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Abstract. For the generator A of a strongly continuous group on a Hilbert
space, we modify Liapunov’s method of changing the scalar product to ob-
tain a decomposition A = B + C with B skew-adjoint and C bounded and
selfadjoint (with respect to the new scalar product). This yields a new proof
of the fact that A has bounded H∞–calculi on vertical strips. Furthermore
we show that, with respect to the new scalar product, A2 can be obtained
by a closed sectorial form in the sense of Kato.

Keywords: C0-group, Liapunov’s direct method, H∞-calculus, cosine func-
tion, square root problem.

MSC (2000): 47A07, 47A60, 47D03, 47D09.

1. INTRODUCTION AND PRELIMINARIES

Every bounded linear operator A on a Hilbert space H has a canonical decompo-
sition

(1.1) A =
A−A∗

2
+

A + A∗

2
as sum of a skew-adjoint and a selfadjoint operator. This decomposition reflects
the canonical decomposition of the elements of the numerical range of A in real
and imaginary parts. Furthermore, the commutator

[A−A∗

2
,
A + A∗

2

]
=

1
2
(AA∗ −A∗A)

of both summands is selfadjoint. For unbounded operators such a decomposition
fails, in general, for many reasons.
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We show below that, if A generates a strongly continuous group on H, one
can always find an equivalent scalar product such that the above decomposition
remains valid (see Theorem 3.1 below).

Thus, a group generator on a Hilbert space always can be viewed as a
bounded perturbation of a skew-adjoint operator (after changing the scalar prod-
uct). This allows us to give a new proof of a theorem of Boyadzhiev and deLauben-
fels (from [7]) which asserts that a group generator has a bounded H∞-calculus
on every vertical strip {z : |Re(z)| < ω} where ω is greater than the group type
(Theorem 4.2).

In the last section we examine squares of group generators on Hilbert spaces.
We show that (after a suitable change of the scalar product) these operators always
can be obtained by a closed sectorial form with Kato’s Square Root Property (see
Definition 5.7). Using the correspondence between squares of group generators and
generators of cosine functions, we finally establish the theorem that generators of
cosine functions always can be obtained by sectorial forms with the Square Root
Property (Theorem 5.8).

In the following, H denotes a complex Hilbert space. By an operator A on H

we always mean a linear operator whose domain D(A) is a linear subspace of H.
If A is injective we will write A−1 for its inverse. If A−1 ∈ L(H), then A is called
invertible. The (original) scalar product on H will be written as ( · | · ), for new
scalar products we use the same notation with additional subscripts. If ( · | · )◦ is
an equivalent scalar product, and A is a densely defined closed operator on H, we
let A∗ and A◦ denote the adjoint of A with respect to the original and new scalar
product, respectively.

The well-known Lax-Milgram Theorem and some trivial computations imply
the following proposition which is fundamental for our considerations.

Proposition 1.1. Let H be a Hilbert space with scalar product ( · | · ). Then
the mapping

Q 7→ (Q· | · )
is a bijection between the set of bounded, positive, invertible operators on H and
the set of all scalar products on H which are equivalent to ( · | · ).

If ( · | · )◦ = (Q· | · ) is such a new scalar product and A is a densely defined
linear operator on H, then D(A◦) = Q−1D(A∗) and A◦ = Q−1A∗Q.

Note that all results using equivalent scalar products could be reformulated
in terms of similarity. This is due to the fact that the operator Q1/2 is a unitary
equivalence between the Hilbert spaces (H, ( · | · )) and (H, (Q· | · )). For example,
the operator A is accretive with respect to the new scalar product (Q· | · ) if, and
only if the operator Q1/2AQ−(1/2) is accretive with respect to the original scalar
product.

In the following, we will use standard results from semigroup theory without
further reference. Proofs can be found in the books [1] and [11].
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2. THE LIAPUNOV METHOD

Let A be the generator of a C0-semigroup T = (T (t))t>0 on the Hilbert space H.
If H is finite dimensional, the classical Liapunov Theorem establishes a connection
between the spectral bound of A and the asymptotic behaviour of T . It also states
that for an exponentially stable semigroup T there is an equivalent scalar product
such that each T (t) is contractive with respect to the new norm. This new scalar
product is given by the formula

(2.1) (x | y)◦ =

∞∫

0

(T (t)x | T (t)y) dt = (Qx | y)

with Q =
∞∫
0

T (t)∗T (t) dt. Moreover, the Liapunov equation

(2.2) A∗Qx + QAx = −x

holds for x ∈ H. This is still true if H is infinite dimensional and A is a bounded
operator (see [9], Chapter I).

If the generator A is unbounded, definition (2.1) obviously still yields a pos-
itive definite, sesquilinear and continuous form on H, the operator Q now being

defined by Q := strong-
∞∫
0

T (t)∗T (t) dt. Moreover, the Liapunov equation remains

valid, in the sense that Q(D(A)) ⊂ D(A∗) and (2.2) holds for x ∈ D(A) (see [8],
Theorem 5.1.3). In general, the scalar product ( · | · )◦ = (Q· | · ) is not equiv-
alent to the original one. But it is if one supposes that T actually extends to a
C0-group. In fact, for each C0-group (T (t))t∈R on a Banach space X one can find
ω0 > 0,M > 1 with

(2.3) ‖T (t)‖ 6 Meω0|t|, t ∈ R.

(The infimum of all such ω0 is called the group type of the group (T (t))t∈R.) This
implies ‖x‖ 6 ‖T (−t)‖ ‖T (t)x‖ 6 Meω0t‖T (t)x‖ for all t > 0. Hence,

‖x‖2◦ = (x | x)◦ =

∞∫

0

‖T (t)x‖2 dt >
∞∫

0

M−2e−2ω0t dt‖x‖2 =
1

2ω0M2
‖x‖2

holds for all x ∈ H. (Note that we have ω0 > 0, since the semigroup (T (t))t>0 is
assumed to be exponentially stable.)

Proposition 2.1. Let A be the generator of an exponentially stable C0-
semigroup T on H. If T extends to a group, then the operator Q defined by

Q :=

∞∫

0

T (t)∗T (t) dt

is a bounded, positive, and invertible operator on H. Therefore,

(x | y)◦ := (Qx | y) =

∞∫

0

(T (t)x | T (t)y) dt
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defines a scalar product which is equivalent to the original one. Moreover, one has

(2.4) D(A) = D(A◦) with A◦ + A = −Q−1.

Proof. Only the last statement remains to be shown. As mentioned above,
the Liapunov equation A∗Q + QA = −I holds on D(A). Since A◦ = Q−1A∗Q, we
have D(A) ⊂ D(A◦) and A◦ ⊃ −A−Q−1. But both operators −A−Q−1 and A◦
generate C0-groups, the first being a bounded perturbation and the second being
the adjoint of a C0-group generator. Hence A◦ = −A−Q−1.

Before we examine the consequences of the above proposition, we look for a
converse.

Lemma 2.2. Let A be the generator of an exponentially stable C0-semigroup

T on H. Assume that Q :=
∞∫
0

T (t)∗T (t) dt is invertible. Then, for all t > 0, the

operators T (t) are injective with closed range. Furthermore, there is r0 > 0 such
that the operators λ + A are injective with closed range for all λ with Re λ > r0.

Proof. Since the set of invertible operators is an open subset of L(H),

T ∗(t)
∞∫
0

T ∗(s)T (s) ds T (t) =
∞∫
t

T ∗(s)T (s) ds is invertible for small t > 0. Thus,

T ∗(t) is surjective for small t > 0. From the Closed Range Theorem it is immedi-
ate that T (t) is injective with closed range for small t > 0. To obtain the result
for general t > 0, simply write T (t) = T (t/n)n with n ∈ N large enough. The Lia-
punov equation (2.2) yields D(A◦) ⊃ D(A) and −Ax = (A◦+Q−1)x for x ∈ D(A).
From this it follows that D(A) is a closed subset of D(A◦), where the norm on
D(A◦) is the usual graph norm. Now, A◦ + Q−1 generates a C0-semigroup on H.
This implies that there is r0 > 0 such that λ − (A◦ + Q−1) is an isomorphism of
D(A◦) onto H for each λ with Re λ > r0. Hence λ + A is injective with closed
range for each such λ.

Proposition 2.3. Let T, A and Q be as in Lemma 2.2. The following as-
sertions are equivalent:

(i) the semigroup T extends to a group;
(ii) the operator Q is invertible and T (t) has dense range for some t > 0;
(iii) the operator Q is invertible and T ∗(t) is injective for some t > 0;

(iv) both operators Q and Q̃ :=
∞∫
0

T (t)T ∗(t) dt are invertible;

(v) The operator Q is invertible and no left halfplane is contained in the
residual spectrum of A.

Proof. Assume (i). Then T ∗ = (T ∗(t))t>0 is also a group, and −A is a C0-
semigroup generator. By Proposition 2.1, the assertions (ii), (iii), (iv) and (v)
follow (one has to change the roles of T and T ∗ for the proof of (iv)).

From Lemma 2.2 and the first part of its proof it is clear that each one of the
assertions (ii), (iii) and (iv) immediately implies (i). Suppose (v) holds and let r0

be as in Lemma 2.2. By (v), there is λ with Re λ > 0 such that (λ+A) : D(A) → H
is bijective. This implies D(A) = D(A◦), hence −A = A◦+Q−1 is a C0-semigroup
generator (cf. the proof of Lemma 2.2). This proves (i).
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Corollary 2.4. Let T, A and Q be as in Lemma 2.2 and suppose that Q is
invertible.

(i) If each T (t) is a normal operator, then T extends to a group.
(ii) If T is a holomorphic semigroup, then A is bounded.

Proof. If T (t) is normal for each t, then Q = Q̃. If T (·) is holomorphic,
then also T ∗(·) is holomorphic. From this follows that T ∗(t) is injective for each
t. Apply now Proposition 2.3 to obtain that T extends to a group. In case T is a
holomorphic semigroup, this implies that A is bounded.

Let (S(t))t>0 be the right translation semigroup on the Hilbert space
L2(0,∞) (see [11], I.4.16) and let ω > 0. Then T (t) := e−ωtS(t) defines an
exponentially stable semigroup with T ∗(t)T (t) = e−2ωtI. Hence the associated
operator Q is invertible. This shows that the invertibility of Q is not sufficient for
having a group.

Comments. In the case when A is bounded, the Liapunov method is used
in Chapter I of the book ([9]) of Daleckĭı and Krĕın. There, the operator equation
QA + A∗Q = −I is directly linked to the problem of finding a Liapunov function
for the semigroup (which is sometimes called “Liapunov’s direct method”). For
the unbounded case, the relevant facts are included in Theorem 5.1.3 of Curtain
and Zwart’s book ([8]), where a characterization of exponential stability of the
semigroup is given in terms of the existence of an operator Q satisfying the Lia-
punov equation. It is shown in [24] that this method in fact gives an equivalent
scalar product if the semigroup extends to a group.

3. THE MAIN THEOREM

Let A be the generator of a C0-group T on the Hilbert space H, satisfying (2.3),
and let ω > ω0. We now define

(3.1)

(x | y)◦ :=
∫

R

(T (t)x | T (t)y)e−2ω|t| dt

=

∞∫

0

(T (t)x | T (t)y)e−2ωt dt +

∞∫

0

(T (−t)x | T (−t)y)e−2ωt dt

for x, y ∈ H, i.e., we apply the Liapunov method simultaneously to the rescaled
“forward” and “backward” semigroups obtained from the group T . From Propo-
sition 2.1 it is immediate that ( · | · )◦ is a scalar product on H which is equivalent
to the original one. The following theorem summarizes its properties.
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Theorem 3.1. Let A be the generator of a C0-group T on a Hilbert space H
with ‖T (t)‖ 6 Meω0|t| for t ∈ R, and let ω > ω0. With respect to the (equivalent)
scalar product ( · | · )◦ defined by (3.1) the following assertions hold:

(i)The operators A− ω and −A− ω are both m-dissipative; i.e., ‖T (t)‖◦ 6
eω|t| for all t ∈ R.

(ii) D(A) = D(A◦) and A = B + C with

B :=
1
2
(A−A◦) and C :=

1
2
(A + A◦).

(iii) B is skewadjoint with D(A) = D(B).
(iv) C has an extension to a bounded and selfadjoint operator (also denoted

by C) with −ω 6 C 6 ω.
(v) D(A) is C-invariant, i.e., C(D(A)) ⊂ D(A), and [B, C] = BC − CB

has an extension to a bounded and selfadjoint operator on H.

Proof. We first show (i). One has

‖T (s)x‖2◦ =
∫

R

‖T (t)T (s)x‖2e−2ω|t| dt =
∫

R

‖T (t + s)x‖2e−2ω|t| dt

=
∫

R

‖T (t)x‖2e−2ω|t−s| dt =
∫

R

‖T (t)x‖2e−2ω|t|e2ω(|t|−|t−s|) dt

6 e2ω|s|‖x‖20, s ∈ R, x ∈ H

since |t| − |t− s| 6 |s| for all s, t ∈ R by the triangle inequality.
To prove (ii), let

Q⊕ :=

∞∫

0

T (t)∗T (t)e−2ωt dt, Qª :=

∞∫

0

T (−t)∗T (−t)e−2ωt dt,

and
Q := Q⊕ + Qª =

∫

R

T (t)∗T (t)e−2ω|t| dt.

Then (x | y)◦ = (Qx | y) for all x, y ∈ H. The Liapunov equations for Q⊕ and Qª
read

Q⊕(A− ω)x + (A− ω)∗Q⊕x = −x(3.2)
Qª(−A− ω)x + (−A− ω)∗Qªx = −x(3.3)

for x ∈ D(A) (see (2.2)). (In particular this means that Q⊕D(A) ⊂ D(A∗) and
QªD(A) ⊂ D(A∗).) Adding equations (3.2) and (3.3) one obtains

QAx + A∗Qx = 2ω(Q⊕ −Qª)x

for x ∈ D(A). Note that D(A◦) = Q−1D(A∗) and A◦ = Q−1A∗Q by Proposi-
tion 1.1. Hence we have D(A) ⊂ D(A◦) and A + A◦ ⊂ 2ωQ−1(Q⊕ − Qª). As in
the proof of Proposition 2.1 it follows that D(A◦) = D(A). This proves (ii), and a
short computation also yields (iv).
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For the proof of (iii) we note first that, by (iv), B = −A + C is a bounded
perturbation of the generator of a C0-group. Therefore, B◦ and −B are C0-group
generators as well. But it is easily seen that B◦ ⊃ −B, whence it follows that
B◦ = −B.

The C-invariance of D(A) is clear from the formula C = ωQ−1(Q⊕ − Qª)
and D(A) = D(A◦) = Q−1D(A∗). Furthermore, using (3.2), (3.3) and the fact
that A◦ = 2C −A, we compute

CA = ωQ−1(Q⊕A−QªA) = ωQ−1(−I + 2ωQ⊕ −A∗Q⊕ − I + 2ωQª + A∗Qª)

= ωQ−1(−2I + 2ωQ−A∗(Q⊕ −Qª))

= −2ωQ−1 + 2ω2I − ωA◦Q−1(Q⊕ −Qª)

= −2ωQ−1 + 2ω2I −A◦C = −2ωQ−1 + 2ω2I − (2C −A)C

= −2ωQ−1 + 2ω2I − 2C2 + AC.

This shows that [B,C] = [A,C] has an extension to a bounded operator which is
selfadjoint with respect to ( · | · )◦.

Corollary 3.2. Let A generate a C0-group T on a Hilbert space H. Then
there exists a bounded operator C such that B := A − C generates a bounded
C0-group. Moreover, the operator C can be chosen in such a way that D(A) is C-
invariant and the commutator [A,C] = AC − CA has an extension to a bounded
operator on H.

Remark 3.3. Let (T (t))t∈R be a C0-group on H with generator A and
such that ‖T (t)‖ 6 eω|t| for all t ∈ R and some constant ω > 0. Then it is
easy to show that there is a sum decomposition A = B + C such that B is
skewadjoint and C is bounded and selfadjoint with −ω 6 C 6 ω. (Consider the
symmetric, sesquilinear form c(u, v) := (Au | v) + (u | Av) on D(A). Then apply
the generalized Cauchy-Schwarz inequality (see [19], Chapter XII, Lemma 3.1) to
obtain that c is continuous with respect to the norm on H. Define C ∈ L(H) by
c(u, v) = (Cu | v) and B by B := A− C.)

In general however, D(A) is not C-invariant. In fact, let H := L2(R) and
B = d/dt the generator of the shift group. Furthermore, let C := (f 7→ ωmf)
where m(x) = sgn x is the sign function. Then C is bounded and selfadjoint and
A := B + C generates a C0-group T with ‖T (t)‖ 6 eω|t|. Obviously, D(A) =
D(B) = W 1,2(R) is not invariant with respect to multiplication by m.

This shows that part (v) of Theorem 3.1 is not trivial and is due to the
particular way of renorming.

Comments. The following well-known theorem by Sz.-Nagy (see [22]) can
be regarded as the “limit case” in Theorem 3.1: Every generator of a bounded C0-
group on a Hilbert space is similar to a skew-adjoint operator. This result cannot
be deduced directly from Theorem 3.1. However, Zwart in [24] gives a proof using
the Liapunov renorming.

In [9] it is proved that, given a C0-group T on a Hilbert space, one has
‖T (t)‖◦ 6 eω|t| for some equivalent scalar product ( · | · )◦ and some ω strictly
larger than the group type ω0. (This is covered by part (i) of our Theorem 3.1.)
While the proof in [9] is based on the boundedness of the H∞-calculus (see next
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section) and on a deep result of Paulsen, our approach is more direct and con-
siderably shorter. In [21], Simard shows that in general it is not possible to take
ω = ω0 in Theorem 3.1.

4. THE H∞-CALCULUS

In this section we show that the generator A of a C0-group T on a Hilbert space
H has a bounded H∞(Sα)-functional calculus for each α > ω0 where ω0 is as in
(2.3). Here Sα denotes the open strip

Sα := {z ∈ C : |Re(z)| < α}
and H∞(Sα) is the Banach algebra of all bounded analytic functions on Sα.

Choose ω0 < ω1 < α < ω, and let Γ = γ1 ⊕ γ2 with γ1(r) = −ω1 − ir and
γ2(r) = ω1 + ir, r ∈ R. For f ∈ H∞(Sα) and x ∈ D(A2) we define

(4.1) f(A)x :=
1

2πi

∫

Γ

f(z)
z2 − ω2

R(z,A) dλ(A2 − ω2)x.

(Note that the integral defines a bounded operator on H since the resolvent is
bounded on vertical lines. Hence, each f(A) defines a bounded operator from
D(A2) (with the graph norm) to H.) Cauchy’s theorem implies that this definition
is independent of the choice of ω1 and ω. Standard arguments also show that

(
1

λ− ·
)

(A)x = R(λ,A)x and 1l(A)x = x

for λ /∈ Sα and x ∈ D(A2), where 1l denotes the constant one function. Further-
more, one has (fg)(A)x = f(A)g(A)x for all x ∈ D(A4) and f, g ∈ H∞(Sα). If
f(A) extends to a bounded operator on H (note that D(A2) is dense), we simply
write f(A) ∈ L(H).

Definition 4.1. We call the mapping

(f 7→ f(A)) : H∞(Sα) → L(D(A2),H),

defined by (4.1), the natural H∞(Sα)-calculus for A. We say that this calculus is
bounded if there is a constant c such that

‖f(A)x‖H 6 c‖f‖∞‖x‖H

for all f ∈ H∞(Sα) and x ∈ D(A2).

By the Closed Graph Theorem the natural H∞(Sα)-calculus for A is bounded
if and only if f(A) ∈ L(H) for each f ∈ H∞(Sα). In this case, the mapping
(f 7→ f(A)) : H∞(Sα) → L(H) is a bounded algebra homomorphism.

We now come to the main result of this section.

Theorem 4.2. Let A be the generator of a strongly continuous group T on a
Hilbert space H satisfying ‖T (t)‖ 6 Meω0|t|, t ∈ R, for some constants M, ω0 > 0,
and let α > ω0. Then the natural H∞(Sα)-calculus for A is bounded.

Before proving the theorem, let us examine a special case.
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Proposition 4.3. Let B be skew-adjoint, i.e., B generates a unitary group
on H. Let Φ : Cb(iR) −→ L(H) be the usual functional calculus for B given by
the spectral theorem. (Here, Cb(iR) denotes the algebra of bounded continuous
functions on iR.) Let α > 0. Then, f(B)x = Φ(f |iR)x for all f ∈ H∞(Sα) and
x ∈ D(B2). In particular, the natural H∞(Sα)-calculus for B is bounded.

Proof. By the spectral theorem we can assume H = L2(Ω, µ), where Ω is
a locally compact space, µ is a positive regular Borel measure on Ω, and B is
multiplication by a continuous function m ∈ C(Ω) such that m(Ω) ⊂ iR (see
Remark 4.4 below). Then f(B) is the multiplication by the function

g(·) := (m(·)2 − ω2)
1

2πi

∫

Γ

f(λ)
λ2 − ω2

1
λ−m(·) dλ .

Since the integral converges in Cb(Ω), one can evaluate pointwise, and by Cauchy’s
theorem we arrive at g(p) = f(m(p)) for all p ∈ Ω. But this is exactly the way
how the usual functional calculus is constructed.

Remark 4.4. In the previous proof we used a version of the spectral theorem
which is not standard, thus we give a sketch of its proof. Let A be a (possibly
unbounded) selfadjoint operator on a Hilbert space H and let T := (i − A)−1 =
R(i, A). Then T is a bounded normal operator on H. By Scholium 9.4 in [20],
there is a locally compact space Ω′, a positive regular Borel measure µ′ on Ω′ and
a bounded continuous function g′ on Ω′ such that µ′(U) > 0 for every nonempty
open subset of Ω′, and (H, T ) is unitarily equivalent to (L2(Ω′, µ′), g′). Since T is
injective, the closed set Z := (g′ = 0) is locally µ-null. Then, with Ω := Ω′ \ Z,
µ := µ′|Ω and g := g′|Ω, (L2(Ω′, µ′), g′) is unitarily equivalent to (L2(Ω, µ), g) and
(H,A) is unitarily equivalent to (L2(Ω, µ),m), where m := i− g−1.

Proof of Theorem 4.2. It suffices to show that for fixed f ∈ H∞(Sα) there
is a c = cf such that ‖f(A)x‖H 6 c‖x‖H for x ∈ D(A2). By choosing a suitable
equivalent scalar product and employing Theorem 3.1 we can assume that there is
a skew-adjoint operator B with D(B) = D(A) and a bounded selfadjoint operator
C such that A = B + C.

Next, note that by the Plancherel Theorem (r 7→ R(±ω1 ± ir,A)x) ∈
L2(R, H) with a constant c = c(A) > 0, so

(4.2)
∫

R

‖R(±ω1 ± ir,A)x‖2 dr 6 c(A)2‖x‖2

for all x ∈ H. Therefore, by Hölder’s inequality,

(4.3)
∫

Γ

f(λ)
λ− ω

R(λ,A) dλ ∈ L(H),

where the integral is understood in the strong sense. It follows that

(4.4) f(A)x =
1

2πi

∫

Γ

f(λ)
λ− ω

R(λ,A) dλ (A− ω)x
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for x ∈ D(A2). (Use Cauchy’s theorem together with 1
λ2−ω2 R(λ,A)(A + ω)

·(A− ω) = −1
λ2−ω2 (A− ω) + 1

λ−ω R(λ,A)(A− ω).)
Of course, the same considerations apply to B and A∗ instead of A. Finally,

we have

(4.5)
∫

Γ

f(λ)R(λ,A)CR(λ,B) dλ ∈ L(H)

(again a strong integral) since
∣∣∣∣
( ∫

Γ

f(λ)R(λ,A)CR(λ,B)xdλ | y
)∣∣∣∣ 6

∫

Γ

|f(λ)| |(CR(λ,B)x | R(λ, A)∗y)|d|λ|

6 ‖f‖∞‖C‖
∫

Γ

‖R(λ,B)x‖ ‖R(λ,A∗)y‖d|λ| 6 2c(B)c(A∗)‖f‖∞‖C‖ ‖x‖ ‖y‖

for x, y ∈ H. (Here we have used Hölder’s inequality and (4.2) with A replaced by
B and A∗.)

We can now complete the proof of Theorem 4.2. To simplify notation, we
write “F ≈ G” as an abbreviation for “F is bounded if and only if G is bounded”,
where a linear mapping F : D(A2) → H is called bounded if it extends to a
bounded operator on H. Then

∫

Γ

f(λ)
λ− ω

R(λ,A) dλ (A− ω) ≈
∫

Γ

f(λ)
λ− ω

R(λ,A) dλ (B − ω)

≈
∫

Γ

f(λ)
λ− ω

(R(λ, A)−R(λ,B)) dλ (B − ω)

=
∫

Γ

f(λ)
λ− ω

R(λ,A)C R(λ, B) dλ (B − ω)

=
∫

Γ

f(λ)
λ− ω

R(λ,A)C [−1 + R(λ,B)(λ− ω)] dλ

≈
∫

Γ

f(λ)
λ− ω

R(λ,A)C R(λ, B)(λ− ω) dλ

=
∫

Γ

f(λ)R(λ,A)C R(λ,B) dλ.

By (4.5), this last term is bounded. (We have applied (4.3) in the first line, (4.4)
for B instead of A together with Proposition 4.3 in the second line, and again (4.3)
in the fifth line.) This finishes the proof.

Remark 4.5. Let X be a Banach space, A the generator of a C0-group T on
X with M , ω0 satisfying (2.3), and let α > ω0. Then, the natural H∞(Sα)-calculus
can be constructed in the same way as in the Hilbert space setting.
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Let F be a subalgebra of H∞(Sα) that contains all elementary rationals
rλ := (λ − · )−1, λ /∈ Sα. An algebra homomorphism Φ : F → L(X) such
that Φ(rλ) = R(λ,A) is called a bounded F-calculus for A if there is c such that
‖Φ(f)‖L(X) 6 c‖f‖∞ for all f ∈ F .

We let R0(Sα) denote the algebra which is generated by all the rλ, λ /∈ Sα

and set R(Sα) := R0(Sα) ⊕ C1l. Obviously, there is one and only one algebra
homomorphism Φ : R0(Sα) → L(X) with Φ(rλ) = R(λ,A) for each λ /∈ Sα.
From Chapter II, Theorem 10.4 in [12] one can deduce with the help of a Möbius
transformation that R(Sα) is uniformly dense in H∞(Sα) ∩ C(K) where K is
the closure of Sα in the Riemann sphere. A fortiori, R0(Sα) is uniformly dense
in H∞(Sα) ∩ C0(Sα). Hence, there is at most one bounded H∞(Sα) ∩ C0(Sα)-
calculus for A and at most one bounded H∞(Sα)∩C(K)-calculus for A that maps
1l to the identity operator.

We say that a sequence (fn)n ⊂ F converges boundedly and pointwise on Sα

to a function f , if fn → f pointwise on Sα and sup
n
‖fn‖∞ < ∞.

A bounded F-calculus Φ : F → L(X) for A is said to be continuous with
respect to bounded and pointwise convergence (in short: b.p.-continuous), if it has
the following property: If fn, f ∈ F such that fn → f boundedly and pointwise
then Φ(fn) → Φ(f) strongly on X.

If the natural H∞(Sα)-calculus is bounded, then it is also b.p.-continuous.
This is due to the following McIntosh-type Convergence Lemma for the natural
H∞(Sα)-calculus which we state without proof (see Section 5 in [17] for the sec-
torial version).

Lemma 4.6. If (fn)n ⊂ H∞(Sα) is uniformly bounded and pointwise con-
vergent to f ∈ H∞(Sα) with sup

n
‖fn(A)‖ < ∞, then f(A) ∈ L(X) and f(An)

converges strongly to f(A).

Now, for any f ∈ H∞(Sα) there exists a sequence of rational functions
rn ∈ R(Sα) such that ‖rn‖∞ 6 ‖f‖∞ and rn → f pointwise on Sα. This fol-
lows, again after applying a suitable Möbius transformation, from Chapter VI in
Theorem 5.3 in [12]. Moreover, the constant function 1l is approximated pointwise
by the rational functions (n(n + α − ·)−1)n∈N. Therefore, there is at most one
bounded and b.p.-continuous H∞(Sα)-calculus for A. Furthermore, due to the
Convergence Lemma, the natural H∞(Sα)-calculus is bounded if and only if the
(unique) R0(Sα)-calculus is bounded.

Comments. An extension of the natural calculus appears first in a pa-
per by Bade (see [6]). For sectorial operators, an analogous construction was
done by McIntosh and his co-workers (see [17]) who first put attention to the
boundedness of the natural H∞-calculus. Theorem 4.2 is originally due to Boy-
adzhiev and deLaubenfels (Theorem 3.2, [7]). Actually, they construct a bounded
H∞(Sα) ∩ C0(Sα)-functional calculus for the group generator A. The natural
H∞(Sα)-calculus is an extension of theirs, as can be seen from Remark 4.5 or
directly from the construction (cf. [7], Lemma 2.6). It follows from Remark 4.5
that Theorem 4.2 can be viewed as a corollary of the Boyadzhiev-deLaubenfels
Theorem. However, while in [7] the theory of regularized semigroups and the
functional calculus for sectorial operators is used, our proof is much shorter and
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more transparent. In [13] we give another proof which imitates McIntosh’s method
for sectorial operators, thereby obtaining even a characterization of C0-group gen-
erators on Hilbert spaces.

5. COSINE FUNCTIONS AND VARIATIONAL METHODS

A cosine function on a Banach space X is a strongly continuous mapping Cos :
R→ L(X) such that Cos(0) = I and

(5.1) 2 Cos(t)Cos(s) = Cos(t + s) + Cos(t− s), t, s ∈ R.

Inserting t = 0 in (5.1) yields Cos(−s) = Cos(s) for all s ∈ R, and interchanging s
and t in (5.1) shows Cos(t)Cos(s) = Cos(s)Cos(t) for all s, t ∈ R. In the following,
we cite some basic results of the theory of cosine functions from Sections 3.14–3.16
in [1].

Given a cosine function, one can take its Laplace transform and define its
generator B by

λR(λ2, B)x =

∞∫

0

e−λt Cos(t)x dt

for x ∈ X and Reλ sufficiently large. Then, for each pair (x, y) ∈ X2, the function

u(t) := Cos(t)x +

t∫

0

Cos(s)y ds

is the unique mild solution of the second order abstract Cauchy problem
{

u′′(t) = B u(t), t > 0,
u(0) = x,
u′(0) = y,

(cf. [1], Corollary 3.14.8). If B generates a cosine function, then it also generates
a holomorphic semigroup of angle π/2 (cf. [1], Theorem 3.14.17).

Proposition 5.1. (Theorem 3.14.11 in [1]) Let A generate a cosine function
on the Banach space X. Let the operator A on X ×X be defined by

D(A) := D(A)×X, A
(

x
y

)
=

(
0 I
A 0

) (
x
y

)
=

(
y

Ax

)
.

Then there exists a unique Banach space V such that D(A) ↪→ V ↪→ X and the
part B of A in V ×X generates a C0-semigroup.

The space V ×H is called the phase space associated with A. If A generates
a cosine function and λ ∈ C, then A+λ generates a cosine function with the same
phase space (cf. Corollary 3.14.13 in [1]).

The connection to the theory of C0-groups is given by the following: If
an operator A generates a C0-group (U(t))t∈R on the Banach space X, then A2

generates a cosine function Cos with phase space D(A) × X, where Cos(t) =
(U(t) + U(−t))/2, t > 0 (cf. Example 3.14.15 in [1]). Moreover, a remarkable
theorem of Fattorini states the partial converse (cf. 3.16.7 in [1]).
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Theorem 5.2. (Fattorini) Let B be the generator of a cosine function on
an UMD-space X. If −B is sectorial, then A := i(−B)1/2 generates a strongly
continuous group and A2 = B.

This suggests to consider squares of group generators.

Theorem 5.3. Let A generate a strongly continuous group T on the Hilbert
space H. Assume that there is ω > 0 such that

‖T (t)‖ 6 eω|t|, t ∈ R,

i.e., both A− ω and −A− ω are m-dissipative. Then, for every 0 6 |φ| < π/2 the
operator

(5.2) eiφ
(
A2 −

( ω

cosφ

)2)

is m-dissipative. Thus, A2 generates a holomorphic semigroup (S(z))Re z>0 of
angle π/2 such that

(5.3) ‖S(z)‖ 6 e(ω/ cos φ)2 Re z, | arg z| 6 φ <
π

2
.

For the proof we will need the following lemma, whose proof is an easy
combination of elementary facts on dissipativity (which can be found, e.g., in
Section 2.1.1 of [23]).

Lemma 5.4. Let A be an operator on the Hilbert space H. For λ > 0 and
α ∈ R the following assertions are equivalent:

(i) A is m-dissipative;
(ii) A + iα is m-dissipative;
(iii) λ ∈ ρ(A) and ‖(A + λ)(A− λ)−1‖ 6 1;
(iv) A− ε is m-dissipative for all ε > 0.

Proof of Theorem 5.3. The case ω = 0 is trivial since then the group is
unitary and A is skew-adjoint. This implies that A2 is selfadjoint with A2 6 0,
and the assertions of the theorem are immediate.

Assume ω > 0, let 0 6 |φ| < π/2 and fix ε > 0. Define α = ω tanφ,
i.e., z := ω − iα = (ω/ cosφ)e−iφ. By assumption and Lemma 5.4, the operators
A− (ω− iα) and −A− (ω− iα) are m-dissipative. It follows from Lemma 5.4 that

∥∥∥A− (z − ε)
A− (z + ε)

∥∥∥,
∥∥∥A + (z − ε)

A + (z + ε)

∥∥∥ 6 1.

(Here and in the following we write A+λ
A+µ instead of (A + λ)(A + µ)−1 to make the

computations more perspicuous.) Hence, it follows that
∥∥∥A2 − (z − ε)2

A2 − (z + ε)2

∥∥∥ =
∥∥∥

(
A− (z − ε)
A− (z + ε)

)(
A + (z − ε)
A + (z + ε)

) ∥∥∥ 6 1.

One computes

A2 − (z − ε)2

A2 − (z + ε)2
=

A2 − (z2 + ε2) + 2zε

A2 − (z2 + ε2)− 2zε
=

eiφ[A2 − (z2 + ε2)] + 2ε|z|
eiφ[A2 − (z2 + ε2)]− 2ε|z| .
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We can now apply Lemma 5.4 again (note that 2ε|z| > 0) to conclude that

eiφ[A2 − (z2 + ε2)] = eiφA2 −
( ω

cosφ

)2

e−iφ − ε2eiφ

is m-dissipative. Letting ε ↘ 0 it follows from Lemma 5.4 that eiφA2−( ω
cos φ )2e−iφ,

and finally that

eiφ
(
A2 −

( ω

cos φ

)2)
= eiφA2 −

( ω

cosφ

)2

eiφ

is m-dissipative. This finishes the proof of the first part of the theorem. The
second part follows from standard semigroup theory (see [1], Chapter 3.4 and
Chapter 3.9).

The next proposition is needed for the proof of Theorem 5.8.

Proposition 5.5. Let A be as in Theorem 5.3. Then

D(i(ω2 −A2)1/2) = D(A).

Proof. First note that the operator ω2 −A2 is sectorial (since A2 − ω2 is m-
dissipative). Thus the square root is well defined. Since A generates a group, A2

generates a cosine function with phase space D(A)×H. By general cosine function
theory (see the remarks at the beginning of this section), A2−ω2 also generates a
cosine function with the same phase space. Fattorini’s Theorem 5.2 implies that
B := i(ω2−A2)1/2 generates a group and B2 = A2−ω. Now D(B) = D(A) follows
from the uniqueness of the phase space.

Suppose that we have the following situation: V is another Hilbert space,
densely embedded into H, and a : V ×V → C is a continuous, sesquilinear form on
V which is H-elliptic, i.e., there is µ > 0 such that Re a+µ( · | · )H is an equivalent
scalar product on V . We briefly say that (a, V ) is a closed form.

Given a closed form (a, V ), an operator A on H is defined by

(u, v) ∈ graph(A) if and only if u ∈ V, v ∈ H and a(u, ·) = (v, · )H on V.

If an operator A arises in this manner, we say that A is variational. (This is a
tribute to the origin of the theory of closed forms in the Dirichlet principle.) The
negative of a variational operator generates a holomorphic semigroup which is —
after shifting — contractive on a whole sector in the complex plane. This is in
fact a characterization due to the following result (see, e.g., Theorem 1.2 in [2]).

Proposition 5.6. Let A be an operator on a Hilbert space. The following
assertions are equivalent:

(i) A is variational;
(ii) there are w ∈ R and 0 6 φ < π/2 such that both operators eiφ(A + w)

and e−iφ(A + w) are m-accretive.

(Recall that an operator A is called m-accretive if −A is m-dissipative.)
If A is variational, then A + λ is m-accretive for all large λ > 0. Kato

proved that in this case D((A + λ)α) = D((A + λ)∗α) holds for all 0 6 α < 1/2
(Theorem 1.1 in [14]). In the case α = 1/2 this is no longer true in general (see
[16]).
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Definition 5.7. A variational operator A is called square root regular if

(5.4) D((A + λ)
1
2 ) = D((A + λ)∗

1
2 )

for some λ > 0. A closed form (a, V ) is said to have the Square Root Property if
V = D((A + λ)1/2), where A is the operator associated with a and λ ∈ R is such
that (A + λ) is sectorial.

Note that if A is square root regular, then (5.4) holds for all λ such that
A + λ is sectorial since the domain of the square root is invariant with respect to
shifting (see Chapter 3.8 in [1]). It is known (see Theorems 1 and 2, [15]) that
(a, V ) has the Square Root Property if and only if its associated operator A is
square root regular.

Now we are prepared for the final theorem.

Theorem 5.8. Let B be the generator of a cosine function on a Hilbert space
H. Then −B is variational and square root regular with respect to some equivalent
scalar product.

Proof. First, one can find β such that −B + β is sectorial. Since B − β
generates a cosine function as well, we can apply Fattorini’s Theorem. Thus, the
operator A := i(β−B)1/2 generates a strongly continuous group T on H. Choose
ω0,M such that (2.3) holds and let ω > ω0. By Theorem 3.1 we obtain a new
scalar product ( · | · )◦ making A − ω and −A − ω m-dissipative and such that
D(A) = D(A◦) holds. Apply now Theorem 5.3 together with Proposition 5.6 to
conclude that −A2 = −B + β is variational. This implies that −B is variational.
Finally, we apply Proposition 5.5 to the operators A and A◦ and obtain

D((β + ω2 −B)1/2) = D((ω2 −A2)1/2) = D(A) = D(A◦)

= D((ω2 −A◦2)1/2) = D((β + ω2 −B)◦
1
2 ).

This completes the proof.

Comments. The construction of a variational operator by means of a form
depends on the particular scalar product of H. (In Example 3.2 in [2] a varia-
tional operator is constructed which loses this property after changing the scalar
product.) Thus it is natural to ask if a given operator A is variational with respect
to some equivalent scalar product. A general characterization was obtained in [2],
and one can in fact derive Theorem 5.8 from it. However, its proof uses a deep
result of Le Merdy, whereas our proof in the special case of generators of cosine
functions is more direct.

Kato’s original question, whether every variational operator is square root
regular (see Section 5, Remark 1 in [14]) was subsequently answered by McIntosh
in the negative (see [16]). Confining the question to elliptic operators, the problem
is known as Kato’s Square Root Problem, and it has been solved only recently by
Auscher, Hofmann, Lacey, McIntosh, and Tchamitchian (see [3] and [4]). More
information on the Square Root Problem can be found in [5] and [18].
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