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Abstract. Let Γ+ be the positive cone in a totally ordered abelian group
Γ, and let α be an action of Γ+ by endomorphisms of a C∗-algebra A. We
consider a new kind of crossed-product C∗-algebra A×α Γ+, which is gener-
ated by a faithful copy of A and a representation of Γ+ as partial isometries.
We claim that these crossed products provide a rich and tractable family of
Toeplitz algebras for product systems of Hilbert bimodules, as recently stud-
ied by Fowler, and we illustrate this by proving detailed structure theorems
for actions by forward and backward shifts.
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1. INTRODUCTION

Let Γ be a totally ordered abelian group with positive cone Γ+, and consider
an action α : Γ+ → EndA of Γ+ by endomorphisms of a C∗-algebra A. We
study covariant representations (π, V ) of the system (A,Γ+, α) in which the en-
domorphisms αs are implemented by partial isometries Vs, and the corresponding
crossed-product C∗-algebra A ×α Γ+ which is generated by a universal covariant
representation. We think these partial-isometric crossed products are likely to be
of interest for several reasons.

Our first motivation comes from the analogous covariant representation the-
ory in which the elements of Γ+ are implemented by isometries. To avoid confusion,
we shall refer to these as covariant isometric representations and the correspond-
ing crossed products A ×iso

α Γ+ as isometric crossed products. Isometric crossed
products by the semigroup N = Z+ were first used to give a model for the Cuntz
algebra On ([6], [21], [24], [4]). Subsequently, various authors considered the ac-
tion τ of Γ+ by right translation on a distinguished subalgebra BΓ+ of `∞(Γ+),
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and used BΓ+ ×iso
τ Γ+ as a model for the Toeplitz algebra T (Γ). This program has

also been effective for the more general quasi-lattice ordered groups, such as Nk
([15]). More recently, isometric crossed products by actions of Nk have proved to
be useful models for Hecke algebras arising in number theory (see [16], [14], [17],
for example).

The theory of isometric crossed products, however, yields no information
about some systems (A,Γ+, α). For example, consider the action σ of N by left
translations on

c0 := {f : N→ C : f(n) → 0 as n→∞}.
Every covariant isometric representation (π, V ) of (c0,N, σ) satisfies

π(f) = (V ∗)nπ(σn(f))V n,

and since σn(f) → 0 as n → ∞ for every f ∈ c0, this is only possible if π is
identically zero. Thus c0×iso

σ N = {0}. Every system (A,Γ+, α), on the other hand,
admits covariant partial-isometric representations (π, V ) in which π is faithful,
and hence the partial-isometric crossed product contains full information about
the system.

Our second motivation concerns the Toeplitz algebras of Hilbert bimodules
([10]). In Pimsner’s original investigations of Hilbert bimodules ([22]), a key exam-
ple was provided by an endomorphism α of a C∗-algebra A, and the Cuntz-Pimsner
algebra of this bimodule is the isometric crossed product A ×iso

α N. The Toeplitz
algebra of this bimodule, on the other hand, is our partial-isometric crossed prod-
uct A×α N. Fowler has recently considered product systems of Hilbert bimodules
over more general semigroups, and studied the Toeplitz algebras of these prod-
uct systems. In particular, he has identified conditions under which the results
of [10] carry over to his new family of Toeplitz algebras ([8]). Important exam-
ples of product systems are provided by endomorphic actions of semigroups, and
our partial-isometric crossed products are Toeplitz algebras to which Fowler’s re-
sults apply. Because of their concrete nature, partial-isometric crossed products
form a particularly tractable family of Toeplitz algebras, and even for the systems
(BN,N, τ) and (BN,N, σ) the partial-isometric crossed products have rich struc-
ture. Thus our results confirm that there is a lot of interesting information lying
between a Cuntz-Pimsner algebra and its Toeplitz algebra extension. In particu-
lar, for the Hilbert bimodules associated to the endomorphisms τ1 and σ1 of BN,
there are many distinct relative Cuntz-Pimsner algebras as in [18] and [9].

A third point of interest lies in the form of our structure theorems for crossed
products. Associated to any pair of ideals I, J in a C∗-algebra B there is a com-
mutative diagram

0 0 0
↓ ↓ ↓

0 → I ∩ J → J → J/(I ∩ J) → 0
↓ ↓ ↓

0 → I → B → B/I → 0
↓ ↓ ↓

0 → I/(I ∩ J) → B/J → B/(I + J) → 0
↓ ↓ ↓
0 0 0
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in which all the rows and columns are exact. From this, it follows easily that B
has a composition series 0 6 I ∩ J 6 I + J 6 B of ideals with subquotients

I ∩ J, (I + J)/(I ∩ J) ∼= (I/(I ∩ J))⊕ (J/(I ∩ J)) and B/(I + J),

and it is often helpful to have a structure theorem which identifies these subquo-
tients in familiar terms. Here, though, we can do more: we can identify in familiar
terms the four extensions which make up the outside square. Thus, for exam-
ple, Theorem 6.1 describes B = BN ×τ N, and identifies both the right-hand and
bottom exact sequences as the extension of C(T) by K provided by the Toeplitz
algebra T (Z).

We begin with a preliminary section containing background material about
power partial isometries, Toeplitz algebras and isometric crossed products, and
Hilbert bimodules. In Section 3, we discuss representations of totally ordered
semigroups by partial isometries, and analyse the C∗-algebras generated by two
semigroups of truncated shifts.

In Section 4, we discuss covariant partial-isometric representations and the
partial-isometric crossed product. We show that every action α : Γ+ → EndA
admits covariant partial-isometric representations in which A acts faithfully (Ex-
ample 4.6), and show how the results of Fowler ([8]) allow us to identify the covari-
ant partial-isometric representations (π, V ) of (A,Γ+, α) for which the associated
representation π × V of A×α Γ+ is faithful (Theorem 4.8).

In Section 5, we give a structure theorem for the crossed product of the sys-
tem (BΓ+ ,Γ+, τ) arising in the analysis of Toeplitz algebras. While many of our
observations work for arbitrary totally ordered abelian groups, the main Theo-
rem 5.6 concerns subsemigroups of R+. In Theorem 6.1, we obtain more detailed
information for the semigroup N. In the last section, we consider the action σ of
N by right translation on BN. Although the structure of BN ×σ N is quite a bit
simpler than that of BN ×τ N, it is still a good deal more complicated than that
of BN ×iso

σ N = {0} (see Theorem 7.4).

Conventions. Throughout this paper, Γ will be a totally ordered abelian group
with positive cone Γ+; sometimes Γ will be a subgroup of R but if so, we shall say
so. Our main examples are the additive semigroup N (which for us always contains
0) and other subsemigroups of the additive group R; we therefore use additive
notation in Γ, so that the identity is 0 and Γ+ = {x ∈ Γ : x > 0}. A subgroup I of
Γ is an order ideal if x ∈ I and 0 6 y 6 x imply y ∈ I. We say that Γ is simple if it
has no nontrivial order ideals; standard theorems say that Γ is simple if and only
if it is archimedean in the sense that {y ∈ Γ+ : y 6 nx for some n ∈ N} = Γ+ for
every nonzero x ∈ Γ+, and hence if and only if Γ is order isomorphic to a subgroup
of R ([11]).

We denote by K(H) the C∗-algebra of compact operators on a Hilbert space
H. We write π̄ for the extension of a non-degenerate representation π : A→ B(H)
to the multiplier algebra M(A); similarly, if α is an extendible endomorphism of
a C∗-algebra A, in the sense that there is an approximate identity {ai} such that
α(ai) converges strictly to a projection in M(A) ([1], Section 2), we write ᾱ for
the extension of α to an endomorphism of M(A).
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2. PRELIMINARIES

2.1. Power partial isometries. A partial isometry V on a Hilbert space H is
an operator on H such that ‖V h‖ = ‖h‖ for h ∈ (kerV )⊥. A bounded operator
V is a partial isometry if and only if V V ∗V = V , and then the operators V ∗V
and V V ∗ are the orthogonal projections on the initial space (kerV )⊥ and range
V H respectively. An element v of a C∗-algebra A is called a partial isometry
if vv∗v = v; it then becomes a partial isometry in the usual sense whenever we
represent A on Hilbert space.

The product of two partial isometries is not in general a partial isometry: for
example, if {e1, e2} is an orthonormal set and P,Q are the orthogonal projections
on span{e1}, span{e1 + e2}, then e1 is a unit vector in (kerQP )⊥ but QPe1 =
(e1 + e2)/2 does not have norm 1. Since we are interested in semigroups of partial
isometries, we need to know when a product of partial isometries is a partial
isometry. The answer is well-known, and is proved, for example, in Lemma 2 of
[12].

Proposition 2.1. Let S and T be partial isometries. Then ST is a partial
isometry if and only if S∗S commutes with TT ∗.

A partial isometry v is a power partial isometry if vn is a partial isometry
for n ∈ N. Every isometry and coisometry is a power partial isometry, and the
other key examples are the truncated shifts described in Example 2.2 — indeed,
every power partial isometry is a direct sum of an isometry, a coisometry and some
truncated shifts ([12]).

Example 2.2. Let {ei : 1 6 i 6 k + 1} be the usual orthonormal basis

for Ck+1, and consider the truncated shift Jk =
k∑
j=1

ej+1 ⊗ ej on Ck+1. Since

the ei ⊗ ej are matrix units, we have J∗k =
k+1∑
j=2

ej−1 ⊗ ej , and can check that Jk

is a power partial isometry satisfying Jk+1
k = 0. The C∗-subalgebra C∗(Jk) of

B(Ck+1) generated by Jk contains ei⊗ ej = (J∗k )j−1Jkk (J∗k )kJ i−1
k , and hence is all

of B(Ck+1).

The C∗-algebra C∗
( ∞⊕
k=1

Jk

)
is universal among C∗-algebras generated by a

power partial isometry ([13], Theorem 1.3). We shall need to know this about

C∗
( n⊕
k=1

Jk

)
.

Lemma 2.3. The C∗-algebra C∗
( ⊕
k6n

Jk

)
is isomorphic to

⊕
k6n

Mk+1(C).

Proof. We prove this by induction on n. For n = 1, we have C∗(J1) ∼= B(C2)
by Example 2.2. Suppose n > 1 and we know the result for n − 1. Then since
Jnk = 0 for k < n, we have

( ⊕
k6n

Jk

)n
= 0 ⊕ Jnn = 0 ⊕ (en+1 ⊗ e1). Since
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C∗(en+1⊗e1) = B(Cn+1) = C∗(Jn), this implies that
( ⊕
k<n

Jk

)
⊕0 ∈ C∗

( ⊕
k6n

Jk

)
,

and that
C∗

( ⊕

k6n
Jk

)
= C∗

( ⊕

k<n

Jk

)
⊕B(Cn+1),

which is isomorphic to
⊕
k6n

B(Ck+1) by the inductive hypothesis.

2.2. Toeplitz algebras. We let {εr : r ∈ Γ+} denote the usual orthonormal
basis of `2(Γ+). There is a representation T = TΓ of Γ+ by isometries on `2(Γ+)
such that Ts(εr) = εr+s for r, s ∈ Γ+. The Toeplitz algebra T (Γ) is the C∗-
subalgebra of B(`2(Γ+)) generated by {Ts : s ∈ Γ+}.

One way to analyse T (Γ) is by realising it as a semigroup crossed product.
If α is an action of Γ+ by endomorphisms of a C∗-algebra A, then a covariant
isometric representation of (A,Γ+, α) consists of a non-degenerate representation
π : A→ B(H) and an isometric representation V of Γ+ on H such that

π(αs(a)) = Vsπ(a)V ∗s for s ∈ Γ+ and a ∈ A;

the semigroup crossed product of A by α is by definition universal for such repre-
sentations. Here we call it the isometric crossed product and denote it by A×iso

α Γ+;
we write π×iso V for the representation of A×iso

α Γ+ associated to a covariant iso-
metric representation (π, V ).

For s ∈ Γ+, we denote by 1s the characteristic function of {t ∈ Γ+ : t > s}.
Since 1s1t = 1max{s,t} and 1∗s = 1s, BΓ+ := span{1t : t ∈ Γ+} is a C∗-subalgebra of
`∞(Γ+). The action τ of Γ+ by right translation on `∞(Γ+) satisfies τt(1s) = 1s+t,
and hence restricts to an action of Γ+ by endomorphisms of BΓ+ . For every
isometric representation V of Γ+ on H, there is a representation πV of BΓ+ such
that (πV , V ) is a covariant isometric representation of (BΓ+ ,Γ+, τ); if each Vs
is non-unitary, then πV ×iso V is a faithful representation of BΓ+ ×iso

τ Γ+ ([3],
Theorem 2.4). In particular, the representation T = TΓ : Γ+ → B(`2(Γ+))
induces an isomorphism πT ×iso T of BΓ+ ×iso

τ Γ+ onto T (Γ).
Since every unitary representation is in particular an isometric representa-

tion, there is a canonical quotient map ψT of T (Γ) ∼= BΓ+ ×iso
τ Γ+ onto C∗(Γ) ∼=

C(Γ̂). Murphy proved in [19] that the kernel of ψT is the commutator ideal CΓ of
T (Γ). In Remark 3.3 of [2], this is deduced from properties of isometric crossed
products; in particular, it is shown that CΓ itself is an isometric crossed product
BΓ+,∞ ×iso

τ Γ+. From this description it follows easily that CΓ is generated by the
elements TsT ∗s − TtT

∗
t for s < t.

Douglas proved that if Γ is a subgroup of R then CΓ is a simple C∗-algebra,
and Murphy proved the converse ([19], Theorem 4.3; see also p. 1141, [3]). The
following description of CΓ will be useful.

Lemma 2.4. For every totally ordered abelian group Γ,

(2.1) CΓ = span{Tr(1− TuT
∗
u )T ∗t : r, u, t ∈ Γ+}.

Proof. Let I denote the right-hand side of (2.1). Since each 1 − TuT
∗
u =

[T ∗u , Tu] is a commutator, I ⊂ CΓ. On the other hand, CΓ is generated by the
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elements TsT ∗s − TtT
∗
t = Ts(1− Tt−sT ∗t−s)T ∗s for s < t, so it suffices to prove that

I is an ideal.
Since T (Γ) is generated by {Ts : s ∈ Γ+}, we must show TsI ⊂ I and

T ∗s I ⊂ I. We trivially have TsI ⊂ I. Let r, u, t ∈ Γ+. Then

T ∗s Tr(1− TuT
∗
u )T ∗t

=
{
Tr−s(1− TuT

∗
u )T ∗t if r > s,

T ∗s−r(1− TuT
∗
u )T ∗t if r < s,

=




Tr−s(1− TuT

∗
u )T ∗t if r > s,

(T ∗s−r − T ∗s−rTs−rTu−(s−r)T ∗u−(s−r)T
∗
s−r)T

∗
t if r < s and s− r < u,

0 otherwise,

=




Tr−s(1− TuT

∗
u )T ∗t if r > s,

(1− Tu−(s−r)T ∗u−(s−r))T
∗
s−r+t if r < s and s− r < u,

0 otherwise,

and hence T ∗s Tr(1− TuT
∗
u )T ∗t belongs to I.

2.3. Hilbert bimodules. A Hilbert bimodule over a C∗-algebra A is a right
Hilbert A-module X together with a homomorphism ϕ : A → L(X), which gives
a left action of A on X: a · x := ϕ(a)x for a ∈ A and x ∈ X. A Toeplitz
representation (ψ, π) of X in a C∗-algebra B consists of a linear map ψ : X → B
and a homomorphism π : A→ B such that

ψ(x · a) = ψ(x)π(a), ψ(x)∗ψ(y) = π(〈x, y〉A), and ψ(a · x) = π(a)ψ(x)

for every x ∈ X and a ∈ A.
The Toeplitz algebra of X is the C∗-algebra TX generated by the range of

a universal Toeplitz representation (iX , iA) of X; then for every Toeplitz repre-
sentation (ψ, π) of X in a C∗-algebra B, there is a homomorphism ψ × π of TX
into B such that (ψ × π) ◦ iX = ψ and (ψ × π) ◦ iA = π. For every Hilbert
bimodule X, there is such a C∗-algebra and it is unique up to isomorphism ([10],
Proposition 1.3).

Definition 2.5. Suppose X = {Xs : s ∈ Γ+} is a family of Hilbert bimod-
ules over a C∗-algebra A. We write ϕs : A → L(Xs) for the left action of A on
Xs. Fowler says that X is a product system over Γ+ if there is an associative mul-
tiplication on X (strictly speaking, on the disjoint union of the Xs) such that for
s, t ∈ Γ+, the map (x, y) 7→ xy extends to an isomorphism of the Hilbert bimodule
Xs ⊗ Xt onto Xst ([8], Definition 2.1). He also requires that X0 = A (with left
and right actions defined by multiplication in A), and that the multiplications in
X involving elements in A = X0 satisfy ax = a · x and xa = x · a for a ∈ A and
x ∈ Xs.

Definition 2.6. A Toeplitz representation ψ of a product system X in a
C∗-algebra B is a map ψ : X → B such that for each s ∈ Γ+, (ψs, ψ0) is a Toeplitz
representation of Xs, and ψ(xy) = ψ(x)ψ(y) for x, y ∈ X.

Every product systemX over Γ+ has a Toeplitz algebra TX which is generated
by a universal Toeplitz representation iX of X, and it is unique up to isomorphism
([8], Proposition 2.8).
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3. PARTIAL-ISOMETRIC REPRESENTATIONS

Let Γ be a totally ordered abelian group with positive cone Γ+. A partial-isometric
representation of Γ+ on a Hilbert space H is a map V of Γ+ into B(H) such that
Vs is a partial isometry and VsVt = Vs+t for every s, t in Γ+. We denote by
C∗(V (Γ+)) the C∗-algebra generated by the operators Vs.

Example 3.1. Since Vn = (V1)n, a partial-isometric representation V of
N is determined by the single partial isometry V1; a single partial isometry W
generates a partial isometric representation V : n 7→ Wn if and only if W is a
power partial isometry. We often implicitly acknowledge this by writing V n for
Vn when the semigroup is N.

The following property of partial-isometric representations will be used re-
peatedly.

Proposition 3.2. Suppose V is a partial-isometric representation of Γ+ on
H. Then each Vs is a power partial isometry and {V ∗s Vs, VtV ∗t : s, t ∈ Γ+} is a
commuting family of projections.

Proof. For each s ∈ Γ+ and n ∈ N, V ns = Vns is a partial isometry, so Vs is
a power partial isometry. Because VsVt = Vs+t is a partial isometry, each V ∗s Vs
commutes with each VtV

∗
t by Proposition 2.1. To see that the range projections

commute, we let s, t ∈ Γ+ and compute:

VsV
∗
s VtV

∗
t =

{
VsV

∗
s−tV

∗
t VtV

∗
t if t 6 s,

VsV
∗
s VsVt−sV

∗
t if s 6 t,

=
{
VsV

∗
s−tV

∗
t if t 6 s,

VsVt−sV ∗t if s 6 t,

=
{
VsV

∗
s if t 6 s,

VtV
∗
t if s 6 t,

= Vs∨tV ∗s∨t,

where s ∨ t denotes max{s, t}. Since s ∨ t = t ∨ s, this and the same calculation
with s and t swapped show that VsV ∗s commutes with VtV ∗t . A similar argument
shows that V ∗s VsV

∗
t Vt = V ∗s∨tVs∨t = V ∗t VtV

∗
s Vs.

Every isometric representation V : Γ+ → B(H) is also a partial-isometric
representation, and so is the associated coisometric representation V ∗ : s 7→ V ∗s .
Thus there are natural representations T and T ∗ of Γ+ by forward and backward
shifts on `2(Γ+). In the remainder of this section we discuss two partial-isometric
representations by truncated shifts and the C∗-algebras they generate.

For s ∈ Γ+, we consider two intervals

[0, s) := {t ∈ Γ+ : 0 6 t < s} and [0, s] := {t ∈ Γ+ : 0 6 t 6 s}.
For t ∈ Γ+, there is a partial isometry Ks

t on `2([0, s)) such that

(3.1) Ks
t (εr) =

{
εr+t if r + t ∈ [0, s),
0 otherwise,
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and Ks : Γ+ → B(`2([0, s))) is a partial-isometric representation of Γ+ satisfying
Ks
t = 0 for t > s. Similarly, there are partial isometries Jst on `2([0, s]) such that

(3.2) Jst (εr) =
{
εr+t if r + t ∈ [0, s],
0 otherwise,

and then Js : Γ+ → B(`2([0, s])) is a partial-isometric representation of Γ+ satis-
fying Jst = 0 for t > s.

We analyse C∗(Ks(Γ+)) first.

Proposition 3.3. There is an order ideal I of Γ such that

(3.3) I+ = {t ∈ Γ+ : 0 6 t 6 ns for some n ∈ N},
and then C∗(Ks(Γ+)) is Morita equivalent to the commutator ideal CI in T (I).

Before we prove this proposition we identify C∗(Ks(Γ+)) as a corner of the
commutator ideal CΓ.

Lemma 3.4. For s ∈ Γ+, C∗(Ks(Γ+)) is isomorphic to (1 − TsT
∗
s )CΓ(1 −

TsT
∗
s ).

To prove Lemma 3.4, we need the following standard fact.

Lemma 3.5. Suppose K is a closed subspace of a Hilbert space H and P is
the projection of H onto K. Then PTP 7→ PT |K is an isomorphism of PB(H)P
onto B(K).

Proof of Lemma 3.4. We view `2([0, s)) as the closed subspace of `2(Γ+)
spanned by {εt : t ∈ [0, s)}. Then 1 − TsT

∗
s is the projection of `2(Γ+) onto

`2([0, s)). We have

(1− TsT
∗
s )Tt(1− TsT

∗
s )(εr) =

{
Ks
t (εr) if r < s,

0 if r > s.

Thus the isomorphism of Lemma 3.5 identifies C∗(Ks(Γ+)) with the C∗-subalgebra

D := C∗
({(1− TsT

∗
s )Tt(1− TsT

∗
s ) : t ∈ Γ+})

of T (Γ). It therefore suffices to prove that D = (1− TsT
∗
s )CΓ(1− TsT

∗
s ).

Since 1 − TsT
∗
s = [T ∗s , Ts] belongs to CΓ, and CΓ is an ideal, each generator

(1− TsT
∗
s )Tt(1− TsT

∗
s ) belongs to (1− TsT

∗
s )CΓ(1− TsT

∗
s ). Thus

D ⊂ (1− TsT
∗
s )CΓ(1− TsT

∗
s ).

Before proving the reverse inclusion, we recall from Lemma 2.4 that CΓ is
spanned by the elements of the form Tr(1− TuT

∗
u )T ∗t . Since

(1− TsT
∗
s )Tr(1− TuT

∗
u )T ∗t (1− TsT

∗
s )

=

{ (1− TsT
∗
s )Tr−t(TtT ∗t − Tu+tT

∗
u+t)(1− TsT

∗
s ) if 0 6 r − t < s,

(1− TsT
∗
s )(TrT ∗r − Tu+rT

∗
u+r)T

∗
t−r(1− TsT

∗
s ) if 0 6 t− r < s,

0 otherwise,

=

{ (1− TsT
∗
s )Tr−t(1− TsT

∗
s )(TtT ∗t − Tu+tT

∗
u+t)(1− TsT

∗
s ) if 0 6 r − t < s,

(1− TsT
∗
s )(TrT ∗r − Tu+rT

∗
u+r)(1− TsT

∗
s )T ∗t−r(1− TsT

∗
s ) if 0 6 t− r < s,

0 otherwise,
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it suffices to prove that (1 − TsT
∗
s )TtT ∗t (1 − TsT

∗
s ) ∈ D for every t. But since

T ∗t Tt = 1 and 1− TsT
∗
s 6 1− Tt+sT

∗
t+s, we calculate

(1− TsT
∗
s )Tt(1− TsT

∗
s ) = (1− TsT

∗
s )(Tt − TtTsT

∗
s T

∗
t Tt)

= (1− TsT
∗
s )(1− Tt+sT

∗
t+s)Tt = (1− TsT

∗
s )Tt,

and deduce that

(1− TsT
∗
s )TtT ∗t (1− TsT

∗
s ) = (1− TsT

∗
s )Tt((1− TsT

∗
s )Tt)∗

is in D. This proves the reverse inclusion, and hence Lemma 3.4.

Proof of Proposition 3.3. Since I+ is a subsemigroup of Γ+ and 0 6 t 6 r ∈
I+ implies t ∈ I+, I := I+ ∪ (−I+) is an order ideal. For t ∈ Γ+ \ I+, we have
Ks
t = 0. Thus

C∗(Ks(Γ+)) = C∗({Ks
t : t ∈ Γ+}) = C∗({Ks

t : t ∈ I+}) = C∗(Ks(I+)).

By Lemma 3.4, C∗(Ks(I+)) is isomorphic to the C∗-subalgebra (1−VsV ∗s )CI(1−
VsV

∗
s ) of the commutator ideal CI , where, to avoid eyestrain, we have written V for

T I . But (1− VsV ∗s )CI(1− VsV ∗s ) is Morita equivalent to the ideal CI(1− VsV ∗s )CI
([23], Example 3.6), so it suffices to prove that CI(1− VsV

∗
s )CI is dense in CI .

Lemma 2.4 implies that

(3.4) CI = span{Vr(1− VtV
∗
t )V ∗u : r, t, u ∈ I+}.

Since 1 − VsV
∗
s is a projection in CI , 1 − VsV

∗
s belongs to CI(1 − VsV

∗
s )CI . Now

suppose t ∈ I+, say t 6 Ns. An induction argument shows that

1− VnsV
∗
ns = (1− V(n−1)sV

∗
(n−1)s) + (V(n−1)sV

∗
(n−1)s − VnsV

∗
ns)

= (1− V(n−1)sV
∗
(n−1)s) + V(n−1)s(1− VsV

∗
s )V ∗(n−1)s

belongs to CI(1− VsV ∗s )CI for all n, and hence so does 1 − VtV
∗
t 6 1 − VNsV

∗
Ns.

We deduce that Vr(1 − VtV
∗
t )V ∗u is in CI(1 − VsV

∗
s )CI for every r, t, u ∈ I+, and

(3.4) implies that CI(1− VsV
∗
s )CI is dense in CI .

We now consider C∗(Js(Γ+)).

Proposition 3.6. By identifying `2([0, s)) with a closed subspace of
`2([0, s]), we can view C∗(Ks(Γ+)) as a C∗-subalgebra of C∗(Js(Γ+)), and then

(3.5) C∗(Js(Γ+)) = C∗(Ks(Γ+)) +K(`2([0, s])).

Proof. When we view `2([0, s)) as span{εr : r ∈ [0, s)} ⊂ `2([0, s]), 1 −
Jss (Jss )∗ is the projection of `2([0, s]) onto `2([0, s)). By Lemma 3.5, there is an
isomorphism ofB(`2([0, s))) onto (1−Jss (Jss )∗)B(`2([0, s]))(1−Jss (Jss )∗). Moreover,
for r < s,

(1− Jss (J
s
s )
∗)Jst (1− Jss (J

s
s )
∗)(εr) = (1− Jss (J

s
s )
∗)Jst (εr)

=
{

(1− Jss (Jss )∗)(εr+t) if r + t ∈ [0, s],
0 otherwise,

=
{
εr+t if r + t ∈ [0, s),
0 otherwise,

= Ks
t (εr),
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and (1− Jss (Jss )∗)Jst (1− Jss (Jss )∗)(εs) = 0; thus we can identify C∗(Ks(Γ+)) with
the C∗-subalgebra of C∗(Js(Γ+)) generated by

{(1− Jss (J
s
s )
∗)Jst (1− Jss (J

s
s )
∗) : t ∈ Γ+}.

We notice that the rank-one operator εr ⊗ εt = (Jss−r)
∗Jss (J

s
s )
∗Jss−t, and

hence

(3.6) K(`2([0, s])) = span{(Jss−r)∗Jss (Jss )∗Jss−t : r, t ∈ [0, s]} ⊂ C∗(Js(Γ+)).

Thus C∗(Ks(Γ+)) + K(`2([0, s])) ⊂ C∗(Js(Γ+)). Note that C∗(Ks(Γ+))+
K(`2([0, s])) is a C∗-subalgebra of C∗(Js(Γ+)) because K(`2([0, s])) is an ideal.
On the other hand, we compute using the definitions of Js and Ks that

(Jst −Ks
t )(εr) =

{
(εs ⊗ εs−t)(εr) if t 6 s,
0 otherwise,

for every r ∈ [0, s], and hence

Jst =
{
Ks
t + (εs ⊗ εs−t) if t 6 s,

0 otherwise.
Thus Jst belongs to C∗(Ks(Γ+))+K(`2([0, s])) for every t ∈ Γ+, and C∗(Js(Γ+)) ⊂
C∗(Ks(Γ+)) +K(`2([0, s])).

Corollary 3.7. Let J = C∗(Ks(Γ+)) ∩ K(`2([0, s])). Then J is an ideal
of C∗(Ks(Γ+)) and there is an exact sequence

(3.7) 0 → K(`2([0, s])) → C∗(Js(Γ+))Rs→C∗(Ks(Γ+))/J → 0

in which Rs(Jst ) = Ks
t + J .

Proof. We trivially have that J is an ideal of C∗(Ks(Γ+)). By Lemma 3.6,
C∗(Js(Γ+)) = C∗(Ks(Γ+)) + K(`2([0, s])). Then C∗(Js(Γ+))/K(`2([0, s])) =
C∗(Ks(Γ+))/J , and we have (3.7).

When Γ is archimedean, and hence isomorphic to a subgroup of the additive
group of real numbers, we can say more.

Propsition 3.8. Suppose Γ is archimedean. Then either Γ is singly gen-
erated, in which case C∗(Js(Γ+)) = K(`2([0, s])), or Γ is isomorphic to a dense
subgroup of R, in which case we have an exact sequence

(3.8) 0 → K(`2([0, s])) → C∗(Js(Γ+))Rs→C∗(Ks(Γ+)) → 0

such that Rs(Jst ) = Ks
t .

Proof. If Γ is singly generated, then Γ = Zt for some t, s = nt for some
n > 0, Jst is the truncated shift on Cn+1 ∼= `2([0, s]), and C∗(Js(Γ+)) = C∗(Jst ) is
all of K(`2([0, s])) = B(`2([0, s])) by Example 2.2. Now suppose Γ is dense in R.
Then Γ is simple, and the order ideal I of Proposition 3.3 is all of Γ; since CΓ is
simple, Proposition 3.3 implies that C∗(Ks) is simple too. Thus J := C∗(Ks) ∩
K(`2([0, s])) is either 0 or C∗(Ks). But Γ is dense, `2([t, s]) = Ks

t (`
2([0, s])) is

infinite-dimensional for all t < s, and hence Ks
t is not compact whenever t < s.

Thus J = 0, and Corollary 3.7 gives (3.8).
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4. PARTIAL-ISOMETRIC CROSSED PRODUCTS

4.1. Covariant partial-isometric representations. We consider a dynam-
ical system (A,Γ+, α) consisting of an action α of Γ+ by endomorphisms of a
C∗-algebra A such that α0 = idA. We assume that each αs is extendible, and
hence extends to a strictly continuous endomorphism αs of the multiplier algebra
M(A).

Definition 4.1. A covariant partial-isometric representation of (A,Γ+, α)
is a pair (π, V ) consisting of a non-degenerate representation π of A on a Hilbert
space H and a partial-isometric representation V of Γ+ on H such that

(4.1) π(αs(a)) = Vsπ(a)V ∗s and V ∗s Vsπ(a) = π(a)V ∗s Vs for s ∈ Γ+, a ∈ A.

We can also talk about covariant partial-isometric representations of (A,Γ+, α) in
a C∗-algebra B or a multiplier algebra M(B).

Lemma 4.2. If (π, V ) is a covariant partial-isometric representation of
(A,Γ+, α), then (π, V ) is a covariant partial-isometric representation of
(M(A),Γ+, α).

Proof. Let {ai} be an approximate identity for A. Then

π(αs(mai)) = Vsπ(mai)V ∗s = Vsπ(m)π(ai)V ∗s
converges strongly to Vsπ(m)V ∗s , because π is non-degenerate. On the other hand,
since αs(ai) converges strictly to αs(1),

π(αs(mai)) = π(αs(m))π(αs(ai))

converges strongly to π(αs(m))π(αs(1)) = π(αs(m)). Thus π(αs(m)) = Vsπ(m)V ∗s .
A similar argument shows that V ∗s Vsπ(m) = π(m)V ∗s Vs.

Next, we give an alternative version of the covariance relation (4.1).

Lemma 4.3. Let A be a C*-algebra and α be an extendible endomorphism of
A. Suppose π is a non-degenerate homomorphism of A into a multiplier algebra
M(B) and v is a partial isometry in M(B). Then

(4.2) π(α(a))v = vπ(a) for every a ∈ A and vv∗ = π(α(1))

if and only if

(4.3) π(α(a)) = vπ(a)v∗ and v∗vπ(a) = π(a)v∗v for every a ∈ A.

Proof. Suppose (4.2) holds. Then

π(α(a)) = π(α(a))π(α(1)) = π(α(a))vv∗ = vπ(a)v∗,
and

v∗vπ(a) = v∗π(α(a))v = (π(α(a∗))v)∗v = (vπ(a∗))∗v = π(a)v∗v.

Now suppose (4.3) holds, and a ∈ A. Then

π(α(a))v = vπ(a)v∗v = vv∗vπ(a) = vπ(a),

and Lemma 4.2 gives π(α(1)) = vπ(1)v∗ = vv∗.
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Corollary 4.4. Let π be a non-degenerate representation of A on a Hilbert
space H and V be a partial-isometric representation of Γ+ on H. Then (π, V ) is
a covariant partial-isometric representation of (A,Γ+, α) if and only if

π(αs(a))Vs = Vsπ(a) and π(αs(1)) = VsV
∗
s for a ∈ A, s ∈ Γ+.

Corollary 4.5. If (π, V ) is a covariant partial-isometric representation of
(A,Γ+, α) on H, then V0 = 1.

Proof. Using Proposition 3.2, we calculate

V0 = V0+0V
∗
0+0V0 = V0(V0V

∗
0 )(V ∗0 V0) = V0(V ∗0 V0)(V0V

∗
0 )

= (V0V
∗
0 )V0+0V

∗
0 = V0V

∗
0 .

Since we assume that α0 is the identity endomorphism, and π is non-degenerate,
we get V0V

∗
0 = π(α0(1)) = 1. Thus V0 = 1.

Example 4.6. Suppose α : Γ+ → EndA, and π0 is a non-degenerate repre-
sentation of A on H. Define π : A→ B(`2(Γ+,H)) by

(π(a)ζ)(r) = π0(αr(a))(ζ(r)).

Then π is a representation which is non-degenerate on

H = span{ζ ∈ `2(Γ+,H) : ζ(r) ∈ π0(αr(1))H for all r ∈ Γ+}.
For s ∈ Γ+, define Vs on H by Vsζ(r) = ζ(r + s): for ζ ∈ H, Vsζ(r) is in
π0(αr+s(1))H ⊂ π0(αr(1))H, and hence Vsζ ∈ H. Let ζ ∈ (kerVs)⊥. Then
ζ(r) = 0 for every r < s, and hence

‖Vsζ‖2 =
∑

r∈Γ+

‖ζ(r + s)‖2 =
∑

r∈Γ+

‖ζ(r)‖2 = ‖ζ‖2.

Thus Vs is a partial isometry. Indeed, V : s 7→ Vs is a partial-isometric represen-
tation of Γ+ on H, because

Vs+tζ(r) = ζ(r + s+ t) = Vtζ(r + s) = VsVtζ(r) for ζ ∈ H and s, t, r ∈ Γ+.

We claim that (π|H, V ) is a covariant partial-isometric representation of
(A,Γ+, α). For a ∈ A, ζ ∈ H and r, s ∈ Γ+, we have

(
π(αs(a))(Vsζ)

)
(r) = π0(αr(αs(a)))(Vsζ(r)) = π0(αr+s(a))(ζ(r + s))

= (π(a)ζ)(r + s) = (Vsπ(a)ζ)(r),

and hence π(αs(a))Vs = Vsπ(a). Since VsV ∗s is the projection on

rangeVs = {ζ ∈ H : ζ(r) ∈ π0(αr+s(1))H for all r ∈ Γ+},
we get

(π(αs(1))ζ)(r) = π0(αr(αs(1)))(ζ(r)) = π0(αr+s(1))(ζ(r)) = (VsV ∗s ζ)(r)

for every ζ ∈ H and r ∈ Γ+. Corollary 4.4 implies that (π, V ) is covariant, as
claimed.

Notice that if π0 is faithful, so is π. Thus every system (A,Γ+, α) admits
covariant partial-isometric representations (π, V ) with π faithful.
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4.2. Crossed products and Toeplitz algebras of Hilbert bimodules.
Suppose (A,Γ+, α) is a dynamical system as in Subsection 4.1. Following Fowler
([8], Section 3) we give eachXs := {s}×αs(1)A the structure of a Hilbert bimodule
over A via

(s, x) · a := (s, xa), 〈(s, x), (s, y)〉A := x∗y and a · (s, x) = (s, αs(a)x),
and define a multiplication on X =

⊔{Xs : s ∈ Γ+} by
(s, x)(t, y) = (s+ t, αt(x)y) for x ∈ αs(1)A and y ∈ αt(1)A.

Then X is a product system of Hilbert bimodules over Γ+ ([8], Lemma 3.2).
The Toeplitz algebra (TX , iX) described in Proposition 2.8 of [8] is universal for
covariant partial-isometric representations:

Propsition 4.7. Let α : Γ+ → EndA be an action by extendible endo-
morphisms. Then there is a covariant partial-isometric representation (iA, iΓ+) of
(A,Γ+, α) in TX such that iA is injective and

(i) for every covariant partial-isometric representation (π, V ) of (A,Γ+, α)
on H there is a non-degenerate representation π × V of TX on H such that (π ×
V ) ◦ iA = π and (π × V ) ◦ iΓ+ = V ; and

(ii) TX is generated by iA(A) ∪ iΓ+(Γ+); indeed, we have
(4.4) TX = span{iΓ+(s)∗iA(a)iΓ+(t) : a ∈ A, s, t ∈ Γ+}.
If (jA, jΓ+) is a covariant partial-isometric representation of (A,Γ+, α) in a C∗-
algebra B with properties (i) and (ii), then there is an isomorphism of B onto TX
which carries (jA, jΓ+) into (iA, iΓ+).

Proof. By Proposition 3.4 of [8], there is a partial-isometric representation
(iA, iΓ+) in TX such that iA(a) = iX(0, a) and iΓ+(s) = lim iX(s, αs(ai))∗, where
{ai} is an approximate identity for A. Since Proposition 3.4 of [8] also says that we
can recover iX via iX(s, a) = iΓ+(s)∗iA(a), the elements iA(a) and iΓ+(s) generate.
To verify (4.4), just check that the right-hand side is closed under multiplication,
and hence is a C∗-algebra containing the generators.

Let (π, V ) be a partial-isometric representation of (A,Γ+, α) on H. Then
Proposition 3.4 of [8] gives a Toeplitz representation ψ of X such that ψ(s, x) =
V ∗s π(x) and, by Proposition 2.8(a) of [8], there is a representation ψ∗ of TX with
ψ∗ ◦ iX = ψ. We take π × V = ψ∗. Then π × V (iA(a)) = π × V (iX(0, a)) =
ψ(0, a) = π(a), and

π × V (iΓ+(s)) = π × V (lim iX(s, αs(ai))∗) = limπ × V (iX(s, αs(ai))∗)

= limψ∗(iX(s, αs(ai))∗) = limψ(s, αs(ai))∗ = Vs.

Thus (iA, iΓ+) satisfies (i). Example 4.6 shows that there are covariant representa-
tions (π, V ) with π faithful, and then the equation π = (π×V )◦iA shows that iA is
injective. The uniqueness follows by a standard argument using the two universal
properties.

We call TX the partial-isometric crossed product of (A,Γ+, α), and denote it
A ×α Γ+. Because it is the Toeplitz algebra of a product system, we can apply
Fowler’s results, and in particular Corollary 9.4 of [8]. This gives:

Theorem 4.8. Suppose (π, V ) is a covariant partial-isometric representa-
tion of the system (A,Γ+, α) on H. Then π×V is faithful on A×α Γ+ if and only
if π acts faithfully on (V ∗s H)⊥ for every s in Γ+ \ {0}.
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5. THE CROSSED PRODUCT OF (BΓ+ , Γ+, τ )

In this section we analyse the crossed product BΓ+×τ Γ+ by the action τ of Γ+ by
right translation on BΓ+ ⊂ `∞(Γ+) which, by Proposition 9.6 of [8], is universal
for partial-isometric representations of Γ+. Theorem 5.6 concerns subgroups of R,
but until then Γ can be any totally ordered abelian group.

We begin by analysing some related crossed products associated to intervals
in Γ+. Let s ∈ Γ+, and let I stand for one of [0, s) or [0, s]. For t ∈ Γ+, let 1It be
the characteristic function of I ∩ [t,∞). Since (1It )

∗ = 1It and 1It 1
I
u = 1Imax{t,u},

BI = span{1It : t ∈ I} is a C∗-subalgebra of `∞(I). We denote by τ I the action of
the semigroup Γ+ by translation on `∞(I):

τ Ir (f)(t) =
{
f(t− r) if t− r ∈ I,
0 otherwise.

Then τ Ir (1It ) is 1Ir+t if r + t ∈ I, and 0 otherwise, so BI is invariant under τ I .
We thus obtain a dynamical system (BI ,Γ+, τ I). Since τ Ir = 0 when r is not
in I, BI ×τI Γ+ for I = [0, s] or [0, s) is quite different in nature from BΓ+ ×τ
Γ+. Nevertheless, the crossed products BI ×τI Γ+ play an important role in our
structure theorem for BΓ+×τ Γ+, and hence we analyse BI×τI Γ+ first. We begin
by describing their universal property.

Proposition 5.1. The crossed product BI×τI Γ+ is the universal C∗-algebra
generated by a partial-isometric representation V of Γ+ such that Vr = 0 for r /∈ I.

We let (iBI , i
I
Γ+) denote the universal covariant partial-isometric representa-

tion which generates BI ×τI Γ+. The covariance relation iBI
(1Ir) = iIΓ+(r)iIΓ+(r)∗

implies that the partial-isometric representation iIΓ+ itself generates BI ×τI Γ+,
and also that iIΓ+(r) = 0 for r /∈ I. So for any covariant partial-isometric repre-
sentation (π, V ) of (BI ,Γ+, τ I) we have Vr = 0 when r is not in I. It remains
to prove that if V is a partial-isometric representation of Γ+ such that Vr = 0
for r /∈ I, then there is a representation πIV of BI such that (πIV , V ) is covariant,
because then V = (πIV × V ) ◦ iIΓ+ factors through iIΓ+ . Thus the proposition will
follow from Lemma 5.3 below.

For the proof of Lemma 5.3, we need the following variant of Proposition 2.2
of [3], and Proposition 1.3 of [15], which can be proved by making minor modifi-
cations to the proof of Proposition 2.2 of [3].

Lemma 5.2. Suppose {Pr : r ∈ I} is a family of projections on H such that
Pr > Pt when r 6 t. Then there is a representation πP of BI on H such that
πP (1Ir) = Pr for r ∈ I, and πP is faithful if and only if Pr 6= Pt when r 6= t.

Lemma 5.3. Let V be a partial-isometric representation of Γ+ on H such
that Vr = 0 when r /∈ I. Then there is a representation πIV of BI on H such that
(πIV , V ) is a covariant partial-isometric representation of the dynamical system
(BI ,Γ+, τ I).

Proof. First we prove that there is a representation πIV of BI such that
πIV (1Ir) = VrV

∗
r . For t > r, we have

VrV
∗
r − VtV

∗
t = Vr(1− Vt−rV ∗t−r)V

∗
s = ((1− Vt−rV ∗t−r)V

∗
r )∗(1− Vt−rV ∗t−r)V

∗
r ,
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so VrV ∗r > VtV
∗
t . Lemma 5.2 now gives the required representation.

To see that (πIV , V ) is covariant, it suffices by Corollary 4.4 to show that
πIV (τ Ir (a))Vr = Vrπ

I
V (a) for r ∈ Γ+ and a ∈ BI . By continuity, we need only do

this for a = 1It . For r /∈ I both sides of the equation are zero. For r ∈ I, we
calculate using Proposition 3.2: if t+ r ∈ I, we have

πIV (τ Ir (1It ))Vr = πIV (1It+r)Vr = Vr(VtV ∗t )(V ∗r Vr) = (VrV ∗r Vr)(VtV
∗
t ) = Vrπ

I
V (1It ),

and if t+ r /∈ I, we have

πIV (τ Ir (1It ))Vr = πIV (0)Vr = 0 = Vt+rV
∗
t = VrVtV

∗
t = Vrπ

I
V (1It ).

Thus (πIV , V ) is covariant.

This completes the proof of Proposition 5.1.

Proposition 5.4. Let V be a partial-isometric representation of Γ+ such
that Vr = 0 for r /∈ I. Then the representation πIV × V of BI ×τI Γ+ is faithful if
and only if

(1− V ∗r Vr)(VuV
∗
u − VtV

∗
t ) 6= 0 for every r > 0, u, t ∈ I and u < t.

Proof. By Theorem 4.8, πIV × V is faithful if and only if πIV |range(1−V ∗r Vr) is
faithful for every r > 0. Let r > 0 and set Pu := (1−V ∗r Vr)VuV ∗u for u ∈ I, which
is a projection by Proposition 3.2. The same proposition implies that for u 6 t,

Pu − Pt = (1− V ∗r Vr)VuV
∗
u (1− V ∗r Vr)− (1− V ∗r Vr)VtV

∗
t (1− V ∗r Vr)

= (1− V ∗r Vr)(VuV
∗
u − VuVt−uV ∗t−uV

∗
u )(1− V ∗r Vr)

= (1− V ∗r Vr)Vu(1− Vt−uV ∗t−u)V
∗
u (1− V ∗r Vr) > 0.

Thus by Lemma 5.2, there is a representation πP of BI on (1−VrV ∗r )H such that
πP (1Iu) = Pu. Let h ∈ (1− V ∗r Vr)H. Then

πP (1Iu)h = (1− V ∗r Vr)VuV
∗
u h = VuV

∗
u (1− V ∗r Vr)h = VuV

∗
u h = πIV (1Iu)h,

and since the 1Iu generate BI , we deduce that πP = πIV |(1−V ∗r Vr)H . The proposition
therefore follows from the second part of Lemma 5.2.

Corollary 5.5. Let Jr be the partial-isometric representation of Γ+ satis-
fying (3.2). Then the representation

⊕
r∈I

(πIJr × Jr) of BI ×τI Γ+ on
⊕
r∈I

`2([0, r])

is faithful.

Proof. By Proposition 5.4, it is faithful if and only if

(5.1)
⊕
r∈I

(
1− (Jrv )

∗Jrv
)(
Jru(J

r
u)
∗ − Jrt (J

r
t )
∗) 6= 0

for every v > 0 and 0 6 u < t ∈ I. But the summand
(
1 − (Juv )∗Juv

)(
Juu (Juu )∗ −

Jut (Jut )∗
)

is nonzero, so (5.1) holds.
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The crossed products BI×τI Γ+ are important because they arise as quotients
of BΓ+ ×τ Γ+. Each generating semigroup iIΓ+ : Γ+ → BI ×τI Γ+ is a partial-
isometric representation, and the universal property of BΓ+ ×τ Γ+ gives surjective
homomorphisms qI : BΓ+ ×τ Γ+ → BI ×τI Γ+ such that qI(iΓ+(r)) = iIΓ+(r).

For s > 0, we write qs := q[0,s] and q−s := q[0,s); for s = 0, we have only
q0 := q[0,0]. Note that

ker q−r ⊂ ker qs ⊂ ker q−s ⊂ ker qt ⊂ ker q0 for t < s < r.

Our structure theorem for BΓ+ ×τ Γ+ involves these ideals and the natural ho-
momorphisms ϕT := πΓ+

T × T : BΓ+ ×τ Γ+ → T (Γ) associated to the Toeplitz
representation T : Γ+ → T (Γ) and ϕT∗ := πΓ+

T∗ × T ∗ : BΓ+ ×τ Γ+ → T (Γ) as-
sociated to its adjoint T ∗ : r 7→ T ∗r ; both ϕT and ϕT∗ are surjective because the
Tr generate T (Γ). The theorem also involves the homomorphisms ψT and ψT∗

of T (Γ) onto C(Γ̂) which carry Tr to the evaluation maps εr : γ 7→ γ(r) and,
respectively, ε−r : γ 7→ γ(−r).

Theorem 5.6. Suppose Γ is a subgroup of R. Let

I =
(
ker(πΓ+

T × T )
) ∩ (

ker(πΓ+

T∗ × T ∗)
)
.

Then we have a commutative diagram

0 0 0
↓ ↓ ↓

0 → I → ker(πΓ+

T∗ × T ∗) → CΓ → 0
↓ ↓ ↓

0 → ker(πΓ+

T × T ) → BΓ+ ×τ Γ+ ϕT→ T (Γ) → 0
↓ ϕT∗ ↓ ψT∗ ↓

0 → CΓ → T (Γ)
ψT→ C(Γ̂) → 0

↓ ↓ ↓
0 0 0

in which all the rows and columns are exact. For s ∈ Γ+, let Is := I ∩ (ker qs),
and for s > 0, let I−s := I ∩ (ker q−s ). Then:

(i) I/I0
∼= C;

(ii) I−s /Is ∼= K(`2([0, s])) for every s > 0;
(iii) I−s =

⋂
t<s

It for every s > 0; and

(iv) Is =
⋃
r>s

I−r for every s ∈ Γ+.

The proof of this theorem will occupy the rest of the section.
The right-hand exact sequence is due to Douglas ([7], Proposition 3). If Ψ

denotes the automorphism of C(Γ̂) induced by the homeomorphism γ 7→ γ−1, then
ψT∗ = Ψ ◦ ψT , and hence the bottom sequence is also exact. Since the middle
sequences are exact by definition of ϕT and ϕT∗ , we have the following diagram
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of exact sequences:

0 0 0
↓ ↓ ↓

0 → I → kerϕT∗ CΓ

↓ ↓ ↓
0 → kerϕT → BΓ+ ×τ Γ+ ϕT→ T (Γ) → 0

ϕT∗ ↓ ψT∗ ↓
0 → CΓ → T (Γ)

ψT→ C(Γ̂) → 0
↓ ↓

0 0 0

The top left-hand square commutes because all the maps are inclusions, and the
bottom right-hand square commutes because

ψT∗ ◦ ϕT (iΓ+(t)) = ψT∗(Tt) = ε−t = ε∗t = ψT (T ∗t ) = ψT ◦ ϕT∗(iΓ+(t))

for every t ∈ Γ+. The equation ψT∗ ◦ ϕT = ψT ◦ ϕT∗ also implies that ϕT
maps kerϕT∗ into kerψT∗ = CΓ, and it maps kerϕT∗ onto CΓ because each of
the spanning elements Tr(1− TvT

∗
v )T ∗t in Lemma 2.4 has the form ϕT (b) for b =

iΓ+(r)(1− iΓ+(v)iΓ+(v)∗)iΓ+(t)∗ in kerϕT∗ . Since ker(ϕT |kerϕT∗ ) is by definition
I, this gives exactness of the top row, and exactness of the left-hand column follows
similarly.

It remains to prove the assertions about the structure of I. Of these, (a) is
easy: the homomorphism q0 is nonzero on the elements (1 − iΓ+(u)∗iΓ+(u))(1 −
iΓ+(v)iΓ+(v)∗) of I, and has one-dimensional range. For the next two parts, we
need a lemma.

Lemma 5.7. For each interval I, ker qI =
⋂
r∈I

ker(πΓ+

Jr × Jr).

Proof. For t ∈ Γ+, we have
⊕
r∈I

(πΓ+

Jr × Jr)(iΓ+(t)) =
⊕
r∈I

Jrt =
⊕
r∈I

(πIJr × Jr) ◦ qI(iΓ+(t)).

Since
⊕
r∈I

(πIJr × Jr) is faithful on BI ×τI Γ+ by Corollary 5.5, it follows that

ker qI = ker
⊕
r∈I

(πΓ+

Jr × Jr).

We now prove the remaining parts of Theorem 5.6. It is convenient to do
(iii) first.

Proof of (iii). From Lemma 5.7, we have

⋂
t<s

ker qt =
⋂
t<s

( ⋂
r6t

ker(πΓ+

Jr × Jr)
)

=
⋂
r<s

ker(πΓ+

Jr × Jr) = ker q−s ,

and intersecting with I gives (iii).
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Proof of (ii). We shall prove that πΓ+

Js × Js is a surjection of ker q−s onto
K(`2([0, s])) with kernel ker qs. From (3.6) we see that K(`2([0, s])) is spanned by
the elements

(Jss−t)
∗Jss (J

s
s )
∗Jss−r = πΓ+

Js × Js(iΓ+(s− t)∗iΓ+(s)iΓ+(s)∗iΓ+(s− r))

of πΓ+

Js ×Js(ker q−s ), so πΓ+

Js ×Js(ker q−s ) ⊃ K(`2([0, s])). We next show the reverse
inequality.

If Γ is singly generated, then C∗(Js(Γ+)) = K(`2([0, s])) by Example 2.2,
so suppose Γ is not singly generated. Then by Proposition 3.8 there is a ho-
momorphism Rs of C∗(Js(Γ+)) onto C∗(Ks(Γ+)) such that Rs(Jst ) = Ks

t and
kerRs = K(`2([0, s])). But then we can verify on generators that

(π[0,s)
Ks ×Ks) ◦ q−s = Rs ◦ (πΓ+

Js × Js),

and this implies that πΓ+

Js × Js(ker q−s ) ⊂ kerRs = K(`2([0, s])), as claimed.
From two applications of Lemma 5.7 and (iii), we obtain

ker(πΓ+

Js × Js) ∩ (ker q−s ) = ker(πΓ+

Js × Js) ∩
( ⋂
t<s

ker(πΓ+

Jt × J t)
)

=
⋂
t6s

ker(πΓ+

Jt × J t) = ker qs,

and hence ker(πΓ+

Js × Js|ker q−s ) = ker qs.

We have now proved that πΓ+

Js × Js induces an isomorphism of (ker q−s )/
(ker qs) onto K(`2([0, s])). However, for any r > 0 and t > s the element

(
iΓ+(s)iΓ+(s)∗ − iΓ+(t)iΓ+(t)∗

)(
1− iΓ+(r)∗iΓ+(r)

)

belongs to I−s = (ker q−s ) ∩ I but not to ker qs, and hence has nonzero image in
K(`2([0, s])). Since the image of I−s is an ideal in K(`2([0, s])) and K(`2([0, s]))
is simple, this image must be all of K(`2([0, s])). So πΓ+

Js × Js also induces an
isomorphism of I−s /Is onto K(`2([0, s])).

Proof of (iv). We trivially have
⋃
r>s

ker q−r ⊂ ker qs. Since
⋃
r>s

ker q−r is an ideal

in BΓ+ ×τ Γ+, there is a representation π of BΓ+ ×τ Γ+ on a Hilbert space H such
that kerπ =

⋃
r>s

ker q−r , and then π(iΓ+(t)) = 0 for t > r > s. By Proposition 5.1,

there is a representation πs of B[0,s]×τ Γ+ on H such that πs(i
[0,s]
Γ+ (t)) = π(iΓ+(t))

for t ∈ [0, s], and then πs ◦ qs = π. Thus ker qs ⊂ kerπ =
⋃
r>s

ker q−r . Now inter-

secting with I gives Is =
⋃
r>s

(ker q−r ) ∩ I =
⋃
r>s

I−r , by, for example, Lemma 1.3

of [3].

This completes the proof of Theorem 5.6.
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6. THE CROSSED PRODUCT BY THE FORWARD SHIFT

We now show that when Γ+ is the additive semigroup N, we can obtain more
detailed information about the left-hand and top exact sequences in Theorem 5.6.

By viewing functions on N as sequences, we can identify BN with the C∗-
algebra of convergent sequences c. Under this identification, the action τ of N is
generated by the usual shift τ1 : (x0, x1, x2, . . .) 7→ (0, x0, x1, x2, . . .). The partial-
isometric crossed product c×τ N is generated by the power partial isometry iN(1),
and by Proposition 9.6 of [8], is the universal C∗-algebra generated by a power
partial isometry.

Since [0, n) = [0, n − 1] for this semigroup, the maps q−n and qn−1 coin-
cide, and I−n = In−1 for n > 0. Thus Theorem 5.6 says that I/I0

∼= C and
In−1/In ∼= K(`2([0, n])) = Mn+1(C) for n > 0. We will prove that I is isomorphic
to

⊕
n∈N

Mn+1(C). To describe the extensions in the top and left-hand sequences,

we let Pn := 1 − Tn+1(T ∗)n+1 be the projection onto span{ei : 0 6 i 6 n}, and
define

A =
{
f : N→ K(`2(N)) : f(n) ∈ PnK(`2(N))Pn and ε∞(f) := lim

n→∞
f(n) exists

}
;

note that A0 := {f ∈ A : ε∞(f) = 0} is isomorphic to
⊕
n∈N

Mn+1(C). Our

refinement of Theorem 5.6 is:

Theorem 6.1. There are isomorphisms π : kerϕT∗ → A and π∗ : kerϕT →
A and an automorphism α of A0 such that the following diagram commutes and
has all rows and columns exact:

(6.1)

0 0 0
↓ ↓ ↓

0 → A0
id→ A ε∞→ K(`2(N)) → 0

α ↓ π−1 ↓ ↓
0 → A (π∗)−1

→ c×τ N ϕT→ T (Z) → 0
ε∞ ↓ ϕT∗ ↓ ψT∗ ↓

0 → K(`2(N)) → T (Z)
ψT→ C(T) → 0

↓ ↓ ↓
0 0 0

Applying the universal property of c ×τ N to the power partial isometries
PnTPn and PnT

∗Pn gives representations πn and π∗n of c ×τ N on `2(N) such
that πn(iN(1)) = PnTPn and π∗n(iN(1)) = PnT

∗Pn. We will prove that lim
n→∞

πn(a)

exists for all a ∈ kerϕT∗ , so that π(a) := {πn(a)} belongs to A, and similarly
for π∗(b) := {π∗n(b)} when b ∈ kerϕT . To do this, we need to identify spanning
families for kerϕT∗ and kerϕT .
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Lemma 6.2. For i, j,m ∈ N, let

fmi,j := iN(i)iN(m)∗iN(m)(1− iN(1)iN(1)∗)iN(j)∗,
and

gmi,j := iN(i)∗iN(m)iN(m)∗(1− iN(1)∗iN(1))iN(j).

Then kerϕT∗ = span{fmi,j : i, j,m ∈ N} and kerϕT = span{gmi,j : i, j,m ∈ N}.
Proof. First we claim that E := span{fmi,j : i, j,m ∈ N} is an ideal. To see

this, it suffices to show that iN(1)E ⊂ E and iN(1)∗E ⊂ E . The first is trivial. To
show iN(1)∗E ⊂ E , we first let i > 0 and compute using Proposition 3.2:

iN(1)∗iN(i) = iN(1)∗
(
iN(1)iN(i− 1)

)

= iN(1)∗iN(1)
(
iN(i− 1)iN(i− 1)∗iN(i− 1)

)

=
(
iN(i− 1)iN(i− 1)∗

)(
iN(1)∗iN(1)

)
iN(i− 1)

= iN(i− 1)iN(i)∗iN(i).

Thus for i, j,m ∈ N, we have

iN(1)∗fmi,j =
{
iN(1)∗iN(i)iN(m)∗iN(m)

(
1− iN(1)iN(1)∗

)
iN(j)∗ if i > 0,

iN(1)∗
(
1− iN(1)iN(1)∗

)
iN(m)∗iN(m)iN(j)∗ if i = 0,

=
{
iN(i− 1)iN(i)∗iN(i)iN(m)∗iN(m)

(
1− iN(1)iN(1)∗

)
iN(j)∗ if i > 0,

0 if i = 0,

=
{
iN(i− 1)iN(i ∨m)∗iN(i ∨m)

(
1− iN(1)iN(1)∗

)
iN(j)∗ if i > 0,

0 if i = 0,

which belongs to E . This proves the claim.
Since T ∗(T ∗)∗ = 1, each fmi,j belongs to kerϕT∗ , and E ⊂ kerϕT∗ . Suppose ϕ

is a non-degenerate representation of c×τ N on a Hilbert space H with kerϕ = E .
Then

1− ϕ(iN(1))ϕ(iN(1))∗ = ϕ(1− iN(1)iN(1)∗) = 0,

so ϕ(iN(1)) is a coisometry, and ϕ(iN(1))∗ is an isometry. By Coburn’s Theorem,
there is a representation ψ of T (Z) on H such that ψ(T ) = ϕ(iN(1))∗. Then, since
ψ ◦ ϕT∗(iN(1)) = ϕ(iN(1)), we have ψ ◦ ϕT∗ = ϕ, and kerϕT∗ ⊂ kerϕ = E .

Similar arguments give the description of kerϕT .

Corollary 6.3. We have πn(a) → ϕT (a) for every a ∈ kerϕT∗ , and
π∗n(b) → ϕT∗(b) for every b ∈ kerϕT .

Proof. Since PnT i = 0 unless i 6 n, we have

(6.2) πn(fmi,j) = π∗n(g
m
i,j) =

{
T i(1− TT ∗)(T ∗)j if i, j,m 6 n,
0 otherwise.

Since all the homomorphisms have norm 1 and πn(fmi,j) = ϕT (fmi,j) for n > m, an
ε/3-argument shows that πn(a) → ϕT (a) for all a ∈ kerϕT∗ . Similar arguments
give the second assertion.

Before proving that π and π∗ map onto A, we show that they restrict to
isomorphisms of I := (kerϕT ) ∩ (kerϕT∗) onto A0. For this we need a spanning
family for I.
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Lemma 6.4. For 0 6 i, j 6 m we have

(6.3) fmi,j − fm+1
i,j = gmm−i,m−j − gm+1

m−i,m−j ,

and the elements (6.3) span I.
Proof. For i 6 m, we compute using Proposition 3.2:

iN(i)iN(m)∗ = iN(i)
(
iN(i)∗iN(m− i)∗

)

= iN(i)iN(i)∗
(
iN(m− i)∗iN(m− i)iN(m− i)∗

)

=
(
iN(m− i)∗iN(m− i)

)(
iN(i)iN(i)∗

)
iN(m− i)∗

= iN(m− i)∗iN(m)iN(m)∗.

Thus for 0 6 i, j 6 m, we have

fmi,j − fm+1
i,j = iN(i)

(
iN(m)∗iN(m)− iN(m+ 1)∗iN(m+ 1)

)(
1− iN(1)iN(1)∗

)
iN(j)∗

= iN(i)iN(m)∗
(
1− iN(1)∗iN(1)

)
iN(m)

(
1− iN(1)iN(1)∗

)
iN(j)∗

= iN(m− i)∗iN(m)iN(m)∗
(
1− iN(1)∗iN(1)

)

· iN(m− j)
(
iN(j)iN(j)∗ − iN(j + 1)iN(j + 1)∗

)

= iN(m− i)∗iN(m)iN(m)∗
(
1− iN(1)∗iN(1)

)

· (iN(m)iN(m)∗ − iN(m+ 1)iN(m+ 1)∗
)
iN(m− j)

= iN(m− i)∗
(
iN(m)iN(m)∗ − iN(m+ 1)iN(m+ 1)∗

)

· (1− iN(1)∗iN(1)
)
iN(m− j)

= gmm−i,m−j − gm+1
m−i,m−j .

Let E0 = span{fmi,j − fm+1
i,j : m ∈ N, 0 6 i, j 6 m}. Equation (6.3) implies

that E0 ⊂ I. Since kerϕT and kerϕT∗ are ideals, kerϕT∩kerϕT∗ = kerϕT kerϕT∗ .
A routine calculation using Proposition 3.2 shows that for i, j,m, p, r, n ∈ N

gmi,jf
n
p,r =

{
f j+pj+p−i,r − f j+p+1

j+p−i,r if r, i,m, n 6 j + p,
0 otherwise,

which is in E0. Since gmi,j and fnp,r span kerϕT and kerϕT∗ , it follows that
kerϕT kerϕT∗ is contained in E0. Thus I = kerϕT kerϕT∗ = E0.

Propsition 6.5. The homomorphisms π : a 7→ {πn(a)} and π∗ : b 7→
{π∗n(b)} restrict to isomorphisms of I onto A0.

Proof. The ideal A0 is spanned by the functions {emij : 0 6 i, j 6 m} given
by

(6.4) emij (n) =
{
T i(1− TT ∗)(T ∗)j if m = n,
0 otherwise;

indeed, for each fixed m they span PmK(`2(N))Pm. Equation (6.2) implies that

(6.5) πn(fmi,j − fm+1
i,j ) =

{
T i(1− TT ∗)(T ∗)j if m = n and i, j 6 m,
0 otherwise.

This proves that π(I) = A0, and similarly π∗(I) = A0.
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The relations (6.5) and (6.4) also show how to construct an inverse for π:
since {{fmi,j − fm+1

i,j : i, j 6 m} : m ∈ N}

consists of mutually orthogonal families of matrix units, there is a homomorphism
of

⊕
Mm+1(C) ∼= A0 onto I which takes emij to fmi,j − fm+1

i,j . Similar arguments
using I = span{gmi,j − gm+1

i,j } give the corresponding property of π∗.

Corollary 6.6. Both π : kerϕT∗ → A and π∗ : kerϕT → A are surjective.
Proof. Since we know that π(kerϕT∗) ⊃ A0, it suffices to show that for each

K ∈ K(`2(N)), there exists g ∈ kerϕT∗ with ε∞(π(g)) = K. Indeed, because
the range of the homomorphism ε∞ ◦ π is closed, it suffices to do this for K =
T i(1−TT ∗)(T ∗)j . But a computation shows that π(f i∨ji,j )(n) = T i(1−TT ∗)(T ∗)j
for n > i ∨ j. We similarly have π∗(gi∨ji,j )(n) = T i(1 − TT ∗)(T ∗)j , and the result
follows.

To see that π and π∗ are injective, we need to know that I is an essential ideal
in c×τ N. To do this, we need the following example of a faithful representation
of c×τ N.

Example 6.7. Let V be the partial isometry on `2(N× N) such that

V (εk,l) =
{
εk+1,l−1 if l > 1,
0 otherwise,

and note that V is a power partial-isometry, so that we have a non-degenerate
representation πV × V of c ×τ N on `2(N × N) such that πV × V (iN(1)) = V . If
m > 0 and i < j, then(

1− (V ∗)mV m
)(
V i(V ∗)i − V j(V ∗)j

)
(εi,0) = εi,0

so Proposition 5.4 implies that πV × V is faithful on c×τ N.
Lemma 6.8. The ideal I is essential in c×τ N.
Proof. Let V be the power partial-isometric representation in Example 6.7.

Then πV S × V is a faithful representation of c ×τ N on `2(N × N). Since
(πV × V )(f i+ji,i − f i+j+1

i,i )εi,j = εi,j , πV × V is non-degenerate on I, and it fol-
lows that I is essential.

Propsition 6.9. Both π : kerϕT∗ → A and π∗ : kerϕT → A are isomor-
phisms.

Proof. Corollary 6.6 says they are surjective. To see that π is injective,
suppose a ∈ kerϕT∗ and π(a) = 0. Then for every c ∈ I, we have π(ac) = 0,
ac = 0, and a = 0 by Lemma 6.8. Thus π is injective. A similar argument shows
that π∗ is injective.

Proof of Theorem 6.1. We have now proved that we can identify the top and
left-hand sequences with
(6.6) 0 → A0 → A ε∞→K(`2(N)) → 0.
However, since the isomorphisms π|I and π∗|I are not the same, to make the top
left-hand square commute, we have to introduce an automorphism α of A0. The
required automorphism is defined on the spanning elements of (6.4) by α(eni,j) =
enn−i,n−j . That the diagram commutes then follows from Lemma 6.4.
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7. THE CROSSED PRODUCT BY THE BACKWARD SHIFT

The backward shifts σk on `∞(N) satisfy

σk(1n) =
{ 1n−k if n > 1,

1 otherwise,

and hence give an action σ : N → End c. In this section we prove a structure
theorem for the crossed product (c×σ N, kc, kN).

Our first task is to determine the universal property of c×σN, which is quite
different from that of c×τ N. The first difference is that the partial isometries V n

in a covariant partial-isometric representation (π, V ) of (c,N, σ) are coisometries:

VnV
∗
n = Vnπ(1)V ∗n = π(σn(1)) = π(1) = 1 for every n ∈ N.

The second difference is that the partial isometries kN(n) no longer generate c×σN:
we cannot recover kc(1n) from kN(n)kN(n)∗ alone. More precisely:

Propsition 7.1. Let (π, V ) be a covariant partial-isometric representation
of (c,N, σ) on H, and write V for the generator V1. Define

(7.1) Q0 = 1− V ∗V and Qn := π(1n)− V ∗π(1n−1)V for n > 0.

Then {Qn} is a sequence of projections satisfying

(7.2) · · · 6 Qn+1 6 Qn 6 Qn−1 6 · · · 6 Q0,

and we can recover π via

(7.3) π(1n) = (V ∗)nV n +
n−1∑

k=0

(V ∗)kQn−kV k for n > 0.

Conversely, for any coisometry V on H and any sequence of projections Qn satisfy-
ing (7.2), there is a covariant partial-isometric representation (πV,Q, V ) of (c,N, σ)
on H such that πV,Q satisfies (7.3).

Proof. Suppose (π, V ) is a covariant partial-isometric representation of
(c,N, σ), and define {Qn} using (7.1). Then for n > 0

(7.4) Qn = π(1n)−V ∗π(σ1(1n))V = π(1n)−V ∗
(
V π(1n)V ∗)V = (1−V ∗V )π(1n)

is the product of commuting projections, and hence is a projection. We have
Q1 = π(11)(1− V ∗V ) 6 1− V ∗V = Q0, and for n > 0, (7.4) gives

Qn −Qn+1 = (1− V ∗V )(π(1n)− π(1n+1)) > 0.

This gives (7.2). When we plug the formulas for Qn−k into the right-hand side of
(7.3), the sum telescopes, and we are left with π(1n).

For the converse, let

P0 := 1 and Pn := (V ∗)nV n +
n−1∑

k=0

(V ∗)kQn−kV k for n > 0.
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Since Qn 6 1− V ∗V , then V Qn = 0. So, for fixed n, {(V ∗)kQn−kV k : k < n} are
mutually orthogonal and orthogonal to (V ∗)nV n, and hence Pn is a projection.
We have P0 − P1 = (1− V ∗V )−Q1 > 0, and for n > 0,

Pn − Pn+1

= (V ∗)nV n +
n−1∑

k=0

(V ∗)kQn−kV k − (V ∗)n+1V n+1 −
n∑

k=0

(V ∗)kQn+1−kV k

= (V ∗)nV n − (V ∗)n+1V n+1 − (V ∗)nQ1V
n +

n−1∑

k=0

(V ∗)k(Qn−k −Qn−k+1)V k

= (V ∗)n(1− V ∗V −Q1)V n +
n−1∑

k=0

(V ∗)k(Qn−k −Qn−k+1)V k,

and hence Pn > Pn+1. By Proposition 1.3 of [15], there is a representation πV,Q
of c such that πV,Q(1n) = Pn.

We now prove that (πV,Q, V ) is covariant. Since each V p is a coisometry, we
have πV,Q(σp(1)) = πV,Q(1) = 1 = V p(V ∗)p. We also have

V pπV,Q(10) = πV,Q(10)V p = πV,Q(σp(10))V p.

For n > 0, we compute using V Qn = 0 and Proposition 3.2:

V pπV,Q(1n) = V p
(
(V ∗)nV n +

n−1∑

k=0

(V ∗)kQn−kV k
)

=





V p(V ∗)p(V ∗)n−pV n−pV p +
n−1∑
k=p

(V ∗)k−pQn−kV k if n > p,

V p−nV n +
n−1∑
k=0

V p−kQn−kV k if n 6 p,

=





(V ∗)n−pV n−pV p +
n−p−1∑
k=0

(V ∗)kQn−p−kV k+p if n > p,

V p if n 6 p,

=





(
(V ∗)n−pV n−p +

n−p−1∑
k=0

(V ∗)kQn−p−kV k
)
V p if n > p,

V p if n 6 p,

=
{
πV,Q(1n−p)V p if n > p,
πV,Q(1)V p if n 6 p,

= πV,Q(σp(1n))V p.

It therefore follows from Corollary 4.4 that (πV,Q, V ) is covariant.

We write qn for the element kc(1n)−kN(1)∗kc(σn(1))kN(1) of c×σN. Propo-
sition 7.1 implies that {qn} is a decreasing sequence of projections, which together
with kN(1) generates c×σ N. The next example shows that the qn are distinct.
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Example 7.2. Let V : N→ B(`2(N×N)) be the coisometric representation
such that

V n(εk,l) =
{
εk,l−n if l > n,
0 otherwise,

so that (V ∗)n(εk,l) = εk,l+n, and let Qn be the projection on span{εk,0 : k > n}.
Then · · · < Qn+1 < Qn < · · · < Q1 < 1 − V ∗V . In the representation πV,Q of
Proposition 7.1, πV,Q(1n) is the projection on span{εk,l : k + l > n}.

We can now characterise the faithful representations of c×σ N:

Propsition 7.3. Suppose (πV,Q, V ) is a covariant partial-isometric repre-
sentation of (c,N, σ). Then the representation πV,Q × V of c ×σ N is faithful if
and only if Qn 6= Qn+1 for all n > 0.

Proof. By Proposition 1.3 of [15], there is a representation πQ of c such
that πQ(1n) = Qn for n ∈ N. For h ∈ range(1 − V ∗V ) = (V ∗H)⊥, we have
πV,Q(1)h = πQ(1)h and

πV,Q(1n)h =
(
(V ∗)nV n +

n−1∑

k=0

(V ∗)kQn−kV k
)
(1− V ∗V )h = Qnh = πQ(1n)h;

thus πQ = πV,Q|(V ∗H)⊥ . By Lemma 4.8, πV,Q × V is faithful if and only if πV,Q
is faithful on (V ∗H)⊥, and by Proposition 1.3 in [15], πV,Q = πQ is faithful on
(V ∗H)⊥ if and only if Qn 6= Qn+1 for all n > 0.

We are now ready to describe c ×σ N. Recall that T = T1 is the unilateral
shift on `2(N), and denote by F the constant function F : n 7→ T ∗. Then F
is a coisometry in the C∗-algebra Cb(N, B(`2(N))). For m ∈ N, define Qm ∈
Cb(N, B(`2(N))) by

Qm(n) =
{

1− TT ∗ if n > m,
0 if n < m.

Then {Qm} is a decreasing sequence of projections with Q0 = 1 − F ∗F . By
Proposition 7.1, there is a homomorphism πF,Q × F : c ×σ N → Cb(N, B(`2(N)))
such that πF,Q × F (kN(1)) = F , πF,Q × F (qm) = Qm, and

πF,Q × F (kc(1m))(n) = πF,Q × F
(
kN(m)∗kN(m) +

m−1∑

k=0

kN(k)∗qm−kkN(k)
)
(n)

=





Tm(T ∗)m +
m−1∑

k=m−n
T k(1− TT ∗)(T ∗)k if n 6 m,

Tm(T ∗)m +
m−1∑
k=0

T k(1− TT ∗)(T ∗)k if n > m.

=
{
Tm−n(T ∗)m−n if n 6 m,
1 if n > m.

Theorem 7.4. The homomorphism πF,Q × F is an isomorphism of c×σ N
onto

B := {f ∈ C(N ∪ {∞}, T (Z)) : ψT (f(n)) is constant}.
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Proof. Since Qm 6= Qm+1 for every m > 0, Proposition 7.3 implies that
πF,Q × F is faithful. Recall from Proposition 4.7 that

c×σ N = span{kN(i)∗kc(1m)kN(j) : i, j,m ∈ N}.
For i, j,m ∈ N, we have

(7.5) πF,Q × F
(
kN(i)∗kc(1m)kN(j)

)
(n) =

{
T i+(m−n)(T ∗)j+(m−n) if n 6 m,
T i(T ∗)j if n > m.

Thus lim
n→∞

πF,Q × F (a)(n) exists for every a ∈ span{kN(i)∗kc(1m)kN(j)}, and by

an ε/3 argument we can extend this to a ∈ c ×σ N. Equation (7.5) also implies
that

ψT
(
πF,Q × F (kN(i)∗kc(1m)kN(j))(n)

)
= εi−j

for every n ∈ N, and hence πF,Q × F (c×σ N) ⊂ B.
Let f ∈ B, and define g ∈ B by g(n) = f(∞) for every n ∈ N. Then

ψT
(
(f − g)(n)

)
= ψT (f(n))− ψT (g(n)) = ψT (f(n))− ψT (f(∞)) = 0,

so (f − g)(n) ∈ kerψT = K(`2(N)) for all n ∈ N; since lim
n→∞

(f − g)(n) = 0, f − g

belongs to C0(N,K(`2(N))). But for i, j,m ∈ N,

πF,Q × F
(
kN(i)∗kc(1m − 1m+1)kN(j)− kN(i+ 1)∗kc(1m−1 − 1m)kN(j + 1)

)

is the matrix unit emij of (6.4), so C0(N,K(`2(N))) = span{emij : i, j,m ∈ N} is
contained in πF,Q × F (c×σ N). The function g is constant, so it belongs to

C∗(F ) = πF,Q × F (C∗(kN(1))) ⊂ πF,Q × F (c×σ N),

and hence so does f = (f − g) + g.

Corollary 7.5. There is an exact sequence

0 → C(N ∪ {∞},K(`2(N))) → c×σ N→C(T) → 0.

Acknowledgements. This research was supported by the Australian Research Coun-
cil.

REFERENCES

1. S. Adji, Invariant ideals of crossed products by semigroups of endomorphisms, in
Functional Analysis and Global Analysis, (edited by T. Sunada and P.W. Sy),
Springer-Verlag, Singapore 1997, pp. 1–8.

2. S. Adji, Semigroup crossed products and the structure of Toeplitz algebras, J.
Operator Theory 44(2000), 139–150.

3. S. Adji, M. Laca, M. Nilsen, I. Raeburn, Crossed products by semigroups of
endomorphisms and the Toeplitz algebras of ordered groups, Proc. Amer.
Math. Soc. 122(1994), 1133–1141.

4. S. Boyd, N. Keswani, I. Raeburn, Faithful representations of crossed products
by endomorphisms, Proc. Amer. Math. Soc. 118(1993), 427–436.



Partial-isometric crossed products 87

5. L.A. Coburn, The C∗-algebra generated by an isometry, Bull. Amer. Math. Soc.
73(1967), 722–726.

6. J. Cuntz, The internal structure of simple C∗-algebras, Proc. Sympos. Pure Math.,
vol. 38, Part I, (R.V. Kadison, ed.), Amer. Math. Soc., Providence, RI, 1982,
pp. 85–115.

7. R.G. Douglas, On the C∗-algebra of a one-parameter semigroup of isometries,
Acta Math. 128(1972), 143–151.

8. N.J. Fowler, Discrete product systems of Hilbert bimodules, Pacific J. Math.
204(2002), 335–375.

9. N.J. Fowler, P.S. Muhly, I. Raeburn, Representations of Cuntz-Pimsner alge-
bras, Indiana Univ. Math. J. 52(2003), 569–605.

10. N.J. Fowler, I. Raeburn, The Toeplitz algebra of a Hilbert bimodule, Indiana
Univ. Math. J. 48(1999), 155–181.

11. L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, New York 1963.
12. P.R. Halmos, L.J. Wallen, Powers of partial isometries, Indiana Univ. Math. J.

19(1970), 657–663.
13. R. Hancock, I. Raeburn, The C∗-algebras of some inverse semigroups, Bull.

Austral. Math. Soc. 42(1990), 335–348.
14. M. Laca, Semigroups of ∗-endomorphisms, Dirichlet series and phase transitions,

J. Funct. Anal. 152(1998), 330–378.
15. M. Laca, I. Raeburn, Semigroup crossed products and the Toeplitz algebras of

nonabelian groups, J. Funct. Anal. 139(1996), 415–440.
16. M. Laca, I. Raeburn, A semigroup crossed product arising in number theory, J.

London Math. Soc. 59(1999), 330–344.
17. N.S. Larsen, I. Raeburn, Representations of Hecke algebras and dilations of

semigroup crossed products, J. London Math. Soc. 66(2002), 198–212.
18. P.S. Muhly, B. Solel, Tensor algebras over C∗-correspondences (representations,

dilations, and C∗-envelopes), J. Funct. Anal. 158(1998), 389–457.
19. G.J. Murphy, Ordered groups and Toeplitz algebras, J. Operator Theory 18 (1987),

303–326.
20. G.J. Murphy, C∗-Algebras and Operator Theory, Academic Press, San Diego 1990.
21. W.L. Paschke, The crossed product by an endomorphism, Proc. Amer. Math. Soc.

80(1980), 113–118.
22. M.V. Pimsner, A class of C∗-algebras generalizing both Cuntz-Krieger algebras

and crossed products by Z, Fields Inst. Commun. 12(1997), 189–212.
23. I. Raeburn, D.P. Williams, Morita Equivalence and Continuous Trace

C∗-Algebras, Math. Surveys Monogr., vol. 60, Amer. Math. Soc., Providence,
RI, 1998.

24. P.J. Stacey, Crossed products of C∗-algebras by ∗-endomorphisms, J. Austral.
Math. Soc. Ser. A 45(1993), 204–212.

JANNY LINDIARNI IAIN RAEBURN
School of Mathematical School of Mathematical
and Physical Sciences and Physical Sciences
University of Newcastle University of Newcastle
Newcastle, NSW 2308 Newcastle, NSW 2308

AUSTRALIA AUSTRALIA

E-mail: janny@frey.newcastle.edu.au E-mail: iain@frey.newcastle.edu.au

Received June 6, 2002.


