V4 ® --- ® V,, —» W with
O, .., 0p) =01 ® -+ - @ Up).
In this manner we obtain the completely isometric identification
h h
(5.5) CBm(Vi x -+ xV,, W)= CBVi ® --- @ V,, W).

Given complete contractions ¢y : Vi, — Wy, we have that

h h
801®.”®90p:vlX'.'va_)W1®“.®Wp
is multiplicatively contractive, and thus determines a complete contraction

h h h h h h
P1R Ry Vi@V, =W ® W,

(see, e.g., [21], Proposition 9.2.5). The Haagerup tensor product is both injective
and projective. Furthermore, it is associative, but it is generally not commutative.
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h b
We define the extended Haagerup tensor product Vi e® %5 Vp to be the
space of all normal multiplicatively bounded maps u : Vi* X --- x V¥ — C, i.e.,

eh eh h h
(5.6) Viw-@V,=Ve - V,),=CBL(V] x---xV),C)

(see [11], [12], and [15]) and we let || - ||, denote the relative matrix norms inherited
from the operator space C By, (Vy* x --- x V¥, C). Equivalently, the matrix norms
are determined by the identification

M, (CBy (Vi x --- x V7, C)) = OBy (Vi" x - x V|, My,).

We may use Theorem 5.1 to write the elements u € M, (V4 % % Vp) in
terms of infinite matrices over the Vj. It follows from the normal mapping result
in Theorem 5.1 and (3.2) that if ||ullen < 1, then there exist contractive matrices
v € My, .5, (Vk), where Jy = J, = {1,...,n}, for which

(5'7) u(fla""fp):<f17v1>"'<fp’vp>'
If that is the case, we use the notation
(5.8) U=010 - 0Ovp =107 - Of,_, Up.

Changing to matrix notation, we have from the discussion in Section 3 that
(1 ® @ fe,u) = (fr,01) -~ ([, vp)
(5.9) - W o
Fl ~1~1‘IFI‘;,1 4 Z fl (Uzo,zl) fP(Uzp_l,zl,)
11€EF,...ip_1€EFp_1

where the limit is taken over finite subsets F, C Ji, 1 < k < p— 1. If we let
F=F x---xF,and v,f € Mp,_, r. (V) be the obvious truncation of vy, we see
that the net

Foup=v0-0v eV -0V,

converges to u in the topology determined by Vi* ® --- ® V,f. Since it is evident
that
[upllen < lupln < flodll-- v

h h
it also converges in the topology determined by Vi* ® --- & V.
It is clear from our discussion above that

(5.10) [wflen = inf{{[os]| - flvp]l},

where the infimum extends over all representations (5.8).
Given completely bounded maps ¢y : Vi, — Wy, the corresponding map

— *h h %\ % *h h * 0\ * *h h *\

satisfies
_ L B h . R h ek
BV & D V) S (WY & - & W)
since each map ¢j : W' — V7 is weak™ continuous. We let

eh eh eh eh eh eh
(5.11) PR Qe VIRV, =W @ W,
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h h
be the restriction of @ to V; i@ 'i@ Vp. We note that if the ¢; are complete

eh eh
contractions, then the same is true for % and thus for ¢1 ® -+ ® ,,.

LEMMA 5.2. Suppose that V;,W;, j =1,...,p, are operator spaces, and that
@; : V; — W; are completely bounded. Then given index sets J; with Jy = J, = {1}
and v; € My,_, 5,(V;) we have
eh eh
(P1 @ @ @p)(L1 O+ Ovp) = p1(v1) © -+ © Pp(vp).-

h h
Proof. If we let ¢ = ¢ i@ ?@ ¢p, then for g; € W we have

(P(L1 O Ovp), g1 ® B gp) = (V1 O+ OV, P1(91) ® -+ ® ()
= (v1,7(91)) -+ (vp, P (9p))
= (@) 72 (v1):91) -+ {(®p) 710, (), Gp)
=

901( ) 'QWp(Up)agl®"'®gp>~

eh eh
Since elements of Wi ® --- ® W, are determined by the values they assume on

h h
elements of W} ® --- ® W}, or equivalently, on elements of W ® --- @ W, w
conclude that

P ©---Ouvy) = 901(7)1) ®"'®‘Pn(vn)~ 1

We conclude that %3 is a tensor product in the sense described in the previous
section. We will prove that it is associative below.

In [7] Blecher and Smith characterized the dual of the Haagerup tensor prod-
uct in terms of what they called the weak™ Haagerup tensor product. In the fol-
lowing we see that this coincides with the extended Haagerup tensor product of
dual operator spaces. It should be noted that Stephen Allen has studied the weak*
Haagerup tensor product for operator spaces that are not necessarily dual spaces

([1)-

THEOREM 5.3. Suppose that Vi,...,V, are operator spaces. Then we have
the complete isometry

eh
N V) =210V
Proof. From Theorem 5.1 and (5.7), elements f of both
h h y h h
Mp(V1 @@ V)" ) =CB(V1® -+ @ Vp, My)
and of
* ch ch o ** h *k
M,(Vy®---@V,))=CB,(V\"" ®@--- @V, ™, M,)
have representations of the form

(512) f(vlv"'7vp):<f1’U1>"'<fpavp>a
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where in the first case vy € Vi, and fy, : Vi, — B(Hy, Hi—1) is completely bounded,
and in the second case vy € Vi and fi : V;* — B(Hy, Hi—1) is weak™® contin-
uous and completely bounded. Thus it suffices to show that we have a natural
identification

CB°(V**,B(H,K)) = CB(V,B(H,K)).

Changing to matrix notation, this is evident from (3.2) and (3.1) since we have

CB?(V**, My j) =M ;(V*)=CB(V,M; ;). 1

h h
We note that if we are given f = f1 ©@--- © f, € My (V}* ?8) ?8) V) and
v € Vi, then from (5.12) we have the matrix product

(fiv1 @ @vp) = (fr,v1) - (fp, vp)
) D DR/ YR AR Ol

G1Gp-1 L | -
P J1€G1,...,jp—1€Gp_1

(5.13)

where the limit is taken over finite subsets G, C Ji, 1 <k <p—1.

LEMMA 5.4. Suppose that Vi, Wy, k = 1,...,p, are operator spaces, and
that for each k, o : Vi, — Wy is completely isometric. Then (5.11) is completely
isometric.

Proof. Let us suppose that the ¢y are completely isometric. Then the maps
e : Wi — V¥ are complete quotient maps, and since the Haagerup tensor product
is projective, the same is true for the map
(pl®...®@p:WI ®.®Wp _)Vl ®.®‘/p
It follows that the bottom row of the following diagram is a completely isometric
injection, and thus the same is true for the top row:

ch eh 1®-Qpp ch ch
VeV, —2 . Wwe---0W,

N Ni o
* h h *\ % (ga*®~~®tp;)* * h h * ) *
Vr®---® V) - Wi @@ W)

We conclude that the extended Haagerup tensor product is injective. In
contrast to the Haagerup tensor product, the extended Haagerup tensor product
is not projective, i.e., if one is given an operator space X and a complete quotient

eh eh
map Y — Yi, then the induced map X ® ¥ — X ® Y7 need not be a quotient
map. We are indebted to David Blecher for the following argument.

PrROPOSITION 5.5. The extended Haagerup tensor product is not projective.

Proof. We recall from [4] that an operator space X is said to be projective if
given operator spaces V and W and a complete quotient map 7 : V. — W, then
any map ¢ : X — W with ||¢|lcs < 1 can be lifted to a map ¢ : X — V with
[l#ller < 1. Equivalently, the induced map CB(X,V) — CB(X,W) is a Banach
space quotient map. If X is projective, then the latter is in fact a complete quotient
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map since we may identify 7, : M, (CB(X, M, (X))) — M,(CB(X, M,(W))) with
the complete quotient map CB(X, M, (V)) — CB(X, M,,(W)).

Taking adjoint maps, it is evident that an operator space X is projective if
and only if for any weak™ homeomorphic completely isometric injection ¢ : W* —
V*, the corresponding map

CB°(W*,X*) = CB°(V*, X*)

is isometric (or completely isometric). In other words, any weak® continuous
complete contraction ¢ : W* — X™* has a weak™ continuous completely contractive
extension ¢ : V* — X*. This is the case if X = T),,,, = (My,n)«. On the other
hand this weak* version of injectivity was shown to be false for M, in [14], and
thus Too = (M)« is not projective.

If X and Y are projective operator spaces, then the same is true for X @ Y.
To see this we note that if we are given a complete quotient map, then the induced
map CB(Y,V) — CB(Y,W) is a complete quotient map, and therefore

CB(X®Y,V)=CB(X,CB(Y,V)) — CB(X,CB(Y,W)) =CB(XQY,W)

is a complete quotient map. It follows that the column Hilbert space My 1 is
not projective, since if it were, then its conjugate operator space M; o, would
also be projective, and therefore To, = Mo 1 ® M « would also be projective, a
contradiction (see [21] for a discussion of the conjugate operator space).

Changing notation, we have that My = H., where H = (2. For any
operator space V', we have the complete isometries

eh h ~
Mooy @V = ((He)" @ V¥)g = ((He)* @ V™), = CB7(V*, He) = CB((He)", V)

(see [5], [6], [16], [18], and [21], (9.3.5)), where the identification on the right is the
inverse of the adjoint map ¢ — ¢*.

h
Let us suppose that ?@ is projective in the second variable. It follows from
the above relation that for any complete quotient map V' — W, the corresponding
map

(5.14) CB((Ho)*,V) — CB((H.)*, W)

is a complete quotient map, i.e., (H.)* = M; o and therefore its conjugate oper-
ator space M, 1 is projective, a contradiction. 1

It is evident that the identity map Vi ®---®V, — V1 ®---®V,, is completely
contractive with respect to the Haagerup and extended Haagerup tensor products
since the extended product norm uses more decompositions. In fact the map

h h eh eh
(5.15) N eV,onhe oV,

is a completely isometric injection. This is apparent from the diagram

h h
Vo0V,
! N ,

eh eh h

h
Ne-—-V, — (e V)
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where the diagonal map is a completely isometric injection owing to the “self-
duality” of the Haagerup tensor product ([5], [18]) and the bottom map is com-
pletely isometric by definition.

We turn next to a surprising result of Blecher and Smith (see [7] for the case

h h h b
p=2). If feV ® ® Vi=(W®--- ® Vp)*, then we may extend it to
I h
elements u € V %5 s ?8 Vp. In fact, we may define a pairing of nxn matrices f and

u over these two spaces as follows. If f = f1©-- O f,, and u = v; ©®- - - O v, where
Vg € Mjk_l’Jk(Vk) and fk S ]\4],6_1’[,‘,’(‘/}:)7 and Iy = Ip =Jy = Jp = {1,...,n},
we wish to define

(5.16) <f’u> = <fla'U1>"'<fp’UP>'

The right hand side makes sense because it is the product of the bounded scalar
matrices

(517) <fk7vk> S MI]C,lXkal,IkXJ;V

PROPOSITION 5.6. The pairing (5.16) does not depend upon the decomposi-
tions f=f0--Ofp andu=v1 OO vp.

Proof. If we let Fj range over the finite sets in I, 1 < k < p — 1, then the
projections P(Fy X Jj) converge to the identity operator in the strong operator
topology. It follows from (5.9) that

(fyu) = Fl.liI}l71<fIaU1>P(Fl X Jl)"'P(Fp—l X Jp—1)<fpa7’p>

_ (1) (1) (») (p)
- llII% ) |: Z Z 1011 ]0]1 ’ fipflip( Jp— 1]p)

ik €L jr€Jk

(5.18)
=, hll? Z <f1011 - ® flp FITURORENO vp)
1 p—1 ineFy
= i W g
=plm 2;<f ®fP . )

(this is a norm limit of matrices in M, x s,,1,xJ, = My2) and thus (5.16) does not
depend upon the decomposition u =v; © -+ © vp.

On the other hand if we let G range over the finite sets in Ji, then the
projections P(I; x Gy) converge to the identity operator in the strong operator
topology. Thus from (5.13),

(fiu) = Gl.liglp_l<f17U1>P(fl X Gr) -+ P(Ip—1 X Gp1)(fp, vp)

(P) (p)
.1‘1m |: Z Z 1011 ]0]1 fl: 11( .];f ls]P)

Jk€GK i€l

(5.19) i 1
:Gl.l.l.gl, L Z <f1®"'®fp’”§o,)j1 Q- ® J(f)17Jp>
L =Tei
. 1
:G hg’l Z <f,U](0?j1 ®-® J(:)IJP>
1Gp—1 .
JkE€EGK

and (5.16) does not depend upon the decomposition f = f1 ©---© f,. 1
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We conclude from these considerations the following result.

THEOREM 5.7. (see [7] for the case p = 2) For any operator spaces Vi, ..., V),
the pairing (5.16) determines a completely isometric inclusion
" c¢h eh . ch c¢h "
(5.20) Vi@V, = WMo V"

eh eh eh eh
Proof. Given f € M, (Vi ® --- ® V,J) and u € M, (V1 ® --- ® V}), we have

from (5.19) that
(fouy=_ lim {fiog 0 0ud),

G1--Gp_1
where we let G = G1 x---xGp, and vg) € Mg, ,.c,.(Vx) be the obvious truncation
of v®). If ||lullen < 1, then we may assume that |Jo®)|| < 1, and thus ||vg€k)|\ < 1.
If we let ug = 118) (ORRRXO) Ug), then from Theorem 5.3,

1
1 ua)l < I lenlluclln < 1F lenlloS - 0@ < (1 £ llon-

It follows that ||{f,u)|| < ||f|len and thus from (3.5), (5.20) is completely contrac-
tive. It is immediate from (5.15) that this mapping is a complete isometry. 1

Given dual operator spaces V", ..., V" the normal Haagerup tensor product
(see [12]) is defined by
N oh oh « eh eh «
Vi@ Vyi=0Me V)"
LEMMA 5.8. If Vi,..., V), are operator spaces, then Vi" @ --- ® VS is dense
oh oh eh eh
in V' ® -+ @ V) in the weak™ topology defined by V1 @ -+ & V).

ch eh
Proof. If u e Vi ® --- ® V,, satisfies

(i@ ® fpu)=0
for all fi € V;* then from (5.6) it is evident that u = 0, and thus from the bipolar
theorem, we have the density result. 1

PROPOSITION 5.9. Given a normal multiplicatively bounded multilinear map
o Vit x e X Vi — W™ there is a unique weak™ continuous completely bounded

och och
map pon : Vi* ® - @ Vi — W* such that

QO(flv"'?fn) :onh(fl(g)"'@fn)'

Proof. Tfw € W, then wop : Vi*x---x V> — Cis normal and multiplicatively

eh eh
contractive, and thus an element of V7 ® --- ® V. This determines a complete

contraction map
eh eh
SD*W_)V‘I®®Vpa W= wop,

and we may let @, = ()" I
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In particular, if H, K and L are Hilbert spaces, the multiplication map
B(K,L)x B(H,K) — B(H,L)

is both normal and multiplicatively contractive, and thus determines a weak*
continuous complete contraction

oh

(5.21) B(K,L) ® B(H,K) — B(H,L).

Using a simple elaboration of the proof of Proposition 5.1, we obtain the
natural identification

oh oh

(5.22) CB (V' x+--xVXW")=CB°(V{) ® --- @ V), \W").
In particular, weak® continuous complete contractions ¢y : V, — W} determines
a weak™® continuous complete contraction

oh oh eh eh ” *O'h oh " *ah ch "
@1@"'@90;):(901*@'“ Spp*):vl ®...®V;)_>W1®...®Wp_

Owing to the injectivity of the extended Haagerup tensor product, the normal
tensor product is projective for weak™ closed subspaces. On the other hand, since
extended Haagerup tensor product is not projective, the normal Haagerup tensor
product is not injective.

We may use the normal tensor product to prove that the extended Haagerup
tensor product is associative. It suffices to consider the case p = 3. Given operator

eh eh
spaces V, W, X, the tensor product (V ® W) ® X by definition consists of the
normal multiplicatively bounded maps
eh
u: (VeoW) xX*—C.

But any such map has the form v = u; ®; x where

oh eh
’U/12V*®W*:(V®W)*—>M[’J

is weak™ continuous and completely bounded. It follows that u; corresponds to a
normal multiplicatively bounded map of V* x W* into C, and from Theorem 5.1
there are elements v € M ;(V) and w € M ;(W) for which

ul(fvg) = <va> <wag>

(this is a matrix product). It follows that u uniquely determines a unique element

- eh eh
u=v0rweoyjreV oW X.
Since the reverse argument is also clear, we obtain a canonical identification of
eh eh eh eh eh eh
(VeW)® X with V@ W ® X, and a similar argument applies to V ® (W ®
X).
Finally, we note that (5.20) provides us with a natural inclusion
« eh eh " " oh oh N
(5.23) W -V, V-V,

and the adjoint of (5.15) determines a natural weak* continuous projection of the
second space onto the first.
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6. THE SHUFFLE THEOREM
The following theorem was proved for von Neumann algebras in [15], and a varia-
tion of this result was proved for operator spaces in [13].

THEOREM 6.1. Suppose that Vi, Wy, k = 1,2, are operator spaces. Then
the shuffle map

(6.1) S:(Wal)e (W eWy) — (Vi @Wy) @ (V' @ Wy)

extends uniquely to a weak™ continuous complete contraction

— ch _ ch _ oh
(6.2) So: (VT@Vy) @ W e@Wy) — (V" @ W)@ (Vy @ Wy).
On the other hand, the shuffle map
(6.3) S:(VieaW)e (Ve W) — (V1@ V)@ (W, @ W)

may be extended to a complete contraction

nuc

eh nuc eh nuc eh
(6.4) Se:(VioaW)) @ (Va@ W) — (Vi ®@ Vo) ® (W @ Wh).
Proof. We may fix faithful weak™ representations

oh oh
OV @ Wy — B(H;) and ¥ :Vy @ Wi — B(Ha).
Since the normal spatial tensor product of dual operator spaces is independent of
oh _ oh
the choice of Hilbert spaces, we may identify (V;* ® V)@ (W ® W) with the
weak™ closure
oh oh
cly-{@(V" @ W) @ ¥(Vy © W3)} C B(Hy @ Ha).

From Theorem 5.1 there exist Hilbert spaces H ,; and weak* continuous com-
plete contractions s : V7 — B(H,;,Hk) and ¢ : W — B(Hy, H},), k = 1,2, for
which
(6.5) e(fr®@g1) =s1(fi)ti(g1) and U(f2 ® g2) = s2(f2)t2(g2)-

These induce weak* continuous maps
§=51&S82: ka@‘/; — B(H{ ®H§,Hl ®H2)

and
t:tl ®t2 : Wf@WQ* — B(Hl ®H2,H{ ®Hé)

and thus a weak™ continuous complete contraction

_ oh _
S, =st: (VyBVY) & (WiBWS) — B(H) © Hy).

We claim that S, extends S. We may use ® and ¥ to identify f; ® g; with
their images s;(f;)t:(g:), i = 1,2. It follows that

So((f1® f2) @ (91 ® g2)) = s(f1 ® f2)t(g91 @ g2)
= (51(f1) ® 52(f2))(t1(91) ® tag2)) = s1(f1)t1(g1) ® s2(f2)t2(g2)
=(1®9)®((f2®g2) =S((fi ® f2) @ (91 @ g2))-
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h _ b
It is obvious that S has range in (V;* ® Wi e (Vs ® W), and thus to
show that the same is true for S, = st it suffices to prove that

Xo=V"e VW W]

is weak™ dense in
_ oh _
X=(Wev) e Wrawy).
We have that Vi* ® V5 and Wi @ W5 are weak* dense in V;* @ V5 and Wi @ W5,
respectively. Since the bilinear map
=% * =0 * * oYk ah * = *
e V) x (WreWy) — (Ve Vy) © (W eWsy)
is weak™® continuous in each variable, it follows that X, is weak* dense in
(Vrevy) @ (Wy @Wy)

and thus from Lemma 5.8 it is dense in X.
Since S, is weak®™ continuous, we have that S, = T for some complete
contraction

nuc eh

h h nu nu
T: (W % W) @ (W ?@ Ws) — (W1 ®C Va) ® (W ®C Wa).
To check that this extends (6.3), we note that for vy € Vi and wy € W we have
(T((v1 ® w1) ® (v2 @ w2)), (f1 ® f2) ® (91 @ g2))
= ((v1 ®w1) ® (v2 ® w2)), S ((f1 ® f2) ® (91 ® g2)))

= ((v1 @ w1) ® (v2 @ wa), (f1 ®g1) ® (f2 ® g2))
= (S((v1 @ w1) ® (v2 @ w2)), (f1 ® f2) ® (g1 ® g2)) -

Since we have already seen that V" @ V5* @ W ® W5 is weak™ dense in

=% oh * S *
(Ve Vy) @ Wy ewy),

we obtain (6.4). 1

We note that a simple induction may be used to show that the multiple
shuffemap S: (V1i®---@V,) @ (W1 ®@---@W,) - (ViaW)®- -1 (V, ® W,)
determined by

(6.6) S(® Q) (w1 @+ wp)) = (1 @W1) V@ (vp ®wp)

extends to a completely contractive map

eh eh nuc eh nuc nuc

eh eh eh
So: (Vi@ @V,) @ (Wi®@---W,) = (Vi @ W) ®@---® (V, @ Wp).
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7. HOPF CONVOLUTION ALGEBRAS

Finally we return to the discussion of Hopf convolution algebras begun in
Section 2. Given a Hopf von Neumann algebra (R, m,d), we have a corresponding
triple (A = R,,m,¢) defined by the diagram (2.1). We note that if A = R, and

h
B = S, are two such convolution algebras, then A Ei) B is a completely contractive
Banach algebra, i.e., the multiplication map
eh
(A®B) (A®B) (A® B)
is completely contractive, since m is the composition of the complete contractions

nuc nuc

(ASBBUABB) —»(ABB) S ABB) T (AS 48 BY B
and

nuc

eh
(A% A)®((B'E B)=(A84) 8 (BOB) ™", A% B
THEOREM 7.1. If (A = R.,m,d) is a Hopf convolution algebra, then § is a
completely contractive homomorphism.

Proof. The hypothesis that §r is an algebraic homomorphism is encoded in
the commutative diagram

och och . och
RBR %%, (RER)% (R®R) —* — RBRTRGR)
(71) lmR J/mR®mR
5—R> RRR
Taking the preadjoint of (7.1), we find that 64 is again a homomorphism:
eh mA®@ma uc nuc eh nuc eh
A®A<—(A®A) (A®A)<—(A®A)®(A®A)
(72) T&A T5A®5A . |
A — ARA=A® A

We define a representation m : A — B(H) of a Hopf convolution algebra
A on a Hilbert space H to be a completely bounded homomorphism 7 : A —
B(H). The comultiplication § = 64 may be used to define the tensor product of
completely bounded representations of A. Given representations m : A — B(H)
and 9 : A — B(K) we define m x m : A — B(H ® K) to be the composition

5 eh Qs eh och 0
(7.3) A=-A® A 'S °B(H)® B(K)CB(H) ® B(K)— B(H®K),
where 6 is determined by taking the product of the maps
B(H) - BH®K): T—T®Ix and B(K)—>BH®K):T—L,T

(see (5.23) and (5.21)).
Turning to some examples, if G is a locally compact group with Haar measure
i, then both L*°(G) = L*°(G, 1) and the left regular von Neumann algebra L(G)
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are Hopf von Neumann algebras (see [31] and [39]). The corresponding Hopf
convolution algebras are the usual convolution algebra L'(G) = L' (G, 1) and the

Fourier algebra A(G). We note that since L*°(G) is a commutative von Neumann
algebra, the operator space structure on L'(G) is just the mazimal operator space

structure associated with the underlying Banach space (see [6]). Thus we have
that any bounded map ¢ from L'(G) to an operator space X is automatically

completely bounded with |||l = ||l

Given a Hopf convolution algebra A, a completely bounded representation
7 : A — B(H,), and vectors £, € H,, we say that the functional c¢(a) =
(r(a)¢|n) € R = A* is a coefficient operator of 7, and if 7 is completely con-
tractive, we say that c is a Fourier-Stieltjes coefficient operator. Letting C(A)
(respectively, B(A)) be all coefficient operators (respectively, all Fourier-Stieltjes
coefficient operators), we have

B(A) CC(A) C R = A",

If A= L'(G) for G alocally compact group, any contractive representation 7
of A is automatically completely contractive. Given a Fourier-Stieltjes coefficient
operator

b(a) = (m(a)€|mn),

we may assume that 7 is non-degenerate, i.e., that 7(A)H, is dense in H,. To see

this, let Hy be the closure of m(A)H,, and let my be the corresponding subrepre-
sentation of 7. 7y is non-degenerate since L'(G) has a contractive approximate

identity u,. Letting {n € Hy be a weak limit point of the net m(u,)§ and 79 be
the orthogonal projection of 7 onto Hy, it is evident that

b(a) = (mo(a)éo | Mo)-

The usual argument (see [30], Section 32) shows that 7 uniquely determines a
contractive unital representation my of G. Given s € G, we have that both m(s)
and 7o(s~!) are contractive and thus unitary. It follows that B(A) coincides with
B(G), the usual Fourier-Stieltjes algebra of the group G.

If A = A(G) is the Fourier algebra of a non-commutative locally compact

group G, then a completely contractive representation 7 : A(G) — B(H) corre-
sponds to a contraction W € L(G) ® B(H) since we have the natural isomorphism

CB(A(G),B(H)) = (A(G)® B(H),)* = L(G)® B(H).

It is easy to see that W satisfies the Nakagami-Takesaki “associativity” condition

(A.2) in the Appendix of their monograph [31]. If we could prove that W is unitary,

we would have that 7 determines a “corepresentation” of G on H (see [28]). Of

course if G is abelian, this is true since we then have that A(G) = L*(G).
Returning to the general theory we have
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THEOREM 7.2. If A is a Hopf convolution algebra, then C(A) is a subalgebra
of R = A*.

Proof. Given coefficient functions

cr(a) = (mr(a)ée k) € R, k=1,2
and A € C, we have that
(c1 4 c2)(a) = (m @ m2(a)(§1 © &2) | (m S 12))
(Ac1)(a) = (m1(a)(A&1) [ m1)-

Turning to multiplication, the functionals wy € B(Hy). defined by wy(by) =
(b€ | ni), determine linear functionals wy ® wo in the commutative diagram

BH)®B(K) < B@H)EBEK) - BHeK)
\ w1 @wz w1®w2l w1 @wz /
C

Thus since the multiplication operation on R is the adjoint of the coffiultlplication

h h h
5:AHA?®A, andck:wkowk,wehavecl%02:(w1®w2)o(7r1?®7r2) and

eh eh
(cre2)(a) = 1 ® 2(6(a)) = ((m1 ® 72)(6(a)), w1 @ w2)
= (m ®@ m2(6(a)) (&1 @ &2)[m @ m2) = ((m1 X 72)(a)(&1 ® &2) [ @ n2),
where 71 X 7o is again a completely bounded representation of A. &

If 7, : A — B(Hy) are completely contractive representations, then it is
evident that the same is true for m; x m. It follows that B(A) is a subalgebra of
C(A), and we shall refer to it as the Fourier-Stieltjes algebra of A.

In order to go further, it is necessary to introduce more structure. In par-
ticular, if one wishes to obtain a satisfactory duality theory, one must introduce
x-algebraic structure, and ultimately a discussion of antipodes. Since this would
take us far afield from the present discussion, we shall consider this theory in a
subsequent paper.
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