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Abstract. Rigidity in C∗-tensor categories is investigated from the view-
point of Frobenius duality. Motivated by our previous studies on Jones index
theory in bimodules, the existence and uniqueness are established for Frobe-
nius duality. Similar results are proved for fiber functors, as well, with some
applications to compact quantum groups.
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1. INTRODUCTION

In this paper, we shall investigate the renormalization of rigidity in C∗-tensor
categories, which was inspired during studies of Jones index theory on subfactors.

Our idea goes back to [19], where fine structures of rigidity (called Frobenius
duality in what follows) are found in the tensor category of bimodules of finite
Jones index, i.e., the balanced renormalization of left and right dimensions (or
traces) gives rise to a transparent formulation of algebraic structures behind Jones
index theory (so called paragroups). See [10] and [12] for more sophisticated
treatment of dimension or Jones index based on similar ideas.

The notion of Frobenius duality is tightly connected with the accompanied
operation of taking conjugate objects and transposed intertwiners. The existence
of such operations is obvious when one deals with bimodules based on von Neu-
mann algebras due to the self-duality of Hilbert spaces.

On the other hand, in sector theory, another version of algebraic formulations
of Jones index theory and C∗-tensor categories is possible as endomorphisms of
infinite factors, where conjugates are only defined up to inner automorphisms and
there are no canonical choices.

In spite of different appearances, they provide the equivalent information on
algebraic data if one appeals to explicit computations. Seeking for the reason of
such coincidences is one of major motivation in the present work and we shall give
a definite solution to this problem.
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Leaving detailed descriptions to later sections, the result is that, we can
extract a systematic choice of rigidity pairings (i.e., Frobenius duality) in C∗-tensor
categories, which turns out to be unique up to natural monoidal equivalences.

The existence of Frobenius duality has been effectively used in [8],[22] to
construct random walk models of bimodules associated to C∗-tensor categories,
whereas the uniqueness answers to the above question on equivalences of combi-
natorial data derived from C∗-tensor categories in various methods.

In the first section, we shall review formulations and results on (abstract
properties of) conjugations in C∗-tensor categories.

The notion of conjugation is especially meaningful when it is related with the
rigidity as investigated by many researchers ([14], [4] and so on) and, in Section 2,
we shall further develop the idea of balanced renormalization in rigid C∗-tensor
categories.

The notion of Frobenius duality (a fine structure of rigidity) is then formu-
lated as a functorial choice of balanced rigidity pairings together with a compatible
choice of conjugation.

All these are coupled, in Section 3, to show the existence and the uniqueness
of (positive) Frobenius duality in rigid C∗-tensor categories of simple unit objects.

When the tensor category is realized as linear maps among finite-dimensional
vector spaces, the rigidity turns out be the source of antipodes of Hopf algebras
in Tannaka-Krein duality ([16]).

If the positivity comes into, i.e., if one deals with C∗-tensor categories of
finite-dimensional Hilbert spaces, a kind of rigidity is utilized in [17] to reconstruct
compact quantum groups.

However, one more step in renormalization of rigidity in the case of Tannaka
duals gives rise to a strong form of positivity, which enables us to apply the
reconstruction arguments in [20] and easily recover the Woronowicz’s result on
Tannaka-Krein duality (in a slightly generalized way).

2. INVOLUTIONS IN C∗-TENSOR CATEGORIES

A linear category C is called a C∗-category if hom-sets are complex Banach spaces
with ∗-operation satisfying ‖f∗f‖ = ‖f‖2 for f ∈ Hom(X,Y ). A monoidal cat-
egory C is a C∗-tensor category if it is a C∗-category with unitary associativity
and unit constraints and the ∗-operation is compatible with the tensor product
(f ⊗ g)∗ = f∗ ⊗ g∗.

A monoidal functor F from a C∗-tensor category C into another C∗-tensor
category D with multiplicativity mX,Y : F (X) ⊗ F (Y ) → F (X ⊗ Y ) is unitary if
it satisfies F (f)∗ = F (f∗) for f ∈ Hom(X,Y ) and mX,Y is unitary for objects X,
Y in C.

An involution (or a conjugation) in a C∗-tensor category C is, by definition,
a contravariant C∗-functor X 7→ X∗, Hom(X,Y ) 3 f 7→ tf ∈ Hom(Y ∗, X∗)
(t(f∗) = (tf)∗ particularly) with natural families of unitaries {cX,Y : Y ∗ ⊗X∗ →
(X⊗Y )∗} (conjugate multiplicativity) and {dX : X → (X∗)∗} (duality) satisfying

(X∗ ⊗ Y ∗)⊗ Z∗ c⊗1−→ (Y ⊗X)∗ ⊗ Z∗ c−→ (Z ⊗ (Y ⊗X))∗

a

y
yta

X∗ ⊗ (Y ∗ ⊗ Z∗) −→
1⊗c

X∗ ⊗ (Z ⊗ Y )∗ −→
c

((Z ⊗ Y )⊗X)∗
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X ⊗ Y d⊗d−→ X∗∗ ⊗ Y ∗∗
d

y
yc

(X ⊗ Y )∗∗ −→
tc

(Y ∗ ⊗X∗)∗

and tdX = d−1
X∗ : X∗∗∗ → X∗. (The naturality means that t(f ⊗ g) c∼ tg ⊗ tf and

f
d∼ t(tf).)

Lemma 2.1. For a unitary involution f 7→ tf in a C∗-tensor category C, we
have ‖tf‖ = ‖f‖ for any f : X → Y .

Proof. By the relations ‖tf‖2 = ‖tf(tf)∗‖ = ‖t(f∗f)‖ and ‖f‖2 = ‖f∗f‖,
we may assume that f ∈ End(X). Then End(X) 3 f 7→ tf ∈ End(X) defines
a ∗-homomorphism from the C∗-algebra End(X) into the opposite C∗-algebra
End(X)◦. Thus we have ‖tf‖ 6 ‖f‖ and hence ‖f‖ = ‖ttf‖ 6 ‖tf‖.

In the remaining of this section, we shall present the coherence theorem on
involutive monoidal categories, which are reduced to the ordinary ones if we drop
off the information on involutions. For proofs, we refer to [2].

Theorem 2.2. (Coherence Theorem with Involution) Let (C,⊗, a, I, l, r, ∗, c,
d) be an involutive C∗-tensor category and X = (X1, . . . , Xk), Y = (Y1, . . . , Yl),
k, l > 1, be finite sequences of objects in C. Let X̃ be an object in C obtained by
repetition of ∗-operations and tensor products from X1, . . . , Xk and similarly for
Ỹ . (For example, (X1 ⊗ (X2 ⊗X∗

3 ))∗ ⊗X∗
4 .)

If there are any unitaries X̃ → Ỹ which are the form of products of a, l, r,
c, d with combinations of taking transposed morphisms or inverses allowed, then
they all coincide.

Definition 2.3. Let C, C′ be involutive C∗-tensor categories. A monoidal
functor F : C → C′ is involutive if there is a natural family {sX : F (X∗)→ F (X)∗}
of unitaries in C′ satisfying

F (Y ∗)⊗ F (X∗) s⊗s−→ F (Y )∗ ⊗ F (X)∗ c−→ (F (X)⊗ F (Y ))∗

m

y
xtm

F (Y ∗ ⊗X∗) −→
F (c)

F ((X ⊗ Y )∗) −→
s

F (X ⊗ Y )∗

F (X∗∗) s−→ F (X∗)∗

F (d−1)

y
xts

F (X) −→
d

F (X)∗∗ .

Proposition 2.4. Let F : C → C′ and G : C′ → C′′ be involutive C∗-tensor
functors. Then the monoidal functor GF : C → C′′ is involutive as well with respect
to mGF = G(mF )mG and sGF = sGG(sF ).
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Definition 2.5. Let F,G : C → C′ be involutive monoidal functors. A
natural unitary transformation {ϕX : F (X) → G(X)} is called an involutive
monoidal equivalence if it is monoidal (multiplicative) and satisfies

F (X∗) sF

−→ F (X)∗

ϕX∗
y

xtϕX

G(X∗) −→
sG

G(X)∗ .

Definition 2.6. An involutive monoidal C∗-functor F : C → C′ is called
an involutive monoidal C∗-isomorphism if there are an involutive monoidal C∗-
functor G : C′ → C and two involutive monoidal equivalences

ϕ : FG ∼= idC′ , ψ : GF ∼= idC.
Two involutive C∗-tensor categories C, C′ are said to be isomorphic if there is an
involutive monoidal isomorphism F : C → C′.

Proposition 2.7. (Involutive Categorical Equivalence) For an involutive
C∗-tensor functor F : C → C′, the following are equivalent:

(i) F is an involutive monoidal isomorphism;
(ii) for each object X ′ in C′, there is an object X in C such that F (X) ∼= X ′

and we have
F : Hom(X,Y ) ∼= Hom(F (X), F (Y ))

for any X, Y .

Theorem 2.8. Any involutive C∗-tensor category is C∗-isomorphic to a
strictly involutive C∗-tensor category.

3. RIGIDITY IN C∗-TENSOR CATEGORIES

By coherence theorem, C∗-tensor categories is unitarily isomorphic to strict ones,
whence we may assume strictness in C∗-tensor categories without loss of generality.

An object X in a (strict) C∗-tensor category C with the unit object I is said
to be rigid if we can find an object X∗ and a pair of morphisms ε : X ⊗ Y → I,
δ : I → Y ⊗X satisfying the hook identities:

X → X ⊗ (Y ⊗X)→ (X ⊗ Y )⊗X → X,

Y → (Y ⊗X)⊗ Y → Y ⊗ (X ⊗ Y )→ Y

are identity morphisms.
Given a rigid object X, the object X∗ is unique up to an isomorphism and

is called a dual object of X, whereas the pair (δ, ε) is referred to as a rigidity pair.
A C∗-tensor category C is rigid if every object in C is rigid and is isomorphic

to a dual of another object.
Now the following is an easy exercise of manipulation of hook identities.
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Lemma 3.1. (Transposed Morphism Formula) Let X∗, Y ∗ be duals of X, Y
with rigidity pairs (εX , δX), (εY , δY ) respectively. Then, for morphisms f : X → Y
and g : Y ∗ → X∗, the following four conditions are equivalent:

X ⊗ Y ∗ f⊗1−→ Y ⊗ Y ∗
1⊗g

y
yεY

X ⊗X∗ −→
εX

I ,

Y ∗ δX⊗1−→ X∗ ⊗X ⊗ Y ∗
g

y
y1⊗f⊗1

X∗ −→
1⊗εY

X∗ ⊗ Y ⊗ Y ∗ ,

X
1⊗δY−→ X ⊗ Y ∗ ⊗ Y

f

y
y1⊗g⊗1

Y −→
εX⊗1

X ⊗X∗ ⊗ Y ,

I
δX−→ X∗ ⊗X

δY

y
y1⊗f

Y ∗ ⊗ Y −→
g⊗1

X∗ ⊗ Y .

Given a morphism f : X → Y , the morphism g in the above lemma is often
denoted by tf and called the transposed of f (with respect to (εX , εY )).

An objectX in a C∗-tensor category is simple (semisimple) if End(X) = C1X

(it is isomorphic to a direct sum of simple objects).

Lemma 3.2. (Longo-Roberts) Let C be a C∗-tensor category with simple unit
object and X be a rigid object in C. Then End(X) is finite-dimensional.

Proof. Let ε : X ⊗ X∗ → I, δ : I → X∗ ⊗ X be a rigidity pair and F :
End(X)→ Hom(I,X∗⊗X) be the associated Frobenius transform F (f) = (1⊗f)δ
and F−1(g) = (ε⊗ 1)(1⊗ g). Since

‖F (f)‖2 = δ∗(1⊗ f∗f)δ 6 ‖f‖2‖δ‖2,
‖F−1(g)‖2 = (ε⊗ 1)(1⊗ gg∗)(ε∗ ⊗ 1) 6 ‖g‖2‖ε‖2,

the C∗-algebra End(X) is continuously isomorphic to the Hilbert space Hom(I,X∗
⊗X) with the bounded inverse, whence End(X) is reflexive as a Banach space,
proving dim(End(X)) < +∞.

Corollary 3.3. In a rigid C∗-tensor category with simple unit object, every
object is isomorphic to a direct sum of finitely many simple objects, i.e., a rigid
C∗-tensor category is semisimple if the unit object is simple.

Lemma 3.4. (cf. [11]) For a simple object X in a rigid C∗-tensor category,
X∗ is simple and X∗∗ ∼= X.

In what follows, the C∗-tensor category C is assumed to be rigid.

Definition 3.5. A morphism ϕ : X ⊗ Y → I is called a duality pairing if
there is a morphism ψ : I → Y ⊗X such that {ϕ,ψ} forms a rigidity pair.

Lemma 3.6. (Characterization of Rigidity Pairings) Let X be an object in
C and Y be a dual object of X. For a morphism ϕ : Y ⊗ X → I, the following
conditions are equivalent:

(i) the morphism ϕ is a duality pairing;
(ii) the positive linear functional

End(X) 3 a 7→ ϕ(a⊗ 1)ϕ∗

is faithful;
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(iii) the positive linear functional

End(Y ) 3 b 7→ ϕ(1⊗ b)ϕ∗

is faithful.
Moreover, if ϕ satisfies one of these conditions, then there is a unique co-

pairing ψ : I → Y ⊗X such that (ϕ,ψ) is a rigidity pair.

Proof. Assume that ϕ is one half of a rigidity pair. Then ϕ(aa∗ ⊗ 1)ϕ∗ = 0,
i.e., ϕ(a⊗ 1) = 0 implies a = 0 by hook identities.

Conversely assume that the functional ϕ(a⊗ 1)ϕ∗ is faithful. As Y is a dual
object of X, we can find a rigidity pair ε : X ⊗ Y → I, δ : I → Y ⊗ X and
the positive linear functional a 7→ ε(a ⊗ 1)ε∗ is faithful as just observed. Let
f = (ϕ⊗ 1)(1⊗ δ) ∈ End(X) be the Frobenius transform of ϕ with ϕ = ε(f ⊗ 1).
By the faithfulness of the functional

a 7→ ϕ(a⊗ 1)ϕ∗ = ε(faf∗ ⊗ 1)ε∗,

f is invertible in End(X) (End(X) being finite-dimensional). If we set

ψ = (1⊗ f−1)δ,

the pair {ϕ,ψ} satisfies hook identities (note that ε(f⊗1) = ε(1⊗tf) and (1⊗f)δ =
(tf ⊗ 1)δ with (tf)−1 = t(f−1)).

If ψ′ is another copairing, g = (ϕ⊗1)(1⊗ψ′) ∈ End(X) satisfies ψ′ = (1⊗g)ψ
by hook identities for (ϕ,ψ), whereas g = 1 by the hook identity for (ϕ,ψ′).

Lemma 3.7. (Tracial Pairing) Let X∗ be a dual object of X.
(i) There is a duality pairing ε : X⊗X∗ → I such that the associated linear

functional is tracial.
(ii) A duality pairing ε : X ⊗X∗ → I gives a tracial functional if and only

if t(f∗) = (tf)∗ for f ∈ End(X), where tf ∈ End(X∗) is defined by ε(f ⊗ 1) =
ε(1⊗ tf).

Proof. (i) Let ϕ : X⊗X∗ → I be a duality pairing. Let τ be a faithful tracial
state on End(X) and 0 6 h ∈ End(X) be the Radon-Nikodym derivative of the
functional ϕ(a ⊗ 1)ϕ∗ with respect to τ . By the previous lemma, h is invertible
and ε = ϕ(h−1/2 ⊗ 1) gives a rigidity pair, which satisfies

ε(a⊗ 1)ε∗ = τ(a), a ∈ End(X).

(ii) For a, b ∈ End(X),

ε(ab⊗ 1)ε∗ = ε(1⊗ tbta)ε∗ = ε(1⊗ tb)(1⊗ ta)ε∗ = ε(b⊗ 1)(1⊗ ta)ε∗.

If we set h = (ta)∗, then (1⊗ ta)ε∗ = (ε(1⊗ h))∗ = (ε(th⊗ 1))∗ shows that

ε(ab⊗ 1)ε∗ = ε(b(th)∗ ⊗ 1)ε∗.

Thus the functional is tracial if and only if (th)∗ = a, i.e., (ta)∗ = t(a∗) for any
a ∈ End(X).
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Definition 3.8. A rigidity pair {ε : X ⊗X∗ → I, δ : I → X∗ ⊗X} (or just
ε as δ is determined by ε) is balanced if

ε(a⊗ 1)ε∗ = δ∗(1⊗ a)δ for any a ∈ End(X).

Note that, given a balanced pair {ε, δ}, the pair {δ∗, ε∗} is also balanced because
of

δ∗(b⊗ 1)δ = δ∗(1⊗ tb)δ = ε(tb⊗ 1)ε∗ = ε(1⊗ b)ε∗.
Lemma 3.9. (Existence and Uniqueness)

(i) For any X with a dual object X∗, there exists a balanced duality pairing.
(ii) For a balanced duality pairing ε : X⊗X∗ → I, the associated functional

ε(a⊗ 1)ε∗ is tracial.
(iii) Let εX : X ⊗X∗ → I and εY : Y ⊗Y ∗ → I be balanced duality pairings

with X and Y isomorphic (whence X∗ ∼= Y ∗). Then, given a unitary v : X∗ → Y ∗,
there is a unique unitary u : X → Y such that

εX = εY (u⊗ v).
Conversely, given a balanced duality pairing εY and unitaries u : X → Y , v :
X∗ → Y ∗, the duality pairing εX = εY (u⊗ v) is balanced.

Proof. For a simple object X, a rigidity pair {ε, δ} is balanced if and only if
εε∗ = δ∗δ. Given a rigidity {ε, δ} of X, {µε, µ−1δ} is again a rigidity and hence
we can choose µ ∈ C so that {µε, µ−1δ} is balanced.

Let R be a representative set of isomorphism classes of simple objects in C
and for each X ∈ R, take its dual X∗ inside R (particularly X∗∗ = X) and choose
a balanced pair {εX , δX}.

For an arbitrary object X with a specified dual object X∗, which can be
decomposed as

X ∼=
⊕

j

mjXj , Xj ∈ R, mj ∈ {1, 2, 3, . . .},

choose mutually orthogonal coisometries vj,k : X → Xj , wj,k : X∗ → X∗
j for

k = 1, . . . ,mj and set

εX =
∑

j

mj∑

k=1

εj(vj,k ⊗ wj,k),

δX =
∑

j

mj∑

k=1

(w∗j,k ⊗ v∗j,k)δj ,

where εj = εXj and δj = δXj .
Then it is immediate to check the hook identities for the pair {εX , δX}.

Moreover, letting ek,l = v∗j,kvj,l with 1 6 k, l 6 mj , we have

εX(ek,l ⊗ 1)ε∗X =
∑

a,b

εj(vj,a ⊗ wj,a)(ek,l ⊗ 1)(v∗j,b ⊗ w∗j,b)ε∗j

=
∑

a

εj(vj,aek,lv
∗
j,a ⊗ 1X∗

j
)ε∗j

= δk,lεjε
∗
j
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and similarly
δ∗X(1⊗ ek,l)δX = δk,lδ

∗
j δj ,

which shows that the rigidity pair {εX , δX} is balanced and at the same time the
associated functional is tracial.

Now let u : X → Y , v : X∗ → Y ∗ be unitaries. If we consider the pair
ε = εX(u∗ ⊗ 1) : Y ⊗X∗ → I, δ = (1 ⊗ u)δX : I → X∗ ⊗ Y , then it satisfies one
half of the hook identities

X∗ δ⊗1−→ X∗ ⊗ Y ⊗X∗ 1⊗ε−→ X∗ ,

whereas the associated functional of ε is faithful and tracial. Then by the unique-
ness of copairing (Lemma 3.6), δ is in fact the copairing of ε. In particular, it
satisfies the other hook identity

Y
1⊗δ−→ Y ⊗X∗ ⊗ Y ε⊗1−→ Y .

In this way we have a balanced tracial pair {εX(u∗⊗1), (1⊗u)δX}. Similarly,
we know that {εX(1⊗ v∗), (v ⊗ 1)δX} is a balanced tracial pair.

Thus, for the proof of uniqueness, we may assume that we are given two
balanced tracial pairings ε : X ⊗X∗ → I, ε′ : X ⊗X∗ → I and need to show the
unique unitary u ∈ End(X) satisfying ε′ = ε(u⊗ 1).

Let h ∈ End(X) be the Frobenius transform of ε′ with respect to the rigidity
pair {ε, δ}. Then ε′ = ε(h⊗ 1) and its copairing is given by δ′ = (1⊗ h−1)δ. The
duality pairing ε′ being assumed to be balanced, we have

ε(h⊗ 1)(a⊗ 1)(h∗ ⊗ 1)ε∗ = δ∗(1⊗ (h−1)∗)(1⊗ a)(1⊗ h−1)δ

for a ∈ End(X). Since τ(a) = ε(a⊗1)ε∗ = δ∗(1⊗a)δ is tracial by our assumption,
the above condition is equivalent to τ(h∗ha) = τ(h−1(h−1)∗a), i.e., h∗h = (h∗h)−1.
Since h∗h > 0, we have h∗h = 1, which implies the unitarity of h because End(X)
is finite-dimensional.

Finally, the functional

ε′(a⊗ 1)(ε′)∗ = ε(hah∗ ⊗ 1)ε∗ = ε(a⊗ 1)ε∗

is tracial.

Corollary 3.10. For an object X, the trace τX on End(X) defined by

τX(a) = εX(a⊗ 1)ε∗X
with εX : X∗ ⊗X → I a balanced duality pairing is independent of the choice of
εX .

Lemma 3.11. (Multiplication and Addition) Let εX : X ⊗ X∗ → I and
εY : Y ⊗ Y ∗ → I be balanced duality pairings.

(i) The composite morphism

X ⊗ Y ⊗ Y ∗ ⊗X∗ 1⊗εY ⊗1−→ Y ⊗ Y ∗ εX−→ I

gives a balanced duality pairing for the tensor product X ⊗ Y .
(ii) Let p : X ⊕ Y → X, q : X ⊕ Y → Y , p : X∗ ⊕ Y ∗ → X∗ and

q : X∗ ⊕ Y ∗ → Y ∗ be the obvious coisometries. Then the morphism

εX⊕Y = εX(p⊗ p) + εY (q ⊗ q)



Frobenius duality in C∗-tensor categories 11

defines a balanced duality pairing for the direct sum X ⊕ Y .

Proof. (i) Let δX : I → X∗ ⊗X and δY : I → Y ∗ ⊗ Y be the accompanied
copairings. Then ε = εX(1⊗ εY ⊗ 1) and δ = (1⊗ δX ⊗ 1)δY form a rigidity pair.
For a ∈ End(X ⊗ Y ), let b ∈ End(X) and c ∈ End(Y ) be defined by

X
1⊗ε∗Y−→ X ⊗ Y ⊗ Y ∗ a⊗1−→ X ⊗ Y ⊗ Y ∗ 1⊗εY−→ X

Y
δX⊗1−→ X∗ ⊗X ⊗ Y 1⊗a−→ X∗ ⊗X ⊗ Y δ∗X⊗1−→ Y .

Then we have

εX(1⊗ εY ⊗ 1)(a⊗ 1)(1⊗ ε∗Y ⊗ 1)ε∗X = εX(b⊗ 1)ε∗X
= δ∗X(1⊗ b)δX
= (δ∗X ⊗ εY )(1⊗ a⊗ 1)(δX ⊗ ε∗Y )

= εY (δ∗X ⊗ 1)(1⊗ a⊗ 1)(dX ⊗ 1)ε∗Y
= εY (c⊗ 1)ε∗Y
= δ∗Y (1⊗ c)δY
= δ∗Y (1⊗ δ∗X ⊗ 1)(1⊗ a)(1⊗ δX ⊗ 1)δY .

(ii) If we define a morphism δX⊕Y : I → (X∗ ⊕ Y ∗)⊗ (X ⊕ Y ) by

δX⊕Y = (p⊗ p)∗δX + (q ⊗ q)∗δY ,
it gives the accompanied copairing of εX⊕Y and, for a ∈ End(X ⊕ Y ),

εX⊕Y (a⊗ 1)ε∗X⊕Y = εX(p⊗ p)(a⊗ 1)(p⊗ p)∗ε∗X + εY (q ⊗ q)(a⊗ 1)(q ⊗ q)∗ε∗Y
= εX(pap∗ ⊗ 1)ε∗X + εY (qaq∗ ⊗ 1)ε∗Y
= δ∗X(1⊗ pap∗)δX + δ∗Y (1⊗ qaq∗)δY
= δ∗X⊕Y (1⊗ a)δX⊕Y .

4. FROBENIUS DUALITY

Let C be a rigid (strict) C∗-tensor category. By a Frobenius duality in C, we shall
mean a family of morphisms {εX : X⊗X∗ → I} together with a unitary involution
(∗, t, c, d) in C satisfying:

(i) (multiplicativity)

X ⊗ Y ⊗ Y ∗ ⊗X∗ 1⊗c−→ X ⊗ Y ⊗ (X ⊗ Y )∗

1⊗εY ⊗1

y
yεXY

X ⊗X∗ −→
εX

I ;

(ii) (naturality) For a morphism f : X → Y ,

X ⊗ Y ∗ f⊗1−→ Y ⊗ Y ∗
1⊗tf

y
yεY

X ⊗X∗ −→
εX

I ;
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(iii) (faithfulness) The map

Hom(X,Y ) 3 f 7→ εY ◦ (f ⊗ 1) ∈ Hom(X ⊗ Y ∗, I)
is injective for X, Y ∈ Object(C);

(iv) (neutrality) For f ∈ End(X),

εX(fd−1
X ⊗ 1)c−1

X,X∗
tεX = εX∗(1⊗ dXfd

−1
X )t(1⊗ dX)tεX∗ .

Remark 4.1. The neutrality condition is simply written as

εX(f ⊗ 1)tεX = εX∗(1⊗ f)tεX∗

when the involution is strict.

Definition 4.2. A Frobenius duality is positive if it satisfies

(d−1
X ⊗ 1)c−1

X,X∗
tεXε

−1
I = ε∗X

for any object X in C, where εI : I ⊗ I∗ → I is identified with the morphism
I∗ → I (C being assumed to be strict).

In what follows, we require the normalization I∗ = I and dI = 1I for the
involution to avoid inessential complications.

In a C∗-tensor category with positive Frobenius duality, hom-sets are natu-
rally Hilbert spaces: For f , g ∈ Hom(X,Y ), we define the inner product by

(f |g) = τX(f∗g).

We record here the following fact to realize the role of neutrality in Frobenius
dualities (see [21] for more information).

Proposition 4.3. The inner products in hom-sets are invariant under f 7→
f∗, f 7→ tf and Frobenius transforms.

Proof. For f , g ∈ Hom(X,Y ),

(g∗|f∗) = τY (gf∗) = τX(f∗g) = (f |g)
and

(tf |tg) = τY ∗(tf∗tg) = τY ∗(t(gf∗)) = τY (gf∗) = (f |g).
For f , g ∈ Hom(XY,Z), let F , G ∈ Hom(X,ZY ∗) be their Frobenius trans-

forms:
F = (f ⊗ 1Y ∗)(1X ⊗ δY ), G = (g ⊗ 1Y ∗)(1X ⊗ δY ).

Then we have

τX(F ∗G) = τX((1X ⊗ δ∗Y )(f∗g ⊗ 1Y ∗)(1X ⊗ δY ))

= δ∗X(h⊗ 1X∗)δX
= δ∗X(1X ⊗ δ∗Y ⊗ 1X∗)(f∗g⊗Y ∗X∗)(1X ⊗ δY ⊗ 1X∗)δX
= δ∗XY (f∗g ⊗ 1Y ∗X∗)δXY

= τXY (f∗g).
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Lemma 4.4. The following diagram commutes:

X∗ ⊗X∗∗ c−→ (X∗ ⊗X)∗

εX∗
y

ytδX

I === I∗ .

Proof. By the commutativity of the diagram

X∗ ⊗X∗∗ δX⊗1−→ X∗ ⊗X ⊗X∗ ⊗X∗∗ 1⊗εX⊗1−→ X∗ ⊗X∗∗

c

y
y1⊗c

yεX∗

(X∗ ⊗X)∗ −→
δX⊗1

X∗ ⊗X ⊗ (X∗ ⊗X)∗ −→
εX∗X

I
tδX

y
yεX∗X

I∗ === I

we see that tδXc is equal to εX∗(1⊗εX⊗1)(δX⊗1) = εX∗ , which gives the claimed
identity.

Lemma 4.5. Given a positive Frobenius duality {∗, t, c, d, ε}, the morphisms
εX are balanced duality pairings.

Proof. By the above lemma, tδX = εX∗c−1. If we combine this with the
commutative diagram

I∗∗
ttδX−→ (X∗X)∗∗

tc−→ (X∗X∗∗)∗

‖ dX∗X

x
xc

I −→
δX

X∗X −→
dX∗⊗dX

X∗∗∗X∗∗

then we have
δX = (tdX ⊗ d−1

X )c−1
X∗∗,X∗

tεX∗ .

Thus {εX ,
tεX∗} gives a rigidity pair, where tεX∗ is used to denote the composite

morphism

I
tεX∗−→ (X∗X∗∗)∗ c−1

−→ X∗∗∗X∗∗ td⊗d−1

−→ X∗X .

By using the positivity ε∗X = tεX , the neutrality property turns out to be
nothing but the balancedness relation.

In what follows, we shall show the existence and the uniqueness of the positive
Frobenius duality in rigid C∗-tensor categories.

Let C be a rigid (strict) C∗-tensor category. We choose a representative set
R0 of simple objects in C with I ∈ R0. For non self-dual object X in R0, there is
a unique dual object X∗ in R0. For a self-dual object X in R0 \ {I}, we choose
its dual X∗ so that X∗ 6= X (particularly, X∗ 6∈ R0). We now set

R = R0 t {X∗;X is a self-dual object in R0 \ {I}}.
By letting I∗ = I and (X∗)∗ = X for X ∈ R0, we obtain an involution ∗ in R so
that X∗ is a dual object of X ∈ R.

Let R be the category with objects given by free (associative) products gen-
erated by the set R and hom-sets given by

Hom(X,Y ) = Hom(X,Y ),
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where X and Y are objects in C defined inductively by

XY = X ⊗ Y .
(This is well-defined by the strictness assumption or the coherence theorem.)

The category R is a C∗-tensor category in the obvious way and unitarily
isomorphic to C by the obvious imbedding functor R → C. The operation ∗ is
uniquely extended to objects in R so that (XY )∗ = Y ∗X∗. Note that X∗∗ = X
for any object X in R.

We choose balanced rigidity pairs {εX : X ⊗X∗ → I, δX : I → X∗ ⊗X} for
objects in R so that

ε∗X = δX∗ for X ∈ R.
(To ensure this relation, we have enlarged R0 to R.)

For objects in R, rigidity pairs are defined inductively by the relation

εXY = εX(1X ⊗ εY ⊗ 1X∗) : (XY )(Y ∗X∗)→ I,

δXY = (1Y ∗ ⊗ δX ⊗ 1Y )δY : I → (Y ∗X∗)(XY ),

which are balanced by Lemma 3.11.
Note that the relation ε∗X = δX∗ remains valid for objects in R.

Lemma 4.6. For morphisms f : X → Y and g : Y ∗ → X∗ in R, the equality

εY (f ⊗ 1Y ∗) = εX(1X ⊗ g)
holds if and only if

εY ∗(1⊗ f) = εX∗(g ⊗ 1).

Proof. The first equation is g = tf . Taking the adjoint in the relation

εX(f∗ ⊗ 1) = εY (1⊗ t(f∗)),

we have
(f ⊗ 1)δX∗ = (f ⊗ 1)ε∗X = (1⊗ tf)ε∗Y = (1⊗ tf)δY ∗

(note that t(f∗) = (tf)∗ by Lemma 3.7, Lemma 3.9 and Lemma 3.11), i.e., tf
is the transposed morphism of f with respect to the rigidity pairs {εX∗ , δX∗},
{εY ∗ , δY ∗} and hence we have

εY ∗(1⊗ f) = εX∗(tf ⊗ 1) = εX∗(g ⊗ 1)

by Lemma 3.1.

Theorem 4.7. Every rigid C∗-tensor category admits a positive Frobenius
duality, which is unique up to unitary isomorphisms, i.e., given two Frobenius du-
alities {εX , X

∗, tf, c, d} and {ε′X , X∗′ , t
′
f, c′, d′}, we can find a family of unitaries

{sX : X∗ → X∗′} satisfying:
(i) (Equivariance)

X∗ ⊗X εX−→ I
sX

y
∥∥∥

X∗′ ⊗X −→
ε′

X

I ;
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(ii) (Naturality)
X∗ sX−→ X∗′

tf

x
xt′f

Y ∗ −→
sY

> Y ∗
′

for f : X → Y ;
(iii) (Multiplicativity)

Y ∗ ⊗X∗ s⊗s−→ Y ∗
′ ⊗X∗′

c

y
yc′

(X ⊗ Y )∗ −→
s

(X ⊗ Y )∗
′

;

(iv) (Duality)
X∗∗ sX∗−→ X∗∗′

d

x
xt′sX

X −→
d′

X∗′∗′ .

Proof. Let C be a rigid (strict) C∗-tensor category. By the previous discus-
sion, C is unitarily isomorphic to the C∗-tensor category R, which is furnished
with a special family of duality pairings {εX : X∗X → I}.

Given a morphism f : X → Y in R, we define tf : Y ∗ → X∗ by the relation

εY (f ⊗ 1Y ∗) = εX(1⊗ tf),

namely,
tf = (1⊗ εY )(1⊗ f ⊗ 1)(δX ⊗ 1)

by Lemma 3.1. Then we have t(f ⊗ g) = tg ⊗ tf from definition. Moreover, by
the previous lemma and the fact that X∗∗ = X in R, we have ttf = f . Since εX

is balanced, Lemma 3.9 and Lemma 3.7 ensures the relation t(f∗) = (tf)∗. Thus
we can define a unitary involution by letting cX,Y = 1Y ∗X∗ , d = {1X} and we see
that the family {εX} meets the requirements of Frobenius duality except for the
neutrality condition.

We now claim tεX = δX∗ . In fact, from Lemma 3.1 and our definitions, we
have

tεX = (1⊗ εX)(1⊗ δX ⊗ 1)δX∗

and then the hook identity is used to get

(εX∗ ⊗ 1X)(1X∗ ⊗ tεX) = 1X∗ ,

which implies tεX = δX∗ by the uniqueness of copairings (Lemma 3.6). Since
δX∗ = ε∗X by our choice, we have tεX = ε∗X , showing the neutrality condition as
εX being balanced and, at the same time, the positivity of the Frobenius duality
{εX}. So far we have checked the existence of a positive Frobenius duality in the
tensor category R. Now the existence part is a consequence of Lemma 4.8 below.

Conversely, assume that two positive Frobenius dualities {ε, ∗, t, c, d} and
{ε′, ∗′, t′, c′, d′} in a rigid (strict) C∗-tensor category C are given. Since {εX} and
{ε′X} are families of balanced duality pairings, the uniqueness result (Lemma 3.9)
enables us to define a unitary sX : X∗ → X∗′ so that ε′X(sX ⊗ 1X) = εX for each
X.



16 Shigeru Yamagami

The family {sX} is obviously natural in X and multiplicative as can be
easily seen, i.e., s = {sX} gives a monoidal equivalence between antimultiplicative

functors t and t′ (t
s' t′). Then t2

s2

' t′2 and, if we compose this with the monoidal

equivalence t′2
d′' id, we obtain another duality family d′′ defined by

X
d′X−→ X∗′∗′ t′sX−→ X∗∗′ s−1

X∗−→ X∗∗ .

Thus, we may assume that

X∗ = X∗′ , εX = ε′X , t = t′, c = c′

for any X in C and the difference is stacked up to duality isomorphisms

dX , d
′′
X : X → X∗∗.

However, from positivity of Frobenius duality, we have

(1⊗ dX)ε∗X = tεX = (1⊗ d′′X)ε∗X

(X∗⊗X∗∗ and (X∗⊗X)∗ being identified by the conjugate multiplicativity c = c′),
where the faithfulness axiom can be used to conclude dX = d′′X for any X.

Lemma 4.8. Let C and D be rigid strict C∗-tensor categories with simple
unit objects. Assume that D is furnished with a positive Frobenius duality with the
strict involution and G : D → C be an isomorphic functor of C∗-tensor categories
with the trivial multiplicativity (G(XY ) = G(X)G(Y ) and mG

X,Y = id) such that
G(ID) = IC.

Then C admits a positive Frobenius duality.

Proof. Choose a C∗-tensor functor F : C → D with multiplicativity mF so
that F (IC) = ID and the composite functors G ◦ F , F ◦ G are unitarily and
monoidally equivalent to the identity functors.

We can then define an involution in C by

X∗ = G(F (X)∗), tf = G(tF (f)).

The conjugate multiplicativity cX,Y and the duality dX are defined by

Y ∗X∗ = G((F (X)F (Y ))∗)
G(tmF )←− G(F (XY )∗) = (XY )∗

X ←− G(F (X)) = G(F (X)∗∗) −→ G((FG(F (X)∗))∗) = X∗∗ .

Moreover, define a morphism εX : XX∗ → I so that F (εX) is given by

F (XX∗) mF

←− F (X)F (X∗) = F (X)FG(F (X)∗) −→ F (X)F (X)∗
εF (X)−→ I .

Now it is straightforward to check that these give a positive Frobenius duality
in C.
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5. FROBENIUS DUALITY IN TANNAKA DUALS

Lemma 5.1. Let V and W be finite-dimensional Hilbert spaces and ε : W ⊗
V → C be a non-degenerate bilinear form. Then there is a unique unitary map
u : V ∗ →W such that

ε(u⊗ 1) : V ∗ ⊗ V → C
is positive.

Proof. This is just a reformulation of the existence and the uniqueness of
polar decompositions of linear operators on Hilbert spaces.

Theorem 5.2. Let C be a rigid C∗-tensor category and F be a C∗-tensor
functor from C into the C∗-tensor category H of finite-dimensional Hilbert spaces.
Let {εX} be a positive Frobenius duality in C. Then there is a unitarily equivalent
C∗-tensor functor G : C → H satisfying:

(i) G(X∗) = G(X)∗, G(tf) = tG(f) and G(dX) is the canonical identifi-
cation of G(X) with G(X)∗∗ for any object X in C;

(ii) G(εX) : G(X)∗ ⊗G(X)→ C is positive definite.
Such functors are unique in the sense that, if we have two such functors G1 and
G2, then we can find a family of unitary maps {ϕX : G1(X)→ G2(X)} such that
ϕXY = ϕX ⊗ ϕY , ϕX∗ = ϕX and

G1(X)
ϕX−→ G2(X)

G1(f)

y
yG2(f)

G1(Y ) −→
ϕY

G2(Y )

for f : X → Y in C.
Proof. We use the strict model R of C (see the description after the definition

of positive Frobenius duality) and let {εX} be the Frobenius duality constructed
there.

For each X ∈ R0, the previous lemma gives a unitary map uX∗ : F (X)∗ →
F (X∗) such that

F (εX)(uX∗ ⊗ 1) : F (X)∗ ⊗ F (X)→ C
is positive definite.

We then define G(X), H(X) and uX : G(X)→ H(X) for X in R inductively
so that

G(XY ) = G(X)⊗G(Y ), H(XY ) = H(X)⊗H(Y ), uXY = uX ⊗ uY

with the initial conditions H(X) = F (X) for X ∈ R,

G(X) =
{
F (X) if X ∈ R0,
F (X)∗ if X∗ ∈ R0;

uX =
{ 1F (X) if X ∈ R0,
uX if X∗ ∈ R0.

Since both of C and H are strict, we have the ordinary associativity

F (X)⊗ F (Y )⊗ F (Z) m⊗1−→ F (X ⊗ Y )⊗ F (Z)
1⊗m

y
ym

F (X)⊗ F (Y ⊗ Z) −→
m

F (X ⊗ Y ⊗ Z)
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for X, Y , Z in C, whence

H(X) = F (X1)⊗ · · · ⊗ F (Xn) m−→ F (X1 ⊗ · · · ⊗Xn) = F (X)

is well-defined for X = (X1, . . . , Xn) in R.
Now we can extend G and H into functors so that

H(X)
H(f)−→ H(Y )

m

y
ym

F (X) −→
F (f)

F (Y )

G(X)
G(f)−→ G(Y )

uX

y
yuY

H(X) −→
H(f)

H(Y ) .

From the multiplicativity of m and u, we see that these are strictly monoidal.
Note here that G, H are unitarily equivalent to the tensor functor F (·) and G(εX) :
G(X)∗ ⊗G(X)→ C is positive by our construction.

Now we shall show that G(tf) is the transposed map of G(f). To this end,
we shall work with the image tensor category D of G: D is a subtensor category
of H satisfying:

(i) for V in D, its dual Hilbert space V ∗ is again in D;
(ii) there is a positive Frobenius duality {εV : V ∗ ⊗ V → C} in D.

Let {Si} be a representative set of simple objects in D and D′ be the enhanced
tensor category of D by adding direct sums. Given an object V in D, choose an
irreducible decomposition

v : V → V ′ ≡
⊕

i

miSi.

We define a rigidity pairing εV ′ in D′ by

εV ′ =
⊕

i

miεSi ,

which is balanced as seen in Lemma 3.9.

Sublemma 5.3. The conjugation v : V ∗ → (V ′)∗ of v belongs to the hom-set
in D′ and we have

εV = εV ′(v ⊗ v).

Proof. By the uniqueness of balanced pairings, there is a unitary morphism
w : V ∗ → (V ′)∗ in D′ such that εV = εV ′(w ⊗ v). Since εV ′(v ⊗ v) is a positive
bilinear form, the expression

εV = (εV ′(v ⊗ v)) (v−1w ⊗ 1)

gives a polar decomposition in H. Since εV is assumed to be positive, we conclude
that w = v belongs to the hom-set in D′.
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We now complete the proof of Theorem 5.2. Let W be an object in D and

w : W →W ′ ≡
⊕

j

njSj

be an irreducible decomposition in D′. We define a balanced rigidity pairing
εW ′ : (W ′)∗ ⊗W ′ → C by direct sum as before.

Given a morphism f : V → W in D, f ′ = wfv∗ : V ′ → W ′ is a morphism
in D′. From the definition of εV ′ and εW ′ , it is easy to check that the rigidity
transposed of f ′ is given by the transposed map t(f ′) of f ′. In particular, t(f ′) is
again a morphism in D′ and we have

εW ′(1⊗ f ′) = εV ′(t(f ′)⊗ 1).

Then tf = w−1t(f ′)v is a morphism in D because v and w are morphisms in D′.
Moreover, we see

εW (1⊗ f) = εW ′(w ⊗ wf) = εW ′(1⊗ f ′)(w ⊗ v)
= εV ′(t(f ′)⊗ 1)(w ⊗ v) = εV ′(v ⊗ v)(tf ⊗ 1)

= εV (tf ⊗ 1).

Remark 5.4. Related to Tannaka-Krein duality, it will be worth pointing
out here that the Tannaka dual of a compact quantum group provides a rigid
C∗-tensor category with simple unit object, whence it bears a unique positive
Frobenius duality by the results discussed so far. On the other hand, it is im-
mediate to see that a standard invariant of S. Popa (or equivalently a paragroup
of A. Ocneanu) is associated to a positive Frobenius duality (cf. [8]). Thus we
have a conceptual explanation of Theorem A in [1] which states that any finite-
dimensional representation of a compact quantum group gives rise to a Popa’s
combinatorial structure.
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