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ABSTRACT. We show that many invariant subspaces M for d-shifts (S1, . . . , Sd)
of finite rank have the property that the orthogonal projection PM onto M sat-
isfies

PMSk − SkPM ∈ Lp, 1 6 k 6 d
for every p > 2d, Lp denoting the Schatten-von Neumann class of all compact
operators having p-summable singular value lists. In such cases, the d tuple
of operators T = (T1, . . . , Td) obtained by compressing (S1, . . . , Sd) to M⊥
generates a ∗-algebra whose commutator ideal is contained in Lp for every
p > d.

It follows that the C∗-algebra generated by {T1, . . . , Td} and the identity is
commutative modulo compact operators, the Dirac operator associated with
T is Fredholm, and the index formula for the curvature invariant is stable
under compact perturbations and homotopy for this restricted class of finite
rank d-contractions. Though this class is limited, we conjecture that the same
conclusions persist under much more general circumstances.
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1. INTRODUCTION

The purpose of this paper is to establish a result in higher dimensional oper-
ator theory that supports a general conjecture about the stability of the curvature
invariant under compact perturbations and homotopy. Specifically, we show that
certain finite rank pure d-contractions T = (T1, . . . , Td) have the property that
the C∗-algebra generated by {T1, . . . , Td} is commutative modulo compact op-
erators. It follows that the Dirac operator associated with such a d-contraction is
Fredholm, a key fact that leads to the desired stability properties for the curvature
invariant by way of an index formula, see (1.2) below. These results represent a
first step toward developing an effective Fredholm theory of d-contractions, an
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ingredient necessary for completing the index theorem that was partially estab-
lished in [3], following up on [2].

We first describe the issues that prompted this work. We use the term multi-
operator (of complex dimension d = 1, 2, . . . ) to denote a d-tuple T = (T1, . . . , Td)
of mutually commuting bounded operators acting on a common Hilbert space
H. Every multioperator T gives rise to an associated Dirac operator, whose def-
inition we recall for the reader’s convenience (see [3] for more detail). Let Z be
a complex Hilbert space of dimension d and let ΛZ be the exterior algebra of Z,
namely the direct sum of finite-dimensional Hilbert spaces

ΛZ =
d

∑
k=0

ΛkZ,

where ΛkZ denotes the kth exterior power of Z, and where Λ0Z is defined to be
the one-dimensional Hilbert space C. For k = 1, . . . , d, ΛkZ is spanned by wedge
products of the form z1 ∧ z2 ∧ · · · ∧ zk, zi ∈ Z, and the inner product in ΛkZ is
uniquely determined by the formula

〈z1 ∧ z2 ∧ · · · ∧ zk, w1 ∧ w2 ∧ · · · ∧ wk〉 = det(〈zi, wj〉),

the right side denoting the determinant of the k × k matrix of inner products
〈zi, wj〉, 1 6 i, j 6 k. If we choose an orthonormal basis e1, . . . , ed for Z, then there
is a sequence of creation operators C1, . . . , Cd on ΛZ that are defined uniquely by
their action on generating vectors as follows

Ci : z1 ∧ · · · ∧ zk 7→ ei ∧ z1 · · · ∧ zk,

z1, . . . , zk ∈ Z, 1 6 k 6 d, where each Ci maps λ ∈ Λ0Z = C to λei and maps
the last summand ΛdZ to {0}. The operators C1, . . . , Cd satisfy the canonical an-
ticommutation relations

CiCj + CjCi = 0, C∗i Cj + CjC∗i = δij1.

The Dirac operator of T is a self-adjoint operator D acting on the Hilbert
space H̃ = H ⊗ΛZ as follows: D = B + B∗, where B is the sum

B = T1 ⊗ C1 + T2 ⊗ C2 + · · ·+ Td ⊗ Cd.

If one replaces e1, . . . , ed with a different orthonormal basis for Z, then of course
one changes D; but the two Dirac operators are naturally isomorphic in a sense
that we will not spell out here (see [3]). Thus the Dirac operator of T is uniquely
determined by T up to isomorphism.

The multioperator T is said to be Fredholm if its Dirac operator D is a Fred-
holm operator. Since D is self-adjoint, this simply means that it has closed range
and finite-dimensional kernel. In this case there is an integer invariant associ-
ated with T, called the index, that is defined as follows. Consider the natural
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Z2-grading of H̃, defined by the orthogonal decomposition H̃ = H̃+⊕ H̃−, where

H̃+ = ∑
k even

H ⊗ΛkZ, H̃− = ∑
k odd

H ⊗ΛkZ.

One finds that D is an odd operator relative to this grading in the sense that
DH̃+ ⊆ H̃−, DH̃− ⊆ H̃+. Thus the decomposition H̃ = H̃+ ⊕ H̃− gives rise to a
2× 2 matrix representation

D =
(

0 D∗
+

D+ 0

)
,

D+ denoting the restriction of D to H̃+. When D is Fredholm, one finds that
D+H̃+ is a closed subspace of H̃− of finite codimension and D+ has finite di-
mensional kernel. Indeed, T is a Fredholm multioperator if and only if D+ is a
Fredholm operator in B(H̃+, H̃−). The index of D+, namely

ind(D+) = dim(ker D ∩ H̃+)− dim(H̃−/DH̃+),

is an integer invariant for Fredholm multioperators that is stable under compact
perturbations and homotopy.

By analogy with the index theorems of Atiyah and Singer, one might expect
that the computation of the index of Fredholm multioperators will lead to impor-
tant relations between the geometric and analytic properties of multioperators,
and perhaps connect with basic issues of algebraic geometry. Such a program
requires that one should have effective tools for

(a) determining when a given Dirac operator is Fredholm; and
(b) computing the index in terms of concrete geometric properties of its un-

derlying multioperator.
Some progress has been made in the direction of (b), and we will describe that in
Remark 1.2 below. However, the problem (a) of proving that the natural examples
of multioperators are Fredholm remains largely open. It is that problem we want
to address in this paper.

Here is a useful sufficient criterion for Fredholmness; we reiterate the proof
given in [4] for the reader’s convenience.

PROPOSITION 1.1. Let T = (T1, . . . , Td) be a multioperator satisfying:
(i) T is essentially normal in that all self-commutators TkT∗j − T∗j Tk are compact,

1 6 j, k 6 d;
(ii) T1T∗1 + · · ·+ TdT∗d is a Fredholm operator.

Then T is a Fredholm multioperator.

Proof. Since the Dirac operator D of T is self-adjoint, it suffices to show that
D2 is a Fredholm operator. To that end, consider B = T1 ⊗ C1 + · · · + Td ⊗ Cd.
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Since Tj commutes with Tk and Cj anticommutes with Ck, a straightforward com-
putation shows that B2 = 0. Hence

D2 = (B + B∗)2 = B∗B + BB∗ =
d

∑
k,j=1

T∗k Tj ⊗ C∗k Cj +
d

∑
k,j=1

TjT∗k ⊗ CjC∗k .

Using CjC∗k = δjk1− C∗k Cj, we can write the second term on the right as

F⊗ 1−
d

∑
k,j=1

TjT∗k ⊗ C∗k Cj,

where F = T1T∗1 + · · ·+ TdT∗d , so that

D2 = F⊗ 1 +
d

∑
k,j=1

(T∗k Tj − TjT∗k )⊗ C∗k Cj.

Since F⊗ 1 is a Fredholm operator by (ii) and each summand in the second term
is compact by (i), it follows that D2 is a Fredholm operator.

REMARK 1.2 (Finite rank d-contractions). We are primarily concerned with
finite rank d-contractions, that is, multioperators T = (T1, . . . , Td) that define row
contractions in the sense that T1T∗1 + · · · + TdT∗d 6 1, whose defect operators
1− T1T∗1 − · · · − TdT∗d have finite rank. T is said to be pure if the powers of the
completely positive map φ(X) = ∑

k
TkXT∗k satisfy φn(1) ↓ 0 as n → ∞.

Proposition 1.1 implies that the Dirac operator of a finite rank d-contraction
is Fredholm provided that the self-commutators TkT∗j − T∗j Tk are compact for all
1 6 k, j 6 d. In that case, the C∗-algebra C∗(T1, . . . , Td) generated by {T1, . . . , Td}
and the identity operator is commutative modulo compact operators K ⊆ B(H),
and we have an exact sequence of C∗-algebras

(1.1) 0 −→ K −→ C∗(T1, . . . , Td) +K −→ C(X) −→ 0,

X being a compact subset of the unit (2d− 1)-sphere in Cd.
For every finite rank d-contraction T it is possible to define a real number

K(T) in the interval [0, rank T], called the curvature invariant. K(T) is a geomet-
ric invariant of T, defined as the integral of the trace of a certain matrix-valued
function over the unit sphere in Cd (see [2] for more detail). K(T) was com-
puted for many examples in [2], and it was found to be an integer, namely the
Euler characteristic of a certain finitely generated module over the polynomial
ring C[z1, . . . , zd]. However, it was also shown in [2] that this formula equating
K(T) to an Euler characteristic fails to hold in general. Still, that formula pro-
vided enough evidence to lead us to conjecture that K(T) is an integer in general,
and that has now been established by Greene, Richter and Sundberg in [6]. Un-
fortunately, the integer arising in the proof of the latter result — namely the rank
of an almost-everywhere constant rank projection defined on the unit sphere of
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Cd — appeared to have no direct connection with spatial properties of the under-
lying d-tuple of operators T1, . . . , Td. What was still lacking was a formula that
relates K(T) to some natural integer invariant of T that holds in general and is,
hopefully, easy to compute.

Such considerations led us to initiate a new approach in [3]. Our aim was
to introduce an appropriate notion of Dirac operator and to seek a formula that
would relate the curvature invariant to the index of the associated Dirac operator
— hopefully in general. Assuming that T is a graded d-contraction, then the result
of [3] is that both ker D+ and ker D∗

+ are finite-dimensional, and moreover

(1.2) (−1)dK(T) = dim ker D+ − dim ker D∗
+.

Significantly, there are no known exceptions to this formula; in particular, it per-
sists for the (ungraded) examples that violated the previous formula that related
K(T) to an Euler characteristic. As we have described in [3], it is natural to view
(1.2) as an operator-theoretic counterpart of the Gauss-Bonnet-Chern formula of
Riemannian geometry in its modern dress as an index theorem (see page 311
of [5]).

Notice, however, that even in the graded cases the right side of (1.2) is un-
stable if D is not a Fredholm operator, despite the fact that both subspaces ker D+
and ker D∗

+ must be finite-dimensional. On the other hand, if D is a Fredholm
operator then (1.2) reduces to a stable formula

(1.3) (−1)dK(T) = ind D+.

In view of Proposition 1.1 and the stability properties of the index of Fredholm
operators one may conclude: Within the class of finite rank graded d-contractions
T whose self-commutators are compact, the curvature invariant K(T) is stable under
compact perturbations and homotopy.

Unfortunately, it is not known if the self-commutators of pure finite-rank
graded d-contractions are always compact, though we believe that they are. More
generally, we believe that the Dirac operator of any pure finite rank d-contraction
T — graded or not — is a Fredholm operator and, moreover, that formula (1.3)
continues to hold in that generality. Precise formulations of these conjectures will
be found in Section 5. We will prove the most tractable cases of the first of these
two conjectures in Sections 2 and 3.

2. STATEMENT OF RESULTS

Let S = (S1, . . . , Sd) be the d-shift of rank one, i.e., the multioperator that
acts on the symmetric Fock space H2(Cd) over the d-dimensional one-particle
space Cd by symmetric tensoring with a fixed orthonormal basis e1, . . . , ed for Cd.
We lighten notation by writing H2 for H2(Cd), the dimension d being a positive
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integer (normally larger than 1) that will be fixed throughout. The elements of
H2 can be realized as certain holomorphic functions defined in the open unit ball

Bd = {z = (z1, . . . , zd) ∈ Cd : |z| = (|z1|2 + · · ·+ |zd|2)1/2 < 1},

and in this function-theoretic realization the rank one d-shift is the d-tuple of mul-
tiplication operators Sk : f (z) 7→ zk f (z), 1 6 k 6 d (see [1]).

Let r be a positive integer, let E be a Hilbert space of dimension r, and con-
sider the d-tuple of operators defined on H2 ⊗ E by

Sk ⊗ 1E : f ⊗ ζ 7→ zk f ⊗ ζ, 1 6 k 6 d.

It will be convenient to overwork notation by writing S = (S1, . . . , Sd) for these
operators as well, and to refer to that multioperator as the d-shift of rank r. Thus
the d-shift (S1, . . . , Sd) of rank r acts as follows on elements of the form f ⊗ ζ,
with f ∈ H2 and ζ ∈ E:

Sk : f ⊗ ζ 7→ zk f ⊗ ζ, 1 6 k 6 d.

The d-shift is known to be universal in the class of pure d-contractions in the
sense that every pure d-contraction T = (T1, . . . , Td) of rank r is unitarily equivalent
to one obtained by compressing the d-shift of rank r to the orthogonal complement of an
invariant subspace (see [1]).

We will make use of the natural partial ordering on the discrete abelian
group Zd; for m = (m1, . . . , md), n = (n1, . . . , nd) ∈ Zd we write m 6 n if mk 6 nk
for every k = 1, . . . , d. For every n > 0 in Zd there is a monomial in H2 defined
by

zn = zn1
1 zn2

2 · · · znd
d .

The set of all monomials {zn : n > 0} form an orthogonal (but not orthonormal)
set which spans H2. Similarly, an element ξ ∈ H2 ⊗ E having the particular form
ξ = zn ⊗ ζ where n > 0 and ζ ∈ E is called a monomial in H2 ⊗ E. Notice that
monomials of the form zm ⊗ η and zn ⊗ ζ are orthogonal if m 6= n, or if m = n
and η ⊥ ζ. Obviously, H2 ⊗ E is spanned by monomials.

THEOREM 2.1. Let M ⊆ H2 ⊗Cr be an invariant subspace for the d-shift of rank
r that is generated as an invariant subspace by any set of monomials, and let PM be the
orthogonal projection onto M. Then for every p > 2d,

PMSk − SkPM ∈ Lp, 1 6 k 6 d.

COROLLARY 2.2. Let M ⊆ H2 ⊗Cr be an invariant subspace satisfying the hy-
potheses of Theorem 2.1, let T = (T1, . . . , Td) be the d-contraction obtained by compress-
ing S to the Hilbert space (H2 ⊗ E)/M ∼= M⊥, and let A be the ∗-algebra generated by
{T1, . . . , Td} and the identity. Then:

(i) the commutator ideal of A is contained in Lp for every p > d, and
(ii) T is a Fredholm multioperator.
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REMARK 2.3 (Structure of quotient modules). Consider the two dimensional
rank one case d = 2, E = C. The simplest nontrivial example of an invariant
subspace satisfying the hypotheses of Theorem 2.1 is the subspace M ⊆ H2(C2)
generated by the single monomial f (z1, z2) = z1z2. In this case it is possible to
compute the operators T1, T2 ∈ B(H2/M) in explicit terms. Once that is done,
one can verify directly that for this example the self-commutators T∗i Tj − TjT∗i ,
1 6 i, j 6 2, are in Lp for every p > 2, so that Proposition 1.1 implies that (T1, T2)
is a Fredholm pair.

However, for more general examples the quotient modules H2/M are not
recognizable (consider the invariant subspace M ⊆ H2(C3) generated by the two
monomials z1z2 and z2z2

3) . Thus our proof of Theorem 2.1 and Corollary 2.2 is
based on different ideas.

REMARK 2.4 (Structure of the algebraic set X). Let f1, . . . , fs be a set of ho-
mogeneous polynomials in C[z1, . . . , zd] and consider the closed invariant sub-
space M ⊆ H2(Cd) that they generate. Let T = (T1, . . . , Td) be the rank-one
d-contraction associated with the quotient H2/M. Assuming that the self-com-
mutators T∗j Tk − TkT∗j are compact, 1 6 j, k 6 d, then we have an exact sequence
of C∗-algebras (1.1) that terminates in C(X), where X is the projective algebraic
set defined by the common zeros of f1, . . . , fs. However, if the fk are all monomi-
als then X is trivial — a union of coordinate axes. Thus, the Fredholm d-tuples
provided by Corollary 2.2 fail to make significant connections with algebraic ge-
ometry.

3. PROOFS

Turning now to the proof of Theorem 2.1 and Corollary 2.2, let E = Cr and
let M ⊆ H2 ⊗ E be an invariant subspace generated by a set of monomials. We
have to show that the commutators

[PM, Sk] = PMSk − SkPM, 1 6 k 6 d

belong to Lp for p > 2d. Because of the obvious symmetry we treat only the case
k = 1. We will make repeated use of the following elementary property of the
Schatten-von Neumann classes Lp: For any pair of Hilbert spaces H1, H2, any
operator B ∈ B(H1, H2), and any p > 1 one has

(3.1) B ∈ L2p ⇐⇒ B∗B ∈ Lp ⇐⇒ BB∗ ∈ Lp.

Thus, in order to prove Theorem 2.1 it suffices to show that the operator

B = [PM, S1]∗ = S∗1 PM − PMS∗1 = (1− PM)S∗1 PM

satisfies B∗B ∈ Lp for every p > d. Equivalently, we will prove:

THEOREM 3.1. Let A be the restriction of the operator (1 − P)S∗1 to M. Then
A∗A ∈ Lp for every p > d.
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Consider the natural decomposition of M induced by S1

M = S1M⊕ (Mª S1M).

Since S1M ⊥ Mª S1M, we have

(3.2) S∗1(Mª S1M) ⊆ M⊥,

and therefore both S∗1 and (1− PM)S∗1 restrict to the same operator on Mª S1M.
Thus, it suffices to establish the following two results, the principal one being
Lemma 3.3.

LEMMA 3.2. S∗1S1 leaves M invariant, hence the restriction of (1 − PM)S∗1 to
S1M is zero.

LEMMA 3.3. The restriction of S∗1 to Mª S1M belongs to L2p for every p > d.

We first bring in an action of the compact group Td that will be useful. The
full unitary group of the one-particle space Cd acts naturally as unitary opera-
tors on H2 = H2(Cd), and by restricting that representation to the abelian sub-
group of all unitary operators which are diagonal relative to the usual orthonor-
mal basis for Cd, one obtains a strongly continuous unitary representation of the
d-dimensional torus Γ0 : Td 7→ B(H2). In more explicit terms, if we consider
the elements of H2(Cd) as holomorphic functions defined on the open unit ball
Bd ⊆ Cd, the action of Γ0 is given by

Γ0(λ) : f (z1, . . . , zd) 7→ f (λ1z1, . . . , λdzd), λ = (λ1, . . . , λd) ∈ Td.

By increasing the multiplicity appropriately, we obtain a corresponding represen-
tation Γ : Td → B(H2 ⊗ E),

(3.3) Γ(λ) = Γ0(λ)⊗ 1E, λ ∈ Td.

We have the following relations between Γ and the rank r d-shift

(3.4) Γ(λ)SkΓ(λ)∗ = λkSk, k = 1, . . . , d, λ = (λ1, . . . , λd) ∈ Td.

The character group of Td is the discrete abelian group Zd, an element n =
(n1, . . . , nd) in Zd being associated with the following character of Td,

λ 7→ λn = λ
n1
1 · · · λnd

d ∈ T, λ = (λ1, . . . , λd) ∈ Td.

Notice that every monomial zn ⊗ ζ, n > 0 is an eigenvector of Γ,

Γ(λ)(zn ⊗ ζ) = λn · zn ⊗ ζ, λ ∈ Td.

Conversely, if ξ ∈ H2 ⊗ E satisfies Γ(λ)ξ = λnξ for every λ ∈ Td and if ξ 6= 0
then we must have n > 0 and ξ must be a monomial of degree n.

The role of Γ is described in the following proposition.

PROPOSITION 3.4. For any closed subspace M ⊆ H2 ⊗ E that is invariant under
S1, . . . , Sd, the following are equivalent:
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(i) M is generated (as a closed {S1, . . . , Sd}-invariant subspace) by a set of monomials
in H2 ⊗ E.

(ii) Γ(λ)M ⊆ M, for every λ ∈ Td.

Proof. (i)⇒(ii). Obviously, operators of the form Sn1
1 Sn2

2 · · · Snd
d , with n1,

. . . , nk > 0 must map monomials in H2 ⊗ E to other monomials in H2 ⊗ E, and
since monomials in H2 ⊗ E form one-dimensional Γ-invariant subspaces, it fol-
lows that any invariant subspace M that is generated by a set of monomials must
also be invariant under the action of Γ.

(ii)⇒(i). Any closed linear subspace M ⊆ H2 ⊗ E that is invariant under the
action of Γ must be spanned by its spectral subspaces

M(n) = {ξ ∈ M : Γ(λ)ξ = λnξ, λ ∈ Td},

for n ∈ Zd. We have already pointed out that if such a subspace M(n) is not {0}
then one must have n > 0, and that it must have the form

M(n) = zn ⊗ E0 = {zn ⊗ ζ : ζ ∈ E0},

E0 being some subspace of E. Thus, M is spanned by the monomials it contains
and, in particular, it is generated as in (i).

Proof of Lemma 3.2. Proposition 3.4 implies that M is invariant under the
von Neumann algebra generated by the range Γ(Td) of Γ, and thus it suffices
to show that S∗1S1 belongs to that algebra. Because of the double commutant
theorem it is enough to show that for every operator T satisfying

Γ(λ)T = TΓ(λ), λ ∈ Td,

we have TS∗1S1 = S∗1S1T.
Now H2 ⊗ E decomposes into an orthogonal direct sum of spectral sub-

spaces for Γ, namely the subspaces of the form zn ⊗ E where n ∈ Zd satisfies
n > 0, and by virtue of its commutation relation with Γ, T must leave each of
these subspaces invariant. Thus, there is a sequence of operators Tn ∈ B(E),
n ∈ Zd, n > 0, such that the restriction of T to zn ⊗ E is given by

(3.5) T(zn ⊗ ζ) = zn ⊗ Tnζ, ζ ∈ E.

Consider now the action of S∗1S1 on the spectral subspace zn ⊗ E. Writing
n = (n1, . . . , nd) with nk > 0 we have

S∗1S1(zn ⊗ ζ) = S∗1(zn1+1
1 zn2

2 · · · znd
d ⊗ ζ) = (S∗1(zn1+1

1 zn2
2 · · · znd

d ))⊗ ζ.

Using formula (3.9) of [1] we have

S∗1(zn1+1
1 zn2

2 · · · znd
d ) =

n1 + 1
|n|+ 1

· zn1
1 zn2

2 · · · znd
d ,

where |n| denotes n1 + n2 + · · ·+ nd. Thus,

S∗1S1(zn ⊗ ζ) =
n1 + 1
|n|+ 1

· (zn ⊗ ζ).
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Thus, the restriction of S∗1S1 to each spectral subspace of Γ is a scalar multiple of
the identity; because of (3.5), S∗1S1 must commute with T.

Proof of Lemma 3.3. We prove Lemma 3.3 in two assertions as follows.

ASSERTION 1. There is a positive integer q such that

Mª S1M ⊆ span{zn1
1 zn2

2 · · · znd
d ⊗ ζ : (n1, n2, . . . , nd) > 0, n1 6 q, ζ ∈ E}.

ASSERTION 2. For every positive integer q, the restriction B of S∗1 to

span{zn ⊗ ζ : n > 0, n1 6 q, ζ ∈ E}
satisfies B∗B ∈ Lp for every p > d.

Proof of Assertion 1. We remark first that M is finitely generated in the sense
that there is a finite set F of monomials in M such that

M = span{ f (S1, . . . , Sd)ξ : ξ ∈ F, f ∈ C[z1, . . . , zd]}.

Indeed, let M0 be the (nonclosed) linear span of the monomials in M. M0 is dense
in M and invariant under the action of all polynomials in S1, . . . , Sd. Thus M0 is a
submodule ofC[z1, . . . , zd]⊗ E (where the latter is considered a finitely generated
module over the algebra of polynomialsC[z1, . . . , zd]). By Hilbert’s basis theorem
(in the form which asserts that a submodule of a finitely generated C[z1, . . . , zd]-
module is finitely generated), it follows that there is a set of polynomials f1, . . . , fr
and a set ζ1, . . . , ζr ∈ E such that M0 is generated by { f1 ⊗ ζ1, . . . , fr ⊗ ζr}. Using
the invariance of M0 under Γ we can decompose each f j ⊗ ζ j into a finite sum of
monomials in M0 to obtain the required finite set of generators for M.

Thus there is a finite set of d-tuples {ν1, . . . , νs} in Zd
+ and a set of vectors

ζ1, . . . , ζs ∈ E with the property that M is generated as follows

(3.6) M = span{ f1(z)zν1 ⊗ ζ1 + · · ·+ fs(z)zνs ⊗ ζs},

where f1, . . . , fs range over C[z1, . . . , zd].
Let q = max(q1, . . . , qd), where qj is the first component of the d-tuple νj =

(qj, ∗, ∗, . . . ). We will show that

(3.7) Mª S1M ⊆ [zn ⊗ E : n1 6 q].

Indeed, for each n ∈ Zd
+, the projection onto [zn ⊗ E] is a minimal projection in

the von Neumann algebra generated by Γ(Td), hence the projection onto [zn⊗ E :
n1 6 q] belongs to Γ(Td)′′. On the other hand, since both subspaces M and S1M
are invariant under Γ(Td), the difference Mª S1M is invariant as well, and thus
the projection Q onto Mª S1M commutes with Γ(Td)′′. Since Q commutes with
the projection on [zn ⊗ E : n1 6 q] we have

(3.8) Q[zn ⊗ E : n1 6 q] ⊆ [zn ⊗ E : n1 6 q].
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On the other hand, M ª S1M = QM is spanned by vectors of the form
Qznzνj ⊗ ζ j for n ∈ Zd

+. Noting that znzνj ⊗ ζ j ∈ S1M whenever the first compo-
nent of n is nonzero, we have Qznzνj ⊗ ζ j = 0 for such n. It follows that

QM = [zn+νj ⊗ ζ j : n1 = 0, 1 6 j 6 s] ⊆ Q[zn ⊗ E : n1 6 q],

and (3.7) follows from (3.8).

Proof of Assertion 2. It is pointed out in Corollary of Proposition 5.3 of [1],
that the operators Sk are hyponormal, SkS∗k 6 S∗k Sk, 1 6 k 6 d. Thus it suffices to
show that the restriction C of S1 to

K = span{zn ⊗ ζ : n1 6 q, ζ ∈ E}
satisfies C∗C ∈ Lp for every p > d. C∗C is the compression of S∗1S1 to K. We have
seen in the proof of Lemma 3.2 that monomials are eigenvectors for S∗1S1,

(3.9) S∗1S1 : zn ⊗ ζ 7→ n1 + 1
|n|+ 1

· zn ⊗ ζ, n = (n1, . . . , nd),

where |n| = n1 + · · · + nd. Let ζ1, . . . , ζr be an orthonormal basis for E. Then
K is spanned by the orthogonal set of all monomials of the form zn ⊗ ζ j with
n1 6 q, 1 6 j 6 r, and from (3.9) it follows that the compression of S∗1S1 to K is
diagonalized by the monomials of the form zn ⊗ ζ j and is bounded above on K as
follows

(3.10) 0 6 PKS∗1S1PK 6 (q + 1)PK((1 + N)−1 ⊗ 1E)PK,

where N is the number operator of H2, the unbounded self-adjoint operator hav-
ing the set of monomials as eigenvectors: N : zn 7→ |n|zn, n > 0. It is known that
(1H2 + N)−1 belongs to Lp for every p > d (see formula (5.2) of [1]). Since E is
finite dimensional we have

(1 + N ⊗ 1E)−1 = (1H2 + N)−1 ⊗ 1E ∈ Lp, p > d.

In view of (3.10), we conclude that PKS∗1S1PK ∈ Lp for every p > d.

Lemma 3.3 follows from Assertions 1 and 2, thereby completing the proof
of Proposition 3.1 and Theorem 2.1.

It remains only to deduce Corollary 2.2. We sketch the argument as follows.
Let (T1, . . . , Td) be the d-tuple acting on M⊥ by compression

Tk = (1− PM)Sk ¹M⊥ , k = 1, . . . , d,

and let A be the ∗-algebra generated by T1, . . . , Td and the identity operator.
A straightforward argument (that we omit) shows that the set of commutators
{AB− BA : A, B ∈ A} is contained in Lp if and only if all the self-commutators
T∗i Tj − TjT∗i , 1 6 i, j 6 d, belong to Lp.
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Thus it suffices to show that the self-commutators all belong to Lp for p > d.
Writing P for the projection onto M, P⊥ for 1− P and Tk = P⊥SkP⊥ we have

T∗i Tj = P⊥S∗i (1− P)SjP⊥ = P⊥S∗i SjP⊥ − P⊥S∗i PSjP⊥(3.11)

= P⊥S∗i SjP⊥ − Ai A∗j ,

where Ai = P⊥S∗i P, and TjT∗i = P⊥SjP⊥S∗i P⊥ = P⊥SjS∗i P⊥. Thus

[T∗i , Tj] = P⊥[S∗i , Sj]P⊥ − Ai A∗j .

Proposition 3.1 implies that Ai ∈ Lp for p > 2d, and hence Ai A∗j ∈ Lp for p > d.
Finally, according to Proposition 5.3 of [1] we have [S∗i , Sj] ∈ Lp for p > d, and
the desired conclusion follows.

4. SUBMODULES AND QUOTIENTS

Every d-contraction A = (A1, . . . , Ad) has a defect operator

∆ A = 1− (A1 A∗1 + · · ·+ Ad A∗d),

and one has 0 6 ∆ A 6 1. While this notation differs from that of [1] where ∆ A
was defined as the square root of 1− (A1 A∗1 + · · ·+ Ad A∗d), it is better suited for
our purposes here. We use the traditional notation [X, Y] to denote the commu-
tator XY−YX of two operators X, Y.

Given an invariant subspace M ⊆ H for a d-contraction A, the restriction
of A to M and the compression of A to the quotient H/M define two new d-
contractions. In this section we examine the relationships between these three
multioperators. We identify the quotient Hilbert space H/M with the orthocom-
plement M⊥ of M in H, and its associated d-contraction with the d-tuple obtained
by compressing (A1, . . . , Ad) to M⊥.

PROPOSITION 4.1. Let A = (A1, . . . , Ad) be a d-contraction acting on a Hilbert
space H, let M be a closed A-invariant subspace with projection P : H → M, and let
B = (B1, . . . , Bd) and C = (C1, . . . , Cd) be the d-contractions obtained, respectively, by
restricting A to M and compressing A to M⊥. Writing P⊥ for the projection onto the
subspace M⊥ ⊆ H, we have the following formulas relating various commutators and
the three defect operators ∆ A, ∆B, ∆C:

[Bj, B∗k ]P =− [P, Aj][P, Ak]∗ + P[Aj, A∗k ]P,(4.1)

[Cj, C∗k ]P⊥ =[P, Ak]∗[P, Aj] + P⊥[Aj, A∗k ]P
⊥,(4.2)

∆BP =P∆AP +
d

∑
k=1

[P, Ak][P, Ak]∗,(4.3)

∆CP⊥ =P⊥∆ AP⊥.(4.4)
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Proof. To verify (4.1), we write

[Bj, B∗k ]P =AjPA∗k P− PA∗k AjP = AjPA∗k P− PAj A∗k P + P[Aj, A∗k ]P

=− PAjP⊥A∗k P + P[Aj, A∗k ]P.

Since PAjP⊥ = PAj − AjP, we have PAjP⊥A∗k P = [P, Aj][P, Ak]∗, and (4.1) fol-
lows.

(4.2) follows similarly, after using P⊥AjP⊥ = P⊥Aj to write

[Cj, C∗k ]P⊥ = P⊥Aj A∗k P⊥ − P⊥A∗k P⊥AjP⊥

= P⊥A∗k AjP⊥ − P⊥A∗k P⊥AjP⊥ + P⊥[Aj, A∗k ]P
⊥

= P⊥A∗k PAjP⊥ + P⊥[Aj, A∗k ]P
⊥.

(4.2) follows after one notes that P⊥A∗k PAjP⊥ = [P, Ak]∗[P, Aj].
To prove (4.3), one writes ∆BP as follows,

P−
d

∑
k=1

AkPA∗k = P∆ AP +
d

∑
k=1

PAk(1− P)A∗k P = P∆AP +
d

∑
k=1

[P, Ak][P, Ak]∗,

and (4.4) follows similarly, since

P⊥ −
d

∑
k=1

P⊥AkP⊥A∗k P⊥ = P⊥∆ AP⊥ +
d

∑
k=1

P⊥AkPA∗k P⊥ = P⊥∆ AP⊥.

That completes the proof.

COROLLARY 4.2. Let A, B, C satisfy the hypotheses of Proposition 4.1. Then for
every p satisfying 1 6 p 6 ∞, the following are equivalent:

(i) Both defect operators ∆B and ∆C belong to Lp.
(ii) ∆ A belongs to Lp and [PM, Ak] ∈ L2p, 1 6 k 6 d.

Proof. The implication (ii)⇒(i) is an immediate consequence of the formulas
(4.3) and (4.4).

(i)⇒(ii). We write P for PM. From (4.3) and (4.4), together with the fact that
the right side of (4.3) is a sum of positive operators, we may conclude that all of
the operators

P∆ AP, P⊥∆AP⊥, [P, A1][P, A1]∗, . . . , [P, Ad][P, Ad]∗

belong to Lp. By (3.1) we have [P, Ak] ∈ L2p, 1 6 k 6 d. Another application of
(3.1) shows that both

√
∆ AP and

√
∆ AP⊥ belong to L2p. The latter two operators

sum to
√

∆ A ∈ L2p, and therefore ∆ A ∈ Lp.

We now apply Proposition 4.1 to obtain concrete information about the ex-
amples of greatest interest for us, namely the submodules and quotients that are
associated with pure finite rank d-contractions.
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THEOREM 4.3. Let M ⊆ H2 ⊗ Cr be an invariant subspace of the d-shift S =
(S1, . . . , Sd) of finite rank r and let B and C be, respectively, the restriction of S to M and
the compression of S to M⊥. Then for every p satisfying d < p 6 ∞, the following are
equivalent:

(i) The defect operator of B belongs to Lp.
(ii) [Bj, B∗k ] ∈ Lp, 1 6 j, k 6 d.

(iii) [Cj, C∗k ] ∈ Lp, 1 6 j, k 6 d.
(iv) [PM, Sk] ∈ L2p, 1 6 k 6 d.

If (i)–(iv) are satisfied for some p ∈ (d, ∞], then both B and C are Fredholm multiopera-
tors, and the indices of their Dirac operators are related by

(4.5) ind DB + + ind DC + = (−1)d · r.

Proof. It was shown in [1] that the self-commutators [Sj, S∗k ] belong to Lq

for every q > d; and of course, the defect operator of S is a projection of rank r,
belonging to Lq for every q > 1. With these observations in hand, one sees from
(4.3) that ∆B ∈ Lp if and only if

(4.6)
d

∑
k=1

[P, Sk][P, Sk]∗ ∈ Lp,

where P denotes PM. Similarly, (4.1) and (4.2) show that the assertions (ii) and
(iii) are equivalent, respectively, to the assertions

[P, Sj][P, Sk]∗ ∈ Lp, 1 6 j, k 6 d(4.7)

[P, Sk]∗[P, Sj] ∈ Lp, 1 6 j, k 6 d.(4.8)

Thus, the problem of showing that (i)–(iv) are equivalent is reduced to that of
showing that each of the assertions (4.6), (4.7) and (4.8) is equivalent to the as-
sertion [P, Sk] ∈ L2p, 1 6 k 6 d. That is a straightforward consequence of the
elementary equivalences (3.1).

To sketch the proof of (4.5), note first that Proposition 1.1, together with
(ii), (iii), and the known essential normality of the d-shift, imply that the three
Dirac operators DS, DB and DC are Fredholm. By property (iv), the commutators
PSk − SkP, 1 6 k 6 d, are compact. It follows that the d-tuple S is unitarily
equivalent to a compact perturbation of the direct sum of d-tuples B ⊕ C. In
turn, this implies that DS + is unitarily equivalent to a compact perturbation of
the direct sum of Fredholm operators DB + ⊕ DC +. By stability of the Fredholm
index under compact perturbations, we have

ind DB + + ind DC + = ind DS +.

Finally, from Theorem B of [3] that relates the index of a finite rank graded d-
contraction to its curvature invariant, we can compute the right side of the pre-
ceding formula

ind DS + = (−1)dK(S).
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Since the curvature of a finite direct sum of copies of the d-shift is known to be its
rank [2], formula (4.5) follows.

5. CONCLUDING REMARKS AND CONJECTURES

We expect that some variation of Corollary 2.2 should hold under much
more general circumstances, and we now discuss these issues.

CONJECTURE A. Let M be a closed invariant subspace for the d-shift S =
(S1, . . . ,
Sd) of finite rank r, acting on H2 ⊗ Cr. Assume that M is generated by a set of vec-
tor polynomials in C[z1, . . . , zd] ⊗ Cr, each of which is homogeneous of some degree.
Then PMSk − SkPM is compact for every k = 1, . . . , d.

Note that because of Hilbert’s basis theorem, one may assume that M is
generated by a finite set of homogeneous vector polynomials.

By Theorem 4.3, Conjecture A implies that the pure d-contraction T = (T1,
. . . , Td) obtained by compressing S to M⊥ is a Fredholm multioperator, and as we
have seen in Section 1, the index formula (1.3) implies that the curvature invariant
K(T) is stable in these cases. The space X appearing in the exact sequence of C∗-
algebras

0 −→ K −→ C∗(T1, . . . , Td) +K −→ C(X) −→ 0

would now be associated with a nontrivial algebraic set in projective space.

REMARK 5.1 (Evidence for Conjecture A). Theorem 2.1 implies that Conjec-
ture A is true when the homogeneous polynomials are monomials. Moreover,
Conjecture A is true in two dimensions. Indeed, a recent result of Kunyu Guo
(Theorem 2.4 of [7]) implies that, in the context of Conjecture A for dimension
d = 2, the 2-contraction obtained by restricting (S1, S2) to M has the property
that its defect operator belongs to Lp for every p > 1. By Theorem 4.3, Conjec-
ture A is true when d = 2.

Finally, there are a few other classes of (unpublished) examples in arbitrary
dimension d involving homogeneous polynomials for which one can decide the
issue, and these too support Conjecture A.

Stephen Parrott has shown [9] that a pure finite rank single contraction is
a Fredholm operator and (1.2) holds; R.N. Levy improved this in [8]. However,
some of the examples that occur in this one-dimensional setting are not essen-
tially normal. Thus, one cannot expect the conclusion of Conjecture A to hold for
arbitrary invariant subspaces M ⊆ H2 ⊗ Cr in higher dimensional cases d > 1.
However, we believe that the following two “ungraded" relatives of Conjecture A
are well-founded.
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CONJECTURE B. Let M ⊆ H2 ⊗ Cr be an invariant subspace of the d-shift of
finite rank r that is generated by a set of vector polynomials. Then PMSk − SkPM is
compact for 1 6 k 6 d.

Assuming the result of Conjecture B, one obtains a Fredholm multioperator
by compressing the d-shift to M⊥. In such cases, one would expect the follow-
ing conjecture to hold; the result would generalize the index formula (1.2) to the
ungraded case.

CONJECTURE C. The index formula (1.2) holds for the finite rank d-contraction
T obtained by compressing the d-shift of rank r to M⊥, whenever M is generated by
vector polynomials and T is essentially normal.

More generally, it is natural to ask if every finite rank pure d-contraction is
Fredholm and satisfies the index formula (1.2). While there is scant evidence to
illuminate these questions in general, Parrott’s work [9] implies that both answers
are yes in the one-dimensional cases d = 1.

PROBLEM D. Let T be a finite rank d-contraction. Is T a Fredholm d-tuple? Does
the index formula (1.2) hold?

We expect that significant progress on Problem D will require further devel-
opment of the theory of Fredholm multioperators.
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