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Abstract. Following an idea of G. Schlichting we associate to any Hecke
pair of groups a pair consisting of a totally disconnected group and a compact-
open subgroup. Using this correspondence we show how the study of Hecke
C∗-algebras can be reduced to the study of corners in C∗-algebras of totally
disconnected groups. Afterwards this method is used to study the amenabil-
ity of Hecke pairs.
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1. INTRODUCTION

Hecke algebras were introduced in noncommutative geometry by J.-B. Bost and
A. Connes in their work on spontaneous symmetry breaking of a dynamical system
associated to the group pair (Q o Q∗

+, Z o 1) ([3]). In that paper they show the
relationship between this dynamical system and the distribution of prime num-
bers. The constructions rely mainly on Z o 1 being an almost normal subgroup of
Q o Q∗

+, in other words on (Q o Q∗
+, Z o 1) being a Hecke pair (Definition 2.1).

In this paper we extend some ideas of [3] to define a general operator algebraic
framework for the study of Hecke pairs. This extension is motivated by many
interesting examples, some of them arising from the resolution of extremely simple
ordinary differential equations (cf. [8]).
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2. PRELIMINARIES

Let Γ be a subgroup of G. We define the functions:
(i) L(g) = [Γ : Γ ∩ gΓg−1] = “length of the Γ-orbit of gΓ in G/Γ, where Γ

acts by left multiplication” = “number of right Γ-classes in the double class ΓgΓ”;
(ii) R(g) = [Γ : Γ ∩ g−1Γg] = “length of the Γ-orbit of Γg in Γ \G, where Γ

acts by right multiplication” = “number of left Γ-classes in the double class ΓgΓ”.

These two functions are Γ-biinvariant on G with values in N ∪ {∞}. They
satisfy L(g) = R(g−1). When necessary, to avoid confusion, we denote them by
LG, RG. The equality L(g) = 1 holds for all g ∈ G if and only if Γ is normal in G
(Γ / G).

Let G be a group with two subgroups Γ1 and Γ2. We say that Γ1 and Γ2 are
commensurable (and we denote this by Γ1 ∼ Γ2) if the indices [Γ1 : Γ1 ∩ Γ2] and
[Γ2 : Γ1 ∩ Γ2] are finite.

Definition 2.1. A subgroup Γ of a group G is almost normal (and we write
Γ /∼ G) if Γ ∼ gΓg−1 for any g ∈ G. In other words Γ is almost normal in G if any
double Γ-class contains finitely many right Γ-classes (i.e. L(g) < ∞ for all g ∈ G).

If Γ /∼ G we say that (G, Γ) is a Hecke pair.

Note that if Γ is normal in G, then Γ is almost normal. It is also clear that if
Γ is finite or of finite index in G then Γ /∼ G. Further (SL2(Q), SL2(Z)) is a Hecke
pair ([7], [3]) as well as (Q o Q∗, Z o 1) ([3]). Generally, if K is a number field, OK

is its ring of integers and G(K) is an algebraic group over K, then G(OK) /∼ G(K)
(see the discussion after Proposition 4.1).

If Γ is a compact-open subgroup of G, then (G, Γ) is a Hecke pair (for example
we can take G to be the group of isometries of a locally finite tree and Γ to be a
stabilizer of a vertex). In fact, as Γ is compact, all Γ-orbits in G/Γ are compact
as well. But, since Γ is open, G/Γ is discrete and so Γ-orbits are finite. This case
turns out to be generic as we show in Proposition 4.1.

Commensurability is a relation stable by intersection of subgroups and tak-
ing direct and inverse image by homomorphisms. As a consequence one has the
following elementary properties:

(i) Let ϕ : G1 → G2 be a group homomorphism and Γ1 and Γ2 two sub-
groups of G1 and G2 respectively, then

Γ1
/∼ G1 ⇒ ϕ(Γ1) /∼ ϕ(G1) and Γ2

/∼ G2 ⇒ ϕ−1(Γ2) /∼ G1.

(ii) If Γ1
/∼ G and Γ1 ∼ Γ2 then Γ2

/∼ G.
(iii) If Γ1

/∼ G and Γ2
/∼ G then Γ1 ∩ Γ2

/∼ G.
(iv) If Γ1

/∼ G and Γ2
/∼ G then the subgroup 〈Γ1,Γ2〉 generated by Γ1 and

Γ2 is not always almost normal in G, but under some additional assumptions it is
[8]. For example if Γ1

/∼ G and Γ2 / G then 〈Γ1,Γ2〉 /∼ G.

Proposition 2.2. If Γ /∼ G then the function ∆ : G → Q∗
+, g 7→ ∆(g) =

L(g)
R(g) is a group homomorphism.

Proof. For Γ1 ∼ Γ2, the relative index [Γ1 : Γ2] = [Γ1 : Γ1∩Γ2]/[Γ2 : Γ1∩Γ2]
has the property that if Γ1 ∼ Γ2 ∼ Γ3 then [Γ1 : Γ2][Γ2 : Γ3] = [Γ1 : Γ3]. As
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L(g)/R(g) = [Γ : gΓg−1] by taking Γ1 = Γ, Γ2 = gΓg−1 and Γ3 = ghΓh−1g−1 one
obtains that

L(g)
R(g)

L(h)
R(h)

=
L(gh)
R(gh)

.

Remark 2.3. The above proposition follows from G. Schlichting’s charac-
terization of almost normality (see [5], as well Theorem 4.2) because ∆ is the
restriction of some modular homomorphism.

For a subgroup Γ of a group G we set Γ/ =
⋂

g∈G

g−1Γg, the largest normal

subgroup of G contained in Γ.

Definition 2.4. The pair (G, Γ) is called reduced if Γ/ = {e}. The reduced
pair of (G, Γ) is (G′,Γ′) where G′ = G/Γ/ and Γ′ = Γ/Γ/.

If (G′,Γ′) is the reduced pair of (G, Γ), then it is obvious that Γ /∼ G if
and only if Γ′ /∼ G′. In the sequel, all objects associated to a Hecke pair will be
invariant under this “reduction” procedure.

3. ALGEBRAS AND DYNAMICAL SYSTEMS

In this section we recall the construction of the reduced Hecke C∗-algebra C∗
r (G, Γ)

and the associated dynamical system (C∗
r (G, Γ), σt) of [3] and we give analogous

definitions for L1(G, Γ) and C∗(G, Γ).
For a discrete set X we denote by C(X) the space of complex valued functions

with finite support on X. So for Γ /∼ G the space C(Γ\G/Γ) is naturally identified
with the subspace of Γ-invariant functions in C(G/Γ) (or in C(Γ \ G)). In the
space C(Γ \G/Γ) there are a natural product and involution given by

(f1 ∗ f2)(g) =
∑

g1∈〈Γ\G〉

f1(gg−1
1 )f2(g1) =

∑
g2∈〈G/Γ〉

f1(g2)f2(g−1
2 g) for g ∈ G,

f∗(g) = f(g−1),

where the functions of C(Γ \ G/Γ) are identified with Γ-biinvariant functions on
G and g1 ∈ 〈Γ \G〉 (respectively g2 ∈ 〈G/Γ〉) means that g1 (respectively g2) runs
over a set of representatives of left (respectively right) Γ-sets. In this manner one
obtains an involutive algebra C(G, Γ) called the Hecke algebra of (G, Γ).

We denote by ΓgΓ the characteristic function in C(Γ \ G/Γ) of the corre-
sponding double set. These functions form a basis of C(G, Γ) and for two such
functions, ΓgΓ and ΓhΓ, the product formula is

ΓgΓ ∗ ΓhΓ =
∑

giΓ⊂ΓgΓ
hjΓ⊂ΓhΓ

1
L(gihj)

ΓgihjΓ =
∑

hjΓ⊂ΓhΓ

L(g)
L(ghj)

ΓghjΓ

where giΓ ⊂ ΓgΓ means that gi run over some L(g) representatives of right Γ-
classes included in ΓgΓ.

The algebra C(G, Γ) is unital with unit 1C(G,Γ) = Γ, the characteristic func-
tion of the identity class.
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If (G′,Γ′) is the reduced pair of Hecke pair (G, Γ) then C(G, Γ) ' C(G′,Γ′).
When Γ / G one has the isomorphism C(G, Γ) ' C(G/Γ), where C(G/Γ) is the
group algebra of G/Γ.

If Γ is a finite subgroup of G, then Γ /∼ G and p = 1
|Γ|

∑
Γ

γ is a self-adjoint

projection in C(G). In this case one has natural isomorphism C(G, Γ) ' pC(G)p.
We will see (Theorem 4.2) that any Hecke algebra is “almost of this kind”.

Proposition 2.2 has two direct corollaries.

Corollary 3.1. The formula below defines a one parameter group of auto-
morphisms (σt)t∈R on the Hecke algebra C(G, Γ)

σt(f)(g) = ∆(g)−itf(g) for f ∈ C(G, Γ), g ∈ Γ \G/Γ and t ∈ R.

Proof. It is obvious that σt is linear and that σt1σt2 = σt1+t2 . The compati-
bility with the involution is given by

∆(g−1)−it = ∆(g)−it ⇒ σt(f∗) = σt(f)∗.

One also has to check the compatibility with the product:

[σt(f1) ∗ σt(f2)](g) =
∑

g1∈〈Γ\G〉

∆(gg−1
1 )−itf1(gg−1

1 )∆(g1)−itf2(g1)

= ∆(g)−it
∑

g1∈〈Γ\G〉

f1(gg−1
1 )f2(g1) = [σt(f1 ∗ f2)](g).

Corollary 3.2. There is a natural homomorphism ε : C(G, Γ) → C defined
by:

ε(f) =
∑

g∈〈Γ\G〉

f(g)
√

∆(g) =
∑

g∈〈Γ\G/Γ〉

f(g)
√

L(g)R(g) for f ∈ C(G, Γ).

Proof. The map ε is linear and one has

ε(f∗) =
∑

g∈〈Γ\G/Γ〉

f(g−1)
√

L(g)R(g) =
∑

g∈〈Γ\G/Γ〉

f(g)
√

L(g)R(g) = ε(f)

and

ε(f1 ∗ f2) =
∑

g∈〈Γ\G〉

√
∆(g)

∑
g1∈〈Γ\G〉

f1(gg−1
1 )f2(g1)

=
∑

g1∈〈Γ\G〉

√
∆(g1)f2(g1)

∑
g∈〈Γ\G〉

√
∆(gg−1

1 )f1(gg−1
1 ) = ε(f1)ε(f2).

The vector space C(Γ \G) is a natural left C(G, Γ)-module. The action λ is
given by the formula:

[λ(f)ξ](g) =
∑

g1∈〈Γ\G〉

f(gg−1
1 )ξ(g1) for f ∈ C(G, Γ), ξ ∈ C(Γ \G) and g ∈ Γ \G.
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It commutes with the natural right action of G on C(Γ\G). In fact λ : C(G, Γ) →
EndG(C(Γ \G)) is an isomorphism. When necessary, to avoid confusions, we will
denote λ by λΓ\G. Often instead of λ(f)ξ we use f ∗ ξ. So this action written on
the basis functions becomes

ΓgΓ ∗ Γh =
∑

Γgi⊂ΓgΓ

Γgih .

The action λ extends naturally to an involutive representation of C(G, Γ) in the
Hilbert space of square summable functions `2(Γ \ G). We will also denote this
representation by λ and we call it the left regular representation of C(G, Γ). In
the case of Γ /G, this representation coincides with the left regular representation
of the group algebra C(G/Γ). The reduced Hecke C∗-algebra of (G, Γ) is the C∗-
algebra generated by λ(C(G, Γ)) in B(`2(Γ \G)). It is denoted by C∗

r (G, Γ). The
von Neumann algebra of (G, Γ) is the bi-commutant λ(C(G, Γ))′′ and we denote it
by L(G, Γ).

Let ρΓ\G be the right quasi-regular representation of G on `2(Γ \G). As the
characteristic function Γ ∈ `2(Γ \ G) is a cyclic vector for ρΓ\G, any element of
the commutant ρΓ\G(G)′ is characterized by the image of this vector in `2(Γ \G).
In consequence, the algebra C(G, Γ) is weakly dense in ρΓ\G(G)′, so ρΓ\G(G)′ =
L(G, Γ) ([3], [2]).

We consider the vector state ωΓ,Γ on C∗
r (G, Γ) defined by ωΓ,Γ(f) = 〈Γ, f ∗Γ〉,

where Γ ∈ `2(Γ \G). In the case of Γ / G, this state corresponds to the standard
trace on C∗

r (G/Γ). But, in general, it is not a trace for Γ /∼ G.

Proposition 3.3. ([3]) Let Γ /∼ G. There exists a unique one parameter
group of automorphisms (σt)t∈R ∈ Aut (C∗

r (G, Γ)) such that

σt(f)(g) = (∆(g))−itf(g) for f ∈ C(G, Γ), g ∈ Γ \G/Γ and t ∈ R .

Moreover (σ−t)t∈R is the modular group of the faithful state ωΓ,Γ.

Thus the dynamical system associated to a Hecke pair is (C∗
r (G, Γ), σt) ([3]).

Let us recall that when Γ/G the dynamical system is trivial because σt ≡ 1. This
is also the case for any finite dimensional Hecke C∗-algebra.

We endow the involutive algebra C(G, Γ) with the following Banach norm:

‖f‖L1 = ε(|f |) =
∑

g∈Γ\G

|f(g)|
√

∆(g) =
∑

h∈Γ\G/Γ

|f(h)|
√

L(h)R(h) .

The completion L1(G, Γ) of C(G, Γ) with respect to this norm is the L1-Banach
algebra of the Hecke pair. The enveloping C∗-algebra of L1(G, Γ) is C∗(G, Γ), the
(maximal) Hecke C∗-algebra of the pair (G, Γ).

The one parameter group of automorphisms (σt)t∈R of C(G, Γ) (defined
in Corollary 3.1) extends naturally to L1(G, Γ), therefore to C∗(G, Γ), because
‖σt(f)‖L1 = ‖f‖L1 for any f in C(G, Γ).

We remark here that the algebra C∗(G, Γ) is not so “universal” as the group
C∗-algebra is. Actually it can happen that some involutive representation of
C(G, Γ) on a Hilbert space does not extend to C∗(G, Γ).
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Example 3.4. Consider the Hecke pair (D∞, Z/2Z), where D∞ is the infi-
nite dihedral group Z o Z/2Z ' Z/2Z ∗ Z/2Z. In this case a basis of C(G, Γ) is
given by the characteristic functions {δn}N of Z/2Z-double classes {(±n,±1)} in
Z o Z/2Z. The product on this basis is δn ∗ δm = δ|n−m| + δn+m for all n, m ∈ N∗,
and the involution is trivial (δ∗n = δn). Let π : C(G, Γ) → C be the involutive
representation given by π(δn) = en + e−n for n ∈ N∗ and π(δ0) = 1. It is obvious
that this representation is not continuous for the L1 norm as ‖δn‖L1 6 2 and
‖π(δn)‖ is unbounded.

The maximal C∗-algebra of this pair is C∗(G, Γ) = C[0, 1], the algebra of
continuous functions on [0, 1] . This is a consequence of the next proposition.

Proposition 3.5. Let Γ be a finite group acting by automorphisms on a
commutative group N . Then C∗(N o Γ,Γ) ' C(N̂/Γ).

Proof. As Γ is finite, C(N o Γ,Γ) = pC(N o Γ)p just as L1(N o Γ,Γ) =
pL1(N o Γ)p and C∗(N o Γ,Γ) = pC∗(N o Γ)p. But C∗(N o Γ) ' C(N̂) o Γ, so
one obtains p(C(N̂) o Γ)p = C(N̂/Γ), giving the isomorphism C∗(N o Γ,Γ) '
C(N̂/Γ).

The involutive homomorphism ε : C(G, Γ) → C defined in Corollary 3.2 can
be extended to a C∗-algebra homomorphism ε : C∗(G, Γ) → C and plays the role
of the trivial representation.

Proposition 3.6. There is a natural projection of C∗(G, Γ) onto C∗
r (G, Γ).

The proof of this proposition is a consequence of Theorem 4.2 below. Thus a
natural question arises: under which conditions on (G, Γ) do these two C∗-algebras
coincide? The answer is given in the last section of this paper.

4. UNDERLYING TOPOLOGY

At the end of the 70’s G. Schlichting, studying the periodic actions of groups,
introduced topological groups associated to Hecke pairs ([6], [7]). This idea is
quite natural and has a major contribution to the understanding of almost normal
subgroups and their algebras.

Schlichting’s idea is the following: we endow the set App (G/Γ) of maps from
G/Γ to G/Γ with the pointwise convergence topology. It follows from Ascoli’s
theorem that Γ /∼ G if and only if Γ is relatively compact in App (G/Γ). But,
under this condition, the completion Γ of the image of Γ in App (G/Γ) is a compact
group. Furthermore the completion of the image of G in App (G/Γ) is a totally
disconnected group G containing Γ as a compact-open subgroup. Actually Γ is
the stabilizer in G of the identity class Γ ∈ G/Γ. We will see that from our point
of view the study of a pair (G, Γ) can be reduced to that of (G, Γ).



Hecke C∗-algebras and amenability 175

Proposition 4.1. (G, Γ) is a Hecke pair if and only if there is a reduced
pair (G′,Γ′) such that:

(i) G′ is a (totally disconnected locally compact) topological group.
(ii) Γ′ is a compact-open subgroup of G′.
(iii) There exists a group homomorphism ϕ : G → G′ such that:

(a) ϕ(G) = G′;
(b) ϕ−1(ϕ(G) ∩ Γ′) = Γ.

The pair (G′,Γ′) is unique (unique in the sense that if (G′′,Γ′′) is another
such pair with φ : G → G′′, then there is a natural isomorphism I : G′′ '−→ G′

such that I(Γ′′) = Γ′ and I ◦ φ = ϕ) and we call it the totally disconnected pair
associated to (G, Γ).

Proof. The existence follows from Schlichting’s construction of (G, Γ) given
above. One has to prove the uniqueness part. As Γ′ is open and ϕ(G) is dense
in G′, one has G′ = ϕ(G)Γ′ and using condition (iii) (b) one obtains that the
map ϕ induces isomorphisms G′/Γ′ = ϕ(G)/ϕ(Γ) = G/Γ. Thus Γ′ injects into
App (G/Γ) and stabilizes the base point Γ ∈ G/Γ. Thus on the one hand Γ′ ⊂ Γ
as a compact subgroup, on the other hand Γ′ contains the dense subgroup ϕ(Γ)
of Γ. As a consequence Γ′ is naturally isomorphic to Γ. In conclusion, as G′ =
ϕ(G)Γ′ and G = ϕ(G)Γ, the natural action of G′ on G/Γ induces an isomorphism
G′ ' G.

The uniqueness condition implies that if (G, Γ) is the totally disconnected
pair associated to (G, Γ) then (G, Γ) is its own associated totally disconnected
pair.

In the trivial case [Γ : Γ/] < ∞ , the totally disconnected pair associated to
(G, Γ) is just the reduced pair.

The above proposition shows that a general construction of Hecke pairs is
obtained by taking a (totally disconnected) group with two subgroups, one of
them compact-open (the other being not necessarily dense). For example, let
K be a number field and OK be its ring of integers. Let K̂ and ÔK be their
completions with respect to all non-Archimedean valuations of K. Let G(K) be an
algebraic group on K. We take the “big” group to be G(K̂) with the two subgroups
G(ÔK) and G(K). As G(ÔK) is a compact-open subgroup of G(K̂) one has that
G(ÔK) /∼ G(K̂). But as G(ÔK)∩G(K) = G(OK) we obtain that G(OK) /∼ G(K).
We remark here that the totally disconnected pair associated to (G(K), G(OK))
is not necessarily the pair (G(K̂), G(ÔK)). Actually it is the reduced pair of
(G(K), G(OK)) where the closures are taken in G(K̂). For example, given a ring A

we set G(A) = PA = A o A∗. Let K = Q and OK = Z, thus K̂ = A and ÔK = R,
where A is the ring of finite adeles and R is its maximal compact subring. So
G(K) = Q o Q∗, G(OK) = Z o F2, where F2 = {1,−1}, G(K̂) = AoA∗ and
G(ÔK) = RoR∗, but the associated pair of (G(K), G(OK)) is (Ao Q∗,Ro F2).

To simplify notations, we assume for the remainder of this section that (G, Γ)
is a reduced pair.

Let µ be the left invariant Haar measure of G such that µ(Γ) = 1 and
∆ : G → R∗

+ be the modular function of G. Then dµ(ts) = ∆(s) dµ(t). So
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one has µ(ΓgΓ) = L(g). Hence µ(Γg−1Γ) = R(g)
L(g)µ(ΓgΓ) and as a consequence

∆(g) = L(g)
R(g) . This justifies the use of the ∆ notation for G in Proposition 2.2.

Let L1(G) be the Banach algebra L1(G, ν) where ν = ∆−1/2µ is the sym-
metric Haar measure such that ν(Γ) = 1. The product of L1(G) is the standard
convolution of functions and the involution is f∗(g) = f(g−1). The algebra Cc(G)
is the involutive subalgebra of L1(G) of continuous functions with compact sup-
port. As Γ is a compact-open subgroup of G with ν(Γ) = 1, the characteristic
function of Γ is a self-adjoint projection in Cc(G).

Theorem 4.2. Let (G, Γ) be a Hecke pair and (G, Γ) be its associated totally
disconnected pair. Let p be the self-adjoint projection of Cc(G) corresponding to
the characteristic function of Γ. Then one has the following isomorphisms:

(i) C(G, Γ) ' C(G, Γ) ' pCc(G)p;
(ii) L1(G, Γ) ' L1(G, Γ) ' pL1(G)p;
(iii) C∗(G, Γ) ' C∗(G, Γ) ' pC∗(G)p;
(iv) C∗

r (G, Γ) ' C∗
r (G, Γ) ' pC∗

r (G)p;
(v) L(G, Γ) ' L(G, Γ) ' pL(G)p.
Furthermore the dynamical systems of (G, Γ) are the corner restrictions of

the corresponding modular dynamical system of G.

Proof. From the construction of G it follows that the inclusion G ↪→ G in-
duces the canonical isomorphisms G/Γ ' G/Γ and Γ \G/Γ ' Γ \G/Γ. As a con-
sequence one has the isomorphisms C(G, Γ) ' C(G, Γ) and C∗

r (G, Γ) ' C∗
r (G, Γ).

At the level of von Neumann algebras one obtains L(G, Γ) ' L(G, Γ). Also one
has LG ≡ LG and RG ≡ RG on G ⊂ G. So the norms ‖ · ‖1 coincide on C(G, Γ) '
C(G, Γ), which implies that L1(G, Γ) ' L1(G, Γ) and C∗(G, Γ) ' C∗(G, Γ). The
dynamical systems constructed in the preceding section are also isomorphic be-
cause the restriction of ∆G on G coincides with ∆ in Proposition 2.2.

A Γ-biinvariant function on G has compact support if and only if its support
as a function on Γ \ G/Γ is finite. Thus pCc(G)p is canonically isomorphic to
C(G, Γ) as a vector space. It is easy to verify that the product and the involution
are also the same. So pCc(G)p ' C(G, Γ). In this algebra the norms induced
by L1(G) and L1(G, Γ) coincide, which implies that pL1(G)p ' L1(G, Γ). And
pC∗(G)p ' C∗(G, Γ), because C∗(pL1(G)p) = pC∗(L1(G))p. As pC∗

r (G)p is the
C∗-algebra generated by pCc(G)p in pL2(G, ν), to see that C∗

r (G) ' C∗
r (G, Γ) it

is enough to remark that `2(Γ \G) ' pL2(G, ν) and that the left regular represen-
tation of C(G, Γ) on this Hilbert space coincides with that of pCc(G)p ' C(G, Γ)
obtained by restriction of the left regular representation of G. It also follows
from this fact that L(G, Γ) ' pL(G)p. We finish this proof by remarking that
all the dynamical systems constructed in the preceding section coincide with the
corner restrictions of the corresponding modular dynamical system of G because
∆−it

G
(p) = p and ∆G coincides with ∆ on Γ \G/Γ ' Γ \G/Γ.
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5. AMENABILITY OF HECKE PAIRS

In [3] the authors prove that any involutive representation of C(P+
Q , P+

Z ) on a
Hilbert space extends to a representation of the C∗-algebra C∗

r (P+
Q , P+

Z ). To obtain
this result they use the amenability of the groupoid G = {(a, b) ∈ R×Q∗

+ : ab ∈ R}
⊂ Ao Q∗

+ where R is the maximal compact subring of the ring A of finite adeles.
We now prove a generalization of this result that gives a new characterization of
Eymard’s notion of amenability of G/Γ in the particular case when (G, Γ) is a
Hecke pair.

Recall there are many different equivalent definitions for amenability of
groups and that almost all of them extend to the more general case of homo-
geneous spaces G/Γ where Γ is a closed subgroup of G ([4]). For example G/Γ is
amenable in the sense of Eymard if one of the following equivalent conditions is
satisfied (here µ is a quasi-invariant measure on G/Γ) :

(M) There exists a G invariant mean on L∞(G/Γ, µ).
(P∗

p) For any finite subset F of G and any ε > 0, there is a function f ∈
Lp(G/Γ, µ) , with norm ‖f‖p = 1, such that for any g ∈ F , one has

‖g ∗ f − f‖p < ε;

(PF) For any compact convex subset Q of a locally convex Hausdorff space,
if G acts continuously by affine automorphisms on Q in such a way that there is
a Γ-fixed point, then there is a G-fixed point in Q;

(F) The trivial representation 1G is weakly contained in the quasi-regular
one λG/Γ : G → B(L2(G/Γ)).

We emphasize that what is important here is not the space G/Γ, but the pair
(G, Γ). Indeed there are pairs such that G1/Γ1 ' G2/Γ2 with G1/Γ1 amenable
and G2/Γ2 nonamenable (actually the notion of amenability of G/Γ is a particular
one of that of groupoids; [1]).

Proposition 5.1. For Γ /∼ G, the following conditions are equivalent:
(i) G/Γ is amenable in the sense of Eymard;
(ii) C∗

r (G, Γ) ' C∗(G, Γ);
(iii) The representation ε (Corollary 3.2) of L1(G, Γ) is weakly contained in

the left regular representation λΓ\G;
(iv) G is amenable.

Proof. We replace (G, Γ) by its associated totally disconnected pair (G, Γ).
Indeed the conditions (ii), (iii) and (iv) are trivially invariant by the substitution
(G, Γ) (G, Γ). Moreover G/Γ is amenable if and only if G/Γ is. The forward di-
rection follows from condition (PF) above, and the converse is a direct consequence
of the (P∗

1) characterization of amenability.
We now prove the proposition for (G, Γ).
(i) ⇔ (iv) Follows directly from Section 3.1◦ of [4] because Γ is compact and

so amenable.
(iv) ⇒ (ii) G being amenable one has C∗(G) ' C∗

r (G) ⇒ pC∗(G)p '
pC∗

r (G)p.
(ii) ⇒ (iii) Is trivial.



178 Kroum Tzanev

(iii) ⇒ (iv) We shall denote ε by ε(G,Γ) and the trivial representation of G by
εG, so εG(f) =

∫
f dν. Let p be the self-adjoint projection of Cc(G) corresponding

to the characteristic function of Γ (like in Theorem 4.2). If G is not amenable
then the trivial representation of G is not weakly contained in the regular one,
so there is a function f ∈ Cc(G) such that ‖f‖C∗

r (G) < εG(f). On the one hand
‖pfp‖C∗

r (G,Γ) = ‖pfp‖C∗
r (G) 6 ‖f‖C∗

r (G) and on the other hand εG(f) = εG(pfp) =
ε(G,Γ)(pfp). Thus ε(G,Γ) is not weakly contained in λΓ\G.
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