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1. INTRODUCTION

Consider a nilpotent N × N matrix T, which we view as a linear operator
on CN , and an invariant subspace M for T. Denote the sizes of the Jordan cells of
T (respectively, T|M and T∗|M⊥) by ν1 > ν2 > · · · (respectively, λ1 > λ2 > · · ·
and µ1 > µ2 > · · · ). The integers λi, µi, and νi which can arise this way were
characterized in terms of the Littlewood-Richardson rule by Green and Klein [9],
[12]. A similar question arises in the study of invariant subspaces for operators of
class C0. (These are operators modeled by direct sums of restrictions of the back-
ward unilateral shift.) In this case, two substitutes for the Littlewood-Richardson
rule have been proposed. The main result of [2] provides a necessary condition
for the Jordan models of T, T|M, and T∗|M⊥. A necessary and sufficient condi-
tion is given in [15]. We will show that these two substitutes of the Littlewood-
Richardson rule are in fact equivalent. In particular, we deduce that the converse
of the main result of [2] is true.
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Returning to the case of nilpotent operators, recent work of Klyachko and
others on the question of eigenvalue inequalities yields the following curious fact.
The integers λi, µi, and νi arise as Jordan cell sizes of operators of the form T, T|M,
and T∗|M⊥ if and only if there exist selfadjoint matrices A, B, and C such that
A + B = C, and the nonzero eigenvalues of A (respectively, B, C) are the num-
bers λi (respectively, µi, νi). This fact does extend to nonnegative real numbers
λi, µi, νi, provided that T is replaced by an appropriate operator of class C0. For
the purposes of this paper, it will suffice to work with a subclass of C0 opera-
tors, whose study is equivalent to the consideration of nilpotent one-parameter
operator semigroups.

Klyachko’s work gives a different solution to the eigenvalue problem, based
on inequalities. These inequalities are easily extended to the nonnegative eigen-
values of compact operators A, B, and C satisfying A + B = C. This is Theorem 6
in [7], and one of our results here is the converse of that theorem. Along the way
we present a somewhat different proof of a recent result (cf. [8]) on eigenvalues
of matrices satisfying the inequality A + B > C. This proof makes use of the
inductive structure of the Horn inequalities, with no additional reference to the
intersections of Schubert varieties. We also point out a larger class of inequalities
which the eigenvalues of A, B, and C must satisfy.

The paper is organized as follows. In Section 2 we describe briefly the clas-
sical Littlewood-Richardson rule which occurs in the solution of the nilpotent
question (and in related questions about primary decompositions of finitely gen-
erated modules). Sections 3 and 4 describe the two extensions of the Littlewood-
Richardson rule. In particular, it is shown that the two extensions are equivalent.
In Section 5 we show that the new rule answers the eigenvalue problem for sums
of nonnegative compact operators on a Hilbert space. Section 6 discusses the
Horn inequalities and their consequences, including an alternate proof of Theo-
rem 1 in [8], as well as the converse of Theorem 6 in [7]. We wrap up in Section 7
with a discussion of invariant subspaces for nilpotent one-parameter semigroups
of operators on Hilbert space.

2. THE CLASSICAL LITTLEWOOD-RICHARDSON RULE

We recall here a few basic facts about Young tableaux which can be found
either in [5] or [16]. An integral partition is simply a sequence λ = (λ1, λ2, . . .)
of integers such that λ1 > λ2 > · · · and λi = 0 for sufficiently large i. The last
number n such that λn 6= 0 is called the length of λ, while |λ| = λ1 + λ2 + · · · is
called the weight of λ. Associated with a partition λ there is a Young diagram; this
is a left-justified collection of n rows of square boxes with λj boxes in the jth row.
Formally, the Young diagram of λ can be viewed as a set in the plane defined as

Dλ = {(x, y) : 0 < x 6 λj and j− 1 < y 6 j for some j = 1, 2, . . . , n}.
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Here we may think of the y-axis pointing down, so that the longest row of boxes is
at the top of the diagram. The conjugate λ̃ is another partition defined by the fact
that its Young diagram is symmetrical with that of λ relative to the main diagonal
x = y. If ν is another partition such that νj > λj for j = 1, 2, . . . , n then we have
Dλ ⊂ Dν, and the difference Dν \ Dλ is called a skew diagram. To label a skew di-
agram Dν \ Dλ simply means to associate a positive integer with each box of the
diagram. Thus a labeling consists of a family of integers n = {ni,j}, where i > 1
and λi < j 6 νi. The content c(n) of such a labeling is the sequence (c1, c2, . . .),
where ck is the number of labels ni,j which are equal to k. The labeling n is said
to be a column-strict tableau if ni,j+1 > ni,j and ni+1,j > ni,j whenever the labels
appearing in the inequalities are defined. A row-strict tableau is the symmetric im-
age (relative to the main diagonal) of a column-strict tableau. Given a tableau n,
we may also consider the restricted tableaux nk = {ni,j : i > k} for k = 1, 2, . . .. A
column-strict tableau n will be called a Littlewood-Richardson tableau if the content
c(nk) is a partition for all k > 1. A triple (λ, µ, ν) of partitions is said to satisfy
the Littlewood-Richardson rule if there exists a Littlewood-Richardson tableau n on
Dν \ Dλ such that c(n) = µ. In general, the number of such tableaux is denoted
cν

λµ; thus (λ, µ, ν) satisfies the Littlewood-Richardson rule if and only if cν
λµ 6= 0.

A remarkable property of these numbers is as follows:

THEOREM 2.1. For all partitions λ, µ and ν we have

cν
λµ = cν

µλ = cν̃
λ̃µ̃

.

See, for instance, Chapter 5 of [5] for a proof.
Another result we will use is the following saturation theorem which was

conjectured by Klyachko [13] and proved by Knutson and Tao [14] (cf. also [18]
for a discussion of this conjecture). We will use the notation Nλ in the obvious
sense of componentwise multiplication.

THEOREM 2.2. For all partitions λ, µ and ν, and all positive integers N, we have
cν

λµ 6= 0 if and only if cNν
Nλ Nµ 6= 0.

3. REAL YOUNG TABLEAUX

In this paper we will need to work with a generalization of the integer par-
titions. We will call a partition any sequence λ = (λj)∞

j=1 of real numbers such

that λ1 > λ2 > · · · > 0 and lim
j→∞

λj = 0. The (possibly infinite) sum |λ| =
∞
∑

j=1
λj

is called the weight of λ. The (possibly infinite) number of nonzero numbers λj is
called the length of λ, and is denoted `(λ). As in the integral case, we define the
Young diagram associated with a partition λ by

Dλ = {(x, y) : 0 < x 6 λj and j− 1 < y 6 j for some j = 1, 2, . . .}.
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Thus a Young diagram is no longer a collection of square boxes, but rather a
stack of rectangular boxes with unit height, with the biggest box at the top (if
we point the y-axis down). Given a second partition ν such that νj > µj for all
j one can again form the skew diagram Dν \ Dλ. (We will write ν > µ to indicate
componentwise inequality.)

DEFINITION 3.1. Given partitions ν > λ, a (column-strict) Young tableau on
Dν \ Dλ is a function τ : Dν \ Dλ → N∗ = {1, 2, . . .} satisfying the following
properties:

(i) τ(x, y) = τ(x, dye), where dye denotes the least integer greater than or
equal to y;

(ii) τ(x, y) < τ(x, y + 1) if (x, y), (x, y + 1) ∈ Dν \ Dλ;
(iii) τ(x′, y) > τ(x, y) if (x, y), (x′, y) ∈ Dν \ Dλ and x′ > x.

Given a tableau τ, the content of τ is the sequence c(τ) = (c1, c2, . . .), where
cn is the area of the set {(x, y) ∈ Dν \ Dλ : τ(x, y) = n}.

Let us note that the numbers cn in the preceding definition are always finite;
in fact cn 6 ν1 because τ is assumed to be column-strict. Observe also that, given
a number t > 0, the restriction

τt = τ|{(x, y) ∈ Dν \ Dλ : x > t}
is also a Young tableau, and hence has a content c(τt).

DEFINITION 3.2. A Young tableau τ will be called a Littlewood-Richardson
tableau if c(τt) is a partition for every t > 0. Three partitions λ, µ, and ν will
be said to satisfy the Littlewood-Richardson rule if Dλ ⊂ Dν, and there exists a
Littlewood-Richardson tableau τ defined on Dν \ Dλ such that c(τ) = µ.

It is obvious that a triple (λ, µ, ν) of integral partitions such that cν
λµ 6= 0

satisfies the newly defined Littlewood-Richardson rule. (The converse statement
is also true; cf. the remark following Lemma 3.6 below.)

For some intuitive support, we provide below a Littlewood-Richardson ta-
bleau confirming that λ = (4, 2.5, 1), µ = (3.5, 1.5, .5)), and ν = (5.5, 4.5, 3) satisfy
the Littlewood-Richardson rule. The reader will easily verify that there is a one-
parameter family of tableaux associated with this triple (λ, µ, ν).
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The analogue of the saturation theorem is trivial for this Littlewood-Richard-
son rule.

LEMMA 3.3. If λ, µ and ν are partitions, and s is a positive real number, then
(λ, µ, ν) satisfies the Littlewood-Richardson rule if and only if (sλ, sµ, sν) does.

Proof. Indeed, if τ is a Littlewood-Richardson tableau for (λ, µ, ν), then
τ(x, y) = τ(x/s, y) is a Littlewood-Richardson tableau for (sλ, sµ, sν).

The reader will verify the following result with no difficulty.

LEMMA 3.4. Assume that (λ, µ, ν) satisfies the Littlewood-Richardson rule.
(i) We have µj 6 νj for all j.

(ii) |λ| =
∞
∑

n=1
(νj − µj); in particular |ν| = |λ|+ |µ|.

Note that the two conditions in (ii) are not equivalent if
∞
∑

j=1
νj is infinite.

Consider a Littlewood-Richardson tableau τ on Dν \ Dλ. It is easy to see
that τ(x, y) 6 j when j− 1 < y 6 j, and thus there exist points

λj = aj0 6 aj1 6 · · · 6 ajj = νj

such that τ(x, y) = k for j− 1 < y 6 j and aj,k−1 < x 6 ajk, k = 1, 2, . . . , j. We
will call the numbers {ajk : j > 1, 0 6 k 6 j} the breakpoints of τ. The Littlewood-
Richardson property of τ can be reformulated in terms of these breakpoints.

LEMMA 3.5. Let λ 6 ν be two partitions, and let {ajk : j > 1, 0 6 k 6 j} be real
numbers such that

λj = aj0 6 aj1 6 · · · 6 ajj = νj

for j > 1. Define τ : Dν \ Dλ → N∗ by setting τ(x, y) = k for j − 1 < y 6 j and
aj,k−1 < x 6 ajk, k = 1, 2, . . . , j. Then τ is a Littlewood-Richardson tableau if and only
if the following conditions are satisfied for all j > 1 and 1 6 k 6 j:

(i) aj,k−1 > aj+1,k;

(ii)
j+1
∑

`=k+1
(a`,k+1 − a`k) 6

j
∑

`=k
(a`k − a`,k−1).

Proof. Condition (i) simply means that τ is column-strict (i.e., a Young ta-
bleau). The left (respectively, right) hand side of condition (ii) represents the area
of {(x, y) : x > aj+1,k, τ(x, y) = k + 1} (respectively, {(x, y) : x > aj+1,k, τ(x, y) =
k}). To conclude we only need to observe that (if we let m2 denote area)

m2({(x, y) : x > t, τ(x, y) = k})−m2({(x, y) : x > t, τ(x, y) = k + 1})
is a continuous, piecewise linear function of t, equal to zero for t = ν1, and which
attains each of its local minima at a point of the form t = aj+1,k for some j > k.

Convergence of a sequence of partitions to another partition will be under-
stood in the componentwise sense; this is equivalent to uniform convergence.
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LEMMA 3.6. Assume that for n > 1 we are given triples (λn, µn, νn) of partitions
satisfying the Littlewood-Richardson rule. If λn → λ, µn → µ, and νn → ν as n → ∞,
then (λ, µ, ν) also satisfies the Littlewood-Richardson rule.

Proof. Consider Littlewood-Richardson tableaux τn for (λn, µn, νn), and de-
note by an

jk the breakpoints of τn. Passing, if necessary, to a subsequence, we may
assume that the limits ajk = lim

n→∞
an

jk exist for all j > 1 and 0 6 k 6 j. Clearly

λj = aj0 6 aj1 6 · · · 6 ajj = νj

for j > 1, and therefore we can define a function τ as in Lemma 3.5. The fact
that each τn is a Littlewood-Richardson tableau implies that conditions (i) and
(ii) of Lemma 3.5 are satisfied by the numbers an

jk. We conclude that these condi-
tions are satisfied by ajk as well, and hence τ is a Littlewood-Richardson tableau.
To conclude the proof we need to show that the content of τ is µ. This content

is given by (c(τ))k =
∞
∑

j=k
(ajk − aj,k−1). Since an

jk − an
j,k−1 6 νn

j , it follows from

uniform convergence that

(c(τ))k = lim
n→∞

∞

∑
j=k

(an
jk − an

j,k−1) = lim
n→∞

µn
k = µk,

as desired.

We show next that the Littlewood-Richardson rule is determined in some
sense by finite rational partitions.

LEMMA 3.7. Assume that the triple (λ, µ, ν) satisfies the Littlewood-Richardson
rule. There exist then triples (λn, µn, νn), n = 1, 2, . . ., such that:

(i) each (λn, µn, νn) satisfies the Littlewood-Richardson rule;
(ii) there is a Littlewood-Richardson tableau for (λn, µn, νn) with only rational break-

points;
(iii) λn → λ, µn → µ, and νn → ν as n → ∞;
(iv) for each n, λn, µn, and νn have finite length.

Proof. First we observe that (λ, µ, ν) can be approximated arbitrarily well by
finite partitions. To do this, let ε be a positive number, and choose N so that νN <
ε. We can then consider the partitions λ′ and ν′ given by λ′j = max{λj − ε, 0}
and ν′j = max{νj − ε, 0}. The function τ′(x, y) = τ(x + ε, y) is then a Littlewood-
Richardson tableau with content µ′ equal to the content of τ′. It is clear that λ′j, µ′j
and ν′j are within ε from λj, µj and νj, respectively, while ν′N = 0. We can therefore
restrict ourselves to the case of finite partitions. Assume therefore that νN = 0,
and τ is a Littlewood-Richardson tableau for (λ, µ, ν) with breakpoints ajk. Fix
also a positive number ε < 1/4N. Since only finitely many of the numbers ajk
are different from zero, it follows from a theorem of Dirichlet (see Theorem 201 in
[10]) that there exist integers M and Ajk such that |Ajk − Majk| < ε. Define now
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partitions λ′ and ν′ by setting λ′j = A0j/M and ν′j = Ajj/M, and define a function
τ′ : Dν′ \ Dλ′ by setting τ′(x, y) = k if j− 1 < y 6 j and Aj,k−1/M < x 6 Ajk/M.
First observe that τ′ is a Young tableau. Indeed, we have aj+1,k 6 aj,k−1 which
implies Aj+1,k 6 Aj,k−1 because ε < 1/2. We next verify that τ′ is in fact a
Littlewood-Richardson tableau. To do this we must consider the content of τt,
and it will suffice to do this for t = T/M with T an integer (other values can be
done simply by linear interpolation). In this case we have

M(c(τ′t ))k =
N

∑
j=k

[max{Ajk, T} −max{Aj,k−1, T}],

and this sum differs from M(c(τt))k by less than Nε < 1/2. It follows that
M(c(τ′t ))k is the closest integer to M(c(τt))k, and thus c(τ′) is indeed a parti-
tion. Finally, if we denote by µ′ the content of τ′, we have |µ′j − µj| < 2Nε. The
lemma follows.

The preceding proof incidentally shows that the Littlewood-Richardson rule
for integer partitions is the same as the rule introduced in this section. Indeed, let
(λ, µ, ν) be finite integer partitions satisfying the rule of Definition 3.2. The proce-
dure of the preceding proof in this case does not change the partitions (since they
are already integer partitions), but rather it modifies the Littlewood-Richardson
tableau so that its break points are rational. Thus, there exists a Littlewood-
Richardson tableau τ for (λ, µ, ν) with rational break points. For a certain natural
number M, the tableau τ(x/M, y) will only have integral break points, and this
amounts to saying that (Mλ, Mµ, Mν) satisfies the classical Littlewood-Richard-
son rule. Therefore cν

λµ 6= 0 by the saturation Theorem 2.2. The symmetry of the
classical rule yields now the following result.

PROPOSITION 3.8. A triple (λ, µ, ν) satisfies the Littlewood-Richardson rule if
and only if (µ, λ, ν) does.

Proof. By Lemmas 3.6 and 3.7 we can restrict ourselves to the case of fi-
nite rational partitions. If λ, µ and ν are such partitions then Mλ, Mµ and Mν
are integer partitions for some natural number M. Since (λ, µ, ν) satisfies the
Littlewood-Richardson rule if and only if (Mλ, Mµ, Mν) does, we can restrict
ourselves to the finite integral case. The proposition follows from Theorem 2.1
and the remark preceding the statement.

4. LITTLEWOOD-RICHARDSON FUNCTIONS

The reflection of a Young diagram Dλ in the main diagonal is not generally a
Young diagram, and this precludes the formation of a dual partition λ̃. However
there is a form of the Littlewood-Richardson rule which extends the classical one
for dual partitions.
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DEFINITION 4.1. Assume we are given for each t > 0 a partition σ(t). We
will say that σ is a Littlewood-Richardson function if the following conditions are
satisfied:

(i) 0 6 σj(t + h)− σj(t) 6 h for all t, h > 0 and j = 1, 2, . . .; in particular the
functions σj are absolutely continuous;

(ii) d
dt σj(t) ∈ {0, 1} for all j and almost every t > 0;

(iii)
∞
∑

j=1

d
dt σj(t) is finite for almost all t > 0, and equal to zero for large values

of t;

(iv)
∞
∑

j=p

d
dt σj(t) is nonincreasing for p = 1, 2, . . ..

The above conditions imply the existence of a partition µ such that

∞

∑
j=1

d
dt

σj(t) =
∞

∑
j=1

χ(0,µj)(t)

for almost all t > 0. The partition µ will be called the content of σ and will be de-
noted c(σ). We will say that a triple (λ, µ, ν) satisfies the Littlewood-Richardson
Rule if there exists a Littlewood-Richardson function σ such that σ(0) = λ, σ(t) =
ν for large t, and c(σ) = µ.

The Littlewood-Richardson Rule will eventually be shown to be equivalent
to the Littlewood-Richardson rule, which is why we did not distinguish it be-
yond the capital R. Littlewood-Richardson functions appeared, in a somewhat
more restrictive form, in the study of invariant subspaces for operators on Hilbert
space [2].

The figure from the next page illustrates the graphs of a Littlewood-Richard-
son function confirming that λ = (4, 2.5, 1), µ = (3.5, 1.5, .5), and ν = (5.5, 4.5, 3)
satisfy the Littlewood-Richardson Rule. Again, one can verify the existence of a
one-parameter family of such functions associated with this triple.

LEMMA 4.2. If λ, µ, and ν are finite integer partitions, and cν
λµ 6= 0, then (λ, µ, ν)

satisfies the Littlewood-Richardson Rule.

Proof. The reflection in the main diagonal of a Littlewood-Richardson ta-
bleau for (λ̃, µ̃, ν̃) is a row-strict Young tableau n on Dν \ Dλ with content c(n) =
µ̃. We define a Littlewood-Richardson function σ by specifying its values at in-
teger points, and extending it by linear interpolation. We set σj(0) = λj, σj(k) =
σj(k− 1) + 1 if n(j, σj(k− 1) + 1) = k, and σj(k) = σj(k− 1) otherwise. The reader
should have no difficulty to show that σ is a Littlewood-Richardson function with
content µ.

The saturation property for the Littlewood-Richardson Rule is easily veri-
fied.
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LEMMA 4.3. If λ, µ, and ν are partitions, and s is a positive real number, then
(λ, µ, ν) satisfies the Littlewood-Richardson Rule if and only if (sλ, sµ, sν) does.

Proof. It suffices to observe that t 7→ sσ(t/s)is a Littlewood-Richardson
function whenever σ is one.

The Littlewood-Richardson function constructed in the proof of Lemma 4.2
is piecewise linear. We will see that this is true for all such functions, except
possibly in an arbitrarily small neighborhood of t = 0. It will be convenient to
write σ(∞) for σ(t) if t is so large that σ is constant on (t, ∞).

PROPOSITION 4.4. Assume that (λ, µ, ν) satisfies the Littlewood-Richardson Rule,
and let σ be a Littlewood-Richardson function with σ(0) = λ, σ(∞) = ν, and c(σ) = µ.

(i) We have σ(ν1) = σ(∞).
(ii) For all j > 1, µj 6 νj.

(iii) If ε is a positive number, then the function σ fails to be differentiable only at a finite
number of points in the interval [ε, ∞).

Proof. For each j the function σj is eventually constant, so there exists a low-
est point θj with the property that σj(θj) = σj(∞). All the points θj are 6 µ1,
but they generally do not form a partition. Fix a point ε > 0 of differentiability

for σ, and chose N minimal so that
∞
∑

j=1

d
dt σj(ε) =

N
∑

j=1

d
dt σj(ε). Since

∞
∑

j=N+1

d
dt σj(t)

is decreasing, this sum must be zero for t > ε. In particular we have θj 6 ε for
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j > N, but θN > ε. Now, for t > ε, the function

d
dt

σN(t) =
∞

∑
j=N

d
dt

σj(t)

must be concave, hence d
dt σN(t) = 1 for t ∈ (ε, θN). We deduce that σN(θN) =

σN(ε)+ θN − ε > θN − ε. In an analogous fashion, if N1 is the greatest integer such
that θN1 > θN , the function σN1 must have derivative one on (θN , θN1), whence

σN1(θN1) = σN1(θN) + θN1 − θN > σN(θN) + θN1 − θN > θN1 − ε.

Continuing in this fashion we find N1 > N2 > · · · > Nk > 0 such that θN1 <
θN2 < · · · < θNk but θn 6 θNj for Nj+1 < n < Nj if j < k, and θn 6 θNk for n < Nk.
The argument above will show inductively that σNj(θNj) > θNj − ε. In particular,

θ1 6 θNk 6 σNk (θNk ) + ε 6 σ1(∞) + ε.

Letting ε tend to zero we obtain the inequality θ1 6 σ1(∞) = ν1. This proves
assertion (i) of the proposition. The same argument applies to the Littlewood-
Richardson function (σp, σp+1, . . .) and it yields θp 6 σp(∞) 6 σ1(∞). Since µ1 is
the supremum of the θp, we deduce that µ1 6 ν1. To prove assertion (ii) for all
values of j observe again that θj 6 νj for all j, and therefore

∞

∑
j=1

χ(0,µj) =
∞

∑
j=1

d
dt

σj(t) 6
∞

∑
j=1

χ(0,θj) 6
∞

∑
j=1

χ(0,νj).

Finally, to prove assertion (iii), let ε and N be chosen as above. For p 6 N

and t > ε, the function
∞
∑

j=p

d
dt σj(t) =

N
∑

j=p

d
dt σj(t) is decreasing and takes at most

N − p + 2 values; it must therefore have at most N − p + 1 discontinuities. It

follows that d
dt σp(t) =

∞
∑

j=p

d
dt σj(t)−

∞
∑

j=p−1

d
dt σj(t) also has only a finite number of

discontinuities for t > ε. The proposition follows.

The preceding proposition shows that, given a Littlewood-Richardson func-
tion σ, there exist sequences θj1 > θj2 > · · · > 0 with the property that d

dt σj is con-
stant on the intervals (θj,k+1, θjk) and (θj1, ∞). In case σj only has finitely many
points of nondifferentiability we will set θjk = 0 for large k. In any case, we have
θjk → 0 as k → ∞. The points θjk will be called the breakpoints of the function σ.
Let us also remark that there are no more than N2 break points greater than νN ;
this can easily be seen from the argument concluding the proof of Proposition 4.4.

LEMMA 4.5. Assume that for n > 1 we are given triples (λn, µn, νn) of partitions
satisfying the Littlewood-Richardson Rule. If λn → λ, µn → µ, and νn → ν as n → ∞,
then (λ, µ, ν) also satisfies the Littlewood-Richardson Rule.

Proof. Let σn be Littlewood-Richardson functions for (λn, µn, νn), and de-
note by θn

jk the breakpoints of σn. Passing to a subsequence, we may assume that
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the limits θjk = lim
n→∞

θn
jk exists. Clearly then νj > θjk > θj,k+1 > 0, and at most N2

of these points are above νN . It follows that θjk → 0 as k → ∞. Passing possibly
to a smaller subsequence, we may also assume that for each j the sequence σn

j
has a uniform limit σj; this follows from equicontinuity. It is now easily seen that
the function σj has constant derivative equal to 0 or 1 on intervals of the form
(θj,k+1, θjk) and (θj1, ∞). In fact, d

dt σj is the limit of d
dt σn

j at all points other than
the θjk. From these observations, and from the fact that each σn is a Littlewood-
Richardson function we see that σ is a Littlewood-Richardson function as well.
We leave to the reader to verify that σ(0) = λ, σ(∞) = ν, and c(σ) = µ.

LEMMA 4.6. Assume that the triple (λ, µ, ν) satisfies the Littlewood-Richardson
Rule. There exist then triples (λn, µn, νn), n = 1, 2, . . ., such that:

(i) each (λn, µn, νn) satisfies the Littlewood-Richardson Rule;
(ii) there is a Littlewood-Richardson function for (λn, µn, νn) with only rational break-

points;
(iii) λn → λ, µn → µ, and νn → ν as n → ∞;
(iv) for each n, λn, µn, and νn have finite length.

Proof. Let σ be a Littlewood-Richardson function for (λ, µ, ν). If ε > 0 then
the function σ′(t) = σ(t + ε) is also a Littlewood-Richardson function such that
σ′(0), σ′(∞), and c(σ′) are finite partitions within ε of λ, µ, and ν, respectively.
Thus we may restrict ourselves to the case of finite partitions. Assume, for in-
stance, that σN = 0 so that σ has at most N2 nonzero breakpoints θjk. Fix now a
positive number ε < 1/2 and apply Dirichlet’s theorem to find integers M and
Θjk such that |Θjk − Mθjk| < ε for all j, k. Define a new function σ′ with break-
points Θjk/M, such that d

dt σ′(t) = d
dt σ(t) whenever t is farther away than ε/M

from one of these breakpoints. The function
∞
∑

j=p

d
dt σ′j (t) coincides with

∞
∑

j=p

d
dt σj(t)

if Mt differs by more than ε from an integer and hence it is decreasing for such
t. It is immediate then that this property is preserved for all t with Mt not an
integer. Similar considerations show that σ′ is a Littlewood-Richardson function.
To conclude the proof it suffice to observe that σ′(0), σ′(∞) and c(σ′) are within
N2ε from λ, µ, and ν, respectively.

As in Section 3, the preceding proof provides the converse of Lemma 4.2.
Indeed, it suffices to remark that a Littlewood-Richardson function with only in-
tegral breakpoints is obtained from the transpose of a Littlewood-Richardson ta-
bleau via the construction of Lemma 4.2.

PROPOSITION 4.7. A triple (λ, µ, ν) satisfies the Littlewood-Richardson Rule if
and only if it satisfies the Littlewood-Richardson rule.
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Proof. Lemmas 3.3, 3.6, 3.7, 4.3, 4.5, and 4.6 allow us to restrict ourselves
to finite integer partitions. For these partitions the result is a consequence of the
equality cν

λµ = cν̃
λ̃µ̃

.

5. EIGENVALUES FOR SUMS OF NONNEGATIVE MATRICES

In this section we will consider compact selfadjoint operators acting on a
complex, separable Hilbert space H. If A is such an operator, we will denote
by Λ+(A) the sequence of its nonnegative eigenvalues, arranged in decreasing
order and repeated according to their multiplicities. If A only has finitely many
nonnegative eigenvalues, we will append a string of zeroes so as to make Λ+(A)
an infinite sequence. One of the questions addressed in [7] concerns the relations
among the sets Λ+(A), Λ+(B), and Λ+(C) if C = A + B (cf. Theorem 6 in [7]).
Observe that Λ+(A) is always a partition in our terminology, and it is a finite
partition if A has finite rank. We will have more to say about the results described
in [7]. For the moment we concentrate on a result which we reformulate below.

PROPOSITION 5.1. Let λ, µ and ν be finite integer partitions. Then we have
cν

λµ 6= 0 if and only if there exist finite rank nonnegative operators A, B, and C such
that Λ+(A) = λ, Λ+(B) = µ, Λ+(C) = ν, and A + B = C. Moreover, A, B, and C
can be chosen to be zero on the orthogonal complement of a given space of dimension `(ν).

The purpose of this section is to extend this result to arbitrary partitions.
Note that the next result can be extended to more than three sequences of parti-
tions. We will denote by ‖A‖ the usual operator norm of A.

LEMMA 5.2. Consider partitions λn, µn, νn, n = 1, 2, . . ., and λ, µ, ν such that
λn → λ, µn → µ, and νn → ν as n → ∞. Assume that nonnegative compact operators
An, Bn, Cn are given such that Λ+(An) = λn, Λ+(Bn) = µn, and Λ+(Cn) = νn. Then
there exist a subsequence n1 < n2 < · · · , unitary operators U1, U2, . . ., and nonnegative
compact operators A, B, and C, such that ‖A−Uk Ank U∗

k ‖ → 0, ‖B−UkBnk U∗
k ‖ → 0,

and ‖C −UkCnk U∗
k ‖ → 0 as k → ∞. (The continuous dependence of the eigenvalues

yields Λ+(A) = λ, Λ+(B) = µ, and Λ+(C) = ν.)

Proof. Fix an orthonormal basis e1, e2, . . ., and consider orthonormal sequen-
ces en

j , f n
j , gn

j such that Anen
j = λn

j en
j , Bn f n

j = µn
j f n

j , Cngn
j = νn

j gn
j for all n and j. We

can then choose unitary operators U1, U2, . . . such that the vectors Unen
j , Un f n

j and
Ungn

j belong to the linear space Hn generated by e1, e2, . . . , e3n for j 6 n. Replacing
the operators An, Bn, Cn by Un AnU∗

n , UnBnU∗
n , UnCnU∗

n , we may assume from
the beginning that the vectors en

j , f n
j and gn

j belong to Hn for j 6 n. Denote by
Pn the orthogonal projection onto Hn. The condition on the eigenvalues of An
implies that ‖An − Pn AnPn‖ 6 µn

n+1, and this implies that the set {An}∞
n=1 is

relatively compact. The same argument applies to Bn and Cn, and therefore we
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can find integers n1 < n2 < · · · such that the sequences (Ank )
∞
k=1, (Bnk )

∞
k=1, and

(Cnk )
∞
k=1 converge in norm. The limits A, B, C of these sequences will then satisfy

the conclusion of the lemma.

THEOREM 5.3. Given partitions λ, µ, and ν, the following conditions are equiva-
lent:

(i) the triple (λ, µ, ν) satisfies the Littlewood-Richardson rule;
(ii) there exist compact nonnegative operators A, B, and C such that Λ+(A) =

λ, Λ+(B) = µ, Λ+(C) = ν, and A + B = C.

Proof. The theorem is true for finite integer partitions. Lemma 3.3, along
with the fact that Λ+(sA) = sΛ+(A) for s > 0, implies that the theorem is true
for finite rational partitions as well. The implication (i)⇒(ii) follows then by ap-
proximation from Lemmas 3.7 and 5.2. Conversely, assume that (ii) holds. Let
e1, e2, . . . be an orthonormal basis for H, and denote by Pn the orthogonal projec-
tion onto the linear span of e1, e2, . . . , en. Then clearly Λ+(Pn APn) → λ as n → ∞,
and corresponding assertions hold for B and C. Lemma 3.6 shows now that it suf-
fices to prove (i) under the additional condition that A, B, and C have finite rank.
The argument of [6] shows then that we may also assume that the eigenvalues of
A, B, and C are rational, and (i) follows from the remark at the beginning of the
proof.

6. THE HORN INEQUALITIES

The solution of the general eigenvalue problem for sums of selfadjoint ma-
trices is expressed in [7] in terms of eigenvalue inequalities rather than the Little-
wood-Richardson rule (except, in the case of integer eigenvalues). These inequali-
ties are expressed in terms of subsets of {1, 2, . . . , n}. Such a subset I of cardinality
r can also be viewed as an increasing function {1, 2, . . . , r} → {1, 2, . . . , n}, and as
such it has a corresponding partition Λ(I) = (λ1, λ2, . . .) given by λ1 = I(r)− r,
λ2 = I(r − 1) − (r − 1),. . . , λr = I(1) − 1, and λk = 0 for k > r. It will be
convenient to use the notation ΣI for the sum of the elements of I:

ΣI =
r

∑
k=1

I(k).

Following the notation of [7], we consider the following collection of triples of
subsets of {1, 2, . . . , n} of cardinality r 6 n:

Un
r =

{
(I, J, K) : ΣI + ΣJ = ΣK +

r(r + 1)
2

}
.
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Next define inductively on r a subset Tn
r of Un

r as follows. Set Tn
1 = Un

1 and, for
1 < r 6 n,

Tn
r =

{
(I, J, K) ∈ Un

r : ΣI◦I′ + ΣJ◦J′ 6 ΣK◦K′ +
p(p + 1)

2

for all p < r and (I′, J′, K′) ∈ Tr
p

}
.

Observe that the set Tn
n consists only of the triplet (I, I, I), where I = {1, 2, . . . , n}.

We will also need a larger set of triples defined as

Tn
r =

{
(I, J, K) : ΣI◦I′ + ΣJ◦J′ 6 ΣK◦K′ +

p(p + 1)
2

for all p 6 r and (I′, J′, K′) ∈ Tr
p

}
.

Note that the requirement that (I, J, K) belong to Un
r has been replaced by the

weaker inequality ΣI + ΣJ 6 ΣK + r(r + 1)/2 in the definition of Tn
r .

The set Tn
r is characterized as follows (cf. Theorem 12 in [7]).

THEOREM 6.1. Let I, J, and K be subsets of cardinality r of {1, 2, . . . , n}. Then
the triple (I, J, K) belongs to Tn

r if and only if the triple (Λ(I), Λ(J), Λ(K)) satisfies the
Littlewood-Richardson rule.

One of the main results of [7] can be formulated as follows (cf. Theorem 1.)
(Of course, the results in [7] are formulated for arbitrary eigenvalues, not just
positive ones; the general case can be reduced to positive eigenvalues by adding
constant multiples of the identity matrix to A, B, and C.)

THEOREM 6.2. Let λ, µ, and ν be partitions of length at most n. The following are
equivalent:

(i) there exist nonnegative selfadjoint n× n matrices A, B, and C such that Λ+(A)
= λ, Λ+(B) = µ, Λ+(C) = ν, and A + B = C;

(ii) we have:
(a) trace identity: |λ|+ |µ| = |ν|;
(b) for all r < n, and all (I, J, K) ∈ Tn

r , the Horn inequality

(∗I JK) ∑
k∈K

νk 6 ∑
i∈I

λi + ∑
j∈J

µj

is satisfied.

The following result was, as mentioned in the introduction, also proved by
Fulton [8] (cf. also Friedland [4] for a closely related result). Our derivation uses a
somewhat different path, and it includes some amusing properties of the sets Tn

r .

THEOREM 6.3. For arbitrary partitions λ, µ, and ν, the following conditions are
equivalent:

(i) there exist nonnegative compact operators A, B, and C such that Λ+(A) =
λ, Λ+(B) = µ, Λ+(C) = ν, and A + B > C;
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(ii) for all natural numbers r 6 n and all (I, J, K) ∈ Tn
r , the Horn inequality (∗I JK)

holds.
If (ii) holds and `(ν) 6 n, then A, B, C can be chosen to be n× n matrices.

The proof is done first in the finite length case, and it involves an inductive
procedure. This makes it more convenient to state that case separately.

THEOREM 6.4.n. Let λ, µ, and ν be partitions of length at most n. The following
are equivalent:

(i) there exist selfadjoint n× n matrices A, B, and C such that Λ+(A) = λ, Λ+(B)
= µ, Λ+(C) = ν, and A + B > C;

(ii) for all r 6 n, and all (I, J, K) ∈ Tn
r , the Horn inequality (∗I JK) is satisfied.

Note that condition (2)(a) in Theorem 6.2 has been replaced by the inequal-
ity |λ|+ |µ| > |ν| in Theorem 6.4.

Let us note some equivalent forms of Theorem 6.4. First, given (I, J, K) ∈ Tn
r

let us consider the inequaltity

(znI JK) ∑
i∈I

λn+1−i + ∑
j∈J

µn+1−j 6 ∑
k∈K

νn+1−k.

THEOREM 6.5.n. Let λ, µ, and ν be partitions of length at most n. The following
are equivalent:

(i) there exist selfadjoint n× n matrices A, B, and C such that Λ+(A) = λ, Λ+(B)
= µ, Λ+(C) = ν, and A + B 6 C;

(ii) for all r 6 n, and all (I, J, K) ∈ Tn
r , the inequality (znI JK) is satisfied.

Proof. (that Theorems 6.5 and 6.4 are equivalent) Assume that (λ, µ, ν) is
a triple of partitions of length at most n. Fix numbers L, M, and N such that
N = L + M and L > λn, M > µn, and N > νn. We can then consider the
partitions λ′, µ′, and ν′ defined by λ′ = (L − λn, L − λn−1, . . . , L − λ1, 0, 0, . . .),
with analogous definitions for µ′ and ν′. Clearly, (λ, µ, ν) satisfies condition (ii)
of Theorem 6.5 if and only if (λ′, µ′, ν′) satisfies condition (ii) of Theorem 6.4. The
desired equivalence follows from the fact that the inequality A + B 6 C is also
equivalent to (L1n− A) + (M1n− B) > (N1n−C) (where 1n denotes the identity
matrix of order n).

The following result is also contained in Theorem 5 of [8].

THEOREM 6.6.n. Let λ, µ, and ν be partitions of length at most n. The following
are equivalent:

(i) there exists a partition ν′ > ν such that (λ, µ, ν′) satisfies the Littlewood-Richard-
son rule;

(ii) for all r 6 n, and all (I, J, K) ∈ Tn
r , the Horn inequality (∗I JK) is satisfied.

Proof. (that Theorem 6.6 is equivalent to Theorem 6.4) Assume first that ν′
is chosen as in (i). Then Theorem 6.2 implies that (λ, µ, ν′) satisfies all the Horn
inequalities (∗I JK) for (I, J, K) ∈ Tn

r and r 6 n Since ν 6 ν′, it follows that (ii)
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is true as well. Conversely, assume that (ii) is verified, and choose (by virtue of
Theorem 6.4) matrices A, B, C satisfying the conditions of that theorem. Then the
partition ν′ = Λ(A + B) will satisfy condition (i).

An analogous argument proves that the following result is equivalent to
Theorem 6.4.n.

THEOREM 6.7.n. Let λ, µ, and ν be partitions of length at most n. The following
are equivalent:

(i) there exists a partition ν′ 6 ν such that (λ, µ, ν′) satisfies the Littlewood-Richard-
son rule;

(ii) for all r 6 n, and all (I, J, K) ∈ Tn
r , the inequality (znI JK) is satisfied.

It will be of interest to us that the partitions ν′ in the preceding two results
can be chosen to be integral provided that the original partitions λ, µ, and ν are
integral. We will only provide the proof for the result corresponding with Theo-
rem 6.6 since the other result can be obtained using the reflection in the argument
of Theorem 6.5 above. Note that the following proof does not depend on Theo-
rem 6.4.

If λ is a partition, and I is a set of integers, we will use λ ◦ I to denote
the partition (λi1 , λi2 , . . .), where i1, i2, . . . is the increasing enumeration of I; this
partition is continued with zeros if I is a finite set. We also denote by Ic the
complement of I in the set of natural numbers.

PROPOSITION 6.8.n. Let λ, µ, and ν be integral partitions of length at most n.
If there exists a partition ν′ > ν, of length at most n, such that (λ, µ, ν′) satisfies the
Littlewood-Richardson rule, then there also exists an integral partition ν′′ > ν such that
(λ, µ, ν′′) satisfies the Littlewood-Richardson rule.

Proof. Assume that Proposition 6.8.k is true for all k < n, and (λ, µ, ν′)
satisfies the Littlewood-Richardson rule for some ν′ > ν. As seen in the proof
of Lemma 3.6, there exists a natural number N such that, upon replacing the
elements of Nν′ with their closest integers one obtains a partition ν̃ such that
(λ, µ, ν̃/N) satisfies the Littlewood-Richardson rule; clearly we still have ν̃/N >
ν. In other words, we can restrict ourselves from the beginning to the case in
which ν′ only has rational entries. Assume therefore that N is a natural num-
ber such that Nν′ is an integral partition. If the entries of ν′ are not all integers,
then there must be at least two entries which are not integers. Indeed, the weight
|ν′| = |λ|+ |µ| is an integer. Denote by p (respectively, q) the first (respectively,
last) index for which ν′p (respectively, ν′q) is not an integer. We may assume that
ν′ has been chosen so that q is as small as possible. Now, all the Horn inequalities
associated with Tn

r , r < n, are satisfied by (λ, µ, ν′) We consider first the case in
which the inequality

∑
k∈K

ν′k 6 ∑
i∈I

λi + ∑
j∈J

µj
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is strict for every r < n and every (I, J, K) ∈ Tn
r . In this case the difference

between the two sides in this inequality is at least 1/N. It follows that we may
replace ν′p and ν′q by ν′p + 1/N and ν′q − 1/N and still preserve the validity of all
of these inequalities. Proceeding in this way (note that the value of p may need
to be changed) we cannot arrive at a situation where ν′q is an integer; this follows
from the minimality of q. Therefore we arrive at a situation in which, for some
r < n and some (I, J, K) ∈ Tn

r we have

∑
k∈K

ν′k = ∑
i∈I

λi + ∑
j∈J

µj.

Consider now n × n selfadjoint matrices A, B, and C′ such that Λ+(A) = λ,
Λ+(B) = µ, Λ+(C′) = ν′, and A + B = C′. It follows from Theorem 5 in
[7] (and its proof) that the matrices A, B, C have a common reducing subspace
M such that A|M has eigenvalues {λi : i ∈ I}, A|M⊥ has eigenvalues {λi :
i ∈ {1, 2, . . . , n} \ I}, and with analogous properties for B|M, B|M⊥, C′|M, and
C′|M⊥. Since νk 6 ν′k for every k, it follows that the triples (λ ◦ I, µ ◦ J, ν ◦ K) and
(λ ◦ Ic, µ ◦ Jc, ν ◦ Kc) satisfy the hypothesis of Proposition 6.8.r and 6.8.(n − r),
respectively. The inductive hypothesis implies the existence of integral partitions
ν1 > ν ◦ I and ν2 > ν ◦ Ic such that (λ ◦ I, µ ◦ J, ν1) and (λ ◦ Ic, µ ◦ Jc, ν2) sat-
isfy the Littlewood-Richardson rule. Define ν′′ to be the partition obtained by
listing in decreasing order the elements of ν1 and ν2 (informally, ν′′ = ν1 ∪ ν2).
It is obvious that ν′′ > ν, and the proof is concluded if we show that (λ, µ, ν′′)
satisfies the Littlewood-Richardson rule. This however is immediate from the
matrix formulation of the rule. Indeed, choose matrices A1, A2, B1, B2, C1, and
C2 with eigenvalues λ ◦ I, λ ◦ Ic, µ ◦ J, µ ◦ Jc, ν1, and ν2, respectively, such that
A1 + B1 = C1 and A2 + B2 = C2. Then the matrices A1⊕ A2, B1⊕ B2, and C1⊕C2
have eigenvalues λ, µ, and ν′′.

Theorem 6.4.n is trivial for n = 1. From this point on we will assume that
n > 1, and Theorem 6.4.k has been proved for all k < n. The proof of Theo-
rem 6.4.n depends on a number of consequences of this assumption. First we
prove an important property of the elements in Tn

r . The inequality K′ 6 K in the
following statement is understood as an inequality between functions, i.e., k′i 6 ki
for i = 1, 2, . . . , r, where the ki and k′i are the elements of K and K′, respectively,
listed in increasing order.

PROPOSITION 6.9. Fix natural numbers r < n, and a triple (I, J, K) in Tn
r . There

exists a set K′ 6 K such that (I, J, K′) ∈ Tn
r .

Proof. One can verify without difficulty that (I, J, K) belongs to Tn
r if and

only if (Λ(I), Λ(J), Λ(K)) satisfies the hypothesis of Theorem 6.5.r. Therefore
there exists a partition ν′ 6 Λ(K) such that (Λ(I), Λ(J), ν′) satisfies the Littlewood-
Richardson rule. The partition ν′ may be assumed integral by (the analogue of)
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Proposition 6.8. Next define K′ by the equality Λ(K′) = ν′. Clearly K′ 6 K, and
the proposition follows from Theorem 5.1.

COROLLARY 6.10. Fix positive integers r < n < N.
(i) If a triple (λ, µ, ν) satisfies all the Horn inequalities (∗I JK) for (I, J, K) ∈ Tn

r ,
then it must also satisfy (∗I JK) for (I, J, K) ∈ Tn

r .

(ii) If (I, J, K) ∈ TN
n and (I′, J′, K′) ∈ Tn

r then ΣI◦I′ + ΣJ◦J′ 6 ΣK◦K′ + r(r + 1)/2.

Proof. Part (i) follows immediately from the previous result because par-
titions are decreasing, while (ii) follows because I, J, . . . are increasing (when
viewed as functions).

COROLLARY 6.11. r. Fix positive integers r < n < N. If (I, J, K) ∈ TN
n and

(I′, J′, K′) ∈ Tn
r then (I ◦ I′, J ◦ J′, K ◦ K′) belongs to TN

r .

Proof. By part (ii) of the preceding corollary, it suffices to show that for every
s < r, and every (I′′, J′′, K′′) ∈ Tr

s , we have Σ(I◦I′)◦I′′ + Σ(J◦J′)◦J′′ 6 Σ(K◦K′)◦K′′ +
s(s + 1)/2. Assuming that Corollary 6.11.s has been proved for all s < r, we see
that (I′ ◦ I′′, J′ ◦ J′′, K′ ◦ K′′) ∈ Tn

s , and the required inequality follows from part
(ii) of Theorem 6.6.s.

Given I ⊂ {1, 2, . . . , n}, we set Ic
n the relative complement Ic ∩ {1, 2, . . . , n}.

Also consider the reflection ρn : {1, 2, . . . , n} → {1, 2, . . . , n} defined by ρn(i) =
n − i + 1. As noted in [7] (cf. Lemma 4), a triple (I, J, K) belongs to Tn

r if and
only if (ρn(Ic

n), ρn(Jc
n), ρn(Kc

n)) belongs to Tn
n−r. Observe that K 6 K′ if and only

if ρn(Kc
n) 6 ρn(K′cn ). Therefore Proposition 6.9 (also applied with r replaced by

n− r) yields the following result.

COROLLARY 6.12. Fix positive integers r < n and a triple (I, J, K) of subsets
of {1, 2, . . . , n}. Then (I, J, K) belongs to Tn

r if and only if (ρn(Ic
n), ρn(Jc

n), ρn(Kc
n))

belongs to Tn
n−r.

Assume that I ⊂ {1, 2, . . . , n} has r elements, and I′ ⊂ {1, 2, . . . , r} has s
elements. Then we have the identity

ρn(I ◦ I′) = ρn(I) ◦ ρr(I′).

Indeed, observe that the jth element of ρn(I) is n + 1 − I(r + 1 − j). In other
words, viewed as an increasing function ρn(I) equals ρn ◦ I ◦ ρr. Thus

ρn(I ◦ I′) = ρn ◦ I ◦ I′ ◦ ρs = ρn ◦ I ◦ ρr ◦ ρr ◦ I′ ◦ ρs = ρn(I) ◦ ρr(I′),

as claimed.

COROLLARY 6.13. Fix positive integers r < n, s 6 n− r, and triples (I, J, K) ∈
Tn

r , (I′, J′, K′) ∈ Tn−r
s . Then the triple

(I ∪ (Ic
n ◦ I′), J ∪ (Jc

n ◦ J′), K ∪ (Kc
n ◦ K′))

belongs to Tn
r+s.
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Proof. The case s = n− r is trivial, so we assume that s < n− r. By Corol-
lary 6.12 (with r replaced by r + s < n) it suffices to show that

(ρn((I ∪ (Ic
n ◦ I′))c

n), ρn((J ∪ (Jc
n ◦ J′))c

n), ρn((K ∪ (Kc
n ◦ K′))c

n)) ∈ Tn
n−r−s.

Note now that (I ∪ (Ic
n ◦ I′))c

n = Ic
n ◦ I′cn−r so that

ρn((I ∪ (Ic
n ◦ I′))c

n) = ρn(Ic
n ◦ I′cn−r) = ρn(Ic

n) ◦ ρn−r(I′cn−r)

by the remark preceding this corollary. Now, two applications of Corollary 6.12
show that (ρn(Ic

n), ρn(Jc
n), ρn(Kc

n)) ∈ Tn
n−r and (ρn−r(I′cn−r), ρn−r(J′cn−r), ρn−r(K′cn−r)

∈ Tn−r
n−r−s. Therefore an application of Corollary 6.11.(n − r − s) yields the re-

sult.

We can now prove Theorem 6.4.n.

Proof. That (i) implies (ii) is immediate by Theorem 6.2. Conversely, assume
that (ii) holds. Let ε be the largest nonnegative number with the property that for
every r 6 n, and every (I, J, K) ∈ Tn

r , we have

rε + ∑
k∈K

νk 6 ∑
i∈I

λi + ∑
j∈J

µj.

Replacing νj by νj + ε for j = 1, 2, . . . , n, we may assume that ε = 0. In this case
there must exist r 6 n and (I, J, K) ∈ Tn

r such that

∑
k∈K

νk = ∑
i∈I

λi + ∑
j∈J

µj.

If r = n this is just the trace identity, and the result follows from Theorem 6.2.
If r < n we will show that (λ ◦ I, µ ◦ J, ν ◦ K) satisfies condition (ii) of Theorem
6.2, while (λ ◦ Ic, µ ◦ Jc, ν ◦ Kc) satisfies condition (ii) of Theorem 6.4.(n− r). In-
deed, if s < r, and (I′, J′, K′) ∈ Tr

s , then (I ◦ I′, J ◦ J′, K ◦ K′) ∈ Tn
s by Corollary

6.11. Therefore (λ, µ, ν) satisfies (∗I◦I′,J◦J′ ,K◦K′), and this is equivalent to saying
that (λ ◦ Ic, µ ◦ Jc, ν ◦ Kc) satisfies (∗I′ J′K′). On the other hand, if s 6 n− r, and
(I′, J′, K′) ∈ Tn−r

s , then we can apply Corollaries 6.13 and 6.11 to deduce the in-
equality

∑
k∈K

νk + ∑
k∈Kc

n◦K′
νk 6 ∑

i∈I
λi + ∑

i∈Ic
n◦I′

λi + ∑
j∈J

µj + ∑
j∈Jc

n◦J′
µj.

Subtracting from this the above equality, we deduce that (λ ◦ Ic, µ ◦ Jc, ν ◦ Kc)
satisfies (∗I′ J′K′). We deduce the existence of r × r matrices A′, B′, C′, and (n −
r)× (n− r) matrices A′′, B′′, C′′ such that A′ + B′ = C′, A′′ + B′′ > C′′, Λ+(A′) =
λ ◦ I, Λ+(A′′) = λ ◦ Ic, and similar conditions on the eigenvalues of the other
matrices. Clearly A = A′ ⊕ A′′, B = B′ ⊕ B′′ and C = C′ ⊕ C′′ satisfy condition
(i) of Theorem 6.4.n.

Next we prove Theorem 6.3.



88 HARI BERCOVICI, WING SUET LI AND THOMAS SMOTZER

Proof. That (i) implies (ii) is known (cf. Theorem 6 in [7]). Assume therefore
that condition (ii) holds, and define partitions λn, µn and νn by setting λn

i = λi
for i 6 n and λn

i = 0 otherwise (analogous definitions for µ and ν). Clearly then
(λn, µn, νn) satisfies condition (ii) of Theorem 6.4.n. We deduce the existence of
selfadjoint operators An, Bn, Cn on H, with rank at most n, such that Λ+(An) =
λn, Λ+(Bn) = µn, Λ+(Cn) = νn, and An + Bn > Cn. Lemma 5.2 then yields
operators A, B and C satisfying condition (i).

It may be worthwhile to state one form of Theorem 6.2 for compact opera-
tors.

THEOREM 6.14. Let λ, µ, and ν be partitions such that |λ| < ∞. The following
assertions are equivalent:

(i) there exist nonnegative compact operators A, B, and C such that Λ+(A) =
λ, Λ+(B) = µ, Λ+(C) = ν, and A + B = C;

(ii) we have:
(a) trace identity: |λ| = |ν− µ|;
(b) for all r < n, and all (I, J, K) ∈ Tn

r , the Horn inequality

(∗I JK) ∑
k∈K

νk 6 ∑
i∈I

λi + ∑
j∈J

µj.

is satisfied.

Proof. It suffices to show that (ii) implies (i), so assume that (ii) is satis-
fied, and let A, B and C be provided by Theorem 6.3. Set C′ = A + B and
ν′ = Λ+(C′), so that ν′ > ν, and (λ, µ, ν′) satisfies the Littlewood-Richardson
rule. By Lemma 3.4 we have

|ν′ − ν| = |ν′ − µ| − |ν− µ| = |λ| − |λ| = 0,

and therefore C′ = C.

We next consider selfadjoint operators which also have negative eigenval-
ues. Let us start with the finite dimensional case.

THEOREM 6.15.n. Let λ, µ, and ν be partitions of length at most n. The following
are equivalent:

(i) there exist selfadjoint 2n× 2n matrices A, B, and C such that Λ+(A) = λ, Λ+(B)
= µ, Λ+(C) = ν, and A + B = C;

(ii) for all r 6 n, and all (I, J, K) ∈ Tn
r , the Horn inequality (∗I JK) is satisfied.

If these conditions are satisfied, then the matrices in (i) can be chosen to satisfy the addi-
tional conditions Λ+(−A) = µ, Λ+(−B) = λ, and Λ+(−C) = ν.

Proof. Theorem 6.15.n is easily verified for n = 1. Assume therefore that
n > 1 and Theorem 6.15.k has been proved for all k < n. That (i) implies (ii)
follows from Theorem 6.2. Conversely, let us assume that (ii) is satisfied, and
consider the set L of all partitions ρ of length at most n with the property that



CONTINUOUS VERSIONS OF THE LITTLEWOOD-RICHARDSON RULE 89

there exist 2n× 2n matrices A, B, C such that Λ+(A) = λ, Λ+(B) = µ, Λ+(C) =
ρ, Λ+(−A) = µ, Λ+(−B) = λ, Λ+(−C) = ρ, and A + B = C. The proof will
be concluded by showing that ν ∈ L. Theorem 6.2 implies that L is a convex set.
Note next that the zero partition (with entries equal to zero) belongs to L. Indeed,
choose any matrix A such that Λ+(A) = λ and Λ+(−A) = µ, then set B = −A
and C = 0. Let t be the greatest positive number such that tν satisfies condition
(ii) in the statement; such a number exists if ν 6= 0. Since t > 1, the convexity of
L shows that it suffices to prove that tν ∈ L. Replacing ν by tν we may as well
assume that t = 1. In this case there must exist r 6 n, and (I, J, K) ∈ Tn

r such that

∑
i∈I

λi + ∑
j∈J

µj = ∑
k∈K

νk.

In case r = n, Theorem 6.2 provides nonnegative n× n matrices A0, B0, and C0
such that Λ+(A0) = λ, Λ+(B0) = µ, Λ+(C0) = ν, and A0 + B0 = C0. The
matrices A = A0 ⊕ (−B0), B = B0 ⊕ (−A0), and C = C0 ⊕ (−C0) will then
satisfy the conditions of this theorem. In case r < n, the argument in the proof
of Theorem 6.4 shows that the triples (λ ◦ I, µ ◦ J, ν ◦ K) and λ ◦ Ic, µ ◦ Jc, ν ◦ Kc)
satisfy condition (ii) of Theorem 6.15.r and Theorem 6.15.(n − r), respectively.
The inductive hypothesis then provides 2r× 2r matrices A1, B1, C1 and 2(n− r)×
2(n − r) matrices A2, B2, C2 such that Λ+(A1) = λ+(−B1) = λ ◦ I, Λ+(B1) =
Λ+(−A1) = µ ◦ J, Λ+(C1) = Λ+(−C1) = ν ◦ K, Λ+(A2) = λ+(−B2) = λ ◦ Ic,
Λ+(B2) = Λ+(−A2) = µ ◦ Jc, Λ+(C2) = Λ+(−C2) = ν ◦ Kc, A1 + B1 = C1, and
A2 + B2 = C2. The proof is concluded by setting A = A1 ⊕ A2, B = B1 ⊕ B2, and
C = C1 ⊕ C2.

An appropriate modification of Lemma 5.2 for selfadjoint (but not necessar-
ily nonnegative definite) operators yields the following result. The details of the
proof are left to the reader.

THEOREM 6.16. Given partitions λ, µ, and ν the following are equivalent:
(i) there exist selfadjoint compact operators A, B, and C such that Λ+(A) = λ,

Λ+(B) = µ, Λ+(C) = ν, and A + B = C;
(ii) for all r 6 n, and all (I, J, K) ∈ Tn

r , the Horn inequality (∗I JK) is satisfied.
If these conditions are satisfied, then the operators in (i) can be chosen to satisfy the
additional conditions Λ+(−A) = µ, Λ+(−B) = λ, and Λ+(−C) = ν.

7. INVARIANT SUBSPACES

Consider a strongly continuous operator semigroup T = {T(t) : t > 0}
acting on a Hilbert space H. Such a semigroup will be said to be nilpotent if T(t) =
0 for some t > 0. For each λ > 0 there is such a semigroup Sλ defined on L2(0, λ)
by right translation: Sλ(t) f (x) = f (x − t) if x > t and Sλ(t) f (x) = 0 if x < t.
These semigroups play the role of Jordan cells. To be precise, a semigroup of the
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form Sλ1 ⊕ Sλ2 ⊕ · · · , with λ1 > λ2 > · · · , is called a Jordan semigroup. For every
nilpotent semigroup T, there exist a unique Jordan semigroup S, and injective
operators X, Y with dense ranges such that XT(t) = S(t)X and YS(t) = T(t)Y
for all t > 0 (cf. [3] and [1]). One says that T and S are quasisimilar, and S is
called the Jordan model of T. If S = Sλ1 ⊕ Sλ2 ⊕ · · · is the Jordan model of T, we
will write Λ(T) = (λ1, λ2, . . .).

In this section we will limit ourselves to semigroups for which Λ(T) is a
partition, i.e., lim

n→∞
λn = 0. This situation corresponds with finite dimensionality

in the following sense: if Λ(T) is a partition, and X is an operator on H such that
XT(t) = T(t)X for all t > 0, then X is one-to-one if and only if it has dense range.
In the terminology of [1], T has property (P).

A subspace M is invariant for a semigroup T if T(t)M ⊂ M for every t > 0.
Given an invariant subspace, one can form the restricted semigroup T|M and the
compressed semigroup T∗|M⊥.

The following result was proved in [2] (the result there is stated in greater
generality). Recall that the Littlewood-Richardson Rule requires the existence of
a Littlewood-Richardson function.

THEOREM 7.1. Assume that λ, µ, and ν are partitions such that |ν| < ∞, T
is a nilpotent semigroup, and M is an invariant subspace for T such that Λ(T) =
ν, Λ(T|M) = λ, and Λ(PM⊥T|M⊥) = µ. Then (λ, µ, ν) satisfies the Littlewood-
Richardson Rule.

The following result is from [15]. The limit in the statement below is taken
componentwise, and the empty sum is understood to be zero in condition (c) for
j = 1.

THEOREM 7.2. Given partitions λ, µ, and ν, the following conditions are equiva-
lent:

(i) there exist a nilpotent semigroup T, and an invariant subspace M for T such that
Λ(T) = ν, Λ(T|M) = λ, and Λ(PM⊥T|M⊥) = µ;

(ii) there exist partitions ρk, k > 0, with the following properties:

(a) ρk+1
j+1 6 ρk

j 6 ρk+1
j for k > 0 and j > 1;

(b) ρ0 = λ and lim
k→∞

ρk = ν;

(c)
j

∑
n=1

(ρk+2
n − ρk+1

n ) 6
j−1
∑

n=1
(ρk+1

n − ρk
n) for all j > 1 and k > 0;

(d)
∞
∑

n=1
(ρk

n − ρk−1
n ) = µk for k > 1.

A brief analysis of these conditions reveals that in fact ρk
j = ρk+1

j if k > j, so

the limit (b) is reached rather soon. In fact, setting ajk = ρk
j for 0 6 k 6 j, the above

conditions amount exactly to saying that the numbers ajk are the breakpoints of a
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Littlewood-Richardson tableau with content µ (cf. Lemma 3.5 above). In other
words, we have the following result.

THEOREM 7.3. Given partitions λ, µ, and ν, the following conditions are equiva-
lent:

(i) there exist a nilpotent semigroup T, and an invariant subspace M for T such that
Λ(T) = ν, Λ(T|M) = λ, and Λ(PM⊥T|M⊥) = µ;

(ii) the triple (λ, µ, ν) satisfies the Littlewood-Richardson rule.

The attentive reader of [2] will notice that in order to prove the converse of
the main theorem there one still needs to show that, given a measurable family of
triples satisfying the Littlewood-Richardson rule, one can find a measurable fam-
ily of Littlewood-Richardson functions (or tableaux) associated with these triples.
This however does not pose any difficulty.
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