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PROJECTIVE MODULES ON FOCK SPACES
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ABSTRACT. A Hilbert module over the free algebra generated by n noncom-
mutative variables is a Hilbert space H with n bounded linear operators. In
this paper we use Hilbert module language to study the semi-invariant sub-
spaces of a family of weighted Fock spaces and their quotients that includes
the Full Fock space, the symmetric Fock space, the Dirichlet algebra, and the
reproducing kernel Hilbert spaces with a Nevanlinna-Pick kernel. We prove
a commutant lifting theorem, obtain explicit resolutions and characterize the
strongly orthogonally projective subquotients of each algebra. We use the
symbols associated with the commutant lifting theorem to prove that two
minimal projective resolutions are unitarily equivalent.
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1. INTRODUCTION AND PRELIMINARIES

In [13], Douglas and Paulsen reformulated a part of single variable operator
theory, including aspects of the Sz.-Nagy—Foiag dilation theory, into the Hilbert
module language and proposed it as a guide to study multivariate function alge-
bras. This approach was strengthened by Muhly and Solel in [18], who studied
more general operator algebras. In this paper we use the Hilbert module language
to study the semi-invariant subspaces of a family of weighted Fock spaces and
their quotients. This family includes the Full Fock space, the symmetric Fock
space, the Dirichlet algebra, and the reproducing kernel Hilbert spaces with a
Nevanlinna-Pick kernel.

We first prove a commutant lifting theorem, based on the recent paper of
Clancy and McCullough ([9]). Then we use the Poisson kernels of [29] and [4] to
obtain explicit resolutions, in a way similar to Theorem 1.4 of [7]. We combine the
Poisson kernels and the commutant lifting theorems to characterize the strongly
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orthogonally projective subquotients of each algebra, and we use the symbols asso-
ciated with the commutant lifting theorem to prove that two minimal resolutions
are unitarily equivalent.

We obtain some applications. The Hilbert module language we use makes the
recent results of the paper by McCullough and Trent ([17]) on invariant subspace
and Nevanlinna-Pick kernels very transparent. We also prove that their conjec-
ture is true. We characterize the strongly orthogonally projective subquotients of
the symmetric Fock space (the pure Hilbert modules in the notation of [7]) and
show that they are exactly the free modules. And we find counter-examples to a
question of Muhly and Solel ([18], page 20). We show that strongly orthogonally
projective subquotients of a quotient algebra are, in general, not strongly orthog-
onally projective for the algebra. In the Full Fock space, we prove that a subquo-
tient is strongly orthogonally projective if and only if it is a submodule. The “if
part” follows also from the work of Muhly and Solel ([19]), who characterized the
strongly orthogonally projective modules of a large family of C*-correspondences
that includes the Full Fock space as a particular case.

A Hilbert module (H;Lq,...,Ly) over the free algebra generated by n-
noncommutative variables consists of a Hilbert space H and n bounded linear op-
erators L1, ..., L,. We will consider a fixed Hilbert module (H; L, ..., L,), where
‘H denotes either a weighted Fock space or a quotient of a weighted Fock space, but
most results will be stated for the Hilbert module (H®/¥2; L1 ®@1¢,, ..., Ly®1p,). If
E C H®{y is invariant under L; @I, for i < n, we say that (&; L1®I,, ..., L,®Iy,)
is a submodule of H® ly. If € C H® {5 is invariant under (L; ® Iy,)* for i < n, and
Vi = Pe(L; ®1,)|e for i < n, we say that (&;V4,...,V,) is a x-submodule of H®{5.
And if £ C H®{5 is semi-invariant under L;®1, fori < n, and W; = Pg(L;®1y,)|e
for i < n, we say that (&;Wy,...,W,,) is a subquotient of H ® ¢3. Recall that
€ C H®/{; is semi-invariant under an algebra A C B(H ®{2) if the compression to
£ is a multiplicative map. That is, if a,b € A then PraPebPs = PeabPgs. Sarason
proved that £ is semi-invariant if and only if there exist two submodules &, and &;
such that & @& £ = &;. Every submodule and every *-submodule is a subquotient,
but the reverse is not always true.

A bounded linear operator f : H — K between the Hilbert modules (H; L1,
..oy Ly) and (KC;Vq,...,V,,) is a module map if f(L;x) = V;f(x) for every z € H
and i < n. The set of all bounded module maps is denoted by Hom(H, K).

The Hilbert modules H and K are isomorphic if there exists an invertible map
f : H — K such that f and f~! are isometric module maps. Notice that the

orthogonal projection Pg : H® I;, — £ is a module map if and only if £ C H® {2
is a *-submodule of H ® #5; and the inclusion ¢ : £ — H ® {3 is a module map if
and only if £ is a submodule of H ® /5.
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A subquotient £ is strongly orthogonally projective if whenever g and Ky
are subquotients, ® : 1 — Ky is a surjective coisometric module map, and
f: & — Ky is a module map, then there exists a module map F' : £ — K7 such
that ||| = [[f|| and f = ® o F,

K1
F )/ lo
s Lk

This property was introduced in [13] under the name hypoprojective. Muhly
and Solel renamed it strongly orthogonally projective, and introduced the weaker
notion of orthogonally projective. The two notions coincide in our setting.

In Section 2 we describe a family of weighted Fock spaces, F2(w). In Sec-
tion 3 we adapt a technique of Clancy and McCullough ([9]) to prove a Commutant
Lifting Theorem for the weighted Fock spaces of Section 2. The proof of the Com-
mutant Lifting Theorem is quite simple and short, and we use it to simplify the
proof of the Nevanlinna-Pick Interpolation Theorem of [4]. We mention here that
this noncommutative interpolation result implies commutative Nevanlinna-Pick
theorems of Agler, Quiggen, and McCullough, and the noncommutative theorems
of [4], [5], and [12]. We refer to [4] for details.

In Section 4 we use the Poisson kernels to obtain explicit resolutions. We
show that if £ is a subquotient of F2(w, ) ® {2, there exists a strongly orthogonally
projective subquotient P; and a surjective coisometric module map ®q such that

Pq
—

P1 g — 0.

If we repeat this process for Ker®q, which is a submodule of F?(w,) ® f5, and
continue indefinitely, we obtain a projective resolution for £

2op 2op Pop 2y op P e
We can take the projective resolution of £ to be minimal, and then we prove in
Section 6 that any two minimal projective resolutions of £ are unitarily equivalent.
If £ and F are subquotients of F2(w,) ® £ with projective resolutions (P;)
and (Q;) respectively, and f : &€ — F is a module map

Lo P [ Lo P
N T O N N T r-——

Ls 7
Qi 2 @ B @ o B F — o0
then there exists a family of module maps f; : P, — @Q; that commute with the
maps of the above diagram.
In the Full Fock space we can take minimal projective resolutions of length

Wy
—

two

0 — B ﬂ) P, & E — 0.
This reformulates some aspects of noncommutative dilation theory for Cy row
contractions, which are always isomorphic to *-submodules of F2? ® 5. The map
g is the adjoint of the minimal isometric dilation (see [14], [8], and [22]) and @
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is Popescu’s characteristic function of £ ([21]). We use this as a guide to prove
that the module map ®; : P, — P; of the minimal projective resolution

2op Bop 2op op e
of & C F?(w,) is a unitary invariant of £. We call ®; the “characteristic function”
of £, although it is not an isometry when F?(w,) is not the Full Fock space.
A strongly orthogonally projective resolution of a subquotient € of F2(w,) ®
{5 has the form

23 P(wa) @Hy 22 Flwe) @M1 —5 Frwa) ®Hy —> £ —0

for some H; C £2,i € N. This resolution induces a natural complex

Wy b N v
- Hy = Hy, = H; — Ho.

In Section 6 we follow ideas of Greene ([15]) to complete this complex into the
following commutative diagram for which all columns, except perhaps the last
one, and the first two rows are exact:

0

0

| |
— Q2 —= Q1 — Qo
Lo Lo Lo

2
)
)

23 F2wa) @ Mo =2 FPwa) @M1 —5 Flwe)®@Ho —> & —0-

lo lo lo
e H2 &) Hl i} HO

| | |
0 0 0

A standard argument identifies the homology of the last row with the homology of
the last column, and in particular we obtain that Im¥;; = KerW¥, for i = 2,3,....

In Section 5 we use the Poisson kernels to study quotients of Fock spaces.
Our main applications are for quotients of the Full Fock space F? = F2(¢3). In
1995, Popescu [29] found a very simple proof of his noncommutative von Neu-
mann inequality [24], which can be reformulated in the following way: If £ is a
subquotient of F2 ® /5, there exists an isometry

K:£E—F>®E suchthat K*:F?®& — & isamodule map.

Since the formula of K resembles the formula of the classical Poisson kernel,
Popescu named it the Poisson kernel of £. This map was rediscovered by Arve-
son in his study of the d-shifts ([6]). If £ is a subquotient of the symmetric Fock
space F7 = F2(¢4) (Arveson called this space H32), then £ is also a subquotient
of F2(¢%), and hence it has a Poisson kernel K : £ — F2 ® £. Arveson [6] made
the key observation that this map satisfies

K(€) C F2 ®€&  and hence K*|fi®g :FR®E— € is a module map.
In [5] we noticed that this works for arbitrary quotients of F>° (the WOT-closed

algebra generated by the left creation operators on the Full Fock space) and not
just for the symmetric Fock space (which corresponds to the quotient of F'*° by the
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commutator ideal). In [5] we used this observation to find simple representations
of quotients of F**° (see Theorem 1.2 below).

This applies to reproducing kernel Hilbert spaces (RKHS) with Nevanlinna-
Pick property. Using the work of Quiggin ([32]), Agler and McCarthy ([2]) proved
that an irreducible RKHS with the Nevanlinna-Pick property Hg is isomorphic
to a x-submodule of H2 = fi(ﬁg) for some d = 1,2,...,00. Since F7 is a *-
submodule of F?2, it follows that a subquotient £ of Hx ® ¢5 is also a subquotient
of F2 = F%(¢4) and hence it has a Poisson kernel K : £ — F2 @ €. Since Hy
corresponds to a quotient of F'°°, we have that

K()CHrgk®E andhence K'|g.pe: Hxk ®E — & is a module map.

In Section 6 we use the map K*|g, ges to give a very transparent proof of a
theorem of McCullough and Trent ([17]) and to prove that their conjecture is
true. In Section 5 we prove that if a subquotient of H? is not free (in the language
of [7]), then all of their free resolutions have infinite length.

The Poisson kernels are related to the following problem of representation
of quotient algebras. Let (H;Ly,...,Ly) be a Hilbert module. Assume that A,
the w*-closure of the algebra generated by Li,..., L, and the identity I, is an
algebra, that J C A is a w*-closed 2-sided ideal, and that N; C ‘H is the orthogonal
complement of the subspace generated by the image of J in H.

PROBLEM 1.1. When is the completely contractive representation ® : A/J —
B(N;), defined by ®(a+ J) = Py,aln,, completely isometric?

The motivation for this problem comes from [32] (see also [4], [5], and [13]).
The solution of this problem follows easily from the existence of projective resolu-
tions. The proof below is not new. It appeared in [4] and [5]. However, the proof
is more transparent in this setting, and it includes one of the two steps we use to
study quotients of weighted Fock spaces.

THEOREM 1.2. Let (H; L1,...,Ly) be a Hilbert module with the property that
for every £ C H®{y semi-invariant under L; @ 1,,, i < n, there exists a surjective
coisometric module map F : H @ lo — E£. Then the map ® : A/J — B(Ny) of
Problem 1.1 is a complete isometry.

Proof. Let Q : A — A/J be the quotient map. By Proposition 5.1 of [5]
there exists a semi-invariant subspace & C H ® £y such that U : A/J — B(€)
defined by U(a + J) = Pe(a ® Ip,)|e is a completely isometric representation.
Since F(L; ® Ip,) = Pe(L; ® Ip,)|e F = [W o Q(L;)|F for i < n and A is the w*-
closure of the span of the products of the L;’s and the identity, we get that for
every a € A,

Fla®Ig) = [WoQ(a)|F andhence F(a® Ig)F* =W oQ(a).
We now check that F*(£) C Ny ® 4y, Let 1 € E,b € J, h € H, and 5 € {s.
Then <F*$1,bh X 33‘2) = <F*.131, (b ® Igz)(h X $2)> = <J)1,F(b ® I@)(h (9 3;‘2)) =
(21, [\i' o Q(b)]F(h ® x2)) =0, because @b = 0. Then for every a € A,

F(Py,aln, ®Ig)F* = WoQ(a), and therefore F(®(a+J)@Ig)F* = ¥(a+J).

Since @ is completely contractive, T is completely isometric, and F™* is an isometry,
we conclude that ® is completely isometric. 1
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2. WEIGHTED FOCK SPACES

In this section we give a unitarily equivalent description of the weighted
Fock spaces of [4]. The second and third conditions of the weights are based on
Quiggin’s paper [31] and are chosen to obtain the more transparent conditions
(2.1) and (2.2). We only use condition (wz) to estimate the norm of some maps
in Lemma 2.1. But besides this, all other computations use only (2.1) and (2.2).
Let F; be the unital free semigroup on n generators ¢i, ..., g, and unit e. We
choose weights (wa),cp+ satisfying conditions (w1), (w2) and (w3) which are listed
below. A reader who wants to avoid the technical conditions can assume first that
all the weights satisfy w, = 1 for every « € ;" (this corresponds to the Full Fock
space), or that w, = |a| + 1, where |a| = k if a is a word in F} of length & (this
corresponds to the Dirichlet algebra). The first condition is

(w1) we >0 for every a € F and wp = 1,

where wy is the weight associated to the identity of F;}. Let F2(w,) be the Hilbert
space with a complete orthogonal system {d, : a € F;} and with (54, 04) = wq.
For ¢ < n, define the left creation operator L; and the right creation operator R;
on F?(wa) by Lido = 84,0 and R;0, = 4y,. The second condition on the weights:

(w2) m<@ for all i, <n and a € F},

Wag; Wa
implies that the maps L; and R; are bounded. Indeed, it is very easy to check
that with this condition, ||L;|| = [[Lido|| = /wi and [|R;|| = ||Rido|| = /wi (see
Lemma 2.1). We look at the algebra generated by the L;’s, at the algebra generated
by the R;’s, and use F;' to index products in the usual way. That is, if Wy,..., W,
are bounded linear operators on a Hilbert space ‘H and Aq,...,\, are complex
numbers, we set

W e { Wiy Wi, ifa=gi, - gi,

Iy

« if o =e¢;

)\a :{i\ll)\’tz)\zk lfa:gllglkﬂ

ifa=e.
Then we have that LoLg = Log, RoRg = Rap, and AgAg = Ayp. The last condi-
tion we impose on the weights is an invertibility condition. For every (A1,...,A,) €
B,,, the unit ball of C™, we want the operator »_ ;\J—“La to be invertible. More pre-
a€elF;; °
cisely, we require that there exists (aq), g+ such that for every (A1,...,\,) € By,
A -1
(ws) (Y S22a) =Y aadala
acFr a€F;
From (w3) we have ( > aa)\aLa) ( > %L@ = > ( > Z—”)AVLW =
a€F; BeF;t ? yeF " aB=y ?
A
I and ( > w—ng) ( > aa/\aLQ) = > ( > %;)AWLV = I. Hence
BEF, a€F} yEF; ~ Ba=y

(2.1) ap=1 and for every |y| > 1, Z da _ o and Z o _ .
wg wp

af=y Ba=~y
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Recall that |y| denotes the number of letters of the word v € F,l. That is, |y| =k
if v =6i,9i, - 9i,, and |y| = 0 if v is the identity of F!.
An easy induction step, see [4], gives that

(2.2) ap=1 and a,<0 for|al>1.
Since most computations use this condition, we will sketch its proof: It is clear

that ag = 1. Since 5—0 + %@ = 0 for ¢ < n, then a4, < 0. Assume that a, <0

i

for o] < k. Let v = fBg; with [8] = k. Since > 2= =0,a9 = — Y, =La,.
ac=0 7 ac=0 7
|21
Condition (wg) implies that 2% > :% Hence, ag > — . a,. And this
9i ag="y
lor| 21
e >1 22

implies that 3> 2= >0. Since 0 = } 2= = { > 2| + F, we conclude that
ag=y ¢ — =
le|>1 e e[ >1

a, < 0.
It is easy to check that L% ds = Z—f&, if 3 = oy and is zero otherwise. Then

e 0 otherwise .

From here it follows that the sequence

(2.3) ( Z aaLaL(";)NEN is nonnegative, nonincreasing, and Z anLo L) =Py,
lo| SNV a€F}

where P, is the orthogonal projection onto the span of dy. Indeed, for any 3 € F;},
> aaLoLlés = bg nog where bgnv = . Z—ng. Since ) f}—‘z = 0, and

|a‘<N ay=p ay=0
lo| SN

since a, < 0 for |a| > 1, it follows that the sequence (bg n)nen is nonnegative,
non increasing, and converges to zero. Actually its terms are zero when N > |f].

We obtain a similar result for the maps R;,¢ < n. Notice that R.d3 = 3a,
where

&= GirGir—** Yix0in i =001 Giy Gi-

We easily check that

wg . o~
(2.4) R:65 = { o, 0 =18,

0 otherwise.
And then we get that R, R} dg = 5—:355 if 8 = ya and is zero otherwise. Arguing
as in (2.3), we obtain
(2.5) ( Za&RaRZ)NGNis nonnegative, non increasing, and Za&RaRZ =P,.

|| SN a€F}

We need the following in Section 4.
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LEMMA 2.1. For every a € F}, | Lo|| = ||La(d0)]| = /@Wa-

Proof. Since L, maps the orthogonal basis {dg : 8 € F,'} to an orthogonal
set, it is enough to check that for every a € F}, ||La\j—£7|| < /wq. That is, we
need to prove that for every a, 5 € FF w": < wq. Suppose that a = g;, -+ gi,

ny o
apB

and that 8 = g;, ---g;,. To apply condition (w2), we first write i}ﬁ

as a product
of k terms, and then we apply (w2) to each term

Wap _ Wap  Wgiy-giy, B o Wy, B
wg Waiogi, B Wgin-gi, B wg
279y, iz i
Wagiygivy Yaingi 99y Y9y Yagigi
Wain iy, 951 95—y VGize iy, Gy 9y Wajy 95, Yoy 05,

By iterating this inequality [ — 1 times, we conclude that % < ‘:’u—z =wWq. 1

3. COMMUTANT LIFTING THEOREM AND INTERPOLATION PROBLEMS

The Hilbert module (H,Vi,...,V,) is orthogonally projective in the category of
its *-submodules if whenever K is a *-submodule of H and f : H — K is a module
map, there exists a module map F': H — K such that | F|| = || f|| and f = PcoF.

H
P/ | P
H Lok

THEOREM 3.1. For every Hilbert space H, (F?(wa)@H; L1®@I3, ..., Ly®@1I3)
is orthogonally projective in the category of x-submodules of (F?(wa) ® f2; L1 @
Igz,. .., L, ®Ig2).

THEOREM 3.2. For every Hilbert space H, (F*(wa) @ H; R1 @ Iy, ..., Ry @
I1) is orthogonally projective in the category of *-submodules of (F?(wa)®Le; R1 ®
Igz,. .., Ry ®I@2).

When n = 1 and Ly is a pure isometry, these theorems are proved in [32]
and [33], when n > 1 and w, = 1, they are proved in [25], and when n = 1, they
are proved in [9]. We adapt the proof of [9] to our setting.

We will give a detailed proof of Theorem 3.1 and provide the modifications
for the proof of Theorem 3.2. To simplify notation, we say that M C F2(wq) @ H
is a *-L-submodule of F?(w,)®@H if (M; V1, ..., V,,) is a x-submodule of (F?(w,)®
H; L1 ® Iy, ..., L, ® Iy). We say that f: M — N is an L-module map if N';, M
are *-L-submodules of F2(w,) ® H and f is a module map in the category of
s-submodules of (F2(wa) ® H; Ly ® Ipg, ..., L, ® I3). Similarly, we define x-R-
submodules and R-module maps.

Let (M;Vi,...,V,,) be a xL-submodule of F?(w,)®H and let f : F?(w,) ®
H — M be an L-module map. For each o € F;, define

fa: H—M by fa(x):f(éoz@x)'
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Then each f,, and hence f, is determined by fo : H — M. Indeed,
(1) falr) = f(la®@z) = f((La ® In) (00 @ 1)) = Vaf(do @ x) = Vo fo().

One easily checks that f* : M — F2(w,)®H has the form f*(z) = > 6,® f?:(x).
a€clFy «
Then, since f, = V, fo,

(3.2) <1 & fr<l o 3 —VafofiVi<l

W
acFx ¢

Summarizing, we have that f : F?(ws) ® H — M is a module map if and
only if there exists an fo : H — M such that f* : M — F?(w,) ® H is given by

* 504 * *
(3.3) fa)= 32 orefivi).
a€F;h
Moreover, || f|| < C if and only if > %Vafof(’{vo’f < C2.
aE]Fj{ “

Proof of Theorem 3.1. Let (M; V1, ..., V,) be a *-L-submodule of F2(w,)®H
and let f : F?(wa) ® H — M be an L-module map with | f|| = 1. We will find
a *-L-submodule N containing M and an L-module map F : F?(w,) @ H — N
such that || F|| = ||f|| and f = Pa o F. By iterating this process, or by applying
a maximality argument, we finish the proof.

If 6 @ H ¢ M, let N be the closure of 6o @ H + M. If g @ H C M,
find a € F; such that 6, ® H ¢ M but such that if « = 8y and |3] > 1 then
0y ® H C M. Then let N be the closure of §, ® H + M. In either case

(3.4) (Lo @ In)*N Cc M if o] > 1.

Let W; = Py (L; ® Iyg) Py for i@ < m. Then (N;Wq,...,W,) is a *L-submodule
of F?(ws) ® H, and M is a *-L-submodule of N. It follows from (3.4) that

(3.5) WoPnom =0 if o] > 1.
and that
(3.6) WagPr = Wo Vg Py

Indeed, WogPprt — WoVgPp = Wa(ngM - VﬁPM) = Wa(P/\/(LB &® IH)PM -
Pr(Lg ® I1¢) Prg) = Wo (Pyv — Pa) (Lg @ 1) Prm = Wo Payram(Lg ® I3¢) Pag = 0.

The goal now is to find an L-module map F : F?(w,) ® H — N satisfying
||| = ||fl] and P F = f. Like all L-module maps, F' will be determined by
Fy : H — M. Recall from (3.1) that F,, = W,Fy for any « € F,'. However, it
follows from (3.5) that for |a| > 1, F, is already determined by f:

Foh = WoFoh = WaPxomFoh + WaPrFoh = WaPrFoh = Wa foh.

Decompose F2(wy) @ H = [§o @ H] & [6o @ H]* and N = [N & M] & M and write
F' as a block matrix with respect to this decomposition. That is,

_ |9 a
pe ]
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Since f = Py F = [b ¢], the second row of F' is already determined and ||[b ¢]|| < 1.
The second column of F' is also already determined. Indeed, it is easy to see that
al” . . F*(z
[c] :(F‘l[(;()@H”J_) N — @(5(}@’}'{ is given by Z (5@8#.

| =1 | >1 @

CLam 3.3. Y LW, fofgWe < 1.
la|>1 "

Since F,, = Wy fo for |a| > 1, it follows that the Claim 3.3 is equivalent to
I[%]]l < 1. Once we prove the Claim 3.3, we use Parrott’s Lemma (see [20]) to find
go such that ||F|| = 1. Then we can find a module map F : F2(w,) ® H — N such
that ||F|| = ||f|| and f = Paq o F, which is what we need to iterate the process
and finish the proof.

It remains to prove the Claim 3.3. It follows from (2.3) that > an(La ®

aEFi
In)(Loa®In)* = Ps,gn = 0, where Ps g7 is the orthogonal projection onto do @H.
Since ao <0 for || > 1and ag =1,then I > > —an(La ® In)(Lo @ Iy)* > 0.

o 21
Hence
12 —aaPy(La® Iy)(La ® In) Py = Y —aaWoaW; > 0.
o =1 | 21
Recall from (3.2) that #ngof{)"Vg < I because f : F?(wa) @ H — M is
BEF;;

contractive. Then from (3.6) and (2.1) we get,

12 ) —aaWaWi > ) —%Wa< > ;Vﬂfoﬁvf;)ws

la| 21 || 21 BeF}
—0q —Qq
=> > w“wavgfofgvgwgz > w“waﬁfofgwgﬁ
lal>1 gery P la|>1 geFy;
—a * * 1 * *
= S [ W s = Y W s
S =14

which is what we wanted to prove. The last equality follows from (2.1). Since
> *T‘;”:O,then > %‘B“:g—oz(}. ]
apf=y af=y K K
o] 21

Sketch of the proof of Theorem 3.2. Let (M;Vi,...,V,,) be a #-submodule of
(FHwa)@H; Ry @13, ..., R, ®@1%), and let f : F?(ws) ®H — M be an R-module
map with || f|| = 1. For each o € F}}, define f, : H — M by fo(z) = f(0a ® ).
As before, f,, and hence f, is determined by fy, but we get now that f, = Vfo.
And since [|f]| =1, we get > VafofdVi < 1.

acFy

We now choose a x-R-submodule N that contains M. If 6o @ H ¢ M, let N
be the closure of dg @ H+ M. If §o ® H C M, find o € F;} such that §, @ H ¢ M
but such that if @ = v and |y| > 1 then g ® H C M. Let N be the closure of
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do ® H + M. Define W; = Py (R; ® I¢) Py, and check that (3.4), (3.5), and (3.6)
of the proof of Theorem 3.1 are satisfied.

We now want to define an R-module map F : F?(ws) ® H — N such that
IE| = ||f|l and Pagqo F = f. As before, F, is already determined for || > 1 and
it is equal to F,, = W45 fo. The decomposition of F into a 2 x 2 block matrix is
identical to the one in the proof of Theorem 3.1. And the proof of Theorem 3.2
follows from the proof of the following

CrLamm 3.4. > - W fofdWz <

\a|>1
We have from (2.5) that I > 3" (—ag(Ra®In)(Ra®In)* = > —agW W,
oo 21 oo 21
Then
* 1 * *
I> Z —agW W, > Z —aaWa( Z wfﬂngofng)W
|21 lee| 21 BEF;Y
1 * *
=X X3 }W TofsWe =3~ —WihofsW2,
PIZ1 - ga=y vz
lal>1

which proves the claim. 1
From Theorems 3.1 and 3.2 we immediately get

COROLLARY 3.5. If M and N are *-L-submodules of F?(wa) @ H and T :
M — N is an L-module map, then there exists an L-module map T: 72 (Wa)OH —
F2(wa) ® H such that |T|| = |T|| and TPy = PyT. And if M and N are *-
R-submodules of F?(wa) @ H and T : M — N is an R-module map, then there
exists an R-module map T : F2(wq) @ H — F2(we) ® H such that ||T|| = ||T|| and
TPy = PyT.

Proof. Apply the theorems to the module map T Pyg. 1

We will now describe the L-module maps and the R-module maps on F2(w,,).
Notice that T : F?(w,) — F2(ws) is an L-module map if and only if T commutes
with Li,..., L, and that T : F?(w,) — F2(ws) is an R-module map if and only
if T commutes with Ry,..., R,.

There is a natural product on the set of d,’s given by o ® 05 1= dag (the
tensor product notation is used to emphasize the noncommutative nature of the
product). Using this formula, we can take formal products of elements of F2(wy,),
although the formal product does not have to belong to F2(w,). Define

F®(wa) ={f € ~7:2(wa) Vg € fQ(wa),fQ@g € -7:2(“)04)}7
with the norm

I £llsc = sup {[lf ® gll2 : g € F*(wa), lgll2 < 1},
which is the norm of the left multiplication operator Ly : F?(wa) — F2(wq). If
f,9 € F*(wy) then f® g € F*°(wq) corresponds to the operator Lygg = Ly o Lg.
Therefore, we view F°°(w,) as a subalgebra of B(F?(w,))-
Similarly, we define R*®(w,) as the set of f € F?(w,) such that g ® f €
F?(wq) for every g € F?(wy), and we give f € R*°(w,) the norm of the right
multiplication operator Ry : F2(wqa) — F2(wa)-
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PROPOSITION 3.6. T : F?(ws) — F%(wa) is an L-module map if and only
if there exists g € R®(wq) such that T = R,. And T : F*(wa) — F2(wa) is an
R-module map if and only if there exists g € F*°(wy) such that T = Ly. Hence
F>*(wq) and R>®(wy) are equal to their double commutant.

Proof. Let T : F?(wa) — F2(ws) be an L-module map and set f = T'.
Since Ty, = TLo6o = Lo T8 = Lo f = 6o ® f it follows that for every g € F2(w,),
Tg = g® f. Hence f € R®(wq) and T = Ry. Conversely, if f € R>®(w,),
LiR;osg=L;i(63Rf) =043 f = Rs(04,8) = RyLi(63). Hence Ry is an L-module
map. The proof for R-module maps is identical. &

The characterization of the commutant of the left creation operators of the
Full Fock space (i.e., when w, = 1 for all @ € F;}) appears in [26]. We are
following that approach here. Proposition 3.6 extends to *-submodules of F2(w,)®
¢5. Recall that the commutant of F°(w,) ® Iy, is R (w,)®B(H) and that the
commutant of R (w,,)® Iy, is F(we,)®B(H). If H is k-dimensional, these spaces
are My (R*(wy)) and My (F>®(wy))-

COROLLARY 3.7. Let Hy and Hs be Hilbert spaces. T : fQ(wa) QH —
F%(wa) @ Ho is an L-module map if and only if there ewist operators A, €
B(H1,Hs) such thatT = 5 Roa®A, € R (wo)@B(H1, Ha). And T : F3(wa)®

aclF;)
Hi — F*wa) ® He is an R-module map if and only if there exist operators
B, € B(H1,Hs) such that T = 5. Lo ® By € F™(wo)@B(H1,Ha).

aeFi

Sketch of the proof. An L-module map T : F?(wqs) @ Hi — F2(wa) @ Hy is
determined by the operator Ty : Hi — F2(wa) ® Ha defined by Ty(z) = T(5 @ ).
For each x € Hy, To(x) = Y, 6o ® x4 for some z, € Hz. The map that sends

a€l;)
Z to x4 is a bounded linear map A, € B(Hi, Hz). We now check easily that
T=Y Rya®A4. 1

aEFi
Combining Corollary 3.5 and 3.7, we get

COROLLARY 3.8. If M is a x-L-submodule of F*(ws) ® Hi, N is a *-L-
submodules of F2(wa)®@Ha, and f : M — N is an L-module map, then there exists
T= > Ry®A, € R®(wo)®B(H1,Hz) such that | T|| = || f|| and PmT = fPy.

o€l
If M is a *-R-submodule of F*(wa) @H1, N is a *-R-submodules of F?(wa) @ Ha,
and f : M — N is an R-module map, then there exists T = Y. L, ® A, €
aEFi

F>(wa)®B(ls) such that ||T| = ||f]| and PmT = fPy.
REMARK 3.9. The unitary flip operator U : F2(ws) — F2(wy) is defined by
Uby = ,/i—zé&. If w, = wa, this map provides a nice description of R®(w,) in

terms of F'*°(w,) given by UF ™ (wo)U = R*™(wy). In general, we cannot describe
one in terms of the other.
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‘We need some preliminaries to state the Nevanlinna-Pick interpolation prob-
lem. An element f € F?(w,) has the form f = 3" ¢, 0, where || fllz = . /> [cal?wa-
«

Using the product §, ® dg = dag, we view f = f(dq,,...,d,,) as a formal power
series in n noncommutative variables &4, ,...,0q,. If A = (A1,...,A,) is an n-tuple
of complex numbers, we define f(A) = f(A1,..., n) = D caAa, if the expression

makes sense. Notice that such map is multiplicative in tofle sense that if f, g, and
f®garein F2(wg), then (f ® g)(A) = f(A\)g(\), and is determined by the values
da(N) = Ao. We will show that the evaluation by A makes sense whenever A € B,,,
the unit ball of C™. )

Let A = (A1,...,An) € By, Use (w3) to define z) = ( > %La>50 =

aeFi
> 3—3% € F%(wq) and check that (§3,2)) = Ag. Then for any f € F%(wa),
aEFi
J(A) = (f, 2a). Since || f[| 72(w.) < [|f]loo, it follows that the map ®y : F'*°(w,) — C
defined by ®(f) = f()) is multiplicative and WOT-continuous.

The z)’s have useful properties. From (2.3) and (2.4) we easily check that
for i < n, Lizy = Xizn and Rizy = Xizx. Hence if f € F*°(w,) we have that
(Lg)*zx = f(X)zx. Moreover we also check that if f € My (F>®(wa)), f(A) =A¢€
My, and z € (%, then

(3.7 (L) (za@z) = f(A) 'z = A"z,

THEOREM 3.10. ([4]) Let py,...,un € By be N-distinct points, and let
A1,..., AN € My, be k x k matrices. Then there exists f in Mp(F>(wy)) such
that || flleo <1 and f(u;) = A; fori < N if and only if the matriz

(3-8) [(2es 2 ) Tk = A3 ADLi i<

s positive semidefinite.

Proof. Let N = span{z,,, ..., 2z, }. It follows from the properties of the z\’s
that A\ is a *-R-submodule and a *-L-submodule of F2(w,). Let f € My(F>(w,))
be any element that satisfies f(u;) = A; for i < N (it is easy to see that such an
f always exists, although it could have big norm). We claim that the matrix
(3.8) is positive semidefinite if and only if the compression of Ly to N'® £5 is a
contraction. Let T' = (Pxn;, ® Ipx)Lf|nr, - Then T is a contraction if and only
if I —TT* >0, and if we use (3.7), we see that this is equivalent to (3.8) being
positive semidefinite.

Suppose now that there exists f € My (F*(wy)) such that ||f|lcc < 1 and
f(pi) = A; for i < N. Since the compression of Ly to N'®/5 is clearly contractive,
(3.8) is positive semidefinite.

Conversely, suppose that [(z,,, z,;) (I — A} Ai)]; j<n is positive semidefinite.
Then, the operator 7' on N @ £5, defined by T*(z,, ® z) = z,, ® Afz for i < N
and x € (5, commutes with the Pyrrges (Ri ® Iy )|yger’s and satisfies [T < 1.
By Corollary 3.8, there exists f € My (F*(wgy)) such that ||f|le = ||T|| < 1 and
Py LyPy =T. Since N is a *-L-submodule, it follows from (3.7) that f(u;) = A;
fori < N. 1
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REMARK 3.11. (i) We can use Corollary 3.11 to deduce Caratheodory inter-
polation problems in F*°(w,). And with more work, we can follow [28] to obtain
tangential Nevanlinna-Pick interpolation problems in F*°(w,).

(ii) In the Full Fock space case (when w, = 1) the elements zx, A € B,,, were
introduced by Popescu in [27]. They were studied in [3], [11], and particularly in
[6], where Arveson proved that the closed span of these vectors is the Symmetric
Fock space.

4. POISSON KERNELS AND PROJECTIVE RESOLUTIONS
In this section we recall the construction of the Poisson kernels of [30] and [5], and
show that they lead to projective resolutions. We start with the following

LEMMA 4.1. ([4]) Let & C F*(wa) ® Lo be semi-invariant under the maps
L;®1y,,i<n, and let W; = Pe(L; ® Iy, )|e for i <mn. Then:

(i) The sequence An = . agWo W is non-negative and nonincreasing,
le| <N
and
(i) Jim 5 [ > g—ﬂmw; ~0.
lv[>N - af=y
ol <N

Consequently we get
(i) A = A}im Ay exists, 0 < A < I, and A is not equal to zero, and
— 00

(iv) Y AWaAWZ =Ie.

aclF;;

Proof. We first verify the lemma for £ = F?(w,). In this case, Ay and its
limit are computed in (2.3), where it is shown that A = Py > 0, the orthogonal
projection onto the span of §g. This implies that %LQAL(*; is the orthogonal

lal<N 7
projection onto the span of the dg with |§| < N. It follows from (2.1) that

S Llrar=Y %LQ(Z asLoli)La =T+ > [ 3 Z—Z]LWL;

laj<v la|<N BeFy [yI>N ~ ap=y
o <N

and this implies that — > [ > Z—[’} L. L is the orthogonal projection onto
la|>N & af=y
lo| <N
the closed span of the d,’s with |y| > N, and hence this sequence of operators
converges to zero in the strong operator topology. Notice that ). Z—ﬁ <0

af=y
la| <N

whenever |y| > N.

Suppose now that & C F?(wg) @2 is semi-invariant and W; = Pe(L; ® Ip,)|e
for i < m. The proof of the lemma will follows from W, W = Pe(LoL}, ® Iy,)Pe
if |a| = 0 and W, W} < Pg(LoL} ® Iy,)Pe if |of > 1. To see this, notice that
for @ € Ft, Pe < I. Then (Lo ® Ir,)Pe(La ® Is,)* < (La ® Ip,) (Lo ® Iy, )*.
Hence, WQW; = Pg(La (39 Igz)Pg(La (9 Igz)* < Pg(La & IgQ)(La ® Igz)*Pg =
Pg(LaLZ (%9 IgQ)Pg.
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Since a, < 0 for |of = 1, aaW W2 > Pe(agLoLi ® Ip,)Ps. Hence,
S agW Wi > g( ao Lo LY ® Iez)Pg > 0, and (i) follows. Similarly,
la| <N lo| SN
as * ag *
e Y[ X L cn(- X[ X Lnsen)e
[v[>N  aB=y [v|>N  aB=y
ol <N ol <N

Since condition (ii) is true for the L,’s, we get (ii) for the W,’s. Conditions (iii)
and (iv) follows easily from (i), (ii), and from the identity

S —W awi=1+ Y | Z Llwws

laj<N ©@ YI>N ~ af=

\a|\

THEOREM 4.2. ([4]; Poisson kernels) Let £ C F?(wq) @l be semi-invariant
under L; @ Ip,, i < n, with W; = Pg(L; @ Ip,)|e for i < n. Define D = A'/?,

where A is the non-negative operator of the Lemma 4.1. Define

)
K:& 2 = — .
— Filwa)®E by K(x) Z o ®@ DWix
a€lF;;
Then K s an isometry and K* is a module map. We call K the Poisson kernel

of .

Proof. Tt follows from (iv) of Lemma 4.1 and from (3.3) that K is an isometry
and that K* is a module map. 1§

We write the next lemma in a more general setting.

LEMMA 4.3. Let (Eo; Wh,...,Wy) and (E1;V4,..., V) be Hilbert modules
and let @ : & — &y be a surjective coisometric module map. Then:
(i) ®*(&) is invariant under Vi*, ..., V.*. Hence, (2*(E);Th,...,Ty) is a
*-submodule of &y with T; = Pg«(gy)Vilox(g,) for i < n,
(ii) @|p=(g,) : *(&0) — &o is a module map, and
(i) ®* : & — P*(&y) is a module map.
Consequently, & is isomorphic to *(&).

Proof. Since ®V; = W;® for ¢ < n, we have that V;*®* = &*W} and (i)
follows. Then ®*W; = V®* = Pg«(g))V;"|o+(£,)®* = T;®*, and this implies
Qg (g)Ti = WiPla+(g,) and (ii) follows. Moreover, since ®* is an isometry, we
have that for i < n, W; = ®T;®*. Finally, ®*W,; = &*(®T;9*) = (P*P)T;d* =

T;®* and (iii) follows. &

From Theorem 4.2 and Lemma 4.3 we get

COROLLARY 4.4. Let £ be a subquotient of F?(wa) @ ly and let K : £ —
F?(wa) @ E be the Poisson kernel of £. Then & is isomorphic to K(&).

We are ready to prove one of the main results of this paper.
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THEOREM 4.5. For any Hilbert space H C {2, (F?(wa)@H; L1®@Ir, .. ., Ly®
I1) is strongly orthogonally projective in the category of subquotients of F2(wa) ®
ls.

Proof. Let & and & be two subquotient of F2(wy) ® f3 and let ® : £ — &
be a surjective coisometric module map. Let H C fo and let f : F2(wy) @ H — &
be a module map. The goal is to find a module map F : F%(wy) ® H — & such
that ||F|| = || f]] and ® o F = f.

The first step consists in replacing & with F2(wy) ® fo. Let K; : & —
F%(wa) @ £y be the Poisson kernel of £; and define the coisometric module map
U=>00K;: F(wy) @l — &. Let g = V%o f: F2(wy) @ H — U*(&), which
is a module map by Lemma 4.3. Since U*(&) is a *-submodule of F?(w,) ® fa,
it follows from Theorem 3.1 that there exists a module map G : F%(ws) @ H —
F?(wa) ® s such that |G| = ||g|| and g = Py+(g,)0G. Let F = K{ oG : F?(wa) ®
H — & . Fis amodule map, |[F|| = [G[| = [lg]| = [[f]|, and since ¥ = Wo Py.(g,),
then o F = (PoKf)oG =VoG = Vo (Py«(g,)0G) =Tog=ToWl*of=Ff 1

As an immediate corollary we get

COROLLARY 4.6. For every subquotient £ C F?(wa) @4y there exist a family
of strongly orthogonally projective subquotients P; and partial isometric module
maps ®; such that the following sequence is exact:

:&g Iﬂ :EL f% :EQ fﬁ :Eb fﬁ jﬁ; E — 0.

Proof. Let £ C F?(wa) ® £ be a subquotient with Poisson kernel Ky : € —
Flwa) @ E. Let P = F?(we) ® € and &g = K : P — £. To construct
the next strongly orthogonally projective subquotient, define H; = Ker(®q). H;
is a submodule of F?(w,) ® ¢ with Poisson kernel K; : H; — F?(ws) ® Hj.
Let P, = F%(wy) ® Hy and & = K} : P, — P;. Since H; is a submodule of
F2(wa) @ by, Kf : P» — P; is a module map with image equal to the kernel of
K{. Proceeding this way, we finish the proof. 1

The previous two theorems show that there are enough strongly orthogonally
projective subquotients to obtain projective resolutions. The following two results
will help us identify all strongly orthogonally projective subquotients in particular
examples. We need a definition

DEFINITION 4.7. If M C F?(w,) ® {2, the right slice of M is the smallest
Hilbert space H C £ such that M C F?(ws) ®@ H.

Ifx= > 0,®xq € M, then all of the z,’s belong to the right slice of M.
aEFi
In fact, it is easy to see that the right slice of M is the closure of the linear span
of the z,’s for all x € M.

THEOREM 4.8. A subquotient £ of F*(wa) @ lo is strongly orthogonally
projective in the category of subquotients of F2?(wa) ® lo if and only if K(£) =
F%(wa) @ H for some H C E. Moreover, if € is strongly orthogonally projective,
then & is a submodule of F?(wa) ® fa.
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Proof. Suppose that £ C F2(wy) @ lo is semi-invariant and W; = Pe(L; ®
Ip,)|e for i < n and that & is strongly orthogonally projective. Since K (&) is
isomorphic to &, it is also strongly orthogonally projective, and since K (&) is a
x-submodule, the orthogonal projection P : F%(w,) ® & — K(€) is a module
map. Then there exists a contractive module map ® : K(£) — F?(w,) ® £ such
that P o ® = I¢. The norm condition forces ® to be the inclusion map, and we
conclude that K(F) is also a submodule. That is, K (&) is reducing for the maps
L; ® I¢. According to (2.3), the orthogonal projection onto the span of dq is equal
to Po = Y. aqLoLl. Since K(€) is invariant under L; ® I¢ and (L; ® Ig)*, it

aEFi
follows that Py ® I¢ maps K (&) into K(&). If x = > dg Qx5 € K(E), then we
BeFy
have that §p ® xg = (Py ® Ig)x € K(£). More generally, we have

[(La X Ig)(PO X Ig)(L,g &® Ig)*] (SL‘) =0, ® T3 € K(g)
Then F?(w,) ® xg C €. If H is the closed span of such zg’s for allz = 5 63 ®
BEF;;
zg € K(&), we have that K(€) = F?(wa) ®@H, (i.e., H is the “right slice” of K (£).)
We will now check that £ is invariant under L; ® Ip,. For each z € H,
KK*(03® 2) = 83 ® 2. Since K*(§3 ® z) = WgK*(Jp ® z) then

Oa N WiWs .
Gpwz= Y “C@DWiIK (fs®z2)= Y 5a®DTﬁK (60 @ 2).

a€eFt a€F

Therefore,
W5Wps
wg

z=D

K*(0g ® z) for every 3 € F;\.
) WEW;s . . .
We now claim that D oy 152 contraction. Indeed D satisfies 0 < D < I because

A satisfies 0 < A < I (see Lemma 4.1), and since ||Lg|| = /wg (see Lemma 2.1),

WiWs
we also have that ZT[

that

is a contraction. Since ||z]| = ||[K*(dp ® 2)]||, it follows

W;iWs
(4.1) [D }(K*(éo ®2)) = (K*( ®2)) for every § € Ft.
wg

(An easy convexity argument gives that if 7' is a contraction, T'z; = Txs, and
lzall = [lzall = [|Tw1], then &1 = 25.) Now, 0 < “222 < [ and “272 =
éPg(Lﬂ ® Ip,)*Pe(Lg ® Ip,)|e. It follows from (4.1) that the norm of Pe(Lg ®
I;,)K*(0p ® z) cannot be smaller that the norm of (Lg ® Iy, ) K*(dp ® z). Then we
get that

(Lg @ Ip,)(K* (6o ® 2)) € € for every B € F;f.

Since (Lg ® Ip,)(K*(0a ® 2)) = (Lg @ Ip,)(La @ Ip,)(K* (0o ® 2)) = (Lga ®
Ip,) (K* (00 ® 2)) = K*(0pa ® 2), we see that

(L ®1p,) (K" (60 ® 2)) € € for every a, 8 € F}.

Since the set of K*(d, ® z) where a € F;! and z € H spans &, we conclude that £
is invariant under the maps L; ® Ip,, i <n. &
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COROLLARY 4.9. A subquotient & C F?(wq) @ Lo is strongly orthogonally
projective if and only if there exist Hy C ly and a surjective coisometric module
map ®q : F2(wa) ® o — & such that the following sequence is exact:

0 — Flwa)@H1 — Fw) @4 2o, e 0.

Proof. If £ is strongly orthogonally projective, then K (£) = F?(wq) ® H for
some H C lo, and Ker(K*) = K(€)* = F%(w,) ® Ht. The short exact sequence
is obtained if & = K*. Conversely, suppose that there exists a coisometric module
map & satisfying the conditions of Corollary 4.9. Since ®*(£) = Ker(®)*, then
®*(&) = F?(we)@Hi. By Theorem 4.5, ®* (&) is strongly orthogonally projective.
Since £ is isomorphic to ®*(£), we finish the proof. &

Theorem 4.8 is the best possible. In the next section we will show the invari-
ant submodules of the Full Fock space are strongly orthogonally projective.

PROPOSITION 4.10. Let £ C F%(wq)®Fo be a strongly orthogonally projective
subquotient of F?(wa) ® la, and assume that the w,’s have the property that if
|Lagll = ||Lalllgll for all o, then g € F?(wa) is a multiple of &g. Then there
exists H C Uy such that £ = F?(w,) ® H.

Proof. It follows from Theorem 4.8 that £ is invariant under L; ® Ip,,7 < n
and that K(&) = F2(ws) ® H for some H C ly. For each z € H, ||z]| = 1,
define T, : F*(wa) — F*(wa) @ la by Ti(y) = K*(y ® x). It is easy to check
that T, is an isometric module map. Let (e,) be an orthonormal basis of ¢5 and
write T,,(00) = Y. gn @ e, for some g, € F2(wa). Then T (80) = Y. Lagn ® en.

n>1 n>1
Since |[Tydall = [0all = v/wa and since [[Lagn|l < y@allgnll = |[Lallllgnll (sce
Lemma 2.1), it follows that for each n € N and each a € F}}, || Lagn|l = | Lallllgnll-

By hypothesis, this implies that each g, is a multiple of dqy; that is, g, = ¢,d¢g for
some ¢, € C. Then

To(00) = K" (B0 2 2) = Y cado @ en =80 @ [ D enen| =dr @y € €,

n=1 n>1

Since € is invariant under L; ® Ip,, i < n, we see that F?(w,) ® y C €. Since the
set of K*(d, ® x)’s where o € F;} and z € K is dense in &, there exists H such
that £ = F?(wa) @ H. &

Proposition 4.10 applies to the Dirichlet algebra. Let 72 (n+1) be the Hilbert
space with orthogonal basis {e, : n € N} but with weights (e,,e,) = n + 1.
We consider the Hilbert module (H2(n + 1); L) where L is the shift operator
Le,, = e, +1. The algebra generated by L is called the Dirichlet algebra.

COROLLARY 4.11. A subquotient € of H?(n+1)®{y is strongly orthogonally
projective if and only if there exists H C ly such that £ = H*(n+1)®@H. Moreover,
for every subquotient € of H?(n+1)®~y there exist a family of strongly orthogonally
projective subquotients P; and partial isometric module maps ®; such that the
following sequence is exact:

] ] ] [ [
- P = P 35 P 45 P = & — 0
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5. EXAMPLES

5.1. THE FuLL Fock SPACE F2. The Full Fock space F? is the Hilbert space
F?(wa) when w, = 1 for every a € F;\, and F°>°(w,) is the Fock space F>° that was
introduced by Popescu in 1991 in connection to a noncommutative von Neumann’s
inequality [24]. We easily check that in this case, ag =1, ag, = a4, = ---ag, = —1
and that a, = 0 for o] > 2.

In this paper we have used the tensor product ® in two different ways: as the
formal product of elements in F2(w, ) and as the Hilbert tensor product of Hilbert
spaces. Until now it has been easy to distinguish the different meanings, but this
is more difficult here. Accordingly, for this subsection only, we use the symbol ®
to denote the product of elements of F2(w,), and the symbol ®, to denote the
Hilbert tensor product. For example, if ¢, € F? and ¢ € F>, ¢ ® 9 belongs to
F? and denotes the product of ¢ with v; but ¢ ®, 1 denotes the element of the
Hilbert tensor product F? @9 F2.

The invariant subspaces of 72 were characterized by Popescu in [21] in 1989.
He proved that M C F? is invariant under L1, ..., L, if and only if there exists a
family ; of elements of F? satisfying:

(i) for every v € 72, 4]l = 16 @ e
(i) for i # j, F? ® ¢; and F? @ ¢; are orthogonal, and
(ii)) M =P F* @ ;.
K3

The closed span of the ¢;’s, which is denoted by L, is the wandering subspace
of M.

We use the following simple lemma to describe the strongly orthogonally
projective submodules of F2.

LEMMA 5.1. Let M C F2 be an invariant subspace with Poisson kernel K.
Then K(M) = F2 @, L.

Proof. Let M be an invariant subspace of F2, with V; = Py(L;|ap for i < n.

Find a family of ¢; € F? such that M = @ F? ® ¢;. Then it follows that
il

{0a®p;:a € F}l i € I} is an orthonormal basis of M. To find the Poisson kernel

of M, we need to compute A of Lemma 4.1. Since the a,’s are very simple, we

have that A = > a Vo, VS = Iy — VWV =WV — - =V, V., and we easily
a€R}
check that
_J i if|al =0,
A(sa@%_{() if |a] > 1.

It follows then that A, and hence D of Theorem 4.2, are equal to P, the orthogonal
projection onto the wandering subspace £. Then K : M — F?(wy) ®2 F2(wy) is
given by

K(@g®@ i) = Y 0a® PcVi(6s®¢i) = 05 ®2 ;.

aEFi

And K(M)=F2®@, L. 1
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Lemma 5.1 is true for submodules of F? ®4 5. We gave the proof in the
simpler case F? to minimize the confusion of the symbols ® and ®s, but the proof
for the general case is identical. It follows from this lemma and Theorem 4.8 that
the strongly orthogonally projective subquotients are precisely the submodules
of F2 @ ly. Part of this follows from the work of Muhly and Solel ([19]), who
characterized the strongly orthogonally projective modules of a large class of C*-
correspondences that include the Full Fock space as a particular case. If £ is a
subquotient of F2 ® {5, there exists a projective resolution ®¢ : F2 ®9 Hi — &
where @ is the adjoint of the Poisson kernel K of £ and H; is the right slice of
Ko(€) (i.e., the smallest subspace of 2 such that Ko(€) is a subset of 7?2 tensored
with this Hilbert space). We repeat this process for Ker®y. But this is an invariant
subspace and its Poisson kernel K; : Ker®y — F? ® {5 is an isometry with range
F?®9 Ha, where H, is the wandering subspace of Ker®y. Then Kj : F? ®q Hy —
Ker® is an isometric module map and ®; = 1o K} : F2 ®y H; — F2 @3 Hy is a
partial isometry module map. Then we get

COROLLARY 5.2. A subquotient £ of F2 @l is strongly orthogonally projec-
tive if and only if € s invariant under L; ®I;,, 1 < n. Moreover, every subquotient
E of F? ® Uy admits a projective resolution

0 — FoH, 2 FeoH, 2o & — o,

where Hyi, Ha C ly and @y, Py are partial isometric module maps.

We will see in the next section that the maps ®y and ®; reformulate aspects
of noncommutative dilation theory for Cy-row contractions. ®q is the adjoint of
the minimal isometric dilation of £ (see [14], [8] and [22]), and ®; is Popescu’s
characteristic function of £ (see [21]).

5.2. QUOTIENT SPACES. Let J be a w*-closed 2-sided ideal of F*°(w,), and let
N be the orthogonal complement of the image of J. Since J is a left ideal, it
follows that A is a *-submodule of F?(w,) with V; = Py, L;|nr, for i < n.

The following lemma is implicit in the proof of Theorem 1.2 (see also Propo-
sition 3.4 of [4]).

LEMMA 5.3. Let £ C Nj ® £y be semi-invariant under V;, 1 < n and let
K : & — F?(wa) ®@Ly be the Poisson kernel of € (notice that € is also a subquotient
of F?(wa) ®@1s). Then K(£) C Nj®4€y. Consequently, (K*)|n,e0, : Ny &by — &
is a surjective coisometric module map.

Proof. Recall from Theorem 1.2 that F*°(w,)/J is completely isometric to
PNJFOO(WOL”NJ' Since W; = Pg(Li @ 152)|5 = Pt [PNJ®£2(L'L' @ 152)|NJ®€2} ‘5 =
PV, the map that sends ¢ € F*(wq) to Pe(L,®1p,)|e € B(E) factors through
F>®(wq)/J. That is, Pe(L,®1p,)|e = ¥oQ(L,) where Q : F®(wq) — F>®(wq)/J
is the quotient map and ¥ : F*™(w,)/J — B(E) is defined by ¥(L, + J) =
Pe(Ly, ® Ip,)|e. Let K : € — F?*(wq) ® £z be the Poisson kernel of £ and notice
that for every ¢ € F*>(wq), K*(Ly, ® Iy,) = Vo Q(Ly,)K*.

Let 1y € £, b € J, h € F?(w,), and x5 € 5. Then (Kxy,bh ® x) =
(K1, (0@ 11, ) (h®x2)) = (21, K (0@ I, ) (h@w3)) = (21, [Wo QD) F(h®z2)) =0,
because Qb = 0. Therefore K(£) C Nj ® ly and (K*)|nv,ge, : Ny @l — Eis a
surjective coisometry. Since N is *-invariant, we also get that (K*)|n, e, 1S a
module map. 1
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THEOREM 5.4. A subquotient £ C Ny ® {5 is strongly orthogonally projec-
tie if and only if it is isomorphic to Nj @ H for some H C f3. Moreover, for
every subquotient £ of Nj ® £y there exist a family of strongly orthogonally projec-
tive subquotients P; and partial isometric module maps ®; such that the following
sequence is exact:

o o o o o
— P =5 P 3 P -5 P -5 £ — 0.

Proof. We show first for every H C f2, Nj ® H is strongly orthogonally
projective in the category of x-submodules (i.e., it satisfies Theorem 3.1). We
observe that since J is also a right ideal, Ny is invariant under R}, < n, the adjoint
of the right creation operators. This means that if ¢ € R®(w,), the map T =
Py, Ry|n, : Ny — Ny is a module map. Indeed, V;*T* = Py, L; Py, R}, Py, =
P, L; R% Py, = Pa, R5LE Py, = Pa, R Px, L Py, = T*V;* for i < n.

Let K be a *-submodule of Ny ® 5 and f : Ny ® H — K a module map. We
claim that there exists a module map F : Ny ® H — N; ® {5 such that | F|| = || f]]
and Pc o F = f. Since N ® H and K are *-L-submodules of F?(w,) ® lo, it
follows from Corollary 3.5 that there exists an L-module map T:F? (Wa) ® by —
F2(wa) @ by such that || f|| = | 7| and PcT|n,en = f. Since Ny is also a *-R-
submodule, it follows that T = PNJ®521A“|NJ®¢2 Nj®Lly, — Nj® /s is a module
map. Since Nj ® H is a submodule of NV; ® £o, the function F' = T|y,en :
N;y®H — Nj® £y is a module map. It is now clear that Pc o F = f and
that ||F|| = ||f]]. This means that N; ® H is strongly orthogonally projective
in the category of the x-submodules. Using Lemma 5.3, we follow the proof of
Theorem 4.5 and Corollary 4.6 to conclude that Ay ® H is strongly orthogonally
projective and that every subquotient has a projective resolution. It remains to
prove that every strongly orthogonally projective subquotient is isomorphic to
N; ® H for some H ® 5.

Let £ be a projective subquotient of ANy ® £3. Since £ is isomorphic to
K (&), then K (&) is also strongly orthogonally projective. Since K(€) is also a *-
submodule, it follows from the proof of Theorem 4.8 that K () is also a submodule
and hence it is reducing. Recall that > aq(La @ Ir)(La ® I,)* = Py ® Iy,.

aEFi
Then since N is s-invariant, Prn,ee, | > @a(La ® Ip,)(La @ Ip,)*| Pyyee, =
aclF;;
> a0 (Va®Ip,)(Va®I,)* = Prnyos, [P0®Ig2]P_/\/'J®g2. And since K (€) is invariant
a€lF;;
under V, ® I, and (Vo ® Iy.)*, Pxyqe, [Po ® I, | Paryge, maps K (€) to itself. Let
T = Z+ 0a®Tq € K(‘S) Then Py, e, [PO@I@]PNJ@)bx = Pn,00®x0 = § @0,
a€cF,
where & = Py, d0. It is easy to see that the span of V&, a € F;| is dense in
Ny (use (Vo&o, 2) = (04, 2) to show that an element z € K(&) orthogonal to all
Vo&o’s is zero). Then we obtain that Nj ® xyp C K(&). Similarly, we get that
Ny®@z, C K(E) for every a € F;l. If we repeat this for all 2 € K (&) we conclude
that K(€) = Nj ® H, where H is the “right slice” of K(£). 1
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5.3. THE SYMMETRIC FOCK SPACE. The symmetric Fock space .7-"_% is the sub-
space of the Full Fock space F2 spanned by the vectors of the form Or(a)
TESm

for m € N, o € F} with |a| = m, and 7 € S, where 7(a) = 7(gi, 94, - - - Gi,) =
GiryJin " Jinemy- T3 is also the orthogonal complement of the image of the
commutator ideal (i.e., it is of the form A of the previous section where J is gen-
erated by ¢ ® 1 — ¢ ® p for ¥, € F*°), and as a result it satisfies Theorem 5.4.
The commutant lifting theorem of the symmetric Fock space is an immediate con-
sequence of [25].

It is more convenient to denote z; = J; for i < n and 1 = §y. The product
of two elements of .7-"_% is defined by p-q = Pfi ( ® ¢). Since the product is

commutative it is simpler to index the monomials with elements k = (k1,...,k,) €
N in the following way: zF = zklzk"‘ -+ zFn with the convention that z° = 1. Then
F2 has an orthogonal basis {z* : k € N"} with ||2*||3 = m

The compressions of the left creation operators to the symmetric Fock space
are the maps M;, i < n, that multiply by z;. Since they are commutative, their
products are also indexed by elements k = (ki,...,k,) € N™ in the following way:
My = MPYMY? - MFn = M.

According to Theorem 5.4, the strongly orthogonally projective submodules
of fi ® {5 are isomorphic to submodule of the form .7-"_% ® H for some H C /5. But
as we saw in the previous subsection, this does not imply that they are exactly of
this form. The next proposition shows that this is true in this case.

PROPOSITION 5.5. A subquotient £ C fi ® by is strongly orthogonally pro-
jective if and only if there exists H C £o such that £ = .7-"3_ QH.

Proof. Let £ C .7:2 ® f5 be a strongly orthogonally projective subquotient
with Poisson kernel K and Vi=Pe(M;®1y,)|e,i <. According to Theorem 5.4,

K& =72 ® H for some H € £y. Hence for every k € H, ||k||z = 1, we have that
K*(1® k) €& and |[K*(1®k)|l2 = 1, and since K* is a module map,

Pg(lezz ®Igz)K*(1 ® k) = V1V2K*(1 (39 k) = K*(lez & h)

It is easy to see that || M, .. | = ||[M., 2,12 = % and that | M., ., f|2 = %”f”g
implies that f is a multiple of 1 (notice that M., ., maps the orthogonal basis
{z* : k € N"} to an orthogonal set and that it attains its norm only at 1). Then
V3 = 2122 0Kl = [K* (122 @ B2 = | Pe (Merz ©16) K (1@ Rz < | (Meza @
I )K*(1®@ k)|l < || M., .|| = 7 This implies that (M.,., ® Iy,) K*(1® k) € €
and more importantly, that K*(1 ® k) is of the form 1 ® h for some h € ¢5. We
define H={h €ly:1®@h=K*(1®k) for some k € H}.

It remains to show that z* @ h € £ for every k € N™ and h € H. To see this,
we need to observe that | M_k|| = || M x1||2 = ||2¥||2 (if 2* is a single power, then
M« can attain its norm in several vectors, but this is not important here). Let
h € H, ||h|l2 =1 and find h; € H such that 1 ® h = K*(1 ® hy). Then

1% ]2 = 1K (=" ® ha)ll2 = | Pe (Mx @ Ig, ) K* (1@ ha)l2
= [|Pe (Mo ® I, ) (1 @ B2 < | (Mar ® Lo, ) (1@ B)ll2 < [ M| = [|2°]]2.



PROJECTIVE MODULES ON FOCK SPACES 161

This implies that ¥ ® h = (M,x ® I,)(1 ® h) € € and we now easily conclude
that E=FI Q@H. 1

COROLLARY 5.6. If £ is a subquotient of .7-'3_ ® Ly that is not strongly orthog-
onally projective then all projective resolutions have infinite length.

Proof. Suppose on the contrary that there exists a finite resolution
. Dy
0 — F2@Hx 2, F2@H1 —

— FP2oM, % F2oH, -4 & — 0,
with partial isometric module maps ®;, 0 < ¢ < k. It follows that Im®;, = Ker®_
is strongly orthogonally projective and since it has the form fi ® H for some H,
then (Ker®;_;)* is also orthogonally projective. Since ®;_ is a partial isometry
with initial space (Ker®;_;)*, then Im®;,_; = Ker®, o and (Ker®;_ ,)* are
strongly orthogonally projective. Proceeding this way we obtain that for every
i,0 <i < k—1, Ker®; and (Ker®;)" are strongly orthogonally projective. Since &
is isomorphic to (Ker®q)*, we conclude that £ is strongly orthogonally projective,
and this contradicts the hypothesis. 1

5.4. COMPLETE NEVANLINNA-PICK KERNELS. A function K : X x X — Cis a
positive definite kernel on the set X if for every finite set z1,...,x, € X, the matrix
(x;5) is positive semi-definite. Each kernel induces a family of functions k, : X — C
defined by k,(y) = K(y,z). The reproducing kernel Hilbert space Hy is the
Hilbert space spanned by the functions k,’s with inner product (ky, k) = K(z,y).
Hence the elements f € Hpg are thought of as functions f : X — C defined by
f(z) = (f, ks). A function ¢ : X — C defines an operator (My)* on the span of

{ks : x € X} by (My)*k, = ¢(x)k,. If this maps extends to a bounded linear
operator on Hp, we say that ¢ € M(K) is a multiplier. Equivalently, ¢ is a
multiplier if and only if ¢f € Hg for every f € Hg, where ¢f is the product
of ¢ and f as functions on X. M(K) is the multiplier algebra of Hx and the
elements ¢ € M(K) have norm |[¢|[ar(x) = [[My]. More generally, a function
® : X — B(Hi,Hsz) is a multiplier from Hx ® Hy to Hx ® Hs if and only if
the operator (Mg)*k, ® 20 = ky ® ®(x)*29, defined on the span of {k, ® 25 :
x € X, 29 € Ha}, extends to a bounded operator on Hix ® Hs. A kernel has the
complete Nevanlinna-Pick property if for every finite set z1,...,z, € X and n xn
matrices C1,...,Cy, there exists h € M,,(M(K)) such that h(xz;) = C; for i < n
if and only if the matrix [(I — C;C})(ks,, kz,)] is positive semi-definite.

In [1] and in unpublished work, Agler reformulated the Nevanlinna-Pick in-
terpolation this way. Quiggin ([31]) and McCullough ([16]) characterized the ker-
nels with this property, and more recently, Agler and McCarthy ([2]) proved the
remarkable result that an (irreducible) Nevanlinna-Pick kernel is the restriction of
the kernel of the symmetric Fock space _7{% to a subset of the ball B,,. More pre-
cisely, they proved that there exist n (possibly infinite) and an injective function
g : X — B, such that (after a renormalization)

1

K y) = T sy
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Let J = {p € F> : p(g(x)) = 0 for every x € X}. Following the arguments of
Theorem 3.10, it is easy to see that J is a w*-closed 2-sided ideal of F°° and that
N is the closed span of {zy(;) : € X}. Since

1
9(1‘2),9(.1?1»

we see that Ny is unitarily equivalent to the reproducing kernel Hilbert space H,
and this equivalence is implemented by the map that sends zy(,) to k.

For simplicity, assume that X C B,. An element ¢ € F* determines a
function ¢ : X — C defined by ¢(x) = (p, 25) (recall that X C B,,). The operator

T = Pn,Lyln, : Ny — N is bounded and satisfies 7%z, = ¢(x)z,. Hence
the map ¢ : X — C is a multiplier and |[My|| = [|Prx; Lolas || = [l + Jllpee -
Conversely, if ¢ € M(K), the operator T' : Nj — N defined by T*z, = ¢(z)z,
for z € X is bounded and commutes with Pyr, R;|xr, for i < n. By Corollary 3.8,
there exists ¢ € F'> such that Py, Ly|n, = T and ||¢|| = ||T]|. The matricial
case works the same way and we conclude that the space of multipliers M (K) is
unitarily equivalent to F°°/J. Consequently, the results of the previous section
apply to these examples. Furthermore, we note that since M(K) is a quotient of
F*_ then it has the A;(1)-property (see [5]). Finally, since M (K) is commutative,
the compression of the left creation operators and right creation operators coincide
and we do not need to distinguish between L-module maps or R-module maps, we
call them simply module maps. Hence a map T : M(K)® Hy — M(K) @ Hs is a
module map if and only if TMy & Iy, = My ® Iy, T for every ¢ € M(K) if and
only if there exists a multiplier ® : X — B(H;1, Hz) such that T = Mg.

<Zg(x1)azg($2)> = 1— < = K(x%xl) = <kI13kGE2>

6. APPLICATIONS AND FINAL REMARKS

6.1. INVARIANT SUBSPACES OF NEVANLINNA-PICK KERNELS. In [17], McCul-
lough and Trent characterized the subspaces of Hx ® £ that are invariant under
the maps My ® I¢ for Nevanlinna-Pick kernels K. In this subsection we show that
their results follow easily from our work, and then we prove that their conjecture
is true.

McCullough and Trent proved that M C Hyx ® £ is invariant under My ® I¢
for ¢ € M(K) if and only if there exist a Hilbert space G and a multiplier ® :
X — B(G,€) such that Mg : Hx ® G — Hi ® £ is a partial isometry with range
M. We sketch the proof of this result now. Suppose that M is invariant, and let
K : M — Hig ® M be its Poisson kernel. Then the map 1y 0o K* : Hx @ M —
Hy ® & is a module map because K* is a module map (Lemma 5.1) and ¢ is a
module map (M is invariant), and it is a partial isometry with range M. Since
module maps between these spaces correspond to multiplier maps, there exists a
multiplier & : X — B(G,€) such that Mg = tpq 0 K*. The other direction is
immediate because the image of a partial isometric module map is invariant.

McCullough and Trent also proved that if M C N C Hx ® £ are invariant
subspaces, ® : X — B(H1,€) and ¥ : X — B(H2, &) are multipliers satisfying
Mg is a partial isometry with range M and My is a partial isometry with range
N, then there exists a multiplier I' : X — B(Hz, H1) such that Mt is a contraction
and ® = Vol This follows from the fact that Hx ® Hs is strongly orthogonally
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projective. Indeed, since 1 o Mg : Hy @ Hy — N is a module map, and My :
Hyix ® Hi — N is a coisometric module map, then there exists a module map
T:Hg ®Hy — Hg ® Hy such that |[|T]| = || o M| =1,

He@Hs M5 M 2 Hyof
lET lL |

Hig ® Hy Mo N Hr®€&

The contractive module map T corresponds to a contractive multiplier I : X —
B(Ha2,H1). McCullough and Trent showed that, in general, one cannot assume
that the M = T of the previous diagram is a partial isometry, and conjectured
the following:

CONJECTURE 6.1. ([16]) If M C N C Hi ® £ are invariant subspaces and
U : X — B(H1,E) is a multipliers such that My is a partial isometry with range
N, then there exist a Hilbert space Hz and a multiplier T' : X — B(Hs, H1) such
that Mr is a partial isometry and Myr is a partial isometry with range equal to

M.

Proof. We claim that Ker(My) & (Mg)*(M) is an invariant subspace of
Hg ® Hy. To see this, we only need to check that whenever z € (Myg)*(M) and
¢ € M(K), then (Mg ® I, )x € Ker(Mg) ® (Mg)*(M), and this follows from

(Mg @ Iy, ) = [(My @ Irg, )z — (My)* My (Mg @ Inq, )] + (My)* My (Mg @ Ing, ).

Since My is a partial isometry, the term inside the brackets belongs to the kernel
of My, and since My is a module map, My (Mg @ I, )z = (Mg @ Ie) Mgz € M,
and this implies that (Mg)*My(My ® In,)z € (My)*(M). Then Ker(My) &
(Mg)*(M) has a Poisson kernel K : Ker(Myg) & (Myg)*(M) — Hg ® l2, and
K* : Hx ® {5 — Hig ® Hp is a partial isometry module map, and hence it
corresponds to a multiplier T' : X — B({2,Hy) with Mpr = K*. Since My o My
has range M, we finish the proof. &

This criterion can be used to characterize the invariant subspaces of quotients
of the weighted Fock spaces. Namely, a subquotient M of N; ® f5 with Poisson
kernel K : M — Nj; ® M is a submodule if and only if the map tpq o K* :
N;y@ M — Nj® £y is a module map.

6.2. UNIQUENESS OF THE RESOLUTIONS. We start with the simplest case:

PROPOSITION 6.2. If My, My C F?(wy) are submodules of F?(ws) for
which My and My are isomorphic, then My = Ma.

Proof. Let My, My be two submodules of F2(w,) and suppose that there
exists u : Mj — Mj such that u and u~! are isometric module maps. By
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Corollary 3.8, there exist ¢, 1) € R®(w,) satisfying: ||R,|| =1, Py Ry = uPpy,
_ _ -1
||R¢|| = 1, and PMfRib =Uu PMZL

0—>M1—>}'2(wa)—f>/\/lf-—>0
w

L
0 — My — Fiw,) —2 Mgf — 0
lRw ut

L
0 — My — Fllw,) — M — 0

We first claim that for every € M{ and y € M3, u(z) = * ® ¢ and
u"l(y) = y ® . To see this, let z € M7 . Since Py Ror = u(z) and |z| =
[u(@)|| = [[Ppe Rol| < [|Rp]] < ||z, it follows that Rz € M3, and hence that
uw(xz) = Ry(z) = 2 ® . The other case is similar. We now claim that ¢ ® ¢ = do.
This follows from the fact that the product of two non-zero terms of R*(wy) is
non-zero (to see this, just look at the non-zero coefficients of “smallest” length).
Let © € M7 be non-zero. Since z = 2 ® ¢ ® 1), we get that = ® (p @ — &) = 0.
Finally, we claim that there exist ag, by with |ag| = |bg| = 1 such that ¢ = agdy and
W = bodg. Since ¢, € F?(wy), there exists coefficients (@a)qep+ and (ba),cp+
such that

P =agdo+ Y Gaba; ¥ ="bodo+ > bada,

|| 21 || 21
and

@ = (aoho)do + Y { > aabg]é,y.

> af=y

Since [|p|l2 < |Ry|l = 1 and [|¢|l2 < [|Ry| = 1, we have that wa|as|* < 1 and
Walbal? < 1 for each a € Fr. In particular, |ag| < 1 and |bg| < 1. And since
aobop = 1 we get that |ag] = |bg] = 1. Then 1 > |l¢||? = |ao> + 3 |aa|*wa =
o] 21
1+ Y |aa|?wa, and this implies that a, = 0 for |a| > 1. Similarly, we obtain
o 21

that b, = 0 for |o| > 1. Then R, and R, are just multiples of the identity and
chasing the diagrams we see that M; = My, 1

COROLLARY 6.3. Suppose that J is a w*-closed to sided ideal of F™(w,).
If My, My C N are submodules of Ny for which Mi and My are isomorphic,
then M1 = M.

Proof. By Mi{ we mean N; © M; which is a s-submodule of ;. It is
also a x-submodule of F?(w,) because N, is a *-submodule of F?(w,). Then
F2we) © MT and F2(ws) © Mg are submodules of F?(w,) with isomorphic
orthogonal complement. By Proposition 6.2, they are equal. Since M; = N; N
[F2(wa) © [Ny & M,]] for i = 1,2, it follows that M; = Ma. 1
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Corollary 6.3 was proved by Arveson ([6]) for the symmetric Fock space. His
proof used C*-theory. Propositions 6.2 and 6.4 were proved by Popescu for the
Full Fock space [30]. His proofs are based on the uniqueness of the characteristic
function of a family of row contractions ([21]) (commuting or noncommuting). In
the next subsection we show that Proposition 6.4 can be used to give an alternative
proof of the uniqueness of the characteristic function in the particular case of Cy
contractions, and to define “characteristic functions” in weighted Fock spaces.

Proposition 6.1 was proved by Douglas and Foiag [12] for the polydisc algebra
H?2(D").

The conclusion of Proposition 6.2 cannot be true for submodules of F2(wg ) ®
{y. If M is a submodule of F?(w,) and M; = M ®e; (the Hilbert tensor product
of M with the first vector basis of ¢s) and Ms = M ® e, then My and M,
have isomorphic orthogonal complement but they are not equal. However, they
are isomorphic via a map of the form Ir2(, ) ® U : F?(wa) ® by — F?(wa) @ L.
Furthermore, if M; = {0} C F?(wq) ® £2 and My = F?(w,) ® H where H and
H~ have infinite dimension, then M3j and Ms are isomorphic to F?(ws) ® .
In the next proposition we show that these are the only possibilities. Recall that
the “right slice” of & C F?(w,) ® {3 is the smallest subspace H C /5 such that
EC F(wy) @H.

PROPOSITION 6.4. Suppose that M1 C F2(wa)@H1 and My C F?(we)@Ha
are submodules for which Mi and Mg are isomorphic. Then if Hy is the right
slice of My and Hy is the right slice of My (equivalently, if My and My do not
have any nontrivial reducing subspaces), then My and My are isomorphic via a
map of the form Irz, . ) ® U where U : Hy — Ha is unitary.

Proof. Suppose that there exists u : M7 — Mg such that u and u~! are
isometric module maps. By Corollary 3.8, there exist 71 € R (wq)®B(H1, Ha)
and Ty € R*(wa)®B(H2, Hy) such that |1 =1, Py Ty = uPy, (T2 = 1,
and PM%TQ = ’U/_l_PM%_. Following the proof of Proposition 6.2, we see that
uz = Thz and uz’ = Ty’ for every z € Mi and 2’ € My, and this implies that
ToTz = z for every z € Mj. For each a € F, there exist A, € B(Hy,H>) and
B, € B(Ha,H;) such that

T)=Ry®Ag+ » Ra®As and Thy=Ry@Bo+ »  Ra® Ba.
o >1 o >1

Moreover, ToT; = Ry ® BoAo+ >, Rs ® { > BgAa] Since ||T1|| = || T2|| = 1,
lvl>1 Ba=y

it follows that || Ag|| < 1 and || By|| < 1. Let 2 = 3" 0, ® T4 € M7 . We claim that
«

ByAoxs = x for every § € F;}. If 3 = 0 there is nothing to prove, so assume that
x5 # 0. Since M7 is invariant under (L, ® I, )*, we have that w = (Lg®1y,)*z =
So®x s+ [higher terms] € M7 . Then, since ToTyw = 6o ® By Ao+ [higher terms]
and ToT1w = w, we get that BoAgrg = x5. We will see now that Ty = Ir2(,, )®Ao.
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Since |T1|| =1, ||Aozg|l = ||zsll, and T1(do @ x5) = 0o ® Aoz + D, o ® Anzg,
o] 21
then
1T (G0 © 2l = sl + 3 walldazsll® < llzs]®
lal>1

Hence Aqxg = 0 for || > 1. And since the span of the zg’s is dense in Hq, we
conclude that A, = 0 for |o| > 1. Similarly we obtain that B, = 0 for |a| > 1,
and this implies that Ay : H; — Hsz is unitary. 1

A surjective coisometric module map ® : F?(w,) ® H — & is a minimal
resolution if H is the “right-slice” of ®*(&). We will see that Proposition 6.4 implies
easily that the Poisson kernel and minimal resolutions are essentially unique.

PROPOSITION 6.5. Let £ be a subquotient of F2(wa)®F with Poisson kernel
K and suppose that there exists a surjective coisometry module map ® : F?(w,) ®
by — E. Then there exists a partial isometry U such that for every x € £, ®*(x) =
(I @ U)K (x). Furthermore, if ®1 : F*(wa) @ H1 — € and ®o : F*(we) @ H1 — &
are two minimal resolutions of £, there ewists a unitary module map V : F?(wy) ®
Hy — F?(wa) @ Ha such that P30V = @

Proof. Tt follows from Lemma 4.3 that K*(€) and ®*(€) are isomorphic to
&, and hence they are isomorphic to each other via the map ®*K*. Let Hy C £
be the “right slice” of K(£) C F?(wa) ® € and Ha C {5 the “right slice” of
®*(£) C F?(wa)®Ly. By Proposition 6.4, there exists a unitary map Ag : Hy; — Ha
such that the following diagram commutes:

Plo) oM 290 ke K o¢
lI@AO l@*K* lid )
Floa)®Hs 2O e 2. ¢

Moreover, for every x € K(&), (I ® Ap)(x) = ®*K*(z) and hence ®*(x) =
O*K*(K(z)) = (I ® Ag)K(x). We finish the first part of the proof by extend-
ing Ag to a partial isometry U : £ — 5. The second part follows easily from the
first one. 11

In the Full Fock space, the uniqueness of minimal resolutions is due to Frazho
([14]), Bunce ([8]), and Popescu ([22]). Proposition 6.5 has an amusing corollary.
If £ C F?(w,) is a »-invariant subspace with Poisson kernel K, it has two natural
resolutions: the orthogonal projection P : F?(w,) ® f2 — & and the adjoint of the
Poisson kernel K* : F2(w,) ® £ — £. Since P* is just the inclusion map, K is
essentially an inclusion map.

COROLLARY 6.6. Let & C F%(wqs) be a *-invariant subspace with Poisson
kernel K. Then there exists xg € € such that K(z) = x ®2 xg.

Such a simple formula is not apparent from the definition of the Poisson
kernel. However, once we know it is true, we can compute the kernel and find out
that 2o = Eede .

[ Pedoll
6.3. CHARACTERISTIC FUNCTIONS. Two module maps ® : & — & and U :

Fo — F; are unitarily equivalent if and only if there exist unitary module maps
Uy :E — Foand Uy : &4 — F; such that Uy o ® = W o Us.
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THEOREM 6.7. Let £ and F be subquotients of F*(wqs) @ Lo with minimal
projective resolutions

C B P w) 0 My = Fwe) ©Ha —5 Flwa) ©Hi —% € — 0

.7:2(wa)®IC3 & ]—'2(wa)®lC2 &) .7'-2((4)@)®K:1 E F — 0

Then & is isomorphic to F if and only if ®1 is unitarily equivalent to V.

LE!
—

Proof. Suppose first that v : & — F is an isomorphism. Then it follows
from Proposition 6.5 that there exists a unitary Uy : H1 — K7 such that wo @y =
Voo ([F2(u,)@Ur). Hence Ir2(,,) @U; : Ker®y — KerVy is an isomorphism. We
apply Proposition 6.5 again to the minimal projective resolutions

P FP(wa) @ Ho — Ker®y  and Uy : F?(wa) ® Ko — Ker¥g

and we find a unitary map Uz : Hy — Ka such that (Ir2(,,) ® Up) o @1 =
Uy o (Ir2(,,) ® Uz). This implies that ®; and ¥, are unitarily equivalent. Of
course this extends to all maps ®; and W,.

Suppose now that there exist unitary module maps U; : F?(w,) @ Hy —
FAwe) @ Ky and Us : F?(we) @ Ha — F2(wa) ® Ko such that Uy o @ = Wy o Us.
Since Ker®y = Im®; and Ker¥y = Im¥;, we easily check that U;(Ker®g) =
Ker¥y and U;(Ker®o)t = (Ker®g):. We need to check that U; : (Ker®g)* —
(Ker¥g)t is a module map with respect to the module structure of (Ker®q)*
and (KerWg)t. This will finish the proof because £ is isomorphic to ®§(€) =
(Ker®g)® and F is isomorphic to ¥j(F) = (Ker¥g)t (Lemma 4.3). For i < n,
let V; = P(Ker@g)J-(Li @ IH1)|(Ker<I>g)J- and T; = P(Ker\IJO)J- (Lz ® IK1)|(Ker\IIO)J-- We
need to check that U;V; = T;U; for i < n. Let x € (Ker®q)", then

U1Viz = U1 Pkerag)+ (Li © I, )@
= Ui(L; ® I, )v — Uy Pkerao (Li @ Iy, )@
= (L; @ I, )Urz — Ur(Li ® Ing, ) PRerdo ©
= (L ® I, )Urx — (L; ® I, )Ur Pkeray®
=(L; ® I, )\Urx — (L; ® Ik, ) Pkerw, Ur
= (L ® I, )Urx — Pkerw, (Li ® Ix,)Urx
= Pkerwo)t (Li @ I, )Urr = T;Uy .
These equalities are based on the fact that U; : F2(ws) @ H1 — F2(wa) @ Ky,

PKer<I>0 : .7-'2(wa) QR HL — .7:2((4)&) ® Hq and PKer\IJO : .7-'2(wa) R, — .7:2(wa) ® K1
are module maps, and that U; Pkerd, = PkervoU1 Pkerd,- 1

In the Full Fock space, the map ®; corresponds to Popescu’s characteristic
function ([21]; see also Theorem 2.1 of [30]).

6.4. Homorocy. In this section we use ideas of Greene ([15]) to study the
homology of some natural complexes associated to projective resolutions. Let
E C F?(wq) ® £3 be a subquotient, and let

2 Pu)@He 22 Flwa) @M -5 F(wa) @Ho —% £ —0
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be a projective resolution. Suppose that J C F*®(w,) is a w*-closed 2-sided

ideal with Ay the orthogonal complement of the image of .J. Since N is a *-L-
submodule the orthogonal projection 9 : F?(w,) ® Hr — Ny @ Ny is a module

map, and since N is a *-R-submodule, for every ¢ € N, there exists a module
map ¥, : N ® H; — Nj ® H;_1 such that the following diagram commutes

Fwa) @Hi —5 FAwa) ® His
o Lo

NJ@Hi & NJ@Hi_l

These maps induce a complex

Nj;®Hs & Nj® Ha E Nj®H; & N;®Ho

which in general is not exact. In particular, if J is the w*-closed 2-sided ideal of
elements of F**°(w,) that “vanish” at zero, then we get the complex

v 14 v v
- Hy = Hy, = Hi —5% Ho-

There are many ideals J for which the homology of these complexes can be de-
scribed. For simplicity, denote F2(w,) ® H; by P; and N ® H; by C;. Then we
have the following commutative diagram:

P P P P P
2 py B P2op BLop Mg

P
lo lo lo lo

| | | |

0 0 0 0

Suppose that J is the w*-closed two-sided ideal generated by the maps L,
for || = N. Then N is the span of the dg’s with |3| < N. We can complete the
vertical arrows into short exact sequences in a natural way. Let En be the span
of the dg’s with |3] = N, and define

9: [FA(wa) ®H;] ® Ey — F2(wa) ®H; by 0(z ®65) = (Lg @ I)(2).
It follows easily that
0 — [P @H]@Ey -5 FPlw)oH - Nj@H, — 0

is a short exact sequence (notice that for every i < n there exists a constant ¢ > 1
such that 1||¢|| < [|Lig|| < cll¢| for every ¢ € F?(w,)). Denote [F?(wq) @ H;] ®

En by Q;, let CT% : Qi — Qi—1 be the map ®; ® Ig,,, and define 0: E® En — £ by
O0(x ® 0g) = T(x), where the T; = Pe(L; ® Iy,)|¢’s are the maps associated with
the subquotient £. Then we have the following commutative diagram in which all
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columns (excepts perhaps 0 : £ ® Ey — &) and the first two rows are exact:

0 0 0 0 0

l l l l l

£ . . > D,
= Q3 = Q2 = Q1 — Q — E®Ey — 0

lo lo lo lo lo

P ] 2] ] [

-4 P3 3 P2 BN Pl N PO - £ — 0
lo lo lo lo

Uy U3 P vy

—>Cg—>02—>01—>00

| | | |

0 0 0 0
Using standard arguments in homology we get

PROPOSITION 6.8.
Ker¥; /Im¥y ~ Ker(0: E® Ex — £),Co/Im¥; ~ E/0(E ® En), and
Ker®,/Im¥, 11 =0 fori=2,3,....

Sketch of the proof. We will show that Ker¥y = ImW3. Since ImU3 C KerWs,
we only need to show that KerWs C ImWs. Let x5 € KerWsy. Lift 25 toys € Ps (i-e.,
Oya = x2) and push it to P2(y2) € Py. Since 9(P2(y2)) = 0, there exists z; € Q1
such that 9z, = ®5(y,). Since d®;(z) = 0 and since 9 is one-to-one, ®y(z,) = 0
and hence, z; = 52(2’2) for some 23 € Q2. Now ®9029 = ODyzy = 02y = Dy (ya2).
Then ®5(y2—922) = 0, and hence, there exists y3 € Ps such that ®3(z3) = yo—0zs.
Then U3(dys) = 0P3(y3) = O(y2 — Jz2) = Jya = x2, and hence x5 € Im¥3. The
proof of KerW; = ImW,,; for + = 3,4, ... is identical.

We will show now that Ker¥,/ImW¥sy ~ Ker(0 : £E® Exy — &£). Let 21 €
KerW,. Lift it to y; € Pl and push it to ®1y; € Py. Since 091y, = 0, <I>1y1 0zg
for some 2y € Qp. Then <I>0z0 eKer(0: EQEN — 5) We claim that z1 — <I>Ozo is
a well defined map. Indeed, if we lift 21 € Ker¥; to ¢y € Pi, push it to ®1y; = 9z
then ®oz), € Ker(d: EQEn — &). Since d(y1—v/,) = 0 then y, —1} = 921 for some
z1 € Q1 and hence 820 — 0z, = <IJ1y1 ‘1>1y1 @187;1 86121. Since 0 is one-to-
one, then zy = z|, +®; 2, and hence @ozo = <I>0(z0+¢>1z1) &)026, which shows that
the map is well defined. Now if 21 € Im®,, we can lift it to a y; € P; that satisfies
®yy; = 0. Therefore, we get a map from Ker¥; /Im¥s to Ker(9: £ ® Exy — &).
We will construct the inverse of this map now. Let x € Ker(0 : £ ® Ex — &).
Lift it to zgp € Qo and push it to dzg € Py. Since ®q0dzy = 0, 0zg = ®1y; for some
y1 € P;. Then dy; € Ker¥y. If we lift € Ker(9: E® Ex — &) to 2, € Qo, push
it 0z, = ®1y], then dy; € Ker¥;. Since Do(z0 — zy) = 0, then zp — 2, = Dz
for some z; € @ and then ®1y; = P1y] = 0z — 9z = 8‘51(21) = &1(021).
Hence @1 (y; —y) — 0z1) = 0 and y; — y; — 021 = Po(y2) for some yo € P,. Then
Oy1 — Oy = 0(y1 — ¥} — 0z1) = OPa(y2) = U3(Jy2) € ImWs. This shows that the
map z — 9y; + ImUy from Ker(0: £ ® Ex — &) to Ker¥y /ImUs is well defined.
Since these two maps are clearly inverse to each other, we prove the result.

The proof of Cy/Im¥; ~ £/0(E ® Ey) is similar.
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REMARK 6.9. Proposition 6.8 is similar to the work of D. Greene ([15)].
He considers a “free” resolution of symmetric Fock spaces and, in the simplest
example, looks at the diagram (6.1) with the ideal corresponding to N = 1. He
completes the columns into exact sequences, but due to the commutativity of the
operators, it cannot be done in one step (as it is done here). He uses the Koszul
complex to accomplish this. Then he uses homological arguments to relate the
homology of the “last” row to the homology of the “last” column.

6.5. FiNAL REMARK. For simplicity, we decided to work with subquotients of
F?(wa) ® £y instead of working with representation of the unital norm closed al-

gebra generated by Lq,...,L,, which we denote by A, (w.). A representation
on this algebra is determined by an n-tuple of operators T1,...,T, € B(H). And
since there are too many bounded representations, we would have to consider com-
pletely contractive ones. If Ty,...,T, € B(H) induces a completely contractive
representation on A,,(w,), then using Lemma 4.1 and Wittstock’s Theorem we get

Z aoToTy > 0.

lo] <

But this still leads to too many representations, even in the Full Fock space. For
example, if we allowed Th1} + --- + 1,1y = I, we would have to consider the
representations of Cuntz’ algebras (since the Cuntz algebras are simple C*-algebra
which are not of type I, their representations cannot be classified up to unitary
equivalence). We can remove the “spherical” representations if we require that

SOT— lim 3 | Y 21 =0,

[v|[>N  af=y
la|<N

which we called the Cp-condition in [4]. But then we showed in [4] that in this case
there exists a Poisson kernel K : H — F2(w,) ® H, and hence (H : T3,...,Ty)
is isomorphic to a #-submodule of F2(w,) ® H. Therefore, working with the sub-
quotients of F2(w,) ® fo is equivalent to working with the completely contractive

representations of A, (w,) that satisfy the Cp-condition. Moreover, we showed in
[4] that the Cp-completely contractive representations of A,,(w,) coincide with the
Co-completely representation of F*°(w,).

We use this to give counter-examples to a question of Muhly and Solel ([18], p.
20) if we work with the restricted category of Cop-completely contractive represen-
tations. It follows from Theorem 5.4 that N is a strongly orthogonally projective
module of F*(w,)/J. However, Theorem 4.8 states that if s is strongly orthog-
onally projective in F*°(w,) then N is invariant under L1, ..., L,. For example,
if J is the commutator ideal in the Full Fock space, N is the Symmetric Fock
space, which is not invariant. Hence we obtain:
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PROPOSITION 6.10. Let J be a w*-closed 2-sided ideal of F*(w,,) such that
N7 is not invariant under Ly, ..., L,. Then N is strongly orthogonally projective
in the category of Co-completely contractive representations of F*(wy)/J, but it
is not strongly orthogonally projective in the category of Cy-completely contractive
representations of F*°(wq).
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