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Abstract. We introduce some classes of C∗-algebras with “good” local ap-
proximation properties — the class of LB algebras and several subclasses of
it — which generalize, among others, the AH algebras, the AD algebras and
the separable, simple C∗-algebras with an approximate unit of projections.
We initiate the study of these new and rich classes of C∗-algebras, proving re-
sults about the ideal property, real rank zero, the projection property, ideal
structure, inductive limits, stable isomorphism, hereditary C∗-subalgebras
and extensions. Some of our previous results about AH algebras and GAH
algebras are generalized.
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1. INTRODUCTION

In the recent years, many important results have been obtained for several classes
of C∗-algebras including, among others, the AH algebras, the AD algebras and the
ASH algebras ([5]). All the above C∗-algebras are GAH algebras, i.e. countable
inductive limits of finite direct sums of unital C∗-algebras whose proper ideals
have no nonzero projections ([16], [17]). More generally, each countable inductive
limit of C∗-algebras defined by continuous fields of unital, simple C∗-algebras
over compact spaces with finitely many connected components ([6]) (in particular,
each countable inductive limit of finite direct sums of C∗-algebras of the form
C(X, A) with X a compact, connected space and A a simple, unital C∗-algebra)
is a GAH algebra. In this paper we introduce a class of C∗-algebras, namely
the LB algebras (and several important subclasses of them), which generalize the
GAH algebras. The LB algebras are C∗-algebras with “good” local approximation
properties (see Definition 2.2 below). Finding suitable invariants for LB algebras
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(and their subclasses introduced here) and studying their properties seems to be
a natural extension of Effros’ problem on AH algebras ([7]). On the other hand,
in the separable, nuclear case, the LB algebras seem to be very pertinent within
Elliott’s classification program ([8]). The purpose of this paper is to initiate the
study of LB algebras (and of their subclasses) which are rich and which seem to
be well-behaved. In particular, we shall be interested in studying their behavior
with respect to the ideal property. Recall that a C∗-algebra has the ideal property
if each ideal (closed, two-sided) is generated (as an ideal) by its projections. The
ideal property is very important since all simple, unital C∗-algebras have the ideal
property and so do all C∗-algebras of real rank zero ([3]). In the recent years, a
lot of results have been proved for C∗-algebras with the ideal property (see e.g.
[12]–[20]). In Section 2 we introduce the LB algebras and initiate their study.
We prove that if A is a separable LB algebra and if I is an ideal of A, then the
following are equivalent:

(a) I is generated by projections;
(b) I has a countable approximate unit of projections;
(c) the canonical extension

0 → I → A → A/I → 0

is quasidiagonal;
(d) I is an LB algebra.

(see Theorem 2.3 below). In fact we prove that (a) ⇔ (d) above is true for an
arbitrary LB algebra A (see Theorem 2.9 below). Note that the ideals generated
by projections played an important role in the proof given by Dadarlat and Eilers
in [4] to the surprising fact that the AH algebras are not closed under inductive
limits. The above results immediately imply that a separable LB algebra A has
the ideal property if and only if A has the projection property (see Theorem 2.10
below). (A C∗-algebra has the projection property if each of its ideals has an
approximate unit of projections; [19].) Note that as it was proved in our paper
[19], there are separable C∗-algebras with the ideal property which don’t have the
projection property. As we have shown jointly with Dadarlat in [15], Theorem 5.1,
the ideal property is not closed under extensions. However, we prove here that if

0 → I → A → B → 0

is an exact sequence of C∗-algebras such that A is a separable LB algebra, then
A has the ideal property if and only if I and B have the ideal property (see
Theorem 2.11 below).

In Section 3 we introduce an important subclass of LB algebras: the special
LB algebras (see Definition 3.4 below) (note that it is immediate that if A is a
special LB algebra, then Mn(A) is a special LB algebra too for any n ∈ N.) This
class in closed under inductive limits (see Proposition 3.7 below) and hence, if A is
a special LB algebra and if B is an AF algebra, then A⊗B is a special LB algebra
(see Proposition 3.8 below). We prove that if A is a special LB algebra and I is
an ideal of A, then I is generated by projections if and only if I is a special LB
algebra (see Theorem 3.6 below). We describe the lattice of the ideals generated by
projections of a special LB algebra (see Theorem 3.9 below) and also we describe
the partially ordered set of the stably cofinite ideals generated by projections of
a separable, special LB algebra A in the case when the projections of M∞(A)
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satisfy the Riesz decomposition property (i.e. if p, q1, q2 are projections in M∞(A)
such that p is Murray-von Neumann equivalent to a subprojection of q1⊕ q2, then
p = p1 ⊕ p2 for some projections pi ∈ M∞(A) with pi Murray-von Neumann
equivalent to a subprojection of qi for i = 1, 2) (see Theorem 3.14 below). We also
prove that if a special LB algebra is stably isomorphic to a C∗-algebra with the
ideal property, then it has the ideal property too (see Corollary 3.12 below).

In Section 4 we introduce and study two important classes of special LB
algebras: the ultraspecial LB algebras (see Definition 4.1 below) and the class of
separable, ultraspecial LB algebras, denoted by U . For a given C∗-algebra A ∈ U ,
we prove that the following are equivalent:

(a) A has real rank zero (RR(A) = 0);
(b) if B is an arbitrary hereditary C∗-subalgebra of A, then B ∈ U ;

(see Theorem 4.8 below) and also that the following are equivalent:
(a′) A has the ideal property;
(b′) if I is an arbitrary ideal of A, the I ∈ U .

(see Theorem 4.14 below) (in fact, a more general result is proved in Theorem 4.12
below). It is shown that the above class of C∗-algebras A ∈ U with RR(A) = 0 is
closed under stable isomorphism (see Corollary 4.9 below). Also, we prove that if
a C∗-algebra with an approximate unit of projections is stably isomorphic to an
ultraspecial LB algebra, then it is an ultraspecial LB algebra (see Proposition 4.10
below). We prove a theorem which implies, in particular, that none of the fol-
lowing six classes of C∗-algebras: U , ultraspecial LB algebras, separable special
LB algebras, special LB algebras, separable LB algebras and LB algebras is closed
under extensions (see Theorem 4.15 below). This contrasts with a classical result
of Brown saying that the AF algebras are closed under extensions ([1]). It seems to
us that U is the most interesting of the subclasses of LB algebras introduced in this
paper, since it enjoys most of the properties proved here and, moreover, it has in-
teresting additional features (e.g. the real rank zero situation can be characterized
(in terms of hereditary C∗-subalgebras)).

It is worth to mention that some of the results proved in this paper generalize
or partially generalize some of our previous theorems on AH and GAH algebras
in [12]–[17] and that most of them required completely new ideas of proof, since
the methods used in our papers mentioned above didn’t work here.

Let A be a C∗-algebra. By an ideal of A will shall mean a closed, two sided
ideal of A. If I is an ideal of A we shall say that I is generated by projections if I is
generated by projections as an ideal (closed and two-sided) of A. The projections
of A will be denoted by P(A). If p, q ∈ P(A) we shall write p

A∼ q or simply p ∼ q
if p and q are Murray-von Neumann equivalent in A (i.e. there is v ∈ A such that
v∗v = p and vv∗ = q). Z(A) will denote the center of A. If I is an ideal of A, by
the canonical extension

0 → I → A → A/I → 0

we shall mean the extension in which I → A is the canonical inclusion and A →
A/I is the canonical quotient map. We shall denote by M(A) the multiplier algebra
of A and by M∞(A) the algebraic inductive limit of matrix algebras Mn(A), n ∈ N
under the embeddings:

Mn(A) 3 a 7→ a⊕ 0 ∈ Mn+1(A).
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If p ∈ M∞(A) is a projection, its class in K0(A) will be denoted by [p].
The real rank of A ([3]) will be denoted by RR(A). The stable rank of A was
defined and studied in [21]. For each x ∈ A and each M ⊆ A, we shall denote
dist (x,M) := inf{‖x−m‖ : m ∈ M}.

Recall that an extension of C∗-algebras:

0 → I → A → B → 0

is called quasidiagonal if there is an approximate unit (pn)∞n=1 of I consisting of
projections, which is quasicentral in A, i.e.

lim
n→∞

‖apn − pna‖ = 0

for all a ∈ A.
Recall that an AH algebra is a countable inductive limit of finite direct

sums of C∗-algebras of the form PC(X, Mn)P, where X is a compact connected
metrizable space and P ∈ P(C(X, Mn)).

We shall denote by K the C∗-algebra of compact operators on l2(N).

2. (SEPARABLE) LB ALGEBRAS

In this section we introduce and study two important classes of C∗-algebras: the
LB algebras (see Definition 2.2 below) and the separable LB algebras. For a given
LB algebra A, we characterize the situation when a fixed ideal of A is generated
by projections (in the case when A is separable and also in the general case)
(see Theorem 2.3 and Theorem 2.9 below). These theorems give, in a natural
way, characterizations of the situation when A has the ideal property (see e.g.
Theorem 2.10 below). Also, it is shown that if

0 → I → A → B → 0

is an exact sequence of C∗-algebras such that A is a separable LB algebra, then
A has the ideal property if and only if I and B have the ideal property (see
Theorem 2.11 below).

Definition 2.1. A is called a basic C∗-algebra if A is a unital C∗-algebra
such that each ideal of A generated (as an ideal) by projections is a direct summand
of A.

Note that each finite direct sum of unital C∗-algebras whose proper ideals
have no non-zero projections is a basic C∗-algebra. In particular, each finite direct
sum of C∗-algebras of the form PC(X, Mn)P , where X is a compact connected
space and P ∈ P(C(X, Mn)), is a basic C∗-algebra, and more generally, the C∗-
algebra defined by a continuous field of unital, simple C∗-algebras over a compact
space with finitely many connected components is a basic C∗-algebra (see [6]).
Also, note that each finite direct sum of unital, projectionless C∗-algebras is a
basic C∗-algebra.
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Definition 2.2. Let A be a C∗-algebra. A is called an LB algebra if for
each ε > 0 and each finite subset F ⊆ A there exist a basic C∗-algebra B and a
∗-homomorphism Φ : B → A such that for each a ∈ F :

dist (a, Φ(B)) < ε

and such that

dist (p, Φ(P(B))) < ε whenever p ∈ F ∩ P(A).

Note that each C∗-algebra which is an inductive limit of basic C∗-algebras
is an LB algebra. In particular, each AH algebra or, more generally, each GAH
algebra ([16]) is an LB algebra. Recall from [16] that a GAH algebra is a C∗-
algebra of the form lim

→
An, where each An, n ∈ N, is a finite direct sum of unital

C∗-algebras whose proper ideals have no non-zero projections. Note also that it
is easy to prove that each inductive limit of LB algebras is an LB algebra.

The following result gives several necessary and sufficient conditions for a
given ideal of a given separable LB algebra to be generated (as an ideal) by pro-
jections.

Theorem 2.3. Let A be a separable LB algebra and let I be an ideal of A.
Then, the following are equivalent:

(i) I is generated by projections;
(ii) I has a countable approximate unit of projections;
(iii) the canonical extension

0 → I → A → A/I → 0

is quasidiagonal;
(iv) I is an LB algebra.

The proof of the above theorem will need the following four lemmas. The
first one is the elaboration of an argument of Hjelmborg and Rørdam in [10].

Lemma 2.4. (see the proof of Lemma 3.1, [10]) Let A be a C∗-algebra and
let (pn)∞n=1 be a sequence of projections in A such that lim

n→∞
‖pnx−x‖ = 0 for each

x ∈ A. Then, there is an increasing sequence of projections (qk)∞k=1 in A and there
are natural members n1 < n2 < · · · < nk < · · · such that lim

k→∞
‖qk − pnk

‖ = 0. (In

particular (qk)∞k=1 is an approximate unit of projections for A.)

Proof. By the proof of Lemma 3.1, [10], it follows that for each projection
q ∈ A, there exists a sequence of projections (p̃n)∞n=1 in A such that p̃n > q for
all n ∈ N and lim

n→∞
‖p̃n − pn‖ = 0. Using this fact, one can easily construct by

mathematical induction an increasing sequence of projections (qk)∞k=1 in A and a
strictly increasing sequence of natural numbers (nk)∞k=1 such that

‖qk − pnk
‖ 6 1

k
, k ∈ N.

This implies that lim
k→∞

‖qk − pnk
‖ = 0 and hence that (qk)∞k=1 is an approxi-

mate unit of projections of A. The proof is over.
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Lemma 2.5. Let A be an LB algebra. Then, A is generated (as an ideal of
A) by projections.

Proof. Let a ∈ A and let ε > 0. Then, since A is an LB algebra there are a
basic C∗-algebra B, a ∗-homomorphism Φ : B → A and ã ∈ B such that:

‖Φ(ã)− a‖ < ε.

Denote e = Φ(1B) ∈ P(A). Since Φ(ã) = Φ(ã) · e · e, we have:

‖Φ(ã) · e · e− a‖ < ε.

Hence, A is generated (as an ideal) by projections.

Lemma 2.6. Let E be a separable C∗-subalgebra of an LB algebra A. Suppose
that I is an ideal of A generated by projections. If I ⊆ E, then the canonical
extension

0 → I → E → E/I → 0

is quasidiagonal.

Proof. Since E is separable, let (xm)∞m=1 be a dense sequence in E and let
(ym)∞m=1 be a dense sequence in I. We are going to construct for each n ∈ N a
projection pn in I such that:

‖pnxk − xkpn‖ <
1
n

, 1 6 k 6 n,(2.1)

‖yk − ykpn‖ <
1
n

, 1 6 k 6 n.(2.2)

Obviously, these facts together with Lemma 2.4 will prove our lemma.
Fix now n ∈ N. Since (by hypothesis) I is generated as an ideal of A by

projections, we have that:

(2.3)
∥∥∥yk −

ln∑

i=1

a
(n)
k,i e(n)

k,i b
(n)
k,i

∥∥∥ <
1
4n

, 1 6 k 6 n

for some ln ∈ N, a
(n)
k,i , b

(n)
k,i ∈ A and e(n)

k,i ∈ P(I), 1 6 k 6 n, 1 6 i 6 ln. Let 0 <

δ < 1
2n which will be precised later. Since A is an LB algebra, it follows that there

are a basic C∗-algebra B, a ∗-homomorphism Φ : B → A and x̃
(n)
k , ã

(n)
k,i , b̃

(n)
k,i ∈ B,

ẽ
(n)
k,i ∈ P(B), 1 6 k 6 n, 1 6 i 6 ln such that

‖Φ(x̃(n)
k )− xk‖ < δ, 1 6 k 6 n,(2.4)

‖Φ(ã(n)
k,i )− a

(n)
k,i ‖ < δ, 1 6 k 6 n, 1 6 i 6 ln,(2.5)

‖Φ(ẽ(n)
k,i )− e(n)

k,i ‖ < δ, 1 6 k 6 n, 1 6 i 6 ln,(2.6)

‖Φ(̃b(n)
k,i )− b

(n)
k,i ‖ < δ, 1 6 k 6 n, 1 6 i 6 ln.(2.7)

Let L be the ideal of B generated by the projections ẽ
(n)
k,i , 1 6 k 6 n,

1 6 i 6 ln. Since B is a basic C∗-algebra, it follows that L = Bp̃n, where p̃n
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is a central projection of B. Since p̃n belongs to the center of B, it follows that
x̃

(n)
k p̃n = p̃nx̃

(n)
k , 1 6 k 6 n, which, after denoting pn := Φ(p̃n), implies that

(2.8) Φ(x̃(n)
k )pn = pnΦ(x̃(n)

k ), 1 6 k 6 n.

Now, denote for any 1 6 k 6 n , ỹ
(n)
k =

ln∑
i=1

ã
(n)
k,i ẽ

(n)
k,i b̃

(n)
k,i . Since ẽ

(n)
k,i ∈ L for

all the indices, it follows that ỹ
(n)
k ∈ L, 1 6 k 6 n. Hence, since p̃n is the unit of

L, it follows that ỹ
(n)
k = ỹ

(n)
k p̃n, 1 6 k 6 n, which obviously implies that:

(2.9) Φ(ỹ(n)
k ) = Φ(ỹ(n)

k )pn, 1 6 k 6 n.

Observe that pn ∈ I since pn = Φ(p̃n), p̃n ∈ L and Φ(L) ⊆ I. (Indeed, L is
generated by the projections ẽ

(n)
k,i , 1 6 k 6 n, 1 6 i 6 ln and ‖Φ(ẽ(n)

k,i )−e(n)
k,i ‖ < δ <

1
2n < 1 implies Φ(ẽ(n)

k,i ) A∼ e(n)
k,i ∈ P(I) from which one concludes that Φ(ẽ(n)

k,i ) ∈ I

for all the indices since I is an ideal of A; in conclusion Φ(L) ⊆ I.)
Now suppose that 0 < δ < 1

2n is small enough such that the inequalities
(2.5), (2.6) and (2.7) will imply that

(2.10)
∥∥∥

ln∑

i=1

a
(n)
k,i e(n)

k,i b
(n)
k,i − Φ(ỹ(n)

k )
∥∥∥ <

1
4n

, 1 6 k 6 n.

Observe that (2.3) and (2.10) imply that

(2.11) ‖yk − Φ(ỹ(n)
k )‖ <

1
4n

+
1
4n

=
1
2n

, 1 6 k 6 n.

Using (2.4) and (2.8), one has for any 1 6 k 6 n

‖pnxk − xkpn‖
6 ‖pnΦ(x̃(n)

k )− Φ(x̃(n)
k )pn‖+ ‖pn(xk − Φ(x̃(n)

k ))‖+ ‖(Φ(x̃(n)
k )− xk)pn‖

< 0 + δ + δ = 2δ < 2 · 1
2n

=
1
n

which proves (2.1). Finally, to prove (2.2), observe that using (2.9) and (2.11),
one has for each 1 6 k 6 n

‖yk − ykpn‖ 6 ‖yk − Φ(ỹ(n)
k )‖+ ‖Φ(ỹ(n)

k )− Φ(ỹ(n)
k )pn‖+ ‖(Φ(ỹ(n)

k )− yk)pn‖
<

1
2n

+ 0 +
1
2n

=
1
n

.

This ends the proof.

The above lemma generalizes a joint result of Brown and Dadarlat ([2],
Proposition 11) and it also generalizes Lemma 2.8, [16] in the separable case.
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Lemma 2.7. Let A be an LB algebra and let I be an ideal of A. Suppose
that I is generated by projections. Then I is an LB algebra.

Proof. Let ε > 0, x1, x2, . . . , xn ∈ I and f1, f2, . . . , fm ∈ P(I). By the
hypothesis on I, it follows that there are ak,i, bk,i ∈ A, ek,i ∈ P (I), 1 6 k 6 n,
1 6 i 6 l such that

(2.12)
∥∥∥xk −

l∑

i=1

ak,iek,ibk,i

∥∥∥ <
ε

2
, 1 6 k 6 n.

Let 0 < δ < 1 be a number which will be precised later. Since A is an
LB algebra, it follows that there are a basic C∗-algebra B, a ∗-homomorphism
Φ : B → A and ãk,i, b̃k,i ∈ B, ẽk,i ∈ P(B) with 1 6 k 6 n and 1 6 i 6 l,
f̃j ∈ P(B), 1 6 j 6 m such that

‖Φ(ãk,i)− ak,i‖ < δ, 1 6 k 6 n, 1 6 i 6 l,(2.13)
‖Φ(ẽk,i)− ek,i‖ < δ, 1 6 k 6 n, 1 6 i 6 l,(2.14)

‖Φ(̃bk,i)− bk,i‖ < δ, 1 6 k 6 n, 1 6 i 6 l,(2.15)

‖Φ(f̃j)− fj‖ < δ, 1 6 j 6 m.(2.16)

Let M be the ideal of B generated by the projections ẽk,i, f̃j , 1 6 k 6 n,
1 6 i 6 l, 1 6 j 6 m. Observe that

(2.17) Φ(M) ⊆ I.

Indeed, it is enough to prove that Φ(ẽk,i),Φ(f̃j) ∈ I for each 1 6 k 6
n, 1 6 i 6 l, 1 6 j 6 m. Since for all the indices we have by (2.14) that
‖Φ(ẽk,i) − ek,i‖ < δ < 1, it follows that Φ(ẽk,i)

A∼ ek,i ∈ I, which implies that
Φ(ẽk,i) ∈ I, for all k and i since I is an ideal of A. Similarly, since by (2.16), we
have ‖Φ(f̃j) − fj‖ < δ < 1 we have that Φ(f̃j) ∈ I, 1 6 j 6 m (since fj ∈ P(I)
for 1 6 j 6 m).

Now, suppose that 0 < δ < 1 is small enough such that δ < ε and (2.13),
(2.14) and (2.15) imply that:

(2.18)
∥∥∥

l∑

i=1

ak,iek,ibk,i − Φ
( l∑

i=1

ãk,iẽk,ib̃k,i

)∥∥∥ <
ε

2
, 1 6 k 6 n.

Define a ∗-homomorphism Ψ : M → I by Ψ(x) := Φ(x), x ∈ M . By (2.17),
this definition is correct. Note also that since B is a basic C∗-algebra and M is an
ideal of B generated by projections, it follows that M is also a basic C∗-algebra.
Observe that since ẽk,i ∈ M , 1 6 k 6 n, 1 6 i 6 l and M is an ideal of B, it

follows that x̃k :=
l∑

i=1

ãk,iẽk,ib̃k,i ∈ M , 1 6 k 6 n. Now, by (2.12) and (2.18) we

have

‖xk−Ψ(x̃k)‖ = ‖xk−Φ(x̃k)‖ 6
∥∥∥xk−

l∑

i=1

ak,iek,ibk,i

∥∥∥+
∥∥∥

l∑

i=1

ak,iek,ibk,i−Φ(x̃k)
∥∥∥

<
ε

2
+

ε

2
= ε, 1 6 k 6 n.
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Also, f̃j ∈ P(M), 1 6 j 6 m and by (2.16) we have:

‖Ψ(f̃j)− fj‖ = ‖Φ(f̃j)− fj‖ < δ < ε

for each 1 6 j 6 m.
The proof is over.

Proof of Theorem 2.3. The proof of the implication (i) ⇒ (iii) follows from
Lemma 2.6 and the proof of the implication (i) ⇒ (iv) follows from Lemma 2.7.
Since the proofs of the implications (iii) ⇒ (ii), (ii) ⇒ (i) are obvious and since
the proof of the implication (iv) ⇒ (i) follows from Lemma 2.5 , the proof of the
theorem is over.

The equivalence (i) ⇔ (ii) in the above Theorem 2.3 generalizes, in the
separable case, the equivalence (1) ⇔ (3) in Theorem 2.2, [16]. Note that the
proof of Theorem 2.3 needed new type of arguments.

Proposition 2.8. Any separable LB algebra has a countable approximate
unit of projections.

Proof. Let A be a separable a LB algebra. By Lemma 2.5, it follows that A
is generated as an ideal of A by projections. Hence, by the implication (i) ⇒ (ii)
in Theorem 2.3 above, A has a countable approximate unit of projections.

Combining Lemma 2.5 with Lemma 2.7 above, one can prove the following:

Theorem 2.9. Let A be an LB algebra. Let I be an ideal of A. Then, the
following are equivalent:

(i) I is generated by projections;
(ii) I is an LB algebra.

Recall that a C∗-algebra is said to have the ideal property if each ideal is
generated by projections and is said to have the projection property ([19]) if each
ideal has an approximate unit of projections. The above Theorem 2.3 implies
immediately the following:

Theorem 2.10. Let A be a separable LB algebra. Then, the following are
equivalent:

(i) A has the ideal property;
(ii) each ideal of A has a countable approximate unit of projections;
(ii′) A has the projection property;
(iii) for each ideal I of A , the canonical extension

0 → I → A → A/I → 0

is quasidiagonal;
(iv) each ideal of A is an LB algebra.

The above equivalence (i) ⇔ (ii) generalizes the equivalence (i) ⇔ (iv) in
Theorem 3.1, [14], and in the separable case, the equivalence (1) ⇔ (3) in Corol-
lary 2.4, [16].

While the class of the C∗-algebras with the ideal property is not closed under
extensions (as it follows from an example constructed jointly with Dadarlat in [15]
and which also implies that the class of LB algebras with the ideal property is
not closed extensions as well as the class of separable LB algebras with the ideal
property) one has the following:



272 Cornel Pasnicu

Theorem 2.11. Let 0 → I → A → B → 0 be an exact sequence of C∗-
algebras. Suppose that A is a separable LB algebra. Then, the following are equiv-
alent:

(i) A has the ideal property;
(ii) I and B have the ideal property.

The above theorem generalizes Theorem 3.1, [13] and it also generalizes The-
orem 2.6, [16] in the separable case.

Proof of Theorem 2.11. It is similar with the proof of Theorem 2.6, [16] and
uses the above Lemma 2.6, Lemma 3.9 (1), [13] and Lemma 2.10, [16].

3. (SEPARABLE) SPECIAL LB ALGEBRAS

In this section we introduce and study two important classes of LB algebras:
the special LB algebras (see Definition 3.4 below) and the separable special LB
algebras. We prove that if A is a special LB algebra and if I is an ideal of A, then I
is generated by projections if and only if I is a special LB algebra (see Theorem 3.6
below). We describe the lattice of the ideals generated by projections of a special
LB algebra (see Theorem 3.9 below) and also we describe the partially ordered
set of the stably cofinite ideals generated by projections of a separable, special
LB algebra A when the projections in M∞(A) satisfy the Riesz decomposition
property (see Theorem 3.14 below). We also prove that if a special LB algebra is
stably isomorphic to a C∗-algebra with the ideal property, then it has the ideal
property (see Corollary 3.12 below).

Definition 3.1. A C∗-algebra A is called a stably basic C∗-algebra if for
each n ∈ N, Mn(A) is a basic C∗-algebra.

Remark 3.2. Note that the C∗-algebra defined by a continuous field of
unital, simple C∗-algebras over a compact space with finitely many connected
components is a stably basic C∗-algebra. In particular, each C∗-algebra which is a
finite direct sum of C∗-algebras of the form PC(X,Mn)P where X is a compact,
connected space and P ∈ P(C(X, Mn)) or each C∗-algebra which is a finite direct
sum of C∗-algebras of the form C(X, A), where X is a compact, connected space
and A is a simple, unital C∗-algebra, is a stably basic C∗-algebra.

Lemma 3.3. Let A be a C∗-algebra. Then the following are equivalent:
(i) A is a stably basic C∗-algebra;
(ii) A is unital and for each n ∈ N and each ideal I of Mn(A) generated by

projections, I = Mn(J) where J is a direct summand of A.

Proof. (i) ⇒ (ii) Suppose that A is a stably basic C∗-algebra. The fact that
A is unital follows from the fact that A is a basic C∗-algebra. Let n ∈ N and let
I be an ideal of Mn(A) generated by projections. By hypothesis, I = Mn(A)p,
where p ∈ P(Z(Mn(A)). But

Z(Mn(A)) = Z(Mn ⊗A) = Z(Mn)⊗Z(A) = C⊗Z(A) = 1ln ⊗Z(A),

where 1ln is the unit of Mn. Hence, since p ∈ P(Z(Mn(A)), it follows that p =
1ln ⊗ r, where r ∈ P(Z(A)). Hence

I = Mn(A)p = (Mn ⊗A)(1ln ⊗ r) = Mn ⊗Ar = Mn(Ar) = Mn(J),
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where J := Ar is a direct summand of A (since r ∈ P(Z(A)).
(ii) ⇒ (i) The proof of this implication is obvious.

Definition 3.4. Let A be a C∗-algebra. A is called a special LB algebra if
for each ε > 0, each k ∈ N and each finite subset F ⊆ Mk(A) there exist a stably
basic C∗-algebra B and a ∗-homomorphism Φ : B → A such that for any a ∈ F ,
dist (a, (Φ⊗ idMk

)(Mk(B))) < ε and such that

dist (p, (Φ⊗ idMk
)(P(Mk(B)))) < ε whenever p ∈ F ∩ (P(Mk(A)).

Remark 3.5. Obviously, any special LB algebra is an LB algebra. Moreover,
if A is a special LB algebra and n ∈ N, then Mn(A) is a special LB algebra.

Theorem 3.6. Let A be a special LB algebra. Let I be an ideal of A. Then,
the following are equivalent:

(i) I is generated by projections;
(ii) I is a special LB algebra.

Proof. It is similar with the proof of Theorem 2.9 above and uses the above
Lemma 3.3 and the fact that if B is a stably basic C∗-algebra then each ideal of
B generated by projections is a stably basic C∗-algebra too.

Proposition 3.7. Let A = lim
→

Aλ where each Aλ, for λ ∈ Λ, is a special
LB algebra. Then, A is a special LB algebra.

Proof. It is standard and it is left to the reader.

Proposition 3.8. Let A be a special LB algebra and let B be an AF algebra.
Then, A⊗B is a special LB algebra.

Proof. Observe that by the above Remark 3.5, for each n ∈ N, Mn(A) is
a special LB algebra. Since the class of special LB algebras is obviously closed
under finite direct sums, it follows that A⊗F is a special LB algebra for any finite
dimensional C∗-algebra F . Now, the result follows using Proposition 3.7.

One of the main results of this section is the following:

Theorem 3.9. Let A be a special LB algebra. Then, there is a canonical
lattice isomorphism:

{I : I is an ideal of A generated by projections}
∼= {J : J is an ideal of D(A⊗K)}.

In the above theorem we used the standard notation D(B), where B is a
C∗-algebra, to denote the abelian local semigroup of Murray-von Neumann equiv-
alence classes of projections in B (the addition of two classes is defined when they
have orthogonal representatives). Also, recall that an ideal in D(B) is a nonempty
hereditary subset which is closed under addition, where defined.

The proof of the above Theorem 3.9 will use the following result, which
generalizes Lemma 4.5, [15] and Lemma 2.14, [16] (see also (the proof of) Propo-
sition 4.3, [17]) and requires a different idea of proof:
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Lemma 3.10. Let A be a special LB algebra. Then, the map

Φ : {I : I is an ideal of A} → {J : J is an ideal of A⊗K}
given by Φ(I) = I ⊗K for any ideal I of A is a lattice isomorphism such that:

Φ({I : I is an ideal of A generated by projections})
= {J : J is an ideal of A⊗K generated by projections }.

In particular, A has the ideal property if and only if A ⊗ K has the ideal
property and Φ induces a canonical lattice isomorphism

{I : I is an ideal of A generated by projections}
∼= {J : J is an ideal of A⊗K generated by projections}.

Proof. Let J be an ideal of A⊗K. It is known that then there is a unique ideal
I of A such that J = I⊗K. To prove our lemma it will be enough to show that if J
is generated by projections, then I is generated by projections (since the remaining
part of the proof is trivial by Remark 4.3, [15]) (see also the final part of the proof
of Lemma 4.5, [15]). Hence, let us assume from now on that J is generated by
projections. Let A ⊗ K = lim

→
(Mn(A), Φn) where each Φn : Mn(A) → Mn+1(A)

is given by a 7→ a ⊕ 0, a ∈ Mn(A). For each m,n ∈ N, n 6 m, we shall identify
Mn(A) with its canonical image in A ⊗ K which is Φn,∞(Mn(A)) and we shall
simply write Mn(A) ⊆ A ⊗ K and we shall identify Mn(A) with its canonical
image in Mm(A) and we shall simply write Mn(A) ⊆ Mm(A).

Let ε > 0 and let x ∈ I ⊆ I⊗K = lim
→

(Mn(I), Φn|Mn(I)). Then, since I⊗K is

generated by projections, there is m ∈ N, l ∈ N, ai, bi ∈ Mm(A), pi ∈ P(Mm(I)),
1 6 i 6 l, such that

(3.1)
∥∥∥x−

l∑

i=1

aipibi

∥∥∥ <
ε

2
.

Since A is a special LB algebra it follows that for a given 0 < δ < 1 (which
will be precised later) there are a stably basic C∗-algebra B, a ∗-homomorphism
Φ : B → A and ãi, b̃i ∈ Mm(B), p̃i ∈ P(Mm(B)) for 1 6 i 6 l such that if we
denote Ψ := Φ⊗ idMm : Mm(B) → Mm(A), we have

‖Ψ(p̃i)− pi‖ < δ, ‖Ψ(ãi)− ai‖ < δ, ‖Ψ(̃bi)− bi‖ < δ, 1 6 i 6 l.

Let J be the ideal of Mm(B) generated by the projections p̃1, p̃2, . . . , p̃l. By
Lemma 3.3 it follows that J = Mm(K), where K is a direct summand of B.
Observe that Ψ(J) ⊆ Mm(I) (indeed, ‖Ψ(p̃i)− pi‖ < δ < 1, 1 6 i 6 l implies that

for each 1 6 i 6 l, Ψ(p̃i)
Mm(A)∼ pi ∈ P(Mm(I)) and hence Ψ(p̃i) ∈ P(Mm(I))

since Mm(I) is an ideal of Mm(A)).
Hence, we can define Ψ1 : Mm(K) → Mm(I) by Ψ1(x) := Ψ(x) (= (Φ ⊗

idMm)(x)), for x ∈ Mm(K). It follows that

(3.2) Φ(K) ⊆ I.
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Observe that
l∑

i=1

ãip̃ib̃i ∈ J = Mm(K) (since p̃1, p̃2, . . . , p̃l ∈ J) and that if

0 < δ < 1 is small enough, then

(3.3)
∥∥∥

l∑

i=1

aipibi −Ψ1

( l∑

i=1

ãip̃ib̃i

)∥∥∥ <
ε

2
.

But (3.1) and (3.3) obviously imply

(3.4)
∥∥∥x−Ψ1

( l∑

i=1

ãip̃ib̃i

)∥∥∥ <
ε

2
+

ε

2
= ε.

Let {ei,j}m
i,j=1 be the canonical system of matrix units of Mm. Then, there

are yi,j ∈ K, 1 6 i, j 6 m, such that

Ψ1

( l∑

i=1

ãip̃ib̃i

)
=

m∑

i,j=1

Φ(yij)⊗ eij .

Then (3.4) can be written
∥∥∥x⊗ e11 −

m∑

i,j=1

Φ(yij)⊗ eij

∥∥∥ < ε

which implies

(3.5)

‖x− Φ(y11)‖ =
∥∥∥(1⊗ e11) ·

(
x⊗ e11 −

m∑

i,j=1

Φ(yij)⊗ eij

)
· (1⊗ e11)

∥∥∥

6
∥∥∥x⊗ e11 −

m∑

i,j=1

Φ(yij)⊗ eij

∥∥∥ < ε.

Let e ∈ P(Z(B)) such that K = Be. By (3.2) it follows that Φ(e) ∈ P(I)
and since y11 = e · e · y11 (because y11 ∈ K) then, Φ(y11) = Φ(e)Φ(e)Φ(y11) ∈ I
and (3.5) becomes

‖x− Φ(e) · Φ(e) · Φ(y11)‖ < ε.

Since ε > 0 is arbitrary, it follows that x belongs to the ideal of A generated
by the projections of I. Hence I is generated by its projections. This ends the
proof.

Proof of Theorem 3.9. The proof follows using the proof of Lemma 4.2, [15],
Lemma 4.3, [15] and the above Lemma 3.10.

Remark 3.11. The above Theorem 3.9 generalizes Theorem 2.13, [16].

Corollary 3.12. Let A be a special LB algebra which is stably isomorphic
to a C∗-algebra B. If B has the ideal property, then A has the ideal property.

Proof. By Proposition 2.4, [15], it follows that B⊗K has the ideal property.
Hence A⊗K has the ideal property and, by Lemma 3.10, it follows that A has the
ideal property.
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Let us recall the following:

Definition 3.13. An ideal I in a C∗-algebra A is said to be stably cofinite
if the C∗-algebra A/I is stably finite, i.e. there do not exist projections p, q ∈
M∞(A/I) such that p⊕ q ∼ q and p 6= 0.

Now we shall prove the following:

Theorem 3.14. Let A be a separable, special LB algebra such that the pro-
jections in M∞(A) satisfy the Riesz decomposition property. Then, there is an
order isomorphism

{I : I is a stably cofinite ideal of A generated by projections}
∼= {J : J is an ideal of K0(A)}.

More precisely, there are order-preseving inverse isomorphisms sending each
stably cofinite ideal I of A generated by projections to the kernel of K0 of the
quotient map A → A/I and sending each ideal J of K0(A) to the ideal of A

generated by those projections p ∈ A for which [p] ∈ J . (Here, by an ideal of K0(A)
we mean a subgroup H of K0(A) such that H+ := H ∩K0(A)+ is hereditary (i.e.
if 0 6 g 6 h for some g ∈ K0(A) and h ∈ H+, then g ∈ H) and H = H+ −H+).

The proof of the above theorem will use the following:

Lemma 3.15. Let A be a separable, special LB algebra and let I be an ideal of
A generated by projections. Then, for each n ∈ N, all the projections in Mn(A/I)
lift to projections in Mn(A).

Proof. Let n ∈ N be an arbitrary, fixed number. Since Mn(I) is an ideal
generated by projections of the separable (special) LB algebra Mn(A), by the
implication (i) ⇒ (iii) in Theorem 2.3 above it follows that the extension

0 → Mn(I) → Mn(A) → Mn(A/I) → 0

is quasidiagonal. Now, by Lemma 3.9 (1), [13], it follows that all the projections
in Mn(A/I) lift to projections in Mn(A).

Proof of Theorem 3.14. The argument of the proof is similar with the one
given in the proof of Lemma 4.10, [15] or in the proof of Theorem 2.16, [16].
The proof uses the implication (i) ⇒ (ii) in Theorem 2.3 above, the six term
exact sequence in K-theory, the above Lemma 3.15 and the argument in Lem-
ma 10.8 (a), [9].
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4. (SEPARABLE) ULTRASPECIAL LB ALGEBRAS

In this section we introduce and study two important classes of special LB algebras:
the ultraspecial LB algebras (see Definition 4.1 below) and the class of separable,
ultraspecial LB algebras, denoted by U . We prove that for a given C∗-algebra A in
U , A has real rank zero if and only if each hereditary C∗-subalgebra of A belongs
to U (see Theorem 4.8 below) and that A has the ideal property if and only if each
ideal of A belongs to U (see Theorem 4.14 below). In fact, given an ultraspecial
LB algebra B, it is proved that B has the ideal property if and only if each ideal
of B is an ultraspecial LB algebra (see Theorem 4.12 below). Also, it is shown
that the above class of C∗-algebras A ∈ U with RR(A) = 0 is closed under stable
isomorphism (see Corollary 4.9 below). It is proved that if a C∗-algebra with an
approximate unit of projections is stably isomorphic to an ultraspecial LB algebra,
then it is an ultraspecial LB algebra (see Proposition 4.10 below). It is worth to
mention that as an easy consequence of Theorem 4.15 below, it follows that none
of the following six classes of C∗-algebras: U , ultraspecial LB algebras, separable
special LB algebras, special LB algebras, separable LB algebras and LB algebras
is closed under extensions.

Definition 4.1. Let A be a special LB algebra. A is an ultraspecial LB
algebra if pMn(A)p is a special LB algebra for each n ∈ N and each p ∈ P(Mn(A)).

Remark 4.2. Each C∗-algebra of the form lim
→

Aλ, where each Aλ with
λ ∈ Λ is a stably basic C∗-algebra, is an ultraspecial LB algebra. This follows
using the fact that lim

→
Aλ is a special LB algebra by Proposition 3.7 above (since

each Aλ, λ ∈ Λ, is a special LB algebra), using the fact that if B is a stably basic
C∗-algebra, n ∈ N and p ∈ P(Mn(B)), then pMn(B)p is also a stably basic C∗-
algebra and hence a special LB algebra (if A is a basic C∗-algebra, m ∈ N and
q ∈ P(Mm(A)), then qMm(A)q is a basic C∗-algebra) and using also the fact that
an inductive limit of special LB algebras is a special LB algebra (Proposition 3.7
above).

Proposition 4.3. Let A be an ultraspecial LB algebra and let n ∈ N and
p ∈ P(Mn(A)). Then pMn(A)p and Mn(A) are ultraspecial LB algebras.

Proof. Let m ∈ N and q ∈ P(Mm(pMn(A)p)). Let p(m) ∈ P(Mm(Mn(A)))
= P(Mmn(A)) be the direct sum of m copies of p. Then, we have:

qMm(pMn(A)p)q = q(p(m)Mmn(A)p(m))q = qMmn(A)q.

Since, by hypothesis, pMn(A)p and qMmn(A)q are special LB algebras, it
follows that pMn(A)p is an ultraspecial LB algebra.

Let r ∈ P(Mm(Mn(A))) = P(Mmn(A)). Then

rMm(Mn(A))r = rMmn(A)r.

Since, by hypothesis, rMmn(A)r is a special LB algebra, and since, obviously,
Mn(A) is a special LB algebra since A is, it follows that Mn(A) is an ultraspecial
LB algebra.
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Proposition 4.4. Let A be a C∗-algebra of the form A = lim
→

Aλ, where
each Aλ, λ ∈ Λ is an ultraspecial LB algebra. Then, A is an ultraspecial LB
algebra.

Proof. Since each Aλ, λ ∈ Λ, is a special LB algebra (by hypothesis), it
follows by Proposition 3.7 above that A is a special LB algebra. Let n ∈ N and
p ∈ P(Mn(A)). Then, by a standard argument, we may suppose that pMn(A)p ∼=
lim
→

pλMn(Aλ)pλ , where for each λ ∈ Λ, pλ is some projection in Mn(Aλ). By

hypothesis, each pλMn(Aλ)pλ, λ ∈ Λ is a special LB algebra. Now, the proof ends
using the fact that the set of special LB algebras is closed under inductive limits
(Proposition 3.7 above).

Notation 4.5. Let U be the class of separable, ultraspecial LB algebras.

Remark 4.6. Observe that if A is an AH algebra, then A ∈ U .

Proposition 4.7. Let A be an ultraspecial LB algebra and let B be an AF
algebra. Then, A ⊗ B is an ultraspecial LB algebra. Moreover, if A ∈ U , then
A⊗B ∈ U .

Proof. If A is an ultraspecial LB algebra then, combining Proposition 4.3
above with the fact that the class of ultraspecial LB algebras is obvioulsy closed
under finite direct sums and with Proposition 4.4 above, we get that then A⊗B is
an ultraspecial LB algebra. This obviously implies that if A ∈ U , then A⊗B ∈ U .

Theorem 4.8. Let A ∈ U . Then, the following are equivalent:
(i) RR(A) = 0;
(ii) if B is an arbitrary hereditary C∗-subalgebra of A, then B ∈ U .

Proof. (i) ⇒ (ii) Assume that RR(A) = 0. Let B be a hereditary C∗-
subalgebra of A. Then, by Theorem 2.6, [3], B has an approximate unit (not
necessarily increasing) of projections. Since B is separable, by Theorem 6, [11], it
follows that B has an (increasing) approximate unit (pn)n∈N of projections. Then,
it is not difficult to see that:

B =
∞⋃

n=1

pnApn = lim
→

pnApn.

Since pnApn ∈ U for each n ∈ N by Proposition 4.3 above, using Proposi-
tion 4.4 above it follows that B ∈ U .

(ii) ⇒ (i) Let B be an arbitrary fixed hereditary C∗-subalgebra of A. By
hypothesis, B is a separable LB algebra (since B ∈ U). By Proposition 2.8 above,
it follows that B has a countable approximate unit of projections. By Theorem 2.6,
[3], it follows that RR(A) = 0.
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Corollary 4.9. The set of all A ∈ U with RR(A) = 0 is closed under stable
isomorphism.

Proof. Let B be a C∗-algebra stably isomorphic to a C∗-algebra A with
A ∈ U and RR(A) = 0. By [3] it follows that RR(B) = 0 and RR(B ⊗K) = 0. By
Proposition 4.7 above we deduce that A⊗K ∈ U (since A ∈ U). Hence, B⊗K ∈ U
and, as we noted above, RR(B ⊗ K) = 0. Since B is a hereditary C∗-subalgebra
of B ⊗ K (B = (1 ⊗ e)(B ⊗ K)(1 ⊗ e) where 1 ∈ M(B) and e 6= 0 is a minimal
projection of K), by the implication (i) ⇒ (ii) in the above Theorem 4.8, it follows
that B ∈ U .

Proposition 4.10. Let A be a C∗-algebra with an approximate unit of pro-
jections. If A is stably isomorphic to an ultraspecial LB algebra B, then A is an
ultraspecial LB algebra.

Proof. By Proposition 4.7 above it follows that B ⊗K is an ultraspecial LB
algebra. Hence A⊗K is an ultraspecial LB algebra. Let (eλ)λ∈Λ be an approximate
unit of projections of A and let e 6= 0 be a minimal projection of K. Then, we
have

⋃

λ∈Λ

(eλ ⊗ e)(A⊗K)(eλ ⊗ e) =
⋃

λ∈Λ

(eλAeλ ⊗ eKe) ∼=
⋃

λ∈Λ

eλAeλ = A.

Hence
A ∼= lim

→
(eλ ⊗ e)(A⊗K)(eλ ⊗ e).

Since A⊗K is an ultraspecial LB algebra, by Proposition 4.3 above it follows
that (eλ ⊗ e)(A ⊗ K)(eλ ⊗ e) is an ultraspecial LB algebra for each λ ∈ Λ. Now,
by Proposition 4.4 above, it follows that A is an ultraspecial LB algebra.

Theorem 4.11. Let A be an ultraspecial LB algebra A. Let I be an ideal of
A. Then, the following are equivalent:

(i) I is generated by projections;
(ii) I is an ultraspecial LB algebra.

Proof. (i) ⇒ (ii) Let us assume that I is generated by projections. Since
A is an ultraspecial LB algebra, A is in particular a special LB algebra. Then,
by Theorem 3.6 above, I is a special LB algebra. Let n ∈ N and p ∈ P(Mn(I)).
Then, pMn(I)p is obviously an ideal of pMn(A)p (because Mn(I) is an ideal of
Mn(A)) and pMn(I)p is generated by projections (since for any a ∈ pMn(I)p, we
have: a = pap · p · p, and obviously pap = a ∈ pMn(I)p and p ∈ P(pMn(I)p)).

But, since A is an ultraspecial LB algebra, pMn(A)p is a special LB algebra.
Then, by Theorem 3.6 above, pMn(I)p is a special LB algebra. In conclusion, I is
an ultraspecial LB algebra.

(ii) ⇒ (i) Let us assume that I is an ultraspecial LB algebra. Then I is an
LB algebra, and the conclusion follows using Lemma 2.5.

The above theorem easily implies the following:
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Theorem 4.12. Let A be an ultraspecial LB algebra. Then, the following
are equivalent:

(i) A has the ideal property;
(ii) every ideal I of A is an ultraspecial LB algebra.

The last two results obviously imply the following two theorems:

Theorem 4.13. Let A ∈ U . Let I be an ideal of A. Then, the following are
equivalent:

(i) I is generated by projections;
(ii) I ∈ U .

Theorem 4.14. Let A ∈ U . Then, the following are equivalent:
(i) A has the ideal property;
(ii) if I is an arbitrary ideal of A, then I ∈ U .

The next theorem answers, in particular, several natural questions. It shows
that none of the following six classes of C∗-algebras:

(1) U ;
(2) ultraspecial LB algebras;
(3) separable special LB algebras;
(4) special LB algebras;
(5) separable LB algebras;
(6) LB algebras

is closed under extensions.

Theorem 4.15. There is an exact sequence of C∗-algebras:

0 → I → A → B → 0

such that I and B are AH algebras (in particular I, B ∈ U) of real rank zero and
stable rank one and A is a nuclear, stably finite C∗-algebra of real rank zero and
stable rank one which is not an ideal of an LB algebra.

Proof. The proof is similar with the proof of Proposition 13, [2], using
Lemma 2.7 above and using the implication (i) ⇒ (iii) in Theorem 2.3 above in-
stead of Proposition 11, [2]. (We used also the fact that an extension of separable
C∗-algebras is separable.)

Remark 4.16. The above Theorem 4.15 generalizes Theorem 3.4, [17].
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