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1. INTRODUCTION

This is the first part of a two-paper set devoted to the study of Toeplitz
operators acting on weighted Bergman spaces on the upper half-plane. Both of
them are motivated by the same ideas and are a continuation of our research
started in [8]. We mentioned in [8] the papers [3], [4], [5], [12], [13], where Toeplitz
operators with smooth (or continuous) symbols acting on the weighted Bergman
spaces, as well as C∗-algebras generated by such operators, naturally appear in
the context of problems in mathematical physics. In particular, recall that given
a smooth symbol a = a(z), the family of Toeplitz operators Ta = {T (h)

a }, with
h ∈ (0, 1), is considered under the Berezin quantization procedure ([3], [4]). For
a fixed h the Toeplitz operator T (h)

a acts on the weighted Bergman space A2
h. In

the Berezin special quantization procedure ([3], [4]) each Toeplitz operator T (h)
a is

represented by its Wick symbol ãh, and the correspondence principle says that for
smooth symbols one has

lim
h→0

ãh = a.
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Moreover, by [11], the above limit remains valid in the L1-sense for a wider class
of symbols.

As in the quantization procedure, weighted Bergman spaces appear natu-
rally in many questions of complex analysis and operator theory. In the last
cases a weight parameter is normally denoted by λ and runs through (−1,+∞).
In the sequel, we will consider weighted Bergman spaces A2

λ parameterized by
λ ∈ (−1,+∞) which is connected with h ∈ (0, 1), used as the parameter in the
quantization procedure, by the rule λ+ 2 = 1

h .
At this stage some important problems emerge: study of the behavior of

different properties (boundedness, compactness, spectral properties, etc.) of T (λ)
a as

λ varies, and compare their limit behavior as λ→∞ with corresponding properties
of the initial symbol a.

It seems to be quite impossible to get a reasonably complete answer to the
above problem for general (smooth) symbols even for the simplest case of the
weighted Bergman spaces on the unit disk (hyperbolic plane). On the other hand,
the recently discovered classes of commutative ∗-algebras of Toeplitz operators
on the unit disk suggest the classes of symbols for which a satisfactory complete
answer can be given. Recall in this connection (see for details [15], [16]) that all
known cases of commutative ∗-algebras of Toeplitz operators on the unit disk are
classified by the pencils of (hyperbolic) geodesics of the following three possible
types: geodesics intersecting in a single point (elliptic pencil), parallel geodesics
(parabolic pencil), and disjoint geodesics, i.e., all geodesics orthogonal to a given
one (hyperbolic pencil). Symbols which are constant on the cycles, i.e, on the
orthogonal trajectories to the geodesics forming a pencil, generate in each case
a commutative ∗-algebra of Toeplitz operators. Moreover, these commutative
properties of the Toeplitz operators do not depend at all on smoothness properties
of symbols; the symbols can be merely measurable.

The model case for elliptic pencils, namely Toeplitz operators on the unit
disk with radial symbols, has been considered in [8]. In the present paper we
consider the model case for parabolic pencils, while the other paper, [9] from this
two-paper set is devoted to the study of the model case for hyperbolic pencils.
Together, these papers cover the material that remained uncovered after [8]. The
results for other (non model) cases can be easily obtained by means of Möbius
transformations.

We study Toeplitz operators on the upper half-plane equipped with the hy-
perbolic metric, where the model case for parabolic pencils is realized as Toeplitz
operators with symbols depending only on y = Im z.

The key feature of symbols constant on cycles, which permits us to get much
more complete information that one obtained studying general symbols, is as fol-
lows. For any commutative ∗-algebra generated by Toeplitz operators, the Toeplitz
operators admit a spectral type representation, i.e., they are unitary equivalent to
multiplication operators, by a certain sequence in the elliptic case and by certain
functions on R+ and R in the parabolic and hyperbolic cases, respectively.

We mention a certain difference between the already studied elliptic case [8]
and the remaining cases. In the elliptic case, Toeplitz operators have a discrete
spectrum and can be compact even for symbols that are unbounded near the
boundary, while in both parabolic and hyperbolic cases, Toeplitz operators always
have only a continuous spectrum and, being nonzero, can not be compact.
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As in the preceding paper, [8], the word “dynamics” in the title stands for
the emphasis of our main theme: what happens with the properties of Toeplitz
operators acting on weighted Bergman spaces when the weight parameter varies.

In this paper, as a custom in operator theory, we consider weighted Bergman
spaces depending on a real parameter λ ∈ (−1,∞).

Denote by Π the upper half-plane in C, and introduce the weighted Hilbert
space L2(Π, dµλ) which consists of measurable functions f on Π for which the
norm

‖f‖L2(Π,dµλ) =
(∫

Π

|f(z)|2dµλ(z)
)1/2

is finite. Here dµλ(z) = µλ(z)dv(z) with

µλ(z) = (λ+ 1)(2Im z)λ, dv(z) =
1
π

dxdy, z = x+ iy.

Let further A2
λ(Π) denote the weighted Bergman space consisting on functions

that are analytic in the upper half-plane Π and belonging to L2(Π,dµλ).
It is well known (see, for example, [13]) that the orthogonal Bergman pro-

jection BΠ,λ of L2(Π, dµλ) onto the weighted Bergman space A2
λ(Π) has the form

(BΠ,λf)(z) = (λ+ 1)
∫

Π

f(ζ)
(
ζ − ζ

z − ζ

)λ+2
dv(ζ)

(2 Im ζ)2

= iλ+2

∫

Π

f(ζ)
(z − ζ)λ+2

dµλ(ζ).

Given a function (symbol) a = a(z), z ∈ Π, the Toeplitz operators T (λ)
a

acting on A2
λ(Π) is defined as follows

T (λ)
a f = BΠ,λaf, f ∈ A2

λ(Π).

We start with the description of the Bargmann type transform, the unitary
operator which maps the weighted Bergman space A2

λ(Π) onto L2(R+). Besides
of its immediate necessity (it provides the unitary equivalence of Toeplitz opera-
tors whose symbols depend only on y with the multiplication operators acting on
L2(R+)) this Bargmann type transform, as well as the one established in [9], is of
great importance by itself and both of them will be used in forthcoming papers in
another context.

The key result, which gives an easy access to the properties of Toeplitz
operators studied in the paper, is established in Section 2. Namely, we prove
that the Toeplitz operator T (λ)

a with symbol a(y) is unitary equivalent to the
multiplication operator γa,λI acting on L2(R+), where

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(y/2)yλe−xydy, x ∈ R+.

We mention in this context (see, for example, [3], [5]) the Wick (or covariant,
or Berezin) symbol ãλ(z, z), z ∈ Π, of the Toeplitz operator T (λ)

a , which, together
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with the so-called star product, carries as well many essential properties of the
corresponding Toeplitz operator. Let H be a separable Hilbert space with the
scalar product 〈·, ·〉 and having a system of coherent states {kg}g∈G parameterized
by elements g of some set G carrying a measure (see for details [1], [2]). Recall
that the Wick symbol of a bounded linear operator A acting on H is defined as

ãA(g, g) =
〈Akg, kg〉
〈kg, kg〉 , g ∈ G.

In our particular case, we have A = T
(λ)
a , H = A2

λ(Π), G = Π, and kg = kz(ζ) =
iλ+2(ζ − z)−(λ+2), where z, ζ ∈ Π. The star product defines the composition of
two Wick symbols ãA and ãB of the operators A and B, respectively, as the Wick
symbol of the composition AB, i.e., ãA ? ãB = ãAB .

In Section 3 we give the formulas for the Wick symbols of Toeplitz operators
T

(λ)
a , whose symbols depend only on y, as well as the formulas for the star product

in terms of our function γa,λ.
An interesting and important feature of Toeplitz operators on the (weighted)

Bergman spaces is that such operators can be bounded even for symbols that
are unbounded near the boundary. In Section 4 we study in details boundedness
properties of Toeplitz operators with such unbounded symbols. We give several
separate sufficient and necessary boundedness conditions, as well as a number of
illustrating examples. It turns out that for unbounded symbols, the behavior of
certain means of the symbol, rather than the behavior of the symbol itself, plays
a crucial role in the boundedness properties. Given a symbol a, it is natural to
introduce the set B(a) of values λ ∈ [0,∞) for which the corresponding Toeplitz
operator T (λ)

a is bounded on A2
λ(Π). We show that, being nonempty, the set B(a)

may have only one of the following three types: [0,∞), [0, ν), or [0, ν].
Section 5 is devoted to the spectral properties. The (continuous) spectrum of

each T (λ)
a coincides with the closure of the image of the corresponding continuous

function γa,λ. For each fixed λ the spectrum seems to be quite unrestricted; the
definite tendency starts appearing only as λ tends to infinity. The correspondence
principle suggests that the limit set of those spectra has to be somehow connected
with the range of the initial symbol a. This is definitely true for continuous
symbols. Given a continuous symbol a, the limit set of the spectra, which we will
denote by M∞(a), does coincide with the range of a. As in [8], the new features
appear when we consider more complicated symbols. To understand the impact
of each type of discontinuity of a symbol we consider two model cases, piecewise
continuous and oscillating symbols.

In the case of piecewise continuous symbols, the limit set M∞(a) coincides
with the range of a together with the line segments connecting the one-sided limit
points of our piecewise continuous symbol. Note that these additional line segments
may essentially enlarge the limit set M∞(a) when compared with the range of the
symbol.

In the case of oscillating symbols, the situation becomes more interesting and
unexpected. It turns out that in spite of the qualitative identity of symbols, an
oscillation type discontinuity, the results may differ drastically depending on the
speed of oscillation. We consider two symbols, with strong and, respectively, with
slow oscillation. Both of them have the same range, the unit circle, but in the case
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of strong oscillation, the limit set M∞(a) coincides with the unit disk, while in the
case of slow oscillation M∞(a) coincides with the unit circle.

For a measurable and, in general, unbounded symbol one always has

Range a ⊂M∞(a) ⊂ conv(Range a),

and the gap between these extreme sets can be substantial. We give a number of
examples illustrating possible interrelations between them.

2. REPRESENTATIONS OF THE WEIGHTED BERGMAN SPACE

We start with the description of the weighted Bergman space A2
λ(Π)), where

λ ∈ (−1,+∞), which is compatible with the cartesian coordinates in Π. Consider
the unitary operator

U1 =
1√
π

(F ⊗ I) : L2(Π,dµλ) −→ L2(R,dx)⊗ L2(R+, (λ+ 1)(2y)λdy),

where the Fourier integral transform F : L2(R) → L2(R) is given by

(Ff)(u) =
1√
2π

∫

R

e−iux f(x) dx.

The image A2
1,λ(Π) = U1(A2

λ(Π)) consists of all functions ϕ = ϕ(x, y) satisfying
the equation

U1
∂

∂z
U−1

1 ϕ =
i
2

(
x+

∂

∂y

)
ϕ = 0,

whose general solution has obviously the form ϕ(x, y) = ψ(x)e−xy. But the func-
tion ϕ has to be in L2(R, dx)⊗L2(R+, (λ+ 1)(2y)λdy), thus A2

1,λ(Π) is the set of
all functions

(2.1) ϕ(x, y) = χ+(x)θλ(x)f(x)e−xy, f ∈ L2(R),

where χ+(x) is the characteristic function of R+,

(2.2) θλ(x) =
(
(λ+ 1)

∫

R+

e−2xv(2v)λdv
)−1/2

=
( 2xλ+1

(λ+ 1)Γ(λ+ 1)

)1/2

, x > 0,

and moreover, ‖ϕ‖A2
1,λ

(Π) = ‖f‖L2(R+). Consider the unitary operator

U2 : L2(R,dx)⊗ L2(R+, (λ+ 1)(2y)λdy) −→ L2(R, dx)⊗ L2(R+,dy)

defined by

(U2ϕ)(x, y) =
1

θλ(|x|)e−y/2+|x|β(|x|,y)ϕ(x, β(|x|, y)),

where, for each fixed x > 0, the function β(x, y) is the inverse function to

(2.3) γ(x, t) = − ln
{
θ2λ(x)(λ+ 1)

∞∫

t

(2η)λe−2xηdη
}
,
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i.e., β(x, γ(x, t)) = t, x > 0. We note an alternative form of γ(x, t) in terms of the
incomplete Γ-function. Start with

∞∫

t

(2η)λe−2xηdη =
1

2xλ+1

∞∫

2xt

uλe−udu =
1

2xλ+1
Γ(λ+ 1, 2xt).

Then

γ(x, t) = − ln
{( 2xλ+1

(λ+ 1)Γ(λ+ 1)

) λ+ 1
2xλ+1

Γ(λ+ 1, 2xt)
}

= ln
Γ(λ+ 1)

Γ(λ+ 1, 2xt)
.

The inverse operator

U−1
2 : L2(R, dx)⊗ L2(R+, dy) −→ L2(R, dx)⊗ L2(R+, (λ+ 1)(2y)λdy)

has the form (U−1
2 ϕ)(x, y) = θλ(|x|) eγ(|x|,y)/2−|x|yϕ(x, γ(|x|, y)). For each f ∈

L2(R) one has U2 : χ+(x)θλ(x)f(x)e−xy 7−→ χ+(x)f(x)e−y/2. Thus, the image
A2

2 = U2(A2
1,λ(Π)) is the set of all functions of the form

ψ(x, y) = χ+(x)f(x)e−y/2, f ∈ L2(R).

We summarize the above in the following theorem.

Theorem 2.1. The unitary operator U = U2U1 gives an isometric isomor-
phism of L2(Π,dµλ), where λ ∈ (−1,+∞), onto L2(R,dx)⊗L2(R+,dy) and under
which:

(i) the Bergman space A2
λ(Π) is mapped onto L2(R+)⊗L0, where L0 is the

one-dimensional subspace of L2(R+, dy) generated by l0(y) = e−y/2;
(ii) the Bergman projection Bλ

Π is unitary equivalent to

UBλ
ΠU

−1 = χ+I ⊗ P0,

where P0 is the one-dimensional projection on L0

(P0ψ)(y) = e−y/2

∞∫

0

ψ(v)e−v/2dv.

Following [14] we introduce the isometric imbedding

R0 : L2(R+) −→ L2(R)⊗ L2(R+)

by the rule
(R0f)(x, y) = χ+(x) f(x) `0(y).

Here the function f is extended to an element of L2(R) by setting f(x) ≡ 0 for
x < 0. The image of R0 obviously coincides with the space A2

2. The adjoint
operator R∗0 : L2(Π) → L2(R+) is given by (R∗0ϕ)(x) = χ+(x)

∫
R+

ϕ(x, η) `0(η) dη,

and R∗0R0 = I : L2(R+) −→ L2(R+), R0R
∗
0 = B2 : L2(Π) −→ A2

2 = L2(R+) ⊗
L0. Now the operator Rλ = R∗0U maps the space L2(Π, dµλ) onto L2(R+), and
the restriction Rλ|A2

λ
(Π) : A2

λ(Π) −→ L2(R+) is an isometric isomorphism. The
adjoint operator R∗λ = U∗R0 : L2(R+) −→ A2

λ(Π) ⊂ L2(Π,dµλ) is an isometric
isomorphism of L2(R+) onto the subspace A2

λ(Π) of the space L2(Π,dµλ).



Dynamics of properties of Toeplitz operators 191

Remark 2.2. We have

RλR
∗
λ = I : L2(R+) −→ L2(R+), R∗λRλ = Bλ

Π : L2(Π, dµλ) −→ A2
λ(Π).

Theorem 2.3. The isometric isomorphism R∗λ = U∗R0 : L2(R+) −→
A2

λ(Π) is given by

(2.4) (R∗λf)(z) =
1√

Γ(λ+ 2)

∫

R+

f(ξ) ξ(λ+1)/2eizξ dξ.

Proof. Compute

(R∗λf)(z) = (U∗1U
∗
2R0f)(z)

=
√
π(F−1 ⊗ I)(χ+(ξ) f(ξ) θλ(ξ) eγ(ξ,y)/2−ξy e−γ(ξ,y)/2)

=
1√
2

∫

R

χ+(ξ) f(ξ)
√

2 ξ(λ+1)/2

√
(λ+ 1)Γ(λ+ 1)

e−ξyeixξ dξ

=
1√

Γ(λ+ 2)

∫

R+

f(ξ) ξ(λ+1)/2ei(x+iy)ξ dξ.

Corollary 2.4. The inverse isomorphism Rλ : A2
λ(Π) −→ L2(R+) is

given by

(2.5)

(Rλϕ)(x) =
x(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(w) e−i wx µλ(w) dv(w)

=
(λ+ 1)x(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(ξ + iη) e−i (ξ−iη)x (2η)λ 1
π

dξdη.

Let us note that, given a bounded symbol a = a(z), the Toeplitz operator
T

(λ)
a is bounded on all spaces A2

λ(Π), where λ ∈ (−1,∞), and the corresponding
norms are uniformly bounded by sup

z
|a(z)|. That is, all spaces A2

λ(Π), where

λ ∈ (−1,∞), are natural and appropriate for Toeplitz operators with bounded
symbols. One of our aims is a systematic study of unbounded symbols. To avoid
unnecessary technicalities in what follows we will always assume that λ ∈ [0,∞).

The above representation of the Bergman space A2
λ(Π) is especially im-

portant in the study of the Toeplitz operators with symbols depending only on
y = Im z.

Given a function a = a(y) depending only on y = Im z, consider the Toeplitz
operator with the symbol a(y)

T (λ)
a : ϕ ∈ A2

λ(Π) 7−→ BΠ,λaϕ ∈ A2
λ(Π).

In what follows we will, in general, consider unbounded symbols. Denote by
L1(R+, 0) the class of functions a(y) such that

a(y)e−εy ∈ L1(R+), for any ε > 0.

Given a symbol a ∈ L1(R+, 0), the corresponding Toeplitz operator Ta, either
bounded or unbounded, is understood as follows: we define it on a certain dense
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subset of A2
λ(Π) and in the case of being bounded extend by continuity on A2

λ(Π).
As a common domain for all Toeplitz operators with L1(R+, 0)-symbols we can
take, for example, (see the beginning of the proof of Theorem 3.1) the set of all
functions

ϕ(ξ + iη) =
1√

Γ(λ+ 2)

∫

R+

t(λ+1)/2f(t) eit(ξ+iη)dt, η > 0,

where f ∈ L2(R+) and has a compact support, i.e., is identically zero in some
neighborhoods of the points 0 and ∞.

Theorem 2.5. Given a=a(y)∈L1(R+, 0), the Toeplitz operator T (λ)
a acting

on A2
λ(Π) is unitary equivalent to the multiplication operator γa,λI = RλT

(λ)
a R∗λ,

acting on L2(R+). The function γa,λ(x) is given by

(2.6)

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt

=
1

Γ(λ+ 1)

∞∫

0

a(t/2x)tλe−tdt, x ∈ R+.

Proof. Compute

RλT
(λ)
a R∗λ = RλBΠ,λaBΠ,λR

∗
λ = Rλ(R∗λRλ)a(R∗λRλ)R∗λ

= (RλR
∗
λ)RλaR

∗
λ(RλR

∗
λ) = RλaR

∗
λ

= R∗0U2U1a(y)U−1
1 U−1

2 R0 = R∗0U2a(y)U−1
2 R0 = R∗0a(β(|x|, y))R0.

Now

(R∗0a(β(|x|, y)R0f)(x) =
∫

R+

a(β(|x|, η) f(x) e−η dη = γa,λ(x)f(x),

where for x ∈ R+

γa,λ(x) =
∫

R+

a(β(|x|, η) e−η dη =
∫

R+

a(t)e−γ(x,t)dγ(x, t)

=
∫

R+

a(t)θ2λ(x)(λ+ 1)(2t)λe−2txdt =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt.

Here the functions γ(x, t) and θλ(x) are given by (2.3) and (2.2) respectively.

The above theorem suggests to consider not only L∞-symbols, but un-
bounded ones as well. In this case we obviously have:

Corollary 2.6. The Toeplitz operator T (λ)
a with symbol a(y) is bounded

on A2
λ(Π) if and only if the corresponding function γa,λ(x) is bounded.
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3. TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING ON y = Im z

Reverting the statement of Theorem 2.5 we obtain the following spectral-type
representation of a Toeplitz operator.

Theorem 3.1. Let a(y) ∈ L1(R+, 0). Then the Toeplitz operator T (λ)
a act-

ing on A2
λ(Π) admits the representation

(3.1) (T (λ)
a ϕ)(z) =

1√
Γ(λ+ 2)

∫

R+

t(λ+1)/2 γa,λ(t) f(t) eiztdt,

where f(x) = (Rλϕ)(x).

Proof. Follows directly from Theorems 2.5, 2.3, and Corollary 2.4.
Moreover, it is instructive to give a direct proof of the theorem which does not

use the results of the previous section. Indeed, for a symbol a = a(y) depending
only on y consider the Toeplitz operator

(T (λ)
a ϕ)(z) = (λ+ 1)

∫

Π

a(η)ϕ(ζ)
(ζ − ζ

z − ζ

)λ+2 dv(ζ)
(2Im ζ)2

,

where ζ = ξ + iη. Represent the function ϕ(ζ) in the form of the Fourier integral
(see (2.1) and (2.2))

ϕ(ξ + iη) =
1√

Γ(λ+ 2)

∫

R+

t(λ+1)/2f(t) eit(ξ+iη)dt, η > 0,

where f ∈ L2(R+). Now

(T (λ)
a ϕ)(z) =

iλ+2(λ+ 1)
π
√

Γ(λ+ 2)

∫

R+

a(η)(2η)λdη
∫

R+

t(λ+1)/2f(t) e−tηdt
∫

R

eitξ dξ
(z + iη − ξ)λ+2

.

Using the following formula (see 3.382.6 of [7])

(3.2)
∫

R

(iβ − ξ)−(λ+2)eitξdξ = χ+(t)
2π

iλ+2

tλ+1 e−βt

Γ(λ+ 2)
,

where χ+(t) is the characteristic function of (0,∞), we have

(T (λ)
a ϕ)(z) =

2(λ+ 1)
Γ(λ+ 2)3/2

∫

R+

a(η)(2η)λdη
∫

R+

t(λ+1)/2+(λ+1)f(t) e−2tη+iztdt

=
2

Γ(λ+ 2)1/2

∫

R+

t(λ+1)/2f(t) eiztdt
tλ+1

Γ(λ+ 1)

∫

R+

a(η)(2η)λe−2tηdη

=
1√

Γ(λ+ 2)

∫

R+

t(λ+1)/2f(t) γa,λ(t) eiztdt,



194 S. Grudsky, A. Karapetyants, and N. Vasilevski

where

γa,λ(t) =
tλ+1

Γ(λ+ 1)

∞∫

0

a(η/2) ηλ e−tη dη.

Theorem 3.2. Given a = a(y) ∈ L1(R+, 0), the Wick symbol ãλ(z, z) of
the Toeplitz operator T (λ)

a depends only on y as well, and has the form

(3.3) ãλ(y) = ãλ(z, z) =
〈T (λ)

a kz, kz〉
〈kz, kz〉 =

(2y)λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) e−2yu du,

and the corresponding Wick function is given by the formula

(3.4) ãλ(z, w) =
〈T (λ)

a kw, kz〉
〈kw, kz〉 =

[−i(z − w)]λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) ei(z−w)u du.

Proof. Consider

kz(w) = i2+λ(w − z)−(λ+2) = i2+λ(u+ iv − x+ iy)−(λ+2)

and calculate

(U1kz)(u, v) =
i2+λ

π
√

2

∫

R

(ξ + iv − x+ iy)−(λ+2)e−iξudξ

=
i2+λ

π
√

2

∫

R

(ξ + i(y + v + ix))−(λ+2)e−iξudξ.

Using (3.2), we have

(U1kz)(u, v) = χ+(u)
√

2uλ+1

Γ(λ+ 2)
e−u(y+v)−iux.

Thus,

〈T (λ)
a kz, kz〉 = 〈akz, kz〉 = 〈U1akz, U1kz〉 = 〈aU1kz, U1kz〉 =

=
2

[Γ(λ+ 2)]2

∞∫

0

∞∫

0

a(v)u2(λ+1) e−2u(y+v)(λ+ 1) (2v)λdudv

=
1

Γ(λ+ 2)

∞∫

0

uλ+1 e−2yudu
2uλ+1

Γ(λ+ 1)

∞∫

0

a(v)(2v)λe−2uv dv

=
1

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) e−2yu du.

Thus, we have (3.3). The equality (3.4) follows either from (3.3) by the analytic
continuation principle, or can be verified by direct calculations.
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Remark 3.3. Formula (3.3) admits an interesting interpretation. Start with
a symbol a = a(y) and the Toeplitz operator T (λ)

a acting on A2
λ(Π), calculate

corresponding function γa,λ(x), x > 0, and consider now the Toeplitz operator
T

(λ+1)
γa,λ with symbol γa,λ(y) acting on A2

λ+1(Π). Then the corresponding function
γγa,λ,λ+1 coincides with the Wick symbol of the initial Toeplitz operator T (λ)

a , i.e.,

ãλ(y) = ãλ(z, z) = γγa,λ,λ+1(y).

Remark 3.4. Given a symbol a = a(y) ∈ L1(R+, 0), and writing the Toeplitz
operator T (λ)

a in terms of its Wick symbol (see, for example, [1], [2]) we get the

formula (3.1). Indeed

(T (λ)
a ϕ)(z) =

∫

Π

ã(z, w)
ϕ(w) iλ+2

(z − w)λ+2
µλ(w) dv(w)

=
∫

Π

[−i(z − w)]λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa,λ(u) ei(z−w)u du

× ϕ(w) iλ+2

(z − w)λ+2
µλ(w) dv(w)

=
1√

Γ(λ+ 2)

∫

R+

u(λ+1)/2 γa,λ(u) eizu du

× u(λ+1)/2

√
Γ(λ+ 2)

∫

Π

ϕ(w) e−i wu µλ(w) dv(w)

=
1√

Γ(λ+ 2)

∫

R+

u(λ+1)/2 γa,λ(u) (Rλϕ)(u) eizu du.

Corollary 3.5. Let T (λ)
a and T (λ)

b be two Toeplitz operators with symbols
a(y) and b(y) respectively, a(y), b(y) ∈ L1(R+, 0), and let ãλ(y) and b̃λ(y) be their
Wick symbols. Then the Wick symbol c̃λ(y) of the composition T

(λ)
a T

(λ)
b is given

by

c̃λ(y) = (ãλ ? b̃λ)(y) =
(2y)λ+2

Γ(λ+ 2)

∫

R+

uλ+1 γa1,λ(u) γa2,λ(u) e−2yu du.

Proof. Besides of a direct verification based on the formula for the star prod-

uct of Wick symbols ([3], [4]), the result follows immediately from Theorems 2.5

and 3.2.
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4. BOUNDEDNESS OF TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING
ON y = Im z

Recall, see Corollary 2.6, that the function

(4.1) γa,λ(t) =
tλ+1

Γ(λ+ 1)

∞∫

0

a(η/2) ηλ e−tη dη =
1

Γ(λ+ 1)

∞∫

0

a(η/2t) ηλ e−η dη

is responsible for the boundedness of a Toeplitz operator with symbol a = a(y). If
the symbol a = a(y) ∈ L∞(R+), then the operator T (λ)

a is obviously bounded on
A2

λ(Π), and ‖T (λ)
a ‖ 6 ess-sup|a(y)|. As it is easy to see, the major contribution

to the integral (4.1) for “very big t” , t→∞, is determined by the values of a(y)
in a neighborhood of the point 0, and the major contribution for “very small t”,
t → 0, is determined by values of a(y) in a neighborhood of ∞. In particular, if
a(y) has limits at the points 0 and ∞, then

lim
t→∞

γa,λ(t) = lim
y→0

a(y),

lim
t→0

γa,λ(t) = lim
y→∞

a(y).

As a matter of fact, 0 and ∞ are the only points of the unbounded symbols
a(y) ∈ L1(R+, 0) that we have to worry for. Moreover, it is the behavior of certain
means of the symbol rather than the behavior of the symbol itself, that plays the
crucial role in the study of the boundedness of Toeplitz operators.

Given λ ∈ [0,+∞) and a locally summable function a(y), we introduce the
following means

B
(1)
a,λ(ξ) =

ξ∫

0

a(t/2)tλdt,

B
(j)
a,λ(ξ) =

ξ∫

0

B
(j−1)
a,λ (t)dt, j = 2, 3, . . . .

Theorem 4.1. Let a(y) ∈ L1(R+, 0). If, for any λ0 ∈ [0,+∞) and any
j ∈ N, the function B

(j)
a,λ0

(ξ) has the following asymptotic behaviors in the neigh-
borhoods of the points ξ = 0 and ξ = ∞
(4.2) B

(j)
a,λ0

(ξ) = O(ξj+λ0), ξ → 0,

and

(4.3) B
(j)
a,λ0

(ξ) = O(ξj+λ0), ξ →∞,

then for each λ ∈ [λ0,∞)
sup

x∈R+

|γa,λ(x)| <∞,

and the corresponding Toeplitz operator T (λ)
a is bounded on A2

λ(Π) for each λ ∈
[λ0,∞).
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Proof. Let λ > λ0. Assume first that j = 1. Then the conditions (4.2) and
(4.3) imply that, for all ξ ∈ R+, the following estimate holds

(4.4) |B(1)
a,λ0

(ξ)| 6 const ξ1+λ0 ,

where “const” does not depend on ξ ∈ R+. Integrating by parts we have, for all
x ∈ R+,

|γa,λ(x)| = xλ+1

Γ(λ+ 1)

∣∣∣
∞∫

0

tλ−λ0e−xtdB(1)
a,λ0

(t)
∣∣∣

=
xλ+1

Γ(λ+ 1)

∣∣∣
∞∫

0

B
(1)
a,λ0

(t)[(λ− λ0)tλ−λ0−1 − xtλ−λ0 ]e−xtdt
∣∣∣

6 const
xλ+1

Γ(λ+ 1)

∞∫

0

((λ− λ0)tλ + xtλ+1)e−xtdt

6 const [(λ− λ0) + (λ+ 1)] = const (2λ− λ0 + 1),

and the case j = 1 is done.

For j > 2 we use the inequalities

(4.5) |B(j)
a,λ0

(ξ)| 6 const ξj+λ0

(where ξ ∈ R+ and “const” does not depend on ξ) and integrate by parts j-times.

Remark 4.2. The condition (4.2) provides the boundedness of the func-
tion γa,λ(x) in a neighborhood of x = ∞, while the condition (4.3) provides the
boundedness of the functions γa,λ(x) in a neighborhood of x = 0.

The next statement gives a partial order on the family of sufficient conditions
for boundedness of Toeplitz operators given by Theorem 4.1.

Theorem 4.3. (i) Let the conditions (4.2) and (4.3) hold for j = j0 and
some λ0. Then these conditions hold for j = j0 + 1 and the same λ0.

(ii) Let the conditions (4.2) and (4.3) hold for j = j0 and some λ0. Then
these conditions hold for j = j0 and λ0 replaced by any λ1 > λ0.

Proof. Assume we have (4.2) and (4.3) for j = j0. Then, according to (4.5),
we have

|B(j0+1)
a,λ0

(ξ)| 6
ξ∫

0

|B(j0)
a,λ0

(t)|dt 6 const

ξ∫

0

tj0+λ0dt 6 const ξj0+1+λ0 .
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Thus, the first statement is proved. Let us now have (4.2) and (4.3) for j = 1 and
λ = λ0. If λ1 > λ0 then

|B(1)
a,λ1

(ξ)| 6
∣∣∣

ξ∫

0

tλ1−λ0dB(1)
a,λ0

(t)
∣∣∣

=
∣∣∣B(1)

a,λ0
(ξ)ξλ1−λ0 − (λ1 − λ0)

ξ∫

0

B
(1)
a,λ0

(t)tλ1−λ0−1dt
∣∣∣

6 const
(∣∣∣ξ1+λ0ξλ1−λ0 +

ξ∫

0

t1+λ0tλ1−λ0−1dt
∣∣∣
)

6 const ξ1+λ1 .

Let now (4.2) and (4.3) hold for j = 2 and λ = λ0. Then, for each λ1 > λ0, we
have

|B(2)
a,λ1

(ξ)| =
∣∣∣

ξ∫

0

u∫

0

a(t/2)tλ1dtdu
∣∣∣ =

∣∣∣
ξ∫

0

u∫

0

tλ1−λ0dB(1)
a,λ0

(t)du
∣∣∣

=
∣∣∣

ξ∫

0

B
(1)
a,λ0

(u)uλ1−λ0du− (λ1 − λ0)

ξ∫

0

u∫

0

B
(1)
a,λ0

(t)tλ1−λ0−1dtdu
∣∣∣

=
∣∣∣B(2)

a,λ0
(ξ)ξλ1−λ0 − (λ1 − λ0)

ξ∫

0

B
(2)
a,λ0

(u)uλ1−λ0−1du

− (λ1 − λ0)

ξ∫

0

B
(2)
a,λ0

(u)uλ1−λ0−1du

+ (λ1 − λ0)(λ1 − λ0 − 1)

ξ∫

0

u∫

0

B
(2)
a,λ0

(t)tλ1−λ0−2dtdu
∣∣∣

6 const
(
ξ2+λ1 +

2(λ1 − λ0)
λ1 + 2

ξ2+λ1 +
(λ1 − λ0)(λ1 − λ0 − 1)

(λ1 + 1)(λ1 + 2)
ξ2+λ1

)

6 const ξ2+λ1 .

The cases j0 > 2 for the second statement are considered analogously.

Example 4.4. Consider the unbounded symbol a(t/2) = t−β sin t−α, where
0 < β < 1, α > 0. Applying Theorem 4.1 for j = 1 and λ0 = 0 we have

(4.6) Ba,0(ξ) =

ξ∫

0

t−β sin t−αdt =
1
α

∞∫

ξ−α

y(β−1)/α−1 sin y dy.
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Integrating by parts two times we get

B
(1)
a,0(ξ) =

ξα−β+1

α
cos ξ−α − (β − α− 1)

α2
ξ2α−β+1 sin ξ−α

− (β − α− 1)(β − 2α− 1)
α3

∞∫

ξ−α

y(β−1)/α−3 sin y dy.

So we have

(4.7) B
(1)
a,0(ξ) =

ξα−β+1

α
cos ξ−α + O(ξ2α−β+1), ξ → 0.

To get the asymptotic at the infinity we use again the representation (4.6):

B
(1)
a,0(ξ) =

1
α

1∫

ξ−α

y(β−α−1)/α sin y dy +
1
α

∞∫

1

y(β−α−1)/α sin y dy.

Since ((β − α− 1)/α) < 0 the second integral converges. Integrating by parts the
first integral we get

(4.8) B
(1)
a,0(ξ) = c0 + c1ξ

1−β−α + O(ξ1−β−2α), c0, c1 ∈ C.
Thus, if
(4.9) α > β,

then the conditions (4.2) and (4.3) hold for j = 1, λ0 = 0, and the operator T (λ)
a

is bounded for each λ > 0.
Now apply Theorem 4.1 for j = 2, λ0 = 0. Let α < β. Using the inequality

(4.7), for β := β − α − 1, and (4.8) we get B(2)
a,0(ξ) = O(ξ2α−β+2), ξ → 0, and

B
(2)
a,0(ξ) = O(ξ) + O(ξ2−β+α), ξ →∞. Thus, the operator T (λ)

a is bounded if

(4.10) α > β

2
.

Analogously, applying Theorem 4.1 for j = 3, 4, . . . and λ0 = 0, we have that, for

(4.11) α > β

j
,

the operator T (λ)
a is bounded. Since there exists j large enough for which (4.11)

holds we have that, for arbitrary 0 < β < 1 and α > 0, the operator T (λ)
a is

bounded for each λ > 0.

Remark 4.5. Example 4.4 shows that the conditions (4.2) and (4.3) for
j = j1, λ0 = 0, compared with those for j = j2, λ0 = 0, and j1 > j2, widen in
fact the class of symbols for which the boundedness of the corresponding Toeplitz
operators can be justified.

The sufficient conditions of Theorem 4.1 provide at once the simultaneous
boundedness of an operator T (λ)

a for all λ ∈ [λ0,∞). We pass now to a more
delicate question concerning the boundedness of a Toeplitz operator T (λ)

a on the
space A2

λ(Π) with respect to its dependence on λ. The following result plays a
central role here.
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Theorem 4.6. Let a(y) belong to L1(R+, 0) and let the operator T (λ0)
a be

bounded on A2
λ0

(Π) for a certain λ0 > 0. Then T (λ)
a is bounded on A2

λ(Π) for each
λ ∈ [0, λ0].

Proof. Let the operator T (λ)
a be bounded on A2

λ0
(Π), that is, sup

x>0
|γa,λ0(x)|

<∞. Write, for λ < λ0

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)tλe−xtdt

=
xλ+1

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

a(t/2)tλ0e−xtdt

∞∫

0

yλ0−λ−1e−ytdy

=
xλ+1

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1dy

∞∫

0

a(t/2)tλ0e−(x+y)tdt

=
Γ(1 + λ0)

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1(1 + y)−λ0−1γa,λ0(x(1 + y))dy.

Thus, we have

|γa,λ(x)| 6 sup
x>0

|γa,λ0(x)|
Γ(1 + λ0)

Γ(λ+ 1)Γ(λ0 − λ)

∞∫

0

yλ0−λ−1(1 + y)−λ0−1dy.

The next theorem extends the range of λ, given by Theorem 4.1, for simul-
taneous boundedness of Toeplitz operators on A2

λ(Π).

Theorem 4.7. Under the hypothesis of Theorem 4.1, the Toeplitz operator
T

(λ)
a is bounded on A2

λ(Π), for each λ ∈ [0,∞).

Proof. Follows directly from Theorems 4.1 and 4.6.

Theorem 4.6 allows us to obtain in particular the necessity of the hypothesis
of Theorem 4.1 in the case of nonnegative symbols or nonnegative means.

Theorem 4.8. (i) Assume that a(y) ∈ L1(R+, 0) and a(y) > 0 almost ev-
erywhere. Let the operator T (λ′)

a be bounded on A2
λ′(Π) for some λ′ > 0. Then

the conditions (4.2) and (4.3) hold, for j = 1 and λ0 = 0, and, consequently, the
operator T (λ)

a is bounded on A2
λ(Π), for each λ ∈ [0,∞).

(ii) Assume that B(j)
a,µ(y) > 0 almost everywhere for some j = j0 > 1 and

µ > 0, and that the operator T (λ′)
a is bounded on A2

λ′(Π) for some λ′ > 0. Then
the conditions (4.2) and (4.3) hold for j = j0 + 1 and λ0 = µ and consequently,
the operator T (λ)

a is bounded on A2
λ(Π) for each λ ∈ [0,∞).
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Proof. (i) If T (λ′)
a is bounded on A2

λ′(Π), then according to Theorem 4.6 the
operator T (0)

a is bounded on A2
0(Π). We have

γa,0(x) = x

∞∫

0

a(t/2)e−xtdt > x

x−1∫

0

a(t/2)e−xtdt > x

e
B

(1)
a,0(x

−1).

Thus, denoting ξ = x−1, we have

B
(1)
a,0(ξ) 6

(
e sup

x∈R+

|γa,0(x)|
)
ξ.

(ii) Assume first that j0 = 1 and µ > λ′. We have

γa,λ′(x) =
xλ′+1

Γ(λ′ + 1)

∞∫

0

a(t/2)tλ
′
e−xt dt.

Integrating by parts we get

γa,λ′(x) =
xλ′+1

Γ(λ′ + 1)

∞∫

0

B(1)
a,µ(t)[(µ− λ′) + xt]tλ

′−µ−1e−xtdt

> xλ′+1

Γ(λ′ + 1)

( x−1∫

0

B(1)
a,µ(t)dt

)
(µ− λ′)x−(λ′−µ−1)e−1

=
xµ+2(µ− λ′)
e Γ(λ′ + 1)

B(2)
a,µ(x−1).

Again, denoting ξ = x−1 we have

B(2)
a,µ(ξ) 6 e Γ(λ′ + 1)

µ− λ′
sup

x∈R+

|γa,λ′(x)| ξµ+2.

The above integration by parts is correct because, for arbitrary a(t) ∈ L1(R+, 0),
we have |B(1)

a,µ(ξ)| = o(ξµ), ξ → 0.
Let now j0 = 1 and µ 6 λ′. Then, according to Theorem 4.6, the operator

T
(µ)
a is bounded onA2

µ(Π). Repeating the above reasonings for the function γa,µ(x)
we complete the proof for the case j0 = 1.

The cases j0 > 1 are proved analogously.

Remark 4.9. Simultaneous boundedness of the operators T (λ)
a for all λ in

the case of arbitrary (depending on both variables) nonnegative symbol was shown
in [17]. We extend this result for a class of not necessarily nonnegative symbols
depending only on y.

For a nonnegative function a(t) we set

ma,0(x) = inf
(0,x)

a(t/2) and ma,∞(x) = inf
(x/2,x)

a(t/2).
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Corollary 4.10. Given a nonnegative symbol a(y), if either

(4.12) lim
x→0

ma,0(x) = ∞
or

(4.13) lim
x→∞

ma,∞(x) = ∞,

then the Toeplitz operator T (λ)
a is unbounded on each A2

λ(Π), λ ∈ [0,+∞).

Proof. If the condition (4.12) holds, then

B
(1)
a,0(ξ) =

ξ∫

0

a(t/2)dt > ξma,0(ξ)

and ξ−1B(1)(ξ) →∞ as ξ → 0. Now let the condition (4.13) holds. Then

ξ−1B
(1)
a,0(ξ) > ξ−1

ξ∫

ξ/2

a(t/2)dt > 1
2
ma,∞(ξ) →∞ as ξ →∞.

Note that Corollary 4.10 shows that infinitely growing positive symbols can-
not generate bounded Toeplitz operators. To generate a bounded Toeplitz opera-
tor, its unbounded symbol must necessarily have (see Example 4.4) a sufficiently
sophisticated oscillating behavior in a neighborhood of the “critical” points 0 and
∞.

Given a symbol a(y) ∈ L1(R+, 0), denote by B(a) the set of values λ ∈ [0,∞)
for which the corresponding Toeplitz operator T (λ)

a is bounded. Theorem 4.6
suggests that the set B(a), being nonempty, may have only one of the following
three types:

[0,∞), [0, ν), [0, ν].

We show that all of these possibilities can be realized. Indeed, the first case is
satisfied for bounded symbols. The following theorem treats the two remaining
cases.

Theorem 4.11. There exists a family of symbols aν,β(y), with ν ∈ (0, 1),
β > 0, such that for the corresponding Toeplitz operators T (λ)

aν,β we have:
(i) B(aν,0) = [0, ν], β = 0;
(ii) B(aν,β) = [0, ν), β > 0.

Proof. To prove the above statement we show that the asymptotic behavior
of the corresponding function γaν,β ,λ(x), when x→∞, is as follows,

(4.14)
γaν,β ,λ(x) = cλe(i/5π) ln2(1+x) lnλ−ν(1 + x) lnβ ln(1 + x)

+ o(lnλ−ν(1 + x) lnβ ln(1 + x)),

where cλ 6= 0, and

(4.15) lim
x→0

γaν,β ,λ(x) = 0.
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To introduce the function aν,β(y) we consider

fν,β(z) = e((5π)/4)i exp
{ i

5π
ln2(z + i)

}[
ln(z + i)− i

5π
2

]−ν

lnβ
(
ln(z + i)− i

5π
2

)
,

where the branch of the function fν,β(z) is fixed by imposing the condition arg z ∈
[3π/2, 7π/2]. We set now

aν,β(t/2) =
1√
2π

∫

R

fν,β(x)e−ixtdx.

The function fν,β(z) belongs to the Hardy space H2(Π), hence aν,β(t) ∈ L2(R+)
and the formula

fν,β(z) =
∫

R+

aν,β(t/2)eiztdt

holds. Thus, γaν,β ,0(x) = xfν,β(ix).
Recall that tαe−xt = Dαe−xt, where the Liouville fractional derivative Dα is

given, as usually, as follows

Dαϕ(x) =
1

d1,1(α)

∫

R+

ϕ(x+ t)− ϕ(x)
t1+α

dt, d1,1(α) =
∫

R+

e−ξ − 1
ξ1+α

dξ, 0 < α < 1.

Therefore, denoting c(λ) = 1/(d1,1(λ)Γ(λ+ 1)), we have

γaν,β ,λ(x) = c(λ)xλ+1

∫

R+

fν,β(i(x+ t))− fν,β(ix)
t1+λ

dt

= c(λ)
xλ+1

(x+ 1)λ

∫

R+

fν,β(i(x+ xt+ t))− fν,β(ix)
t1+λ

dt

= c(λ, x)(x+ 1)
∫

R+

dt
t1+λ

dt

t∫

0

d

dξ
fν,β(i(x+ xξ + ξ))dξ

= c(λ, x)(x+ 1)
∫

R+

d
dξ
fν,β(i(x+ xξ + ξ))dξ

∞∫

ξ

dt
t1+λ

dt

= λ−1c(λ, x)(x+ 1)
∫

R+

1
ξλ

d

dξ
fν,β(i(x+ xξ + ξ))dξ,

where c(λ, x) = c(λ)xλ+1/(1 + x)λ+1. Note that

fν,β(iy) =
exp{ i

5π ln2(1 + y)}
1 + y

ln−ν(1 + y) lnβ ln(1 + y),

whence we have

(4.16)
γaν,β ,λ(x) = −λ−1c(λ, x)

∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

( 2i
5π
ων,β(x, ξ)

− ων+1,β(x, ξ)− νων+2,β(x, ξ)− βων+2,β−1(x, ξ)
)
dξ,
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where
ων,β(x, ξ) = ln1−ν(1 + x)(1 + ξ) lnβ ln(1 + x)(1 + ξ).

We split the above integral into four integrals according to the sum of four terms
in the brackets. These integrals are of the same type, and differ (up to a constant)
only by the parameters ν, β.Obviously, the principal term of the behavior of γa,λ(x)
when x → ∞ is determined by the integral corresponding to the first summand,
i.e.,

I(x, λ, ν, β) =
∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

ων,β(x, ξ) dξ

=
∫

R+

exp{ i
5π ln2(1 + x)(1 + ξ)}
ξλ(1 + ξ)2

ων,β(x, ξ) (χ0(ξ) + χ∞(ξ))dξ

= I0(x, λ, ν, β) + I∞(x, λ, ν, β).

Here χ0(ξ) is a smooth function on R+, satisfying the conditions χ0(ξ) = 1 for
0 6 ξ 6 1 and χ0(ξ) = 0 for ξ > 2; and χ∞(ξ) = 1− χ0(ξ).

Integrating by parts the second integral we have

I∞(x, λ, ν, β) = −5πi
2

∞∫

1

ων+1,β(x, ξ)
ξλ(1 + ξ)

χ∞(ξ) d exp
{ i

5π
ln2(1 + x)(1 + ξ)

}

=
5πi
2

∞∫

1

exp
{ i

5π
ln2(1 + x)(1 + ξ)

} ∂

∂ξ

(
ων+1,β(x, ξ)
ξλ(1 + ξ)

χ∞(ξ)
)

dξ.

For ξ > 1 and large enough x, the following inequality holds
∣∣∣∣
∂

∂ξ

(
ων+1,β(x, ξ)
ξλ(1 + ξ)

χ∞(ξ)
)∣∣∣∣ 6 const

ων+1,β(x, 0)
ξλ(1 + ξ)2

.

Thus we have

|I∞(x, λ, ν, β)| = O(ων+1,β(x, 0)) = O(ln−ν(1 + x) lnβ ln(1 + x)).

For I0(x, λ, ν, β) according to Lemma of Erdélyi ([6]), we have

I0(x, λ, ν, β) = (1 + O(ln−1(1 + x)))Ĩ0(x, λ, ν, β),

where

Ĩ0(x, λ, ν, β) = ων,β(x, 0)ei/(5π) ln2(1+x)

∫

R+

ei(2 ln(1+x))/(5π) ξ

ξλ(1 + ξ)2
χ0(ξ)ei/(5π) ln2(1+ξ)dξ

= ων,β(x, 0)ei/(5π) ln2(1+x)

2∫

0

ei(2 ln(1+x))/(5π) ξ

ξλ
F (ξ)dξ.
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Applying Lemma of Erdélyi ([6]) once again, we have

2∫

0

ei(2 ln(1+x))/(5π) ξ

ξλ
F (ξ)dξ =

5π
2i

Γ(1− λ)eiπ(1−λ)/2ei/(5π) ln2(1+x) lnλ−1(1 + x)

+ o(lnλ−1(1 + x)), x→∞.

This and the above considerations prove (4.14). Finally, it is easy to see that
(4.16) implies (4.15).

5. SPECTRA OF TOEPLITZ OPERATORS WITH SYMBOLS DEPENDING ON y = Im z.

5.1. Continuous symbols. Let E be a subset of R having +∞ as a limit point
(normally E = (0,+∞)), and suppose that, for each λ ∈ E, we are given a set
Mλ ⊂ C. Define the set M∞ as the set of all z ∈ C for which there exists a
sequence of complex numbers {zn}n∈N such that:

(i) for each n ∈ N there exists λn ∈ E such that zn ∈Mλn ;
(ii) lim

n→∞
λn = +∞;

(iii) z = lim
n→∞

zn.

We will write
M∞ = lim

λ→+∞
Mλ,

and call M∞ the (partial) limit set of a family {Mλ}λ∈E when λ→ +∞.
For the case when E is a discrete set with a unique limit point at infinity, the

above notion coincides with the partial limiting set introduced in [10], Section 3.1.1.
Following the arguments of Proposition 3.5 in [10], one can show that

M∞ =
⋂

λ

clos
( ⋃

µ>λ

Mµ

)
.

Note that
lim

λ→+∞
Mλ = lim

λ→+∞
Mλ = M∞.

The a priori spectral information for L∞-symbols (see, for example, [3], [4])
says that for each a ∈ L∞(Π) and each λ > 0

(5.1) spT (λ)
a ⊂ conv(ess-Range a).

Given a symbol a = a(y), the Toeplitz operator T (λ)
a acting on the space

A2
λ(Π) is unitary equivalent to the multiplication operator γa,λI, where the func-

tion γa,λ(x), x ∈ R+, is given by (2.6). Thus, we obviously have

spT (λ)
a = Mλ(a),

where Mλ(a) = Range γa,λ.



206 S. Grudsky, A. Karapetyants, and N. Vasilevski

Theorem 5.1. Let a = a(y) ∈ C(R+) = C[0,+∞]. Then

(5.2) lim
λ→+∞

spT (λ)
a = M∞(a) = Range a.

Note that Range a coincides with the spectrum sp aI of the operator of mul-
tiplication by a = a(y) acting, say, on all of L2(Π,dµλ), and hence another form
of (5.2) is

lim
λ→+∞

spT (λ)
a = sp aI.

Proof. We use the Laplace method ([6]) to evaluate the integrals. Introduce
the large parameter L =

√
x2 + λ2 (recall λ → +∞) and represent γa,λ(x) in the

form

(5.3) γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

a(t/2)e−LS(t,ϕ)dt,

where

S(t, ϕ) =
x

L
t− λ

L
ln t = (sinϕ) t+ (cosϕ) ln

1
t
, with ϕ ∈

[
0,
π

2

]
.

The function S(t, ϕ), as a function of t, has a minimum at the point

tϕ =
cosϕ
sinϕ

∈ (0,∞).

Write (5.3) in the form

(5.4)

γa,λ(x)− a(tϕ/2) =
xλ+1

Γ(λ+ 1)

[ ∫

R+∩U(tϕ)

(a(t/2)− a(tϕ/2))e−LS(t,ϕ)dt

+
∫

R+\U(tϕ)

(a(t/2)− a(tϕ/2))e−LS(t,ϕ)dt
]

≡ I1(L) + I2(L),

where U(tϕ) is a neighborhood of the point tϕ such that sup
t∈U(tϕ)

|a(t/2)−a(tϕ/2)| <
ε, with ε > 0 sufficiently small. We have

I1(L) 6 ε

uniformly in ϕ. Next, I2(L) 6 ε uniformly on ϕ as well. Indeed, rewrite the
integral I2(L) in the following form

I2(L) =
xλ+1

Γ(λ+ 1)

tϕ−σ∫

0

(a(t/2)− a(tϕ/2))e−LS(t,ϕ)dt

+
xλ+1

Γ(λ+ 1)

∞∫

tϕ+σ

(a(t/2)− a(tϕ/2))e−LS(t,ϕ)dt

≡ I2,1(L) + I2,2(L)
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where σ > 0 is small enough.
Use the asymptotic Euler formula for the Γ-function (see, formula 8.327 of

[7])

Γ(λ+ 1) = λΓ(λ) =
λe−λλλ−1/2

√
2π

(1 + O(λ−1/2)), λ→∞,

where we set λ = xtϕ. Then the integral I2,2(L) admits the following estimate

|I2,2(L)| 6 constx1/2

∞∫

tϕ+σ

|a(t/2)− a(tϕ/2)|e−xS̃(t,ϕ)dt

where
S̃(t, ϕ) = (t− tϕ)− tϕ(ln t− ln tϕ).

It is evident that there exists ∆ (> 0) which does not depend on ϕ and such that,
for t > tϕ + δ, the following inequality holds

S̃(t, ϕ) > ∆(t− tϕ).

Thus, we have

|I2,2(L)| 6 constx1/2

∫

tϕ+σ

|a(t/2)− a(tϕ/2)|e−x∆(t−tϕ)dt

6 constx1/2e−(x−1)∆σ

∫

tϕ+σ

|a(t/2)− a(tϕ/2)|e−∆(t−tϕ)dt.

According to the definition of the class L1(R+, 0) the last integral is finite and we
have, uniformly on ϕ,

lim
L→∞

I2,2(L) = 0.

Analogously one can get that, uniformly with respect to ϕ,

lim
L→∞

I2,1(L) = 0

and, consequently, lim
L→∞

I2(L) = 0.

Since ε can be arbitrarily small, from the above we get

(5.5) γa,λ(x) = a(tϕ/2) (1 + α(L)),

where α(L) → 0, when L→∞, uniformly with respect to ϕ.

5.2. Piecewise continuous symbols. Let b(t) = a(t/2) be a piecewise contin-
uous function on [0,+∞] having jumps on a finite set of points {tj}m

j=1 :

0 = t0 < t1 < t2 < · · · < tm < tm+1 = +∞,

and a((tj/2)± 0), j = 1, . . . ,m, exist. Introduce the sets

Jj(a) := {z ∈ C : z = a(t/2), t ∈ (tj , tj+1)}
where j = 0, . . . ,m, and let Ij(a) be the straight line segment with the endpoints
a((tj/2)− 0) and a((tj/2) + 0), j = 1, 2, . . . ,m.



208 S. Grudsky, A. Karapetyants, and N. Vasilevski

Introduce now

R̃(a) =
( m⋃

j=0

Jj(a)
)
∪

( m⋃

j=1

Ij(a)
)
.

Theorem 5.2. Let a(t/2) be a piecewise continuous function on [0,+∞].
Then

lim
λ→∞

spλ T
(λ)
a = M∞(a) = R̃(a).

Proof. The proof is quite analogous to the one of Theorem 5.2 in [9]; see also
[8].

For L∞-symbols, apart from the a priori information (5.1), we have obviously

(5.6) lim
λ→∞

spλ T
(λ)
a = M∞(a) ⊂ conv(essRange a).

In the same time, the collocation of M∞(a) inside conv(essRange a) may essen-
tially vary. We give a number of examples illustrating possible interrelations be-
tween these sets.

Example 5.3. Let a(t) ∈ C[0,+∞]. Then, according to Theorem 5.1,

M∞(a) = Range a (= ess Range a).

Example 5.4. Let

a(t/2) =
{
α1 t ∈ (0, 1);
α2 t ∈ [1,∞].

where α1, α2 ∈ C and α1 6= α2. Then, according to Theorem 5.2, M∞(a) coincides
with the straight line segment [α1, α2] joining the points α1 and α2, whence

M∞(a) = conv(essRange a) (= conv(Range a)).

Example 5.5. Let

a(t/2) =

{
α1 t ∈ [0, 1),
α2 t ∈ [1, 2),
α3 t ∈ [2,∞];

where α1, α2, α3 are different points from C. Then, by Theorem 5.2, we have

M∞(a) = [α1, α2] ∪ [α2, α3]

and in this case the set M∞(a) is a part of the boundary of the convex hull
essRange a = Range a, that is

M∞(a) ⊂ ∂ conv(Range a).

Example 5.6. Let α1, α2, α3 be as above, and

a(t/2) =





α1 t ∈ [0, 1),
α2 t ∈ [1, 2),
α3 t ∈ [2, 3),
α1 t ∈ [3,∞].

By Theorem 5.2 the set M∞(a) coincides with triangle with the vertices α1, α2, α3,

M∞(a) = [α1, α2] ∪ [α2, α3] ∪ [α3, α1].
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Thus, in this case,
M∞(a) = ∂ conv(Range a).

Example 5.7. Let {tj}j∈Z+ be an increasing sequence of positive numbers
with lim

j→∞
tj = ∞ and t0 = 0. Define the symbol a(t) as follows,

a(t/2) =
{

eiξj t ∈ [t2j , t2j+1),
−eiξj t ∈ [t2j+1, t2j+2),

where {ξj}j∈Z+ ⊂ [0, π] with the closure {ξj}j∈Z+ = [0, π].
As in Theorem 5.2, one can show that each diameter [eiξj ,−eiξi ] of the unit

disk D having eiξj and −eiξj as endpoints, belongs to M∞(a), which implies D ⊂
M∞(a). We have that Range a = ∂D = T. Finally,

M∞(a) = D = conv(Range a).

5.3. Oscillating symbols. We consider here the case of a discontinuity of the
second kind, the oscillating symbols. To be more precise, the following two model
situations will be considered: a strong oscillation and a slow oscillation. In spite of
their qualitative identity — an oscillation type discontinuity — the results differ
drastically.

Theorem 5.8. (Strong oscillation) Let a(t) = e2it, then Range a = T and
M∞(a) = D.

Proof. For a(t/2) = eit we have

(5.7)

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλe−(x−i)tdt

=
xλ+1

(x− i)λ+1
· 1
Γ(λ+ 1)

∞∫

0

sλe−sds

=
(

x

x− i

)λ+1

= exp
[
λ+ 1

2
ln

(
1− 1

x2 + 1

)]
· exp

[
(λ+ 1)i arctan(x−1)

]
.

Given a nonzero point z0 ∈ D, we represent it in the following form

z0 = exp(−α0 + iβ0),

where α0 > 0 and β0 ∈ [0, 2π).
Introduce the sequences

xk =
β0 + 2πk

2α0
and λk =

(β0 + 2πk)2

2α0
− 1 = 2α0x

2
k − 1, k ∈ N.
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Then, for large values of k, we have

γa,λk
(xk) = exp

[
λk + 1

2
ln

(
1− 1

x2
k + 1

)]
· exp

[
(λk + 1)i arctan(x−1

k )
]

= exp
[
−λk + 1

2x2
k

+ (λk + 1)O(x−4
k )

]

× exp
[
i
λk + 1
xk

+ (λk + 1)O(x−3
k )

]

= exp
[−α0 + O(k−2) + i(β0 + 2πk) + O(k−1)

]
.

It is easy to see now that
lim

k→∞
γa,λk

(xk) = z0,

that is, z0 ∈M∞(a), and D ⊂M∞(a). The inverse inclusion follows from (5.6).

We note that the formula (5.7) permits us to understand the form of the
image of γa,λ for each fixed (and sufficiently large) value of λ. First of all, it is
easy to see that

lim
x→∞

γa,λ(x) = 1 and lim
x→0

γa,λ(x) = 0.

If 0 < m < x < M < +∞, then the absolute value of γa,λ(x) changes much more
slowly than its argument. That is, for each fixed λ, the image of γa,λ looks like
a spiral outgoing from the point z = 1 and tending to z = 0, as x tends to 0.
Moreover, when λ is growing, the branches of a spiral became closer and closer to
each other.

Theorem 5.9. (Slow oscillation) Let a(t) = (2t)i, then Range a = T and
M∞(a) = T.

Proof. For a(t/2) = ti we have

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλ+ie−xtdt

=
1

Γ(λ+ 1)

∞∫

0

sλ+ie−sds = xi Γ(λ+ 1 + i)
Γ(λ+ 1)

.

That is, for a fixed λ, the image of γa,λ coincides with the circle centered at origin
and having radius equals to |(Γ(λ+ 1 + i))/(Γ(λ+ 1))|.

By formula 8.328.2 of [7], we have

lim
λ→∞

∣∣∣∣
Γ(λ+ 1 + i)

Γ(λ+ 1)

∣∣∣∣ = 1.

We note that Theorems 5.8 and 5.9 can be generalized for a wide class of
strong and slowly oscillating symbols. For example, if a1(t) = (2t + 1)i, then
M∞(a1) = T, as in Theorem 5.9. The function a1(t) is continuous at the point
t = 0, thus γa1,λ(∞) = a1(0) = 1, for all λ. For a fixed λ, the image of γa1,λ is a
spiral outgoing from the point z = 1 and tending to the limit circle with the radius



Dynamics of properties of Toeplitz operators 211

equals to |(Γ(λ+ 1 + i))/(Γ(λ+ 1))| and centered at origin (the same circle as in

Theorem 5.9).

We illustrate the above on the figures presenting the images of functions γa,λ

for two oscillating symbols

a1(t) = (1 + 2t)i = ei ln(1+2t) and a2(t) = ei2t, t ∈ [0,∞),

and for the following values of λ: 0, 10, and 1000.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

The functions γa1,λ(x) and γa2,λ(x) for λ = 0.
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The functions γa1,λ(x) and γa2,λ(x) for λ = 10.
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The functions γa1,λ(x) and γa2,λ(x) for λ = 1000.

We note that both symbols are continuous at the point t = 0 and have an
oscillation type discontinuity at infinity, both of them are of the same form

ak(t) = eiϕk(t), k = 1, 2,

where the corresponding functions ϕk(t) are continuous and growing on [0,+∞]
with ϕk(0) = 0 and ϕk(+∞) = +∞. The only difference between them is the
speed of their growth at infinity. And this difference leads to a drastic difference
between the spectral behavior of the corresponding Toeplitz operators.

5.4. Unbounded symbols.

Theorem 5.10. Let a(t) ∈ L1(R+, 0) ∩ C(R+). Then

Range a ⊂M∞(a).

Proof. The proof is analogous to that of Theorem 5.1.

We show now that the property (5.6), previously established for bounded
symbols, still remains valid for our unbounded symbols.

Theorem 5.11. Let a(t) ∈ L1(R+, 0). Then

M∞(a) ⊂ conv(essRange a).

Proof. For each M > 0 consider the function

aM (t) =
{
a(t) if |a(t)| 6 M,
0 if |a(t)| > M.

The function aM (t) is bounded, whence

Range γaM ,λ ⊂ conv(essRange aM ) ⊂ conv(essRange a).

The equality
lim

M→∞
γaM ,λ(x) = γa,λ(x),

verified by the Lebesgue dominated convergence theorem, implies

Range γa,λ(x) ⊂ conv(Range a).
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Corollary 5.12. For any function a(t) ∈ L1(R+, 0) ∩ C(R+),

Range a ⊂M∞(a) ⊂ conv(Range a).

Example 5.13. For each j ∈ N define Ij = [j − 1, j − 1 + 1/j3] and let
{ξj}j∈N be a sequence such that {ξj}j∈N = [0, 2π]. Define the symbol as follows

a(t/2) =
{
jeiξj t ∈ Ij , j ∈ N,

0 otherwise.

Obviously, B(1)
a (ξ) 6

∑
j∈N

1/j2, and the corresponding Toeplitz operator T (λ)
a is

bounded for every λ > 0. Theorem 5.2 implies that the straight line segment
[0, jeiξj ] is contained in M∞(a). Thus

M∞(a) = C = conv(Range a).

Example 5.14. For a given α ∈ (0, 1) introduce a(t/2) = ti−α and calculate

γa,λ(x) =
xλ+1

Γ(λ+ 1)

∞∫

0

tλ+i−αe−xtdt =
xα−iΓ(λ+ 1 + α− i)

Γ(λ+ 1)
.

By the asymptotic of the Γ-function (see formula 8.327 in [7])

γa,λ(x) = xα−i(λ+ 1)i−α(1 + o(1)), λ→∞.

Given arbitrary η > 0, one can take x and λ such that (λ+ 1)/x = η. Thus,

γa,λ(x) = ηi−α(1 + o(1)), λ→∞,

and in this case,
Range a = M∞(a).
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