K-THEORY OF C^{*}-ALGEBRAS FROM ONE-DIMENSIONAL GENERALIZED SOLENOIDS

INHYEOP YI

Communicated by Norberto Salinas

Abstract

We compute the K-groups of C^{*}-algebras from one-dimensional generalized solenoids. The results show that Ruelle algebras from one-dimensional generalized solenoids are one-dimensional generalizations of CuntzKrieger algebras.

KEYWORDS: One-dimensional generalized solenoid, Smale space, Ruelle algebra.

MSC (2000): 46L55, 46L80, 19Kxx, 37D20, 54H20.

1. INTRODUCTION

Ian Putnam and David Ruelle have developed a theory of C^{*}-algebras for certain hyperbolic dynamical systems ([10], [11], [12], and [15]). These systems include Anosov diffeomorphisms, topological Markov chains and some examples of substitution tiling systems. The corresponding C^{*}-algebras are modelled as reduced groupoid C^{*}-algebras for various equivalence relations.

This paper is concerned with C^{*}-algebras of an orientable one-dimensional generalized solenoid (\bar{X}, \bar{f}). Naïvely speaking, orientable generalized solenoids are higher dimensional analogues of topological Markov chains ([17]). We consider the principal groupoids of stable and unstable equivalence on (\bar{X}, \bar{f}), denoted $G_{\mathrm{s}}(\bar{X}, \bar{f})$ and $G_{\mathrm{u}}(\bar{X}, \bar{f})$, respectively, with topologies and Haar systems as in [10] and [11]. Then we build their reduced groupoid C^{*}-algebras $S(\bar{X}, \bar{f})$ and $U(\bar{X}, \bar{f})$, respectively, as in [13]. The homeomorphism $\bar{f}: \bar{X} \rightarrow \bar{X}$ induces automorphisms of $G_{\mathrm{s}}(\bar{X}, \bar{f})$ and $G_{\mathrm{u}}(\bar{X}, \bar{f})$, and we form semi-direct products $G_{\mathrm{s}} \rtimes \mathbb{Z}$ and $G_{\mathrm{u}} \rtimes \mathbb{Z}$. Their groupoid C^{*}-algebras are denoted $R_{\mathrm{s}}(\bar{X}, \bar{f})$ and $R_{\mathrm{u}}(\bar{X}, \bar{f})$, respectively, and are called the Ruelle algebras ([11], [12]). In the case of topological Markov chains, the Ruelle algebras are the Cuntz-Krieger algebras, and the stable and unstable
equivalence algebras are the corresponding $A F$-subalgebras of the Cuntz-Krieger algebras.

In this paper, we compute the K-groups of the unstable equivalence algebras and the Ruelle algebras of 1-solenoids to answer the questions posed in Section 4 of [11]. We show that the unstable equivalence algebra of a 1 -solenoid (\bar{X}, \bar{f}) with an adjacency matrix M is strongly Morita equivalent to the crossed product of a natural Cantor system of (\bar{X}, \bar{f}) by \mathbb{Z} so that its K_{0}-group is order isomorphic to the dimension group of M and its K_{1}-group is \mathbb{Z}. Then we show that the K_{0}-groups of Ruelle algebras are isomorphic to $\mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)\right\}$ and the K_{1}-groups are $\mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)$. Thus C^{*}-algebras from one-dimensional generalized solenoids are one-dimensional analogues of the Cuntz-Krieger algebras.

The outline of the paper is as follow: In Section 2, we recall the axioms of one-dimensional generalized solenoids and their ordered group invariants. In Section 3, we review the definitions of Smale spaces, and show that orientable one-dimensional solenoids are Smale spaces. Then we observe that the K-theory of the unstable equivalence algebras are determined by the adjacency matrices of one-dimensional generalized solenoids. In Section 4, we compute K-groups of unstable and stable Ruelle algebras, and show that they are $*$-isomorphic to each other by the classification theorem of Kirchberg-Phillips.

2. ONE-DIMENSIONAL SOLENOIDS

We review the properties of one-dimensional generalized solenoids of Williams which will be used in later sections. As general references for the notions of onedimensional generalized solenoids and their ordered group invariants we refer to [17], [18], and [19].
One-dimensional generalized solenoids. Let X be a finite directed graph with vertex set \mathcal{V} and edge set \mathcal{E}, and $f: X \rightarrow X$ a continuous map. We define some axioms which might be satisfied by $(X, f)([18])$.

Axiom 0. (Indecomposability) (X, f) is indecomposable.
Axiom 1. (Nonwandering) All points of X are nonwandering under f.
Axiom 2. (Flattening) There is $k \geqslant 1$ such that for all $x \in X$ there is an open neighborhood U of x such that $f^{k}(U)$ is homeomorphic to $(-\varepsilon, \varepsilon)$.

Axiom 3. (Expansion) There are a metric d compatible with the topology and positive constants C and λ with $\lambda>1$ such that for all $n>0$ and all points x, y on a common edge of X, if f^{n} maps the interval $[x, y]$ into an edge, then $d\left(f^{n} x, f^{n} y\right) \geqslant C \lambda^{n} d(x, y)$.

Axiom 4. (Nonfolding) $f^{n} \mid X-\mathcal{V}$ is locally one-to-one for every positive integer n.

Axiom 5. (Markov) $f(\mathcal{V}) \subseteq \mathcal{V}$.

Let \bar{X} be the inverse limit space

$$
\bar{X}=X \stackrel{f}{\leftarrow} X \stackrel{f}{\leftarrow} \cdots=\left\{\left(x_{0}, x_{1}, x_{2}, \ldots\right) \in \prod_{0}^{\infty} X: f\left(x_{n+1}\right)=x_{n}\right\},
$$

and $\bar{f}: \bar{X} \rightarrow \bar{X}$ the induced homeomorphism defined by

$$
\left(x_{0}, x_{1}, x_{2}, \ldots\right) \mapsto\left(f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), \ldots\right)=\left(f\left(x_{0}\right), x_{0}, x_{1}, \ldots\right)
$$

Remark 2.1. Williams' construction (6.2, [17]) gives a (unique) measure μ_{0} for which there is a constant $\lambda>1$ such that $\mu_{0}(X)=1$ and $\mu_{0}(f(I))=\lambda \mu_{0}(I)$ for every small interval $I \subset X$. Define $d_{0}\left(x_{0}, y_{0}\right)$ to be the measure of the smallest interval from x_{0} to y_{0} in X, and

$$
d(x, y)=\sum_{i=0}^{\infty} \lambda^{-i} d_{0}\left(x_{i}, y_{i}\right)
$$

for $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $y=\left(y_{0}, y_{1}, y_{2}, \ldots\right)$ in \bar{X}. Then (\bar{X}, d) is a compact metric space.

Let Y be a topological space and $g: Y \rightarrow Y$ a homeomorphism. We call Y a one-dimensional generalized solenoid or 1-solenoid and g a solenoid map if there exist a directed graph X and a continuous map $f: X \rightarrow X$ such that (X, f) satisfies all six axioms and (\bar{X}, \bar{f}) is topologically conjugate to (Y, g). We call a point $x \in X$ a non-branch point if x has an open neighborhood which is homeomorphic to an open interval, and branch point otherwise. An elementary presentation (X, f) of a 1 -solenoid is such that X is a wedge of circles and f leaves the unique branch point of X fixed.

Recall that a continuous map $\gamma:[0,1] \rightarrow G$, a directed graph, is orientation preserving if $e^{-1} \circ \gamma: I \rightarrow[0,1]$ is increasing for every interval $I \subset[0,1]$ such that $\gamma(I)$ is a subset of a directed edge e. A continuous map $\phi: G_{1} \rightarrow G_{2}$ between two directed graphs is orientation preserving if, for every orientation preserving map $p:[0,1] \rightarrow G_{1}$, the map $\phi \circ p:[0,1] \rightarrow G_{2}$ is orientation preserving ([1]).

When we can give a direction to each edge of X so that the connection map $f: X \rightarrow X$ is orientation preserving, we call (X, f) an orientable presentation. For a 1-solenoid Y with a solenoid map g, if there exists an orientable presentation (X, f) then Y is called an orientable 1-solenoid.

Proposition 2.2. ([1], [17]) Suppose that (X, f) is a presentation of a 1solenoid.
(i) The inverse limit spaces of (X, f) and $\left(X, f^{n}\right)$ are homeomorphic for every positive integer n.
(ii) There exists an integer m such that $\left(\bar{X}, \bar{f}^{m}\right)$ has an elementary presentation.

Thus, for the purpose of computing invariants of the space \bar{X}, there is no loss of generality in replacing (X, f) with $\left(X, f^{n}\right)$ where $n=m \cdot k$ is a positive integer such that $\left(\bar{X}, \bar{f}^{m}\right)$ has an elementary presentation (Z, h) and for every $z \in Z$ there is an open set U_{z} such that $h^{k}\left(U_{z}\right)$ is an open interval by the Flattening Axiom. Hence we can assume that every point $x \in X$ has a neighborhood U_{x} such that $f\left(U_{x}\right)$ is an interval.

Standing Assumption. In this paper, we always assume that (X, f) is an orientable elementary presentation such that every point $x \in X$ has a neighborhood U_{x} such that $f\left(U_{x}\right)$ is an interval.

Notation 2.3. Suppose that (X, f) is a presentation of a 1 -solenoid, and that $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ is the edge set of the directed graph X. For each edge $e_{i} \in \mathcal{E}$, we can give e_{i} the partition $\left\{I_{i, j}\right\}, 1 \leqslant j \leqslant l(i)$, such that:
(i) the initial point of $I_{i, 1}$ is the initial point of e_{i};
(ii) the terminal point of $I_{i, j}$ is the initial point of $I_{i, j+1}$ for $1 \leqslant j<l(i)$;
(iii) the terminal point of $I_{i, l(i)}$ is the terminal point of e_{i};
(iv) $f \mid \operatorname{Int} I_{i, j}$ is injective;
(v) $f\left(I_{i, j}\right)=e_{i, j}^{s(i, j)}$ where $e_{i, j} \in \mathcal{E}, s(i, j)=1$ if the direction of $f\left(I_{i, j}\right)$ agree with that of $e_{i, j}$, and $s(i, j)=-1$ if the direction of $f\left(I_{i, j}\right)$ is reverse to that of $e_{i, j}$.

The wrapping rule $\stackrel{\vee}{f}: \mathcal{E} \rightarrow \mathcal{E}^{*}$ associated with f is given by

$$
\stackrel{\vee}{f}: e_{i} \mapsto e_{i, 1}^{s(i, 1)} \cdots e_{i, l(i)}^{s(i, l(i))}
$$

and the adjacency matrix M of $(\mathcal{E}, \stackrel{\vee}{f})$ is given by

$$
M(i, k)=\#\left\{I_{i, j}: f\left(I_{i, j}\right)=e_{k}^{ \pm 1}\right\}
$$

Remark 2.4. (6.2, [17]) The measure μ_{0} in Remark 2.1 is given as follows: Suppose that λ is the Perron-Frobenius eigenvalue of the adjacency matrix M and that $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is the corresponding Perron eigenvector such that $\sum_{i=1}^{n} v_{i}=1$. For edges e_{i}, e_{j} of X and an interval I of e_{i} such that $f^{n}(I)=e_{j}$ and $f^{n} \mid \operatorname{Int} I$ is injective, let

$$
\mu_{0}\left(e_{i}\right)=v_{i} \quad \text { and } \quad \mu_{0}(I)=\lambda^{-n} v_{j} .
$$

Then μ_{0} is extended to a regular Borel measure on X by the standard procedure.
EXAMPLES 2.5. (i) Suppose that X is the unit circle and that $f: X \rightarrow X$ is given by $z \mapsto z^{n}$. Then the adjacency matrix is (n).
(ii) Suppose that Y is a wedge of two circles a and b and that $g: Y \rightarrow Y$ is a continuous map such that its corresponding wrapping rule $\stackrel{\vee}{g}$ is given by

$$
a \mapsto a a b \quad \text { and } \quad b \mapsto a b
$$

Then (Y, g) is an elementary presentation of a solenoid, and the adjacency matrix is

$$
M=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)
$$

The Perron-Frobenious eigenvalue of M is $\frac{3+\sqrt{5}}{2}$, and the corresponding Perron eigenvector is

$$
\mathbf{v}=\left(\frac{1+\sqrt{5}}{3+\sqrt{5}}, \frac{2}{3+\sqrt{5}}\right) .
$$

Hence the measure μ_{0} on Y is given by

$$
\mu_{0}(a)=\frac{1+\sqrt{5}}{3+\sqrt{5}} \quad \text { and } \quad \mu_{0}(b)=\frac{2}{3+\sqrt{5}}
$$

Notation 2.6. Given an $n \times n$ nonnegative integer matrix A we denote the dimension group of A,

$$
\underset{\longrightarrow}{\lim }\left(\mathbb{Z}^{n}, A\right)=\mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{n} \xrightarrow{A} \cdots,
$$

by $\left(\Delta_{A}, \Delta_{A}^{+}\right)$.
Theorem 2.7. ([6], [20]) Suppose that (\bar{X}, \bar{f}) is a 1-solenoid. Then there exists a uniquely ergodic flow ϕ whose phase space is \bar{X}.

Suppose that (X, f) is a presentation of a 1 -solenoid and that μ_{0} is the measure given on X as in Remark 2.4. For a measurable set I in X, we let $U_{n}(I)=\left\{\left(x_{0}, \ldots, x_{n}, \ldots\right) \in \bar{X}: x_{n} \in I\right\}$, and define a measure μ on \bar{X} by

$$
\mu\left(U_{n}(I)\right)=\mu_{0}(I)
$$

Then μ is extended to a regular Borel measure on \bar{X} in the standard way. It is not difficult to verify that μ is the unique ϕ-invariant measure on \bar{X} where ϕ is the flow on \bar{X} given in Theorem 2.7.

A closed subset K of a phase space Y of a flow ψ is called a cross section if the mapping $\psi: K \times \mathbb{R} \rightarrow Y$ defined by $(p, t) \mapsto p \cdot t$ is a local homeomorphism onto Y. The return time map $r_{K}: K \rightarrow K$ of a cross section K is defined by $x \mapsto y=x \cdot t_{x}$ where $x \in K$ and t_{x} is the smallest positive number such that $x \cdot t_{x}=y \in K$. It is a crucial fact that the return time map r_{K} of a cross section K is a homeomorphism, and Y is the standard suspension space of $\left(K, r_{K}\right)$.

Proposition 2.8. ([19], [20]) Suppose that (\bar{X}, \bar{f}) is a 1 -solenoid with the corresponding adjacency matrix M. Then there is a cross section with the return time map $\left(K, r_{K}\right)$ of \bar{X} such that:
(i) $\mathrm{K}_{1}\left(C(K) \times_{r_{K}} \mathbb{Z}\right)=\mathbb{Z}$;
(ii) $\mathrm{K}_{0}\left(C(K) \times_{r_{K}} \mathbb{Z}\right)$ is order isomorphic to Δ_{M}.

3. SMALE SPACES AND C^{*}-ALGEBRAS FROM SOLENOIDS

Smale spaces ([10], [15]). Suppose that (Y, d) is a compact metric space and φ is a homeomorphism of Y. Assume that we have constants $0<\lambda_{0}<1, \varepsilon_{0}>0$ and a continuous map $(x, y) \in\left\{(x, y) \in Y \times Y: d(x, y) \leqslant 2 \varepsilon_{0}\right\} \mapsto[x, y] \in Y$ satisfying the following:

$$
[x, x]=x, \quad[[x, y], z]=[x, z], \quad[x,[y, z]]=[x, z], \quad[\varphi(x), \varphi(y)]=\varphi([x, y])
$$

for $x, y, z \in Y$ whenever both sides of the equation are defined. For every $0<\varepsilon \leqslant$ ε_{0} let

$$
\begin{aligned}
V^{\mathrm{s}}(x, \varepsilon) & =\{y \in Y:[x, y]=y \text { and } d(x, y)<\varepsilon\} \\
V^{\mathrm{u}}(x, \varepsilon) & =\{y \in Y:[y, x]=y \text { and } d(x, y)<\varepsilon\}
\end{aligned}
$$

We assume that

$$
\begin{aligned}
& d(\varphi(y), \varphi(z)) \leqslant \lambda_{0} d(y, z) \quad y, z \in V^{\mathrm{s}}(x, \varepsilon) \\
& d\left(\varphi^{-1}(y), \varphi^{-1}(z)\right) \leqslant \lambda_{0} d(y, z) \quad y, z \in V^{\mathrm{u}}(x, \varepsilon)
\end{aligned}
$$

Then (Y, d, φ) is called a Smale space.
Suppose that (\bar{X}, \bar{f}) is a 1 -solenoid with the metric d given in Remark 2.1. Let $\lambda_{0}=\varepsilon_{0}=\frac{1}{\lambda}$ and define $[\cdot, \cdot]: \bar{X} \times \bar{X} \rightarrow \bar{X}$ by $[x, y] \mapsto z=\left(z_{0}, \ldots, z_{n}, \ldots\right)$ where $z_{0}=x_{0}$ and z_{n} is the unique element contained in the λ_{0}^{n+1}-neighborhood of y_{n} such that $f^{n}\left(z_{n}\right)=x_{0}$. Then it is not difficult to show that (\bar{X}, \bar{f}, d) satisfies the above conditions. Therefore we have the following:

Proposition 3.1. One-dimensional generalized solenoids are Smale spaces.

Groupoids. ([11], [13]) For a Smale space (Y, d, φ), define
$G_{\mathrm{s}, 0}=\left\{(x, y) \in Y \times Y: y \in V^{\mathrm{s}}\left(x, \varepsilon_{0}\right)\right\} \quad G_{\mathrm{u}, 0}=\left\{(x, y) \in Y \times Y: y \in V^{\mathrm{u}}\left(x, \varepsilon_{0}\right)\right\}$
and let

$$
G_{\mathrm{s}}=\bigcup_{n=0}^{\infty}(\varphi \times \varphi)^{-n}\left(G_{\mathrm{s}, 0}\right), \quad G_{\mathrm{u}}=\bigcup_{n=0}^{\infty}(\varphi \times \varphi)^{n}\left(G_{\mathrm{u}, 0}\right)
$$

Then G_{s} and G_{u} are equivalence relations on Y, called stable and unstable equivalence. Each $(\varphi \times \varphi)^{-n}\left(G_{\mathrm{s}, 0}\right),(\varphi \times \varphi)^{-n}\left(G_{\mathrm{u}, 0}\right)$ is given the relative topology of $Y \times Y$, and G_{s} and G_{u} are given the inductive limit topology. It is not difficult to verify that G_{s} and G_{u} are locally compact Hausdorff principal groupoids. The Haar systems $\left\{\mu_{\mathrm{s}}^{x}: x \in Y\right\}$ and $\left\{\mu_{\mathrm{u}}^{x}: x \in Y\right\}$ for G_{s} and G_{u}, respectively, are described in 3.c of [11]. The groupoid C^{*}-algebras of G_{s} and G_{u} are denoted $S(Y, \varphi)$ and $U(Y, \varphi)$, respectively.

The map $\varphi \times \varphi$ acts as an automorphism of G_{s} and G_{u}. We form the semidirect products

$$
\begin{aligned}
& G_{\mathrm{s}} \rtimes \mathbb{Z}=\left\{(x, n, y): n \in \mathbb{Z} \text { and }\left(\bar{f}^{n}(x), y\right) \in G_{\mathrm{s}}\right\} \\
& G_{\mathrm{u}} \rtimes \mathbb{Z}=\left\{(x, n, y): n \in \mathbb{Z} \text { and }\left(\bar{f}^{n}(x), y\right) \in G_{\mathrm{u}}\right\}
\end{aligned}
$$

with groupoid operations

$$
(x, n, y) \cdot(u, m, v)=(x, n+m, v) \text { if } y=u, \quad \text { and } \quad(x, n, y)^{-1}=(y,-n, x)
$$

The product topology of $G_{*} \times \mathbb{Z}$ is transfered to $G_{*} \rtimes \mathbb{Z}$ by the bijective map $\eta:(x, y, n) \mapsto(x, n, \varphi(y))$. And a Haar system on $G_{*} \rtimes \mathbb{Z}$ is given by $\mu_{*}^{x} \circ \eta^{-1}$ where μ_{*}^{x} is the Haar system on G_{*}. The groupoid C^{*}-algebras $C^{*}\left(G_{\mathrm{s}} \rtimes \mathbb{Z}\right)$ and $C^{*}\left(G_{\mathrm{u}} \rtimes \mathbb{Z}\right)$ are denoted $R_{\mathrm{s}}(Y, \varphi)$ and $R_{\mathrm{u}}(Y, \varphi)$ and are called the Ruelle algebras.

For general properties of these C^{*}-algebras, we refer to [3], [10], [11], and [12].
Unstable equivalence algebras. Suppose that (\bar{X}, \bar{f}) is an orientable solenoid and that ϕ is the flow on \bar{X} given in Theorem 2.7. Then there exists a cross section with return time map (K, r) such that \bar{X} is the suspension space of (K, r) by Proposition 2.8.

Sublemma 3.2. ([13]) (i) $(\bar{X}, \mathbb{R}, \phi)$ and (K, \mathbb{Z}, r) are groupoids;
(ii) the groupoid algebras of $(\bar{X}, \mathbb{R}, \phi)$ and (K, \mathbb{Z}, r) are isomorphic to $C(\bar{X}) \times_{\phi} \mathbb{R}$ and $C(K) \times_{r} \mathbb{Z}$, respectively.

Lemma 3.3. ([2], [11]) Suppose that (\bar{X}, \bar{f}) is an orientable solenoid, and that (K, r) is a cross section with the return time map of the flow ϕ. Then:
(i) $U(\bar{X}, \bar{f}) \simeq C(\bar{X}) \times_{\phi} \mathbb{R}$;
(ii) $C(\bar{X}) \times_{\phi} \mathbb{R}$ is strongly Morita equivalent to $C(K) \times_{r} \mathbb{Z}$.

Proof. (i) Suppose $x=\left(x_{0}, x_{1}, \ldots\right), y=\left(y_{0}, y_{1}, \ldots\right) \in \bar{X}$ and $(x, y) \in G_{\mathrm{u}}$. Then $d\left(\bar{f}^{n}(x), \bar{f}^{n}(y)\right) \rightarrow 0$ as $n \rightarrow-\infty$ implies $d_{0}\left(x_{n}, y_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ and that there exists a $t \in \mathbb{R}$ such that $y=\phi_{t}(x)$. Let $\alpha:(\bar{X}, \mathbb{R}, \phi) \rightarrow G_{\mathrm{u}}$ be given by $(x, t) \mapsto\left(x, \phi_{t}(x)\right)$. Then it is not difficult to see that α is an isomorphism. Therefore $U(\bar{X}, \bar{f})$ is isomorphic to $C(\bar{X}) \times_{\phi} \mathbb{R}$ by Sublemma 3.2.
(ii) Since \bar{X} is the suspension of (K, r), for every $x \in \bar{X}$ there exist unique $z_{x} \in K$ and $\tau_{x} \in[0,1)$ such that $x=\phi_{\tau_{x}}\left(z_{x}\right)$. Define

$$
I=\left\{\left(x, n-\tau_{x}\right): x \in \bar{X}, n \in \mathbb{Z}\right\}
$$

and let $\mathcal{C}(I)$ be the completion of $C_{\mathrm{c}}(I)$. Then, by the Theorem in Section 4 of [11], $\mathcal{C}(I)$ is a $C(\bar{X}) \times{ }_{\phi} \mathbb{R}-C(K) \times{ }_{r} \mathbb{Z}$ imprimitivity bimodule. For completeness, we write down the module structures and the inner products.

Module structures. Suppose that $\alpha \in C_{\mathrm{c}}(I), g \in C_{\mathrm{c}}(\bar{X}, \mathbb{R}, \phi)$ and $h \in$ $C_{\mathrm{c}}(K, \mathbb{Z}, r)$. Then

$$
(g \cdot \alpha)\left(x, n-\tau_{x}\right)=\int g(x, t) \cdot \alpha\left(\phi_{t}(x), n-\tau_{x}-t\right) \mathrm{d} \mu^{[x]}(t)
$$

and

$$
(\alpha \cdot h)\left(x, n-\tau_{x}\right)=\sum_{m} \alpha\left(x, m-\tau_{x}\right) \cdot h\left(r^{m}\left(z_{x}\right), n-m\right)
$$

give that $\mathcal{C}(I)$ is a left $C(\bar{X}) \times_{\phi} \mathbb{R}$ and right $C(K) \times_{r} \mathbb{Z}$ bimodule with $(\widetilde{g} \cdot \widetilde{\alpha}) \cdot \widetilde{h}=$ $\widetilde{g} \cdot(\widetilde{\alpha} \cdot \widetilde{h})$ for every $\widetilde{\alpha} \in \mathcal{C}(I), \widetilde{g} \in C(\bar{X}) \times_{\phi} \mathbb{R}$ and $\widetilde{h} \in C(K) \times_{r} \mathbb{Z}$.

InNer products. Define $\langle\cdot, \cdot\rangle_{L}: C_{\mathrm{c}}(I) \times C_{\mathrm{c}}(I) \rightarrow C_{\mathrm{c}}(\bar{X}, \mathbb{R}, \phi)$ and $\langle\cdot, \cdot\rangle_{R}:$ $C(I) \times C(I) \rightarrow C_{\mathrm{c}}(K, \mathbb{Z}, r)$ by

$$
\langle\alpha, \beta\rangle_{L}(x, t)=\sum \alpha\left(x, m-\tau_{x}\right) \cdot \overline{\beta\left(x, m-\tau_{x}\right)}
$$

and

$$
\langle\alpha, \beta\rangle_{R}(z, k)=\int \overline{\alpha\left(\phi_{t}(z), k-t\right)} \cdot \beta\left(\phi_{t}(z), k-t\right) \mathrm{d} \mu^{\left[\phi_{t}(z)\right]}(t)
$$

Therefore we have the following proposition from Proposition 2.8 and the above lemma.

Proposition 3.4. (i) $\mathrm{K}_{1}(U(\bar{X}, \bar{f}))=\mathbb{Z}$;
(ii) $\mathrm{K}_{0}(U(\bar{X}, \bar{f}))$ is order isomorphic to Δ_{M} where M is the adjacency matrix of (\bar{X}, \bar{f}).

Recall that the flow ϕ on \bar{X} is uniquely ergodic without rest point (Theorem 2.7). So $C(\bar{X}) \times_{\phi} \mathbb{R}$ has the unique trace τ_{μ} induced by the unique ϕ-invariant measure $\mu(3.3 .10,[16])$. Thus τ_{μ}^{*}, the induced state on $\mathrm{K}_{0}\left(C(\bar{X}) \times_{\phi} \mathbb{R}\right)$, is the unique state.

Proposition 3.5. If (\bar{X}, \bar{f}) is a 1-solenoid and M is the corresponding adjacency matrix with the normalized Perron eigenvector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$, then

$$
\tau_{\mu}^{*}\left(\mathrm{~K}_{0}\left(U(\bar{X}, \bar{f}), \mathrm{K}_{0}(U(\bar{X}, \bar{f}))_{+}\right)=\left\langle\left(\Delta_{M}, \Delta_{M}^{+}\right), \mathbf{v}\right\rangle\right.
$$

Proof. Suppose that $\mathcal{E}_{k}=\mathcal{E}$ is the edge set of the k th coordinate space of \bar{X}. Then by Proposition 2.8

$$
\left(\mathrm{K}_{0}(U(\bar{X}, \bar{f})), \mathrm{K}_{0}(U(\bar{X}, \bar{f}))_{+}\right) \cong\left(\lim _{\rightarrow} C\left(\mathcal{E}_{k}, \mathbb{Z}\right), \lim _{\rightarrow} C_{+}\left(\mathcal{E}_{k}, \mathbb{Z}\right)\right) \cong\left(\Delta_{M}, \Delta_{M}^{+}\right)
$$

For $g \in C\left(\mathcal{E}_{k}, \mathbb{Z}\right), x=\left(x_{0}, \ldots, x_{k}, \ldots\right) \in \bar{X}$ with $x_{k}=\mathrm{e}^{2 \pi \mathrm{i} s} \in e_{i} \in \mathcal{E}_{k}$ and the canonical projection to the k th coordinate space $\pi_{k}: \bar{X} \rightarrow X$, define $g_{k} \in$ $C\left(X_{k}, S^{1}\right)$ and $\widetilde{g} \in C\left(\bar{X}, S^{1}\right)$ by

$$
g_{k}: x_{k} \mapsto \exp \left(2 \pi \mathrm{i} g\left(e_{i}\right) s\right) \quad \text { and } \quad \tilde{g}: x \rightarrow g_{k} \circ \pi_{k}(x)
$$

Then every \widetilde{g} is a unitary element in $C(\bar{X})$, and $\mathrm{K}_{0}(U(\bar{X}, \bar{f})) \cong \mathrm{K}_{1}(C(\bar{X}))$ is generated by \widetilde{g}. If we denote g as $\left(g\left(e_{1}\right), \ldots, g\left(e_{n}\right)\right)$, then by Theorem 2.2 of [8]

$$
\begin{aligned}
\tau_{\mu}^{*}(\widetilde{g}) & =\frac{1}{2 \pi \mathrm{i}} \int_{\bar{X}} \frac{\widetilde{g}^{\prime}}{\widetilde{g}} \mathrm{~d} \mu=\int_{X_{k}} g^{\prime} \mathrm{d} \mu_{0}=\sum_{i=1}^{n} g\left(e_{i}\right) \mu_{0}\left(e_{i}\right)=\sum_{i=1}^{n} g\left(e_{i}\right) v_{i} \\
& =\left\langle\left(g\left(e_{1}\right), \ldots, g\left(e_{n}\right)\right), \mathbf{v}\right\rangle
\end{aligned}
$$

4. RUELLE ALGEBRAS FOR SOLENOIDS

We compute K-groups of Ruelle algebras for 1-solenoids to show that they are *-isomorphic.

Unstable equivalence Ruelle algebras. Suppose that (\bar{X}, \bar{f}) is an oriented 1-solenoid and that $G_{\mathrm{u}} \simeq(\bar{X}, \mathbb{R}, \phi)$ is the unstable equivalence groupoid on \bar{X}. Recall that for $x, y \in \bar{X}$ such that $y=\phi_{t}(x), t \in \mathbb{R}$, we have $\bar{f}^{-1}(y)=\phi_{t \lambda^{-1}} \circ$ $\bar{f}^{-1}(x)$.

Definition 4.1. (Section 4, [11]) Let α_{u} be an automorphism on $U(\bar{X}, \bar{f})$ defined by

$$
\alpha_{\mathrm{u}}(g)(x, t)=\lambda^{-1} g\left(\bar{f}^{-1}(x), t \lambda^{-1}\right) \quad \text { for } g \in C_{\mathrm{c}}(\bar{X}, \mathbb{R}, \phi) \text { and }(x, t) \in(\bar{X}, \mathbb{R}) .
$$

The unstable equivalence Ruelle algebra $R_{\mathrm{u}}(\bar{X}, \bar{f})$ is the crossed product

$$
R_{\mathrm{u}}(\bar{X}, \bar{f})=U(\bar{X}, \bar{f}) \times_{\alpha_{\mathrm{u}}} \mathbb{Z}=\left(C(\bar{X}) \times_{\phi} \mathbb{R}\right) \times_{\alpha_{\mathrm{u}}} \mathbb{Z}
$$

Remarks 4.2. (i) Let A be an $n \times n$ integer matrix and Δ_{A} the dimension group of A. The dimension group automorphism δ_{A} of A is the restriction of A to Δ_{A} so that $\delta_{A}(\mathbf{v})=A \mathbf{v}(7.5 .1,[5])$. Then $\Delta_{A} / \operatorname{Im}\left(\operatorname{Id}-\delta_{A}\right)$ is isomorphic to $\mathbb{Z}^{n} /(\operatorname{Id}-A) \mathbb{Z}^{n}$.
(ii) For $g \in C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, let $g_{k} \in C\left(X_{k}, S^{1}\right)$ be as in the proof of Proposition 3.5. The wrapping rule $\stackrel{\vee}{f}: \mathcal{E}_{k+1} \rightarrow \mathcal{E}_{k}$ induces a map $f^{*}: C\left(\mathcal{E}_{k}, \mathbb{Z}\right) \rightarrow C\left(\mathcal{E}_{k+1}, \mathbb{Z}\right)$ by $g \mapsto g \circ \stackrel{\vee}{f}$ where $(g \circ \stackrel{\vee}{f})(e)=\sum_{i=1}^{j} g\left(e_{i}\right)$ such that $\stackrel{\vee}{f}(e)=e_{1} \cdots e_{j}$. Then $g_{k} \circ f \circ \pi_{k}$ is homotopic to $\left(g \circ f^{*}\right)_{k+1} \circ \pi_{k+1}(3.6,[19])$.

Proposition 4.3. Suppose that (\bar{X}, \bar{f}) is a 1-solenoid with the adjacency matrix M and corresponding dimension group automorphism δ_{M}. Then
$\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)\right\} \quad$ and $\quad \mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)$.
Proof. We have the following Pimsner-Voiculescu exact sequence:

We consider $\alpha_{\mathrm{u} *}: \mathrm{K}_{0}(U(\bar{X}, \bar{f}))=\mathrm{K}_{0}\left(C(\bar{X}) \times_{\phi} \mathbb{R}\right) \rightarrow \mathrm{K}_{0}\left(C(\bar{X}) \times_{\phi} \mathbb{R}\right)$ as the automorphism $\widehat{\alpha}_{\mathrm{u} *}: \mathrm{K}_{1}(C(\bar{X})) \rightarrow \mathrm{K}_{1}(C(\bar{X}))$ given by the Thom isomorphism of Connes. Define $\beta: C(\bar{X}) \rightarrow C(\bar{X})$ by $h \mapsto h \circ \bar{f}^{-1}$ for $h \in C(\bar{X})$. Then the induced automorphism $\beta_{*}: \mathrm{K}_{1}(C(\bar{X})) \rightarrow \mathrm{K}_{1}(C(\bar{X}))$ is the required isomorphism.

For $g \in C\left(\mathcal{E}_{k}, \mathbb{Z}\right)$, let $\widetilde{g} \in C\left(\bar{X}, S^{1}\right)$ be the induced unitary element as in the proof of Proposition 3.5. Then $\beta^{-1}(\widetilde{g})=\widetilde{g} \circ \bar{f}=g_{k} \circ \pi_{k} \circ \bar{f}=g_{k} \circ f \circ \pi_{k}$ is homotopic
to $\left(g \circ f^{*}\right)_{k+1} \circ \pi_{k+1}$. Hence if we denote g as $\left(g\left(e_{1}\right), \ldots, g\left(e_{n}\right)\right) \in \mathbb{Z}^{n}$, then $g \circ f^{*}$ is given by $M g$ and the induced automorphism $\beta_{*}^{-1}: \mathrm{K}_{1}(C(\bar{X})) \rightarrow \mathrm{K}_{1}(C(\bar{X}))$ is the dimension group automorphism δ_{M} of the adjacency matrix M. Therefore β_{*} is the inverse of δ_{M}, and $1-\alpha_{\mathrm{u}^{*}}: \mathrm{K}_{0}(U(\bar{X}, \bar{f})) \rightarrow \mathrm{K}_{0}(U(\bar{X}, \bar{f}))$ is the same as $\mathrm{Id}-\delta_{M}^{-1}: \Delta_{M} \rightarrow \Delta_{M}$.

Since $\mathrm{K}_{1}(U(\bar{X}, \bar{f}))$ is isomorphic to $\mathbb{Z}, \alpha_{\mathrm{u} *}: \mathbb{Z} \rightarrow \mathbb{Z}$ is trivially the identity map. Thus the six-term exact sequence is divided into the following two short exact sequences:

$$
\begin{aligned}
& 0 \rightarrow \Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}^{-1}\right) \rightarrow \mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \rightarrow \mathbb{Z} \rightarrow 0 \\
& 0 \rightarrow \mathbb{Z} \rightarrow \mathrm{~K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \rightarrow \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}^{-1}\right) \rightarrow 0
\end{aligned}
$$

Because \mathbb{Z} and $\operatorname{Ker}\left(\operatorname{Id}-\delta_{M}^{-1}\right)$ are free groups, these sequences split. Therefore we conclude that

$$
\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}^{-1}\right)\right\} \cong \mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)\right\}
$$

and

$$
\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}^{-1}\right) \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)
$$

Remark 4.4. Although the above short exact sequences are natural, they split unnaturally. Hence the isomorphisms of Proposition 4.3 are unnatural.

Stable equivalence Ruelle algebras. We use K-theoretic duality of the Ruelle algebras and the Universal Coefficient Theorem to compute K-groups of $R_{\mathrm{s}}(\bar{X}, \bar{f})$.

Lemma 4.5. ([11], [14]) Suppose that (\bar{X}, \bar{f}) is a 1-solenoid. Then:
(i) $\mathrm{K}_{*}\left(R_{\mathrm{s}}(\bar{X}, \bar{f})\right)$ is isomorphic to $\mathrm{K}^{*+1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right)$;
(ii) there are short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{~K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \rightarrow \mathrm{K}^{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \rightarrow \operatorname{Hom}\left(\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \rightarrow 0 \\
& 0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{~K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \rightarrow \mathrm{K}^{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \rightarrow \operatorname{Hom}\left(\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \rightarrow 0
\end{aligned}
$$

Therefore K-groups of the stable equivalence Ruelle algebra are determined by Ext- and Hom-groups of $K_{*}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right)$.

Proposition 4.6. Suppose that (\bar{X}, \bar{f}) is a 1-solenoid. Then

$$
\mathrm{K}_{0}\left(R_{\mathrm{s}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)\right\} \quad \text { and } \quad \mathrm{K}_{1}\left(R_{\mathrm{s}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)
$$

Proof. Transform Id $-M$ to the Smith form

$$
\left(\begin{array}{llll}
d_{1} & & & \\
& d_{2} & & \\
& & \ddots & \\
& & & d_{n}
\end{array}\right)
$$

where $d_{i} \geqslant 0$ and d_{i} divides d_{i+1} (Section 7.4, [5]). Then $\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)$ is isomorphic to $\bigoplus_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$, and the dimension of $\operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)$ is equal to the number of zeros in the diagonal of the Smith form. Suppose $d_{1}=\cdots=d_{m}=0$ and $d_{m+1} \neq 0$. Then we have

$$
\begin{aligned}
\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{~K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) & =\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathbb{Z} / d_{m+1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{n} \mathbb{Z}, \mathbb{Z}\right) \\
& =\mathbb{Z} / d_{m+1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{n} \mathbb{Z}
\end{aligned}
$$

and

$$
\operatorname{Hom}\left(\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right)=\mathbb{Z}^{m+1}
$$

Hence we have

$$
\begin{aligned}
K^{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) & \cong \operatorname{Hom}\left(\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \oplus \operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{~K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) \\
& =\mathbb{Z} \oplus \mathbb{Z}^{m} \oplus \mathbb{Z} / d_{m+1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{n} \mathbb{Z} \\
& \cong \mathbb{Z} \oplus\left\{\Delta_{M} / \operatorname{Im}\left(\operatorname{Id}-\delta_{M}\right)\right\}
\end{aligned}
$$

Recall that $\operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right)$ is isomorphic to \mathbb{Z}^{m} so that

$$
\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right) \cong \mathbb{Z}^{m+1}
$$

Thus we have $\operatorname{Ext}_{\mathbb{Z}}^{1}\left(\mathrm{~K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right)=0$ and

$$
K^{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \operatorname{Hom}\left(\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right)
$$

Then $\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right) \cong \mathbb{Z} \bigoplus_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$ implies

$$
\begin{aligned}
\operatorname{Hom}\left(\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right), \mathbb{Z}\right) & \cong \operatorname{Hom}\left(\mathbb{Z} \bigoplus_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}, \mathbb{Z}\right) \cong \mathbb{Z} \bigoplus_{i=1}^{m} \mathbb{Z} \\
& \cong \mathbb{Z} \oplus \operatorname{Ker}\left(\operatorname{Id}-\delta_{M}\right) .
\end{aligned}
$$

Remark 4.7. The isomorphisms in Proposition 4.6 are unnatural as the short exact sequences in the Universal Coefficient Theorem split unnaturally.

Recall that the unstable and stable equivalence Ruelle algebras of a 1 -solenoid are nuclear, purely infinite, separable, simple and stable C^{*}-algebras ([3]). Then the classification theorem of Kirchberg-Phillips ([4], [9]) implies the following proposition.

Proposition 4.8. $R_{\mathrm{u}}(\bar{X}, \bar{f})$ is $*$-isomorphic to $R_{\mathrm{s}}(\bar{X}, \bar{f})$.
Examples 4.9. (i) Suppose that X is the unit circle and that $f: X \rightarrow X$ is given by $z \mapsto z^{n}, n \geqslant 2$. Then the adjacency matrix is $(n), \mathrm{K}_{0}(U(\bar{X}, \bar{f}))=\mathbb{Z}\left[\frac{1}{n}\right]$ and $\mathrm{K}_{1}(U(\bar{X}, \bar{f}))=\mathbb{Z}$. Since $\delta_{(n)}^{-1}$ is multiplication by $\frac{1}{n}$, we have

$$
\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right)=\mathrm{K}_{0}\left(R_{\mathrm{s}}(\bar{X}, \bar{f})\right)=\mathbb{Z} \oplus\{\mathbb{Z} /(n-1) \mathbb{Z}\}
$$

and

$$
\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{X}, \bar{f})\right)=\mathrm{K}_{1}\left(R_{\mathrm{s}}(\bar{X}, \bar{f})\right)=\mathbb{Z}
$$

(ii) Suppose that Y is a wedge of two circles a and b and that $g: Y \rightarrow Y$ is given by $a \mapsto a a b$ and $b \mapsto a b$. Then the adjacency matrix is $M=\left(\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right)$. Since M is an invertible matrix, we have $\mathrm{K}_{0}(U(\bar{Y}, \bar{g}))=\mathbb{Z} \oplus \mathbb{Z}, \mathrm{K}_{1}(U(\bar{Y}, \bar{g}))=\mathbb{Z}$ and that $1-\alpha_{\mathbf{u *}}: \mathbb{Z} \oplus \mathbb{Z} \rightarrow \mathbb{Z} \oplus \mathbb{Z}$ is an isomorphism. Hence we obtain

$$
\mathrm{K}_{0}\left(R_{\mathrm{u}}(\bar{Y}, \bar{g})\right)=\mathrm{K}_{1}\left(R_{\mathrm{u}}(\bar{Y}, \bar{g})\right)=\mathrm{K}_{0}\left(R_{\mathrm{s}}(\bar{Y}, \bar{g})\right)=\mathrm{K}_{1}\left(R_{\mathrm{s}}(\bar{Y}, \bar{g})\right)=\mathbb{Z}
$$

Acknowledgements. I express my deep gratitude to Dr. M. Boyle and Dr. J. Rosenberg at UMCP and Dr. I. Putnam at University of Victoria for their encouragement and useful discussions. And I would like to thank the referee for several helpful suggestions. The $[\cdot, \cdot]$-function for 1 -solenoids was suggested by Dr. Putnam. By kind permission, I presented his definition.

REFERENCES

1. A. Forrest, Cohomology of ordered Bratteli diagrams, Pacific J. Math., to appear.
2. M. Hilsum, G. Skandalis, Stabilité des C^{*}-algèbres de feuilletages, Ann. Inst. Fourier (Grenoble) 33(1983), 201-208.
3. J. Kaminker, I. Putnam, J. Spielberg, Operator algebras and hyperbolic dynamics, in Operator Algebras and Quantum Field Theory (Rome, 1996), S. Doplicher, R. Longo, J.E. Roberts and L. Zsidó (eds.), International Press, 1997, pp. 525-532.
4. E. Kirchberg, The classification of purely infinite C^{*}-algebras using Kasparov's theory, preprint, 1994.
5. D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge 1995.
6. B. Marcus, Unique ergodicity of some flows related to Axiom A diffeomorphisms, Israel J. Math. 21(1975), 111-132.
7. P. Muhly, J. Renault, D. Williams, Equivalence and isomorphism for groupoid C^{*}-algebras, J. Operator Theory 17(1987), 3-22.
8. J.A. Packer, K-theoretic invariants for C^{*}-algebras associated to transformations and induced flows, J. Funct. Anal. 67(1986), 25-59.
9. N.C. Phillips, A classification theorem for nuclear purely infinite simple C^{*}-algebras, Doc. Math. 5(2000), 49-114.
10. I. Putnam, C^{*}-algebras from Smale spaces, Canad. J. Math. 48(1996), 175-195.
11. I. Putnam, Hyperbolic Systems and Generalized Cuntz-Krieger Algebras, Lecture notes from Summer school in Operator algebras, Odense, Denmark, 1996.
12. I. Putnam, J. Spielberg, The structure of C^{*}-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163(1999), 279-299.
13. J. Renault, A Groupoid Approach to C^{*}-Algebras, Lecture Notes in Math., vol. 793, Springer-Verlag, 1980.
14. J. Rosenberg, C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55(1987), 431474.
15. D. Ruelle, Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math. 93(1988), 1-13.
16. J. Tomiyama, Invitation to C^{*}-Algebras and Topological Dynamics, World Scientific Publ. Co. 1987.
17. R.F. Williams, Classification of 1-dimensional attractors, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, RI, 1970, pp. 341-361.
18. I. Yi, Canonical symbolic dynamics for one-dimensional generalized solenoids, Trans. Amer. Math. Soc. 353(2001), 3741-3767.
19. I. Yi, Ordered group invariants for one-dimensional spaces, Fund. Math. 170(2001), 267-286.
20. I. Yi, Bratteli-Vershik systems for one-dimensional generalized solenoids, submitted for publication, Houston J. Math., to appear.

INHYEOP YI

Department of Mathematics
University of Maryland
College Park, MD 20742 USA

E-mail: inhyeop@math.umd.edu
Current address:

Department of Mathematics and Statistics
University of Victoria
Victoria, BC, V8W 3P4
CANADA
E-mail: yih@math.uvic.ca

Received May 31, 2001.

