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Abstract. For each trace τ on a C∗-algebra A generated by mutually com-
muting C∗-subalgebras A1, A2, . . . , An and every convex function f of n vari-
ables we show that the function (x1, x2, . . . , xn) → τ(f(x1, x2, . . . , xn)) is

convex on the space
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k=1
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1. INTRODUCTION

If X is a self-adjoint element in a C∗-algebra A and sp(x) ⊂ I for some interval
I (we say that x ∈ AI

sa), then for each f in C(I) we can define f(x) in A by
spectral theory. The behaviour of the operator-valued function x → f(x) on AI

sa
so obtained has always received much attention; partly because such functions
show up in nearly all operator problems, and partly because the behaviour is
highly non-trivial.

In 1934 K. Löwner showed that the function x → f(x) is operator monotone
(increasing), i.e. x 6 y implies f(x) 6 f(y) when considered in the partially
ordered real Banach space Asa, if and only if f has an analytic extension f̃ to the
upper half-plane C+ such that f̃(C+) ⊂ C+. In 1955 J. Bendat and S. Sherman
showed that the function is operator convex, i.e. f(λx + (1 − λ)y) 6 λf(x) +
(1 − λ)f(y) in Asa, if and only if t → f(t)t−1 is an operator monotone function
(assuming that 0 ∈ I and f(0) = 0). A concise account of these results can be
found in [11]. The main point of the story is that it is highly unusual for a function
to be operator monotone or operator convex.

It is natural to try to generalize Löwner’s theory to functions of several
variables. A few experiments show that a satisfying spectral theory for functions
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of several variables can be developed only if the ingoing elements are mutually
commuting. We shall therefore assume this situation. Since Rn really has no good
order structure, monotonicity is probably not so interesting a concept. (However,
see Corollary 3.3.) But convexity is still very much to the fore, and one may ask
for conditions on a function f on Rn that will guarantee joint convexity of the
operator function

(x1, . . . , xn) 7→ f(x1, . . . , xn)

of the commuting variables x1, . . . , xn. At the moment there is no completely
satisfying characterization of such functions, but recent work by F. Hansen has
shed much light on the problem (see [2], [8], [9]).

If we follow the operator function x → f(x) by a trace τ , to obtain the
scalar function x → τ(f(x)), then general philosophy predicts that the non-
commutativity of the problem disappears, since the trace is unable to distinguish
xy from yx. (General philosopy does not provide any proofs, though.) Thus
x → τ(f(x)) becomes an increasing function (on AI

sa) whenever f is increasing (cf.
[12], Theorems 2.3 and 2.4) and x → τ(f(x)) is convex as long as f itself is convex
(cf. [20], Theorem 4).

In a recent paper ([10]) Hansen verified the general principle mentioned above
by showing that for each convex function f of n variables the function

(x1, . . . , xn) → Tr(f(x1, . . . , xn))

is convex on
⊕
Mmk

. Here f(x) is regarded as an element in
⊗
Mmk

= Mm,
where m = m1m2 · · ·mn, and Tr is the trace on Mm. The proof is quite short, but
builds on the general (and highly interesting) theory for operator convex functions
developed in [8]. The aim of the present note is to give a self-contained proof of
Hansen’s result, but now extended to the infinite dimensional case and for general
traces. The strategy of our proof is not original, though, but uses the applications
of the Fréchet differential which Hansen and the author have developed over the
years (see [2], [8], [9], [11], [12], [19]).

2. NOTATION

We consider mutually commuting C∗-algebras A1, . . . , An of operators on a Hilbert
space H and denote by A the C∗-algebra they generate. For simplicity we assume
that each Ak contains the unit 1 of B(H). Evidently this means that A is a quotient
of the maximal tensor product

⊗
max

Ak, but, remarkably enough, tensor product

arguments will not play any rôle in the sequel.
Assume now that I1, . . . , In are intervals in R (bounded or not) and put

I = I1×· · ·×In ⊂ Rn. If we let (Ak)Ik
sa denote the set of self-adjoint elements in Ak

with spectra contained in I then for each function f in C(I) and x = (x1, . . . , xn)
in

⊕
((Ak)Ik

sa ) we can define an element f(x) in A. If f = f1⊗· · ·⊗fn this element
is simply given by f(x) = f1(x1) · · · fn(xn). In the general case f is a limit,
uniformly on compact subsets of I, of linear combinations of such pure tensor
product functions, e.g. polynomials in n variables, and f(x) can be defined by a
limit argument. Alternatively we may assume that each Ak is a von Neumann
algebra (replacing if necessary Ak by A′′

k), so that xk =
∫

λk dEk(λk). Since the
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spectral measures E1, . . . , En are mutually commuting we can define the spectral
measure E on I by E(S1 × · · · × Sn) = E1(S1) · · ·En(Sn), and then write

f(x) =
∫

f(λ1, . . . , λn) dE(λ1, . . . , λn).

In this paper we shall quickly reduce our considerations to functions f that can
be represented in the form f(u) =

∫
eit·uf̂(t) dt, and in that case we can simply

define f(x) =
∫

eit·xf̂(t) dt as an operator integral in A over Rn.
For fixed x the map f → f(x) is a ∗-homomorphism from C(I) into A. The

support of this homomorphism is a compact subset of I which we may call the
joint spectrum of the n-tuple x. The map can therefore be regarded as the proper
generalization of the one-variable spectral theory (for self-adjoint operators), cf.
[13] for an early reference. We shall here be interested in the behaviour of the
continuous map x → τ(f(x)) from

⊕
((Ak)Ik

sa ) to R for a fixed function f and a
trace τ on A.

3. MAIN RESULTS

Theorem 3.1. If τ is a bounded trace on a unital C∗-algebra A generated
by mutually commuting unital C∗-subalgebras A1, . . . , An and f is a continuous,
real and convex function on I, then we obtain a convex operator function ϕ defined
by

ϕ(x) = τ(f(x)) on the convex set
n⊕

k=1

((Ak)Ik
sa ).

Proof. In order to avoid unnecessary considerations about non-standard
Borel spaces we notice that it suffices to prove the theorem for arbitrary sepa-
rable C∗-subalgebras of the Ak’s, so that we may assume that A is separable.

The set T (A) of finite traces on A is a lattice cone (cf. [23] or [17], Theo-
rem 3.1). The predual was described in Proposition 2.7 of [5]. Since A is separable
the set T1(A) of tracial states of A is metrizable Choquet simplex, so there is a
(unique) extreme probability measure µ on T1(A) such that τ =

∫
σ dµ(σ), cf.

[4] or Theorem 9 of [21]. The extremality of µ implies that if ∂T1(A) denotes the
Gδ-set of extreme points of T1(A), then µ is concentrated on ∂T1(A). In particular,

τ(x) =
∫

∂T1(A)

σ(x) dµ(σ)

for every x in A.
Since the integral of convex functions is convex it follows that it suffices

to prove the theorem for a tracial state τ in ∂T1(A). In that case, if (πτ ,Hτ )
denotes the GNS representation of τ , the von Neumann algebra πτ (A)′′ is a finite
factor (since every non-scalar central element z in the positive part of the unit
ball of πτ (A)′′ will produce a non-trivial trace τ(z · ) majorized by τ). The von
Neumann subalgebras πτ (Ak)′′ are mutually commuting and generate πτ (A)′′,
so each of these algebras is also a finite factor. If xk ∈ πτ (Ak)′′+, the function
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x1 → τ(x1x2 · · ·xn) is a trace on πτ (A1)′′, hence proportional to the restriction
τ |πτ (A1)′′. Consequently τ(x1x2 · · ·xn) = τ(x1)τ(x2 · · ·xn). By iteration we find
that τ(x1x2 · · ·xn) = τ(x1)τ(x2) · · · τ(xn) for any n-tuple (x1, x2, . . . , xn) in A
such that xk ∈ πτ (Ak)′′ for every k.

Replacing Ak by πτ (Ak)′′ and A with the C∗-algebra generated by the von
Neumann algebras πτ (Ak)′′, but replacing also τ with its extension to πτ (A)′′, we
have an extension of the old function ϕ, even though we now compute the elements
f(x) in a new algebra. This means that it suffices to prove the theorem assuming
that each Ak is a von Neumann algebra, and furthermore we may assume that

τ(x1x2 · · ·xn) = τ(x1)τ(x2) · · · τ(xn),

whenever xk ∈ Ak for each k.
Clearly it suffices to prove convexity of ϕ on bounded subcubes of I. We may

therefore assume that f is bounded on I and extend it to a continuous function
f̃ with compact support on Rn. If now e is a positive C∞-function on Rn with
small support [−ε, ε]n, then the function

g(u) =
∫

Rn

f̃(u− v)e(v) dv

is a Schwartz function on Rn and convex on a slightly smaller cube Iε. It follows
by approximation that it suffices to prove the theorem for a Schwartz function f
on Rn which is convex on the bounded cube I. Thus we have a representation

f(u) =
∫

Rn

eit·uf̂(t) dt, u ∈ Rn.

For later use we note that this means that

f ′k(u) =
∫

Rn

eit·uitkf̂(t) dt,

and similarly for the higher derivatives. These combined reductions mean that we
now consider a function ϕ of the form

(∗) ϕ(x) =
∫

Rn

τ(eit1x1) · · · τ(eitnxn)f̂(t) dt.

It is well known (see e.g. [6], Exercises 3.1.8 and 3.6.4), that a Fréchet dif-
ferentiable real function ϕ on (an open subset of) a real Banach space is convex if
and only if

dϕx(h) 6 ϕ(x + h)− ϕ(x),

which again (when ϕ is twice differentiable) is equivalent to its second Fréchet
differential being a positive (semi-)definite quadratic form. Thus we must show
that

d2ϕx(h, h) > 0

for each x in
⊕

((Ak)Ik
sa ) and every h in

⊕
((Ak)sa). To do this we have the

information that d2f is positive definite, i.e. the Hesse matrix
(
f ′′kl(u)

)
is positive

definite for each u in I.
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Using the Dyson expansion we find that the exponential function is Fréchet
differentiable on any Banach algebra with

d(exp)x(h) =

1∫
0

esxh e(1−s)x ds

(cf. [1] or [12], Proposition 1.3). It follows that the operator function x → f(x)
has the differential

dfx(h) =
∑

k

∫
Rn

eit1x1 · · ·
( 1∫

0

esitkxk itkhke(1−s)itkxk ds

)
· · · eitnxn f̂(t) dt.

But then, using the multiplicative character of the trace τ ,

dϕx(h) = τ(dfx(h)) =
∑

k

∫
Rn

τ(eit·xhk)itkf̂(t) dt =
∑

k

τ(f ′k(x)hk).

In other words, the operator functions dfx(h) and
∑

f ′k(x)hk (for fixed h) have
the same trace. So, therefore, have their differentials. But for the second function
we can compute the Fréchet differential using the same method as above, and
taking the trace afterwards we find that

d2ϕx(h, h) = τ(d2fx(h, h)) = τ(d( df(·)(h))x(h)) = τ
(
d
( ∑

k

f ′k(·)hk

)
x
(h)

)

=
∑
k,l

∫
Rn

τ

(
eit1x1 · · ·

( 1∫
0

esitlxl itlhle(1−s)itlxl ds

)
· · · eitnxnhk

)
f̂ ′k(t) dt

=
∑
k,l

Dkl. (To give a name for the different summands.)

For k 6= l the multiplicative nature of τ implies that

Dkl =
∫

Rn

τ(eit·xhlhk)itlf̂ ′k(t) dt = τ(f ′′kl(x)hlhk).

For k = l we get the more complicated expression

Dkk =
∫

Rn

τ

(
eit1x1 · · ·

( 1∫
0

esitkxkhke(1−s)itkxkhk ds

)
· · · eitnxn

)
itkf̂ ′k(t) dt.

To compute Dkk in more detail we need more rigid spectral decompositions.
But, since each Ak is a von Neumann algebra it suffices by approximation to prove
that d2ϕx is positive definite, assuming that each xk has the form

xk =
∑

λnk
pnk

,



162 Gert K. Pedersen

where λnk
∈ Ik and {pnk

} is a finite family of pairwise orthogonal projections
in Ak with sum 1. Using the concept of multi-index α = (n1, . . . , nn) we let
λα = (λn1 , . . . , λnn

) and pα = pn1 · · · pnn
. This means that we can write

f(x) =
∑
α

∫
Rn

eit·λ
αpαf̂(t) dt =

∑
α

f(λα)pα.

Returning to our previous formula d2ϕx(h, h) =
∑

Dkl we find for k 6= l that

Dkl = τ(f ′′kl(x)hkhl) =
∑
α

f ′′kl(λα)τ(pαhkhl).

Note now that if x =
∑

λnpn then
1∫

0

τ(esitxith e(1−s)itxith) ds =
∑
n,m

1∫
0

τ(esitλnpnith e(1−s)itλmpmith) ds

=
∑
n 6=m

(eitλn − eitλm)(λn − λm)−1τ(pnhpmh)it +
∑

n

eitλnτ(pnhpnh)(it)2.

Inserting this in the expression for Dkk we get

Dkk =
∑
∆

(f ′k(λα)− f ′k(λβ))(λα(k) − λβ(k))
−1τ(pαhkpβhk)

+
∑
α

f ′′kk(λα)τ(pαhkpαhk).

Here ∆ is the set of pairs of multi-indices (α, β), so that α(l) = β(l) for all l 6= k,
but α(k) 6= β(k).

Since f is convex, each of its partial derivatives is monotone increasing.
Consequently

(f ′k(λα)− f ′k(λβ))(λα(k) − λβ(k))
−1 > 0

for all α, β in ∆. Moreover, since hk = h∗k,

τ(pαhkpβhk) = τ(pαhkpβhkpα) > 0.

Deleting the positive ∆-terms from Dkk we therefore have

(∗∗) d2ϕx(h, h) >
∑
α

∑
k 6=l

f ′′kl(λα)τ(pαhkhl) +
∑
α

∑
k

f ′′kk(λα)τ(pαhkpαhk).

For a fixed α = (n1, . . . , nn) we put pk = pnk
, pl = pnl

and q =
∏

pnj
,

j 6= k, l. Then with γk = τ(pkhk)τ(pk)−1 we can write

τ(pαhkhl) = τ(q)τ(pkhk)τ(plhl) = τ(pα)γkγl.

If r =
∏

pnj
, j 6= k, then by the Cauchy-Schwarz inequality we get

τ(pα)γ2
k = τ(pα)τ(pk)−2τ(pkhk)2 = τ(pα)−1τ(r)2τ(pkhk)2

= τ(pα)−1τ(pαhk)2 = τ(pα)−1τ(pαpαhkpα)2

6 τ(pα)−1(τ(pα)τ(pαhkpαhkpα)) = τ(pαhkpαhk).
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Inserting these estimates in (∗∗) we see that for each α we have∑
k 6=l

f ′′kl(λα)τ(pαhkhl) +
∑

k

f ′′kk(λα)τ(pαhkpαhk)

>
∑
k 6=l

f ′′kl(λα)τ(pα)γkγl +
∑

k

f ′′kk(λα)τ(pα)γ2
k = τ(pα)

∑
k,l

f ′′kl(λα)γkγl > 0,

because the Hessian (f ′′kl(λα)) is positive definite. Thus d2ϕx(h, h) majorizes a
sum (over all multi-indices) of positive terms, hence is positive.

3.2. Remark. In the course of the proof of Theorem 3.1 we found a com-
plete formula for the second Fréchet differential of the function ϕ(x) = τ(f(x))

defined on n-tuples in
n⊕

k=1

((Ak)Ik
sa ), regardless of the convexity of f , but assuming

that τ is multiplicative on products from the Ak’s. Assuming also that each xk has
the form xk =

∑
λnk

pnk
, where λnk

∈ Ik and {pnk
} is a finite family of pairwise

orthogonal projections in Ak with sum 1, and using the concept of multi-index
α = (n1, . . . , nn), so that λα = (λn1 , . . . , λnn) and pα = pn1 · · · pnn , we can write

d2ϕx(h, h) =
∑
k,l

∑
α

(f ′′kl(λα)τ(pαhkpαhl)

+
∑

k

∑
∆k

(f ′k(λα)− f ′k(λβ))(λα(k) − λβ(k))
−1τ(pαhkpβhk),

where ∆k denotes the set of pairs of multi-indices (α, β), so that α(l) = β(l) for
all l 6= k, but α(k) 6= β(k). The first part of this expression is very nearly a sum
of quadratic forms (and becomes one if we replace everywhere in the diagonals
τ(pαhkpαhk) by the smaller number τ(pα)(τ(pα(k)hk)2(τ(pα(k))−2). The second
part is a sum of difference quotients, not unlike those encountered in Löwner’s
theory for matrix monotonicity. We see that d2ϕx is positive if the Hesse matrix
d2f(λα) is positive for all λα, and if moreover f ′k(λβ) 6 f ′k(λα) for all α, β in ∆k

such that λβ(k) < λα(k).

3.3. Corollary. If τ is a bounded trace on A and f is a continuous real
function on I which is increasing in the sense that f(u) 6 f(u + v) whenever
v ∈ Rn

+, then the function ϕ(x) = τ(f(x)) is increasing on
⊕

((Ak)Ik
sa ) in the same

sense.

Proof. We may assume that τ is multiplicative on A = A1A2 · · ·An and that
f is a Schwartz function on Rn and monotone increasing on I. But then in the
proof of Theorem 3.1 we showed that

dϕx(h) =
∑

k

τ(f ′k(x)hk).

By assumption f ′k > 0 for every k, so if h ∈
⊕

((Ak)+) we see that

τ(f ′k(x)hk) = τ(h1/2
k f ′k(x)h1/2

k ) > 0,

whence dϕx(h) > 0.
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Thus, by Theorem 2.1 of [12] or Theorem 2.7 of [19],

ϕ(x + h)− ϕ(x) =

1∫
0

dϕx+sh(h) ds > 0

if h > 0, as desired.

4. UNBOUNDED TRACES

We wish to consider unbounded traces on a C∗-algebra A generated by mutually
commuting C∗-subalgebras A1, . . . , An. Here the unit is just in the way, and we
shall assume instead that τ is a densely defined, lower semi-continuous trace on A.

Let K(A)+ denote the cone in A+ hereditarily generated by sums of elements
x in A+, such that xy = x for some y in A+. Then K(A) = spanK(A)+ is the
minimal dense ideal of A (cf. [18], 5.6). It follows that the set T (A) of densely
defined, lower semi-continuous traces on A can be identified with the space of
positive tracial functionals on K(A) (cf. [18], 5.6.7). In our situation, where A is
generated by products A1A2 · · ·An we note that K(A1)K(A2) · · ·K(An) ⊂ K(A).
In fact, K(A)+ is hereditarily generated by sums of such products. To see this,
consider xk, yk in (Ak)+ for 1 6 k 6 n, such that xkyk = xk. Then with x =
x1x2 · · ·xn and y = y1y2 · · · yn we have xy = x, whence x ∈ K(A).

4.1. Theorem. With notations as above, if τ is a densely defined, lower
semi-continuous trace on A then for every positive, continuous and convex function
f on I = I1×· · ·×In, where 0 ∈ Ik for each k and f(0) = 0, the operator function

ϕ(x) = τ(f(x)) on the convex set
n⊕

k=1

((Ak)Ik
sa )

is convex, possibly with infinite values.

Proof. As in the proof of Theorem 3.1 we may assume that A is separable.
By assumption τ belongs to the simplicial cone T (A) of densely defined, lower
semi-continuous traces on A, cf. [17], Theorems 3.1 and 3.2. By Theorem 5.8.3
and its Corollaries 5.8.4 and 5.8.5 of [18] each τ in T (A) has the form

∫
τt dµ(t),

where t → τt is a Borel map into the set of characters in T (A), i.e. points on the
extreme rays of T (J) (cf. [21], Proposition 11.1).

As in the proof of Theorem 3.3 it follows that it suffices to prove the result,
assuming that τ is a character in T (A). In that case, if (πτ ,Hτ ) denotes the
GNS representation of τ , the von Neumann algebra πτ (A)′′ is a semi-finite factor
(since every non-scalar central element z in the positive part of the unit ball of
πτ (A)′′ will produce a non-trivial trace τ(z ·) majorized by τ). The von Neumann
subalgebras πτ (Ak)′′ are mutually commuting and generate πτ (A)′′, so each of
these algebras is also a factor. For each (n − 1)-tuple x2, · · · , xn where xk ∈
K(Ak)+ the map x1 → τ(x1x2 · · ·xn) on K(A1) extends to a semi-finite normal
trace τ1 on πτ (A1)′′. It follows by iteration that each of the factors πτ (Ak)′′
is semi-finite with a trace τk and that the function x → τ1(x1)τ2(x2) · · · τn(xn),
defined for any element x = x1x2 · · ·xn in πτ (A)′′ such that xk ∈ K(Ak) for
every k, extends to a semi-finite trace on πτ (A)′′, hence must be proportional to
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τ . Consequently we may assume that τ(x1x2 · · ·xn) = τ1(x1)τ2(x2) · · · τn(xn) for
any such n-tuple. Moreover, if Jk denotes the ideal of definition for τk we have
K(J1)K(J2) · · ·K(Jn) ⊂ K(Jτ (πτ (A)′′)).

Replacing Ak with Jk and A with the C∗-algebra generated by the ideals Jk

in the von Neumann algebras πτ (Ak)′′, but replacing also τ with its extension to
πτ (A)′′, we have an extension of the old function ϕ, even though we now compute
the elements f(x) in a new algebra. This means that it suffices to prove the theorem
assuming that each Ak is a norm-closed ideal in some von Neumann algebra and
has a lower semi-continuous, densely defined trace τk such that

τ(x1x2 · · ·xn) = τ1(x1)τ2(x2) · · · τn(xn)

whenever xk ∈ K(Ak) for each k.
From now on the proof proceeds much as in the finite case. We reduce to

the case where f is a Schwartz function on Rn, convex on some bounded cube
I = I1 × · · · × In in Rn, so that we can define

f(x) =
∫

Rn

eit·xf̂(t) dt.

Since A generated by the commuting algebras Ak, each of which is a closed ideal
in some von Neumann algebra, we see by approximation that it suffices to prove
convexity of the function ϕ(x) = τ(f(x)), assuming that x = (x1, . . . , xn) where
for each k we have xk =

∑
λnk

pnk
. Here λnk

∈ Ik (and are pairwise distinct), and
{pnk

} is a finite family of pairwise orthogonal projections with sum 1 such that
pnk

∈ K(Ak) unless λnk
= 0. Thus, adopting the multi-index notation we have

f(x) =
∑
α

∫
Rn

eit·λ
αpαf̂(t) dt =

∑
α

f(λα)pα,

and pα ∈ K(A) unless λα = 0.
To prove positivity of the second Fréchet differential of ϕ we further observe

that by approximation it suffices to show that

d2ϕx(h, h) > 0

when h = (h1, . . . , hn) and hk ∈ K(Ak)sa for all k. By computation we get

dfx(h) =
∑

k

∫
Rn

1∫
0

esit·xitkhk e(1−s)it·x dsf̂(t) dt

=
∑

k

∑
α,β

∫
Rn

1∫
0

esit·λαpαhke(1−s)it·λβ pβ dsitkf̂(t) dt.

Consequently, since pαpβ = 0 if α 6= β,

dϕx(h) = τ(dfx(h)) =
∑

k

∑
α

∫
Rn

eit·λατ(pαhk)itkf̂(t) dt

=
∑

k

∑
α

f ′k(λα)τ(pαhk) =
∑

k

τ(f ′k(x)hk).
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Thus dfx(h) and
∑

f ′k(x)hk have the same trace. Computing the Fréchet differ-
ential of the second function (with respect to x and the increment h) we find the
expression ∑

k,l

∑
α,β

∫
Rn

1∫
0

esit·λαpαhl e(1−s)it·λβ pβ dshkitlf̂ ′k(t) dt.

Taking the trace this means, as in the bounded case, that d2ϕx(h, h) =
∑
kl

Dkl.

For k 6= l we get

Dkl =
∑
α

∫
Rn

eit·λατ(pαhkhl)itlf̂ ′k(t) dt =
∑
α

f ′′kl(λα)τ(pαhkhl) = τ(f ′′kl(x)hkhl),

using the multiplicative form of τ . For k = l we find that

Dkk =
∑
∆

(f ′k(λα)−f ′k(λβ))(λα(k)−λβ(k))−1τ(pαhkpαhk)+
∑
α

f ′′kk(λα)τ(pαhkpαhk).

The expressions for the Dkl are thus exactly as in the bounded case, and the proof
is completed as in Theorem 3.1.

4.2. Remark. The condition above that τ be densely defined can be re-
laxed. All that is needed for the argument to go through is that τ restricted to its
ideal of definition Jτ has a desintegration τ =

∫
σdµ(σ), such that each σ splits

as a product of non-trivial traces on the subalgebras Ak. Clearly, the closer A is
to a tensor product A =

⊗
Ak the more likely this is to happen.
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14. F. Kraus, Über konvexe Matrixfunktionen, Math. Z. 41(1936), 18–42.
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