
J. OPERATOR THEORY
52(2004), 103–112

c© Copyright by Theta, 2004

LOGARITHMIC GROWTH

FOR WEIGHTED HILBERT TRANSFORMS

AND VECTOR HANKEL OPERATORS

T.A. GILLESPIE, S. POTT, S. TREIL and A. VOLBERG

Communicated by Nikolai K. Nikolski

Abstract. We give an example of an operator weight W satisfying the op-
erator Hunt-Muckenhoupt-Wheeden A2 condition, but for which the Hilbert
transform on L2(W ) is unbounded. The construction relates weighted bound-
edness with the boundedness of vector Hankel operators. We establish a
relationship between the norm of a vector Hankel operator and a certain nat-
ural (but not Nehari-Page) BMO norm of its symbol, which is logarithmic in
dimension.
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1. INTRODUCTION

Let W be an operator weight on the unit circle T, i.e. a function W : T → B(H)
such that W (t) is positive and invertible almost everywhere. Here, B(H) denotes
the bounded linear operators on a separable finite or infinite-dimensional Hilbert
space H. The weight W gives rise to the operator-weighted L2-space

(1.1) L2(W ) =
{

f : T→ H :
∫

T

〈W (t)f(t), f(t)〉dt < ∞
}

.

We consider whether the matrix Hunt-Muckenhoupt-Wheeden Theorem from
[27] holds for infinite-dimensional H, i.e. whether the operator A2 condition

(1.2) ‖W‖A2 := sup
I⊆T, I interval

‖〈W 1/2〉I〈W−1/2〉I‖ < ∞

is equivalent to the boundedness of the Hilbert transform H on L2(W ). We show
that this is not the case in the infinite-dimensional situation, and we give a non-
trivial lower bound for the dimensional growth. Here is the main result of this
paper:
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Theorem 1.1. There exists an operator-valued A2-weight such that the
Hilbert transform in unbounded on L2(W ). More precisely, there exist constants
a,A > 0 such that for each positive integer n, there exists an n× n matrix weight
W such that ‖W‖A2 6 A but

(2.3) ‖H‖L2(W )→L2(W ) > a · log n.

The boundedness of H in L2(W ) is of great interest in the theory of mul-
tivariate stationary stochastic processes. An operator weight W is the spectral
measure of a regular multivariate stationary stochastic process if and only if the
“angle between past and future” of the process is nonzero, i.e. the Hilbert transform
is bounded on L2(W ). We show that for processes taking values in an infinite-
dimensional Hilbert space, regularity can no longer be characterized in terms of
the A2 condition of the spectral measure.

Our main tool is a linearization of the problem coming from [10] and [9]. This
linearization reduces the question about the validity of the Hunt-Muckenhoupt-
Wheeden Theorem in infinite dimensions for a special class of weights to the com-
parison of two operator-valued BMO-spaces. More precisely, let B be an B(H)-
valued function on T, and let the operator weight W : T → B(H2) be defined
by

(2.4) W = V ∗
BVB =

(
1l B
0 1l

)∗(
1l B
0 1l

)
.

Let BMOso denote the space of matrix functions B on T such that

(2.5) sup
J
〈‖(B − 〈B〉J)e‖2〉J 6 C‖e‖2 ∀e ∈ H ,

where J denotes an arbitrary interval on T. We will call the best
√

C in (2.5) the
norm of B, denoting it by ‖B‖BMOso . Furthermore, let ‖B‖BMOso∗ = ‖B∗‖BMOso .

Theorem 1.2. ([10], [9]) Let W be an operator weight of the form (2.4).
Then

‖W‖A2 = 1 + max{‖B‖BMOso , ‖B∗‖BMOso},(2.6)
and

‖[H,B]‖ 6 ‖H‖L2(W )→L2(W ) 6 ‖[H, B]‖+ 1.(2.7)

We shall prove the following result:

Theorem 1.3. There is a constant a > 0 such that for each positive integer
n, there exists an n× n matrix function B on T such that

‖B‖BMOso 6 1, ‖B∗‖BMOso 6 1,

but

(2.8) ‖HB −BH‖L2(Cn,dt)→L2(Cn,dt) > a · log n.

G. Pisier has pointed out to us that the proof of this result can be extracted
from the articles [1] and [11], if one considers the extension of Fourier multipliers
on H1(T) to the analytic parts of both BMO spaces. This argument is presented in
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Section 2 of this paper. For an elegant direct proof of the theorem which combines
the ideas of [1] and [11], see the preprint [19].

The growth in Theorem 1.3 is sharp (see [23]), and this result is of indepen-
dent interest. It describes the dimensional growth of the norm of Hankel operators
in terms of a natural BMO norm of the symbol, and it has been used to obtain
sharp dimensional growth in the Matrix Carleson Embedding Theorem (see [19]
together with the earlier results [15], [20]). It can also be seen in the context of a
“Fefferman-type duality” for operator-valued functions (see Section 2).

Notice that H here is just the n-dimensional Hilbert space, and usually the
dimension will be clear from the context. Using this convention, we say that
BMOso consists of operator functions such that Be lies in BMO(H) for every e ∈ H.
We use the same definition for operator functions whose values are operators in
the infinite dimensional H.

The goal of the paper is three-fold. We prove a certain non-trivial esti-
mate from below for the Hankel operator HB in terms of n and ‖B‖BMOso , as in
Theorem 1.3. It is convenient to use the commutator with the Hilbert transform
HB−BH instead of HB . For self-adjoint B, there is no difference. The second goal
is to construct positive definite n× n matrix functions W , the A2 norms of which
(see the definition in [27] and below) are bounded by an absolute constant, but for
which the norm of H on L2(W ) grows with n, as in Theorem 1.1. This shows that
the Hunt-Muckenhoupt-Wheeden result does not hold for operator valued weights.
Finally, we indicate some interesting connections with a factorization problem for
H1(T, S1) and with extensions of Bonsall’s theorem to the case of operator-valued
functions.

Let us recall that the boundedness of H on L2(W ) is an important ingredient
in characterizing regularity properties for stationary stochastic processes in terms
of their spectral measure (see [22], [14], [21], and [27]). The theory of vector valued,
i.e. multivariate, stationary processes taking values in a Hilbert space was started
by Kolmogoroff and Wiener in the early 50’s (see e.g. [28] and [18]).

The characterization of such n-dimensional processes for which the angle
between past and future is positive has been given in [27]. It turns out that an
n× n positive definite matrix function W is the spectral density of such a process
if and only if W satisfies the A2 condition:

‖W‖A2 := sup
J
‖〈W 〉1/2〈W−1〉1/2‖ < ∞.

The present article shows that for infinite dimensional processes (processes
taking values in an infinite dimensional Hilbert space), this characterization is no
longer true.

In [9], similar results were proved for “dyadic Hankel operators” and for
martingale transforms respectively. The “continuous case” of the present article
(“continuous” in the sense that we replace dyadic Hankel operators by usual Hankel
operators, i.e. commutators of multiplication with H, and martingale transforms
by the Hilbert transform) is based on [9], but it uses different methods.
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2. MULTIPLIERS ON H1(T, S1)

Let H be an infinite or finite dimensional Hilbert space. We fix an orthonormal
basis (ei) of H. Consider the space

(2.1) BMOc = {B : T→ B(H) : ‖[H, B]‖L2(H,dt)→L2(H,dt) + ‖B̂(0)‖B(H) < ∞}.
Let BMOAc = {B ∈ BMOc, B analytic}. (By analytic, we mean that all negative
Fourier coefficients of B vanish.) Let S1 denote the space of trace-class operators
on H with the trace norm.

Lemma 2.1. Let H1(T, S1) denote the complex Hardy space of S1-valued
functions on T. Then

(2.2) BMOAc ⊆ H1(T, S1)∗,

where B ∈ BMOAc acts on H1(T, S1) by 〈F, B〉 =
∫
T

tr(B∗(t)F (t))dt for F ∈
H1(T, S1). The BMOAc-norm is equivalent to the norm in H1(T, S1)∗. If dimH <
∞, then the inclusion (2.2) is an equality.

Proof. The proof is very similar to the scalar situation (see e.g. [25]). The role
of the factorization of scalar-valued H1 into H2 ·H2 is taken by the factorization
of matrix H1 functions [28] respectively by Sarason’s factorization Theorem ([26]),
which can be stated in the following way. The canonical product map

(2.3) H2(T,H)⊗̂H2(T,H) → H1(T, S1)

is surjective. Moreover, each element of H1(T, S1) has an inverse image of the
same norm (see also [11], Theorem 1.5).

We outline the argument for the convenience of the reader. Let B : T→ B(H)
be analytic. Define the Hankel operator H2

0 (T,H)⊥ → H2(T,H), f 7→ PBP⊥0 f ,
where P denotes the Riesz projection L2(T,H) → H2(T,H), P0 the orthogonal
projection L2(T,H) → H2

0 (T,H) and orthogonal complements are taken with re-
spect to the Hilbert space L2(T,H). We will further need the orthogonal projection
Pc : L2(T,H) → H onto the constants. We first show that PBP⊥0 is bounded if
and only if B ∈ BMOAc.

A standard calculation yields

(2.4)
〈[H, B]f, g〉 = 〈[−i(P + P0 − 1l), B]f, g〉

= −i(2〈PBP⊥0 f, g〉 − 〈PBPcf, g〉 − 〈PcBP⊥0 f, g〉.
If B ∈ BMOAc, then in particular B ∈ BMOso∩BMOso∗ with a corresponding es-
timate of norms. To see this, one can either use the dimension-independent reverse
direction of the matrix Hunt-Muckenhoupt-Wheeden Theorem (see [27] together
with the technique from [9]), or, more simply, use the fact that the BMO(H)-
norm of Be is equivalent to the norm of the operator [H,Be] : L2(T) → L2(T,H),
and that [H, Be]f = [H, B]ef for e ∈ H, f ∈ L2(T). This version of the
Coifman-Rochberg-Weiss Theorem follows from the version of Fefferman’s Du-
ality Theorem for H-valued functions, see e.g. [4]. Thus by (2.4), ‖PBP⊥0 ‖ 6
C(‖[H, B]‖ + 2‖B̂(0)‖ + ‖B‖BMOso + ‖B∗‖BMOso) for a suitable constant C > 0.
Conversely, just consider 〈PBP⊥0 f, g〉, 〈PBP⊥0 f(0), g〉 and 〈PBP⊥0 f, g(0)〉.
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Now we can complete the proof of the lemma as follows. For F ∈ H1(T, S1),
write F =

∑
i>1

fi⊗gi with fi, gi ∈ H2(T,H) for all i and ‖F‖H1(T,S1) =
∑
i>1

‖fi‖2‖gi‖2.
Then

(2.5)

|〈F, B〉| =
∣∣∣∣
∫

T

tr(B∗(t)F (t))dt

∣∣∣∣ =
∣∣∣
∑

i>1

〈B∗fi, gi〉
∣∣∣

6 ‖P⊥0 B∗P‖
∑

i>1

‖fi‖2‖gi‖2 = ‖PBP⊥0 ‖‖F‖H1(T,S1).

Conversely, apply B to elementary tensors f ⊗ g ∈ H1(T, S1).
To prove that the inclusion (2.2) is an equality for finite-dimensional H, one

just has to note that by a trivial extension of Fefferman’s Duality Theorem, in this
case each linear functional on H1(T, S1) is given by a matrix-valued function.

Using results in [9], we can now formulate the question of the equivalence of
the A2 condition and boundedness of the Hilbert transform for operator weights
of the form

(2.6) W =
(

1l B
0 1l

)∗(
1l B
0 1l

)
with B analytic

in the following way: Is BMOAso ∩ BMOAso∗ topologically embedded in
H1(T, S1)∗? We know that for finite-dimensional H, H1(T, S1)∗ ⊆ BMOAso ∩
BMOAso∗ with a corresponding dimension-independent estimate of norms, as al-
ready discussed above.

Concerning the question as to whether the reverse inclusion is also true,
G. Pisier has pointed out to us that a negative answer can be extracted from
the literature by considering the Fourier multipliers of the spaces H1(T, S1)∗ and
BMOAso ∩ BMOAso∗ and using a result of F. Lust-Piquard. This can be seen as
follows:

Lemma 2.2. Let m = (m(n))n>0 be a bounded Fourier multiplier on H1(T).
Then m acts boundedly on BMOAso ∩BMOAso∗ and, for an absolute constant C,
we have ‖m‖M(BMOA) 6 C‖m‖M(H1(T)).

Proof. Let m = (m(n))n>0 be a bounded Fourier multiplier on H1(T) with
‖m‖M(H1(T)) = 1. By the Marcinkiewicz-Zygmund principle (see e.g. [6], p. 203),
m is also a bounded Fourier multiplier on H1(T,H) with the same multiplier norm.
We write m ∗ h for the action of m on h ∈ H1(T,H).

We know that B ∈ BMOAso if and only if Be ∈ BMOA(H) uniformly for
all e in the unit ball of H. Using the duality BMOA(T,H) = H1(T,H)∗ (see,
e.g., [4]), we see that ‖B‖BMOAso is equivalent to the norm of the bilinear map
H1(T,H)×H → C, (h, e) 7→ 〈h,Be〉. Here the symbol denotes the natural com-
plex conjugation on H associated with the fixed basis (ei). Similarly, ‖B‖BMOAso∗
is equivalent to the norm of the bilinear mapH×H1(T,H) → C, (e, h) 7→ 〈e,B∗h〉.
Now

(2.7) |〈m∗Be, h〉| = |〈Be, m∗h〉| 6 C‖B‖BMOAso‖m∗h‖1 6 C‖B‖BMOAso‖h‖1‖e‖
for an absolute constant C > 0, and we also obtain a corresponding estimate for
|〈e, (m ∗B)∗h〉|.
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On the other hand, by [17], Théorème 1 together with Theorems 6.1, 6.2 in
[24], not all Fourier multipliers on H1(T) extend to uniformly bounded multipliers
on H1(T, S1

n) or, equivalently, to H1(T, S1
n)∗, for all n ∈ N. Here, S1

n denotes the
n×n matrices with the trace norm. In particular, this implies by Lemma 2.1 that
not all Fourier multipliers on H1(T) extend to bounded multipliers on BMOAc.
Consequently, BMOAc and BMOAso ∩ BMOAso∗ are not equal, and the infinite-
dimensional matrix Hunt-Muckenhoupt-Wheeden Theorem fails.

Using results by Haagerup and Pisier ([11]) and by Blower ([1]), we can
now obtain the desired dimensional estimate. Let X be a Banach space. Blower
proves that all multipliers in M(H1(T)) satisfying the strong Hörmander-Mikhlin
conditions extend to bounded multipliers on H1(T, X) if and only if X has the
so-called AUMD property, i.e. all X-valued analytic martingales are bounded on
L1(TN, X). More precisely, Blower proves the following by a simple transference
argument (see [1], Theorem 3, Equation 6). Let C(X)AUMD denote the supremum
of the norms of the analytic martingale transforms on L1(TN, X), and let C(X)M
denote the supremum of the norms on H1(T, X) of Hörmander-Mikhlin multipliers
m satisfying ‖m‖M(H1(T)) = 1. Then C(X)AUMD 6 c C(X)M for some absolute
constant c.

On the other hand, Haagerup and Pisier prove that C(S1
n)AUMD > a′ log n

by a clever comparison with the triangular projection on S1
n, the norm of which

grows with log n by [16].
Putting this together, we obtain the following. Assume B ∈ H1(S1

n)∗ with
‖B‖H1(S1

n)∗ = 1 and let m ∈ M(H1(T)) with ‖m‖M(H1(T)) = 1 such that ‖m ∗
B‖H1(S1

n)∗ > 1
2 C(S1

n)M. Then

(2.8)
‖m ∗B‖H1(S1

n)∗ > 1
2c
C(S1

n)AUMD > a′

2c
log n,

but ‖m ∗B‖BMOAso∩BMOAso∗ 6 C ′

for absolute constants a′, c, C ′. This finishes the proof of Theorem 1.3.

It is now easy to prove Theorem 1.1. Consider a 2n× 2n matrix function

VB =
(

I B
0 I

)
.

Consider the matrix weight W := V ∗
BVB . It follows from Theorem 1.3 and

[10], [9] that W satisfies Theorem 1.1.
This finishes the proof of the main result.

Remark 2.3. We can also formulate our comparison of operator BMO
spaces in terms of a special type of weak factorization of H1(T, S1).

Corollary 2.4. Let H be an infinite dimensional Hilbert space. Then the
canonical product map

(H1(T,H)⊗̂H)⊕ (H⊗̂H1(T,H)) → H1(T, S1), (h⊗ e, e′ ⊗ h′) 7→ h⊗ e + e′ ⊗ h′

is not surjective.

Proof. First, recall that the BMOAso (respectively BMOAso∗) norm is equiv-
alent to the norm of the associated bilinear form on H1(T,H)×H (respectivelyH×
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H1(T,H)). The space of bilinear forms on H1(T,H)×H is isometrically isomorphic
to the dual of the projective tensor product H1(T,H)⊗̂H, and the corresponding
statement holds for the space of bilinear forms on H×H1(T,H). Thus we have a
natural embedding

(2.9) BMOAso ∩ BMOAso∗ ⊆ ((H1(T,H)⊗̂H)⊕ (H⊗̂H1(T,H)))∗,

and BMOAso ∩ BMOAso∗ is closed in the space on the right hand side.
So the fact that the BMOAso ∩ BMOAso∗-norm and the BMOAc-norm are

not equivalent implies that BMOAc is not a closed subspace of ((H1(T,H)⊗̂H)⊕
(H⊗̂H1(T,H)))∗. In particular, the space H1(T, S1)∗, which can be naturally
embedded into ((H1(T,H)⊗̂H)⊕ (H⊗̂H1(T,H)))∗, is not a closed subspace of the
latter space by Lemma 2.1. Passing to the preduals, we see that the canonical
map

(2.10)
(H1(T,H)⊗̂H)⊕ (H⊗̂H1(T,H)) → H1(T, S1),

(h⊗ e, e′ ⊗ h′) 7→ h⊗ e + e′ ⊗ h′

is not surjective.

3. EXTENSIONS OF BONSALL’S THEOREM TO THE VECTOR VALUED CASE

Another way of comparing the spaces BMOAso ∩ BMOAso∗ and BMOAc is to
consider vector-valued versions of Bonsall’s Theorem (see [2], Theorem 1).

Theorem 3.1. ([2]) Let Γ be a Hankel operator on the unit circle, Γ : H2(T)
→ H2(T)⊥. Then Γ is bounded on H2(T) if and only if Γ is bounded on the set of
normalized Szegö kernels {kz : z ∈ D}, where kz(ξ) = (1− |z|2)1/2 1

1−zξ .

The proof consists of a clever computation and an application of Fefferman’s
Duality Theorem. Let Γ = Γb = P⊥bP with the antianalytic symbol b. Then
a computation gives ‖Γkz‖2 = |b|2(z) − |b(z)|2 for z ∈ D. It is well-known that
boundedness of the set {|b|2(z)− |b(z)|2 : z ∈ D} is equivalent to the BMO condi-
tion, and Fefferman’s Duality Theorem then implies the boundedness of the Hankel
operator Γ.

If we consider an operator-valued symbol B∗, where B is analytic, and let
the vector Hankel operator Γ = ΓB∗ = P⊥B∗P act on H2(T,H), then

(3.1) ‖ΓB∗kze‖2 = 〈(BB∗)(z)e, e〉 − 〈B(z)B∗(z)e, e〉 z ∈ D, e ∈ H
by exactly the same computation. The BMO space corresponding to the uniform
boundedness of these expressions on the unit ball of H is BMOAso∗ (see [7], p. 234,
Corollary VI.2.4). Now let B̃(z) = B∗(z). By the same argument,

(3.2)
‖(ΓB∗)∗kze‖2 = ‖Γ

B̃∗
kze‖2

= 〈(B∗B)(z)e, e〉 − 〈B∗(z)B(z)e, e〉 z ∈ D, e ∈ H,

and the space corresponding to the uniform boundedness of these expressions on
the unit ball of H is BMOAso. However, the BMO space corresponding to the
boundedness of ΓB∗ is BMOAc. So we have shown the following theorem.
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Theorem 3.2. There exists an antianalytic operator symbol B∗ and a con-
stant C > 0 such that |〈ΓB∗kze, f〉| 6 C‖e‖‖f‖2 and |〈ΓB∗f, kze〉| 6 C‖e‖‖f‖2 for
all z ∈ D, f ∈ H2(T,H), e ∈ H, but such that ΓB∗ does not extend to a bounded
linear operator on H2(T,H). In this sense, Bonsall’s Theorem does not extend to
the infinite-dimensional Hilbert space valued case.

4. REMARKS

It is also possible to obtain a counterexample to the operator Hunt-Muckenhoupt-
Wheeden Theorem by comparing the norm of vector Hankel operators [H,B] to
the norm of vector paraproducts πB and then use dimensional growth in the dyadic
matrix Carleson Embedding Theorem (see [20]). This was done in [8]. However,
this only gives the weaker dimensional growth ‖[H, B]‖ > (log n)1/2‖B‖BMOso .

On the other hand, using methods from [23], the log n dimensional growth of
the Hankel operators can also be used to obtain log n dimensional growth in the
matrix Carleson Embedding Theorem (see the preprint [19]). By earlier results in
[20] and [15], this is sharp.
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