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ABSTRACT. Let T ∈ L(H)n be a commuting tuple of continuous linear oper-
ators on a separable complex Hilbert space. In this article we show that inte-
rior points of the Fredholm spectrum of T can be made accessible to the Scott
Brown technique by establishing factorizations of the corresponding point
evaluations via the holomorphic functional calculus. This allows us to im-
prove a series of known results in the context of the invariant-subspace and
the reflexivity problem. In particular we deduce that each commuting pair
T = (T1, T2) ∈ L(H)2 possessing a ∂D-unitary dilation and dominating Tay-
lor spectrum in a strictly pseudoconvex open subset D b C2 has a non-trivial
invariant subspace.
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1. INTRODUCTION

A classical theorem of Brown, Chevreau and Pearcy from 1979 guarantees
that a contraction T on a complex Hilbert space H possesses a non-trivial invari-
ant subspace if the spectrum of T is dominating in the open unit disc D (see [2]).

In 1996, a corresponding multivariable result has been obtained by Esch-
meier, who asked for joint invariant subspaces of spherical contractions, i.e. com-

muting n-tuples T = (T1, . . . , Tn) ∈ L(H)n satisfying
n
∑

i=1
‖Tix‖2 6 ‖x‖2 for every

x ∈ H. More precisely, Theorem 3.3 in [6] states that each spherical contraction
T ∈ L(H)n which possesses a spherical dilation and dominating Harte spectrum
σH(T) in the open Euclidean unit ball Bn in Cn has a non-trivial joint invariant
subspace. As carried out by Pott [11], an analogous result holds for commuting
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n-tuples possessing a (holomorphic) normal boundary dilation and dominating
Harte spectrum over a strictly pseudoconvex open subset D b Cn.

Since, for n = 1, the Harte spectrum and the (ordinary) spectrum of T co-
incide and, by a famous theorem of Sz.-Nagy, each single contraction possesses a
unitary power dilation, the cited theorem of Eschmeier is in fact a generalization
of the classical single-operator result. However, as remarked in [6], it is quite nat-
ural to ask whether the above invariant-subspace result for spherical contractions
remains true if the Harte spectrum σH(T) is replaced by the Taylor spectrum σ(T)
which is in many respects a more natural choice of a joint spectrum for a commut-
ing n-tuple T ∈ L(H)n (and always contains the Harte spectrum). It is the aim of
the present paper to answer this question in the affirmative if n = 2 even in the
more general strictly pseudoconvex case.

To be more specific, let X ⊂ Cn be a Stein submanifold of fixed dimension
1 6 dimC(X) 6 n and let ∅ 6= D b X be a relatively compact, strictly pseudocon-
vex open subset which will be kept fixed throughout this article. In the following,
we write A(D) for the algebra of all continuous complex-valued functions on D
which are holomorphic on D equipped with the supremum norm, and we denote
by H∞(D) the algebra of all bounded holomorphic functions on D equipped with
its canonical dual algebra structure (see Section 2.1 in [4] for details).

For the remainder of this paper, H always denotes a separable complex
Hilbert space. A commuting n-tuple T ∈ L(H)n possessing a contractive A(D)-
functional calculus ΦT : A(D) → L(H) will be called a von Neumann n-tuple
over D. As pointed out in Section 2.3 of [4], such a representation ΦT is unique
and necessarily extends Taylor’s holomorphic functional calculus for T.

By a ∂D-unitary dilation of a von Neumann n-tuple T ∈ L(H)n over D
we mean a commuting n-tuple N ∈ L(K)n of normal operators acting on some
possibly larger Hilbert space K ⊃ H with σ(N) ⊂ ∂D and ΦT( f ) = PHΦN( f )|H
for each f ∈ A(D). Here PH denotes the orthogonal projection from K onto
H. Note that, according to the unitary dilation theorem of Sz.-Nagy and the von
Neumann inequality, each single contraction T ∈ L(H) fits into the context of von
Neumann n-tuples possessing a ∂D-unitary dilation (with n = 1 and D = D).

Our aim is to show that a von Neumann pair T ∈ L(H)2 over a strictly
pseudoconvex subset D b X of a Stein submanifold X ⊂ C2 has a non-trivial
invariant subspace if it possesses a ∂D-unitary dilation and dominating Taylor
spectrum σ(T) in D (Corollary 4.7).

As in the single-variable theory it suffices to prove this invariant-subspace
result under some additional continuity hypotheses on the representation ΦT . To
be more precise, recall that a representation Φ : A(D) → L(H) is said to be of
class C0· if it is sequentially weak∗-SOT continuous. In this case Φ extends in a
unique way to a representation of H∞(D) (usually again denoted by Φ) having
the same continuity property. We call a von Neumann n-tuple T ∈ L(H)n over
D of type C0· if the corresponding representation ΦT is of class C0·. If T∗ rather
than T itself satisfies the C0·-condition, then we say that T belongs to the class
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C·0. A well-known argumentation scheme can be used to show that if T is a von
Neumann n-tuple over D being neither of class C0· nor of class C·0, then T has a
non-trivial hyperinvariant subspace or the components of T are scalar multiples
of the identity (cf. Section 3.1 in [4]). From this and a simple duality argument
it follows that the proof of our invariant-subspace theorem reduces to the case
where T is of class C·0.

The richness condition on the Taylor spectrum of T guarantees that in this
case the H∞(D)-functional calculus ΦT (being surely weak∗ continuous by the
C·0-condition) is isometric. In general a von Neumann n-tuple T ∈ L(H)n over
D is said to be of class A if it possesses a ∂D-unitary dilation and, in addition, an
isometric and weak∗ continuous H∞(D)-functional calculus ΦT (which then nec-
essarily extends the A(D)-functional calculus of T). The solution of the desired
invariant-subspace problem now relies on the structure theory of von Neumann
n-tuples in the class A∩ C·0 as developed in [4].

To avoid technical difficulties, let us assume for a moment that X = Cn.
(Note that a restriction to the case n = 2 is not necessary at this stage.) We show
first that each von Neumann n-tuple T of the class A ∩ C·0 over D for which
the set σe(T) ∪ Int(σ(T) \ σe(T)) is dominating in D is reflexive (Proposition 4.4).
The proof of this statement is an application of the Scott Brown technique and de-
pends on the fact that we are able to factorize point evaluations over the essential
spectrum (Section 2) and the interior points of the Fredholm spectrum (Section 3).

The announced invariant-subspace result can now be obtained from the
above reflexivity assertion by combining the standard reductions, namely σH(T)
⊂ σe(T) and T ∈ [C·0], with the observation that in the case n = 2 the Taylor spec-
trum of T possesses the representation σ(T) = σH(T)∪ σe(T)∪ Int(σ(T) \ σe(T)).

In particular, applying Corollary 4.7 to the special case X = C2 and D = B2,
one immediately obtains that each spherical contraction T ∈ L(H)2 of length 2
with a spherical dilation and dominating Taylor spectrum in B2 possesses a non-
trivial invariant subspace.

2. ESSENTIAL SPECTRUM AND HARTE SPECTRUM

Fix a Stein submanifold X ⊂ Cn, a relatively compact strictly pseudoconvex
open subset ∅ 6= D b X and a separable complex Hilbert space H. Let T ∈
L(H)n denote a commuting n-tuple of operators possessing a weak∗ continuous
functional calculus Φ : H∞(D)→ L(H) over the dual algebra H∞(D).

For any natural number M > 1, Φ induces a representation Φ(M) of H∞(D)
on the Hilbert space HM given by the assignment f 7→ Φ( f )(M). The dual rep-
resentation corresponding to Φ is the map Φ∗ : H∞(D∗) → L(H), f 7→ Φ( f∗)∗,
where D∗ denotes the image of D under the complex conjugation z 7→ z, z ∈ Cn,
and f∗ ∈ H∞(D∗) is defined by f∗(z) = f (z) for z ∈ D∗ (see the remarks follow-
ing Corollary 2.3.7 in [4] for a more detailed explanation).
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Given vectors x, y ∈ H, Φ induces a weak∗ continuous vector functional

x⊗ y : H∞(D)→ C, f 7→ 〈Φ( f )x, y〉
on H∞(D). To distinguish the vector functionals belonging to Φ, Φ(M) and Φ∗
we denote them by x⊗ y, x⊗M y and x⊗∗ y, respectively. The space of all weak∗
continuous linear forms on H∞(D) will be abbreviated by Q(D) in the sequel.
The main aim of this paper is to represent point evaluations

Eλ : H∞(D)→ C, f 7→ f (λ) with λ ∈ D,

as vector functionals via Φ(M) with some M > 1, i.e. to solve the equation Eλ =
x⊗M y with x, y ∈ HM for as many λ ∈ D as possible.

Before considering this factorization problem in more detail we have to fix
some notations concerning the Koszul complex and the Taylor spectrum. Let
p ∈ {0, . . . , n} be an integer. We write Λp(n, H) for the complex vector space
of all p-forms in n indeterminates e1, . . . , en with coefficients in H. Recall that
Λ0(n, H) = H and that, for 1 6 p 6 n, each element x ∈ Λp(n, H) has a unique
representation

x = ∑
16i1<···<ip6n

x(i1,...,ip)ei1 ∧ · · · ∧ eip = ∑
|I|=p

xIeI with xI ∈ H.

Here, the symbol ∑
|I|=p

has to be understood as an abbreviation of the sum in the

middle term and, by definition, eI = ei1 ∧ · · · ∧ eip , for I = (i1, . . . , ip) ∈ Np. If

|I| = 0, then we set eI = 1 ∈ C. The formula
〈

∑
|I|=p

xIeI , ∑
|I|=p

yIeI

〉
= ∑
|I|=p
〈xI , yI〉

defines a scalar product on the space Λp(n, H) turning it into a Hilbert space

which is isometrically isomorphic to H(n
p). Consequently, the direct sum

Λ(n, H) =
n⊕

p=0
Λp(n, H)

can be identified with H2n
(as a Hilbert space).

Given a commuting n-tuple T = (T1, . . . , Tn) ∈ L(H)n, the Koszul complex
K•(T, H) induced by T is the finite complex

0←− K0(T, H)
δ1(T)←− K1(T, H)

δ2(T)←− · · · δn(T)←− Kn(T, H)←− 0

consisting of the spaces Kp(T, H) = Λp(n, H) and the unique linear mappings
δp(T) : Λp(n, H)→ Λp−1(n, H) satisfying

δp(T)(xeI) =
p

∑
j=1

(−1)j−1(Tij x)ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip for x ∈ H, |I| = p.

The cochain Koszul complex K•(T, H) induced by T is given by

0 −→ K0(T, H)
δ0(T)−→ K1(T, H)

δ1(T)−→ · · · δn−1(T)−→ Kn(T, H) −→ 0,
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where Kp(T, H) = Λp(n, H) and δp(T) : Λp(n, H) → Λp+1(n, H) is the unique
linear map with the property

δp(T)(xeI) =
n

∑
j=1

(Tjx)ej ∧ eI for all x ∈ H, |I| = p.

It is elementary to check that there exists a universal constant C = C(n) > 0 such
that

‖δp(T)‖, ‖δp(T)‖ 6 C max
j=1,...,n

‖Tj‖ for all p = 0, . . . , n.

The following well-known algebraic relation between the boundary maps of the
Koszul complex and the Koszul cochain complex plays a central role in the solu-
tion of the factorization problem for point evaluations.

LEMMA 2.1. Let S, T ∈ L(H)n be two commuting n-tuples such that the com-
ponents of T commute pairwise with the components of S. Then, for p = 0, . . . , n and
M = (n

p), the identity

δp−1(T)δp(S) + δp+1(S)δp(T) =
n

∑
j=1

S(M)
j T(M)

j

holds on HM = Λp(n, H).

Before we can demonstrate how the lemma is actually used to factorize
point evaluations, we have to fix some more notations. Recall that the Taylor
spectrum σ(T) of a commuting n-tuple T ∈ L(H)n is by definition the set

σ(T) = {λ ∈ Cn : K•(λ− T, H) is not exact}.
Here, λ − T denotes the n-tuple (λ1 − T1, . . . , λn − Tn). The non-exactness of
K•(λ− T, H) is equivalent to the condition that at least one of the corresponding
cohomology groups

Hp(λ− T, H) = ker δp(λ− T)/ran δp−1(λ− T) with 0 6 p 6 n

is non-trivial. Since we are in the Hilbert space case, a point λ ∈ Cn belongs to
the so called essential Taylor spectrum

σe(T) = {λ ∈ Cn : dim Hp(λ− T, H) = ∞ for at least one p ∈ {0, . . . , n}}
if and only if there exist a natural number p ∈ {0, . . . , n} as well as an orthonor-
mal sequence

(xk) in Λp(n, H)ª ran δp−1(λ− T) satisfying δp(λ− T)xk
k→∞−→ 0.

The Harte spectrum (essential Harte spectrum) of T can be defined as the union

σH(T) = σl(T) ∪ σr(T), σH
e (T) = σle(T) ∪ σre(T)
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of the following subsets of the Taylor spectrum:

σle(T) = {λ ∈ Cn : dim H0(λ− T, H) = ∞ or δ0(λ− T) has non-closed range},
σl(T) = {λ ∈ Cn : H0(λ− T, H) 6= 0 or δ0(λ− T) has non-closed range},

σre(T) = {λ ∈ Cn : dim Hn(λ− T, H) = ∞} = σle(T∗)∗,
σr(T) = {λ ∈ Cn : Hn(λ− T, H) 6= 0} = σl(T∗)∗.

Note that a point λ ∈ Cn belongs to σle(T) if and only if, for each finite dimen-
sional subspace M ⊂ H = Λ0(n, H), there exists an orthonormal sequence (xk)

in H ªM satisfying δ0(λ− T)xk
k→∞−→ 0. Moreover,

n⋂

j=1

ker(λj − Tj) = H0(λ− T, H) 6= {0} whenever λ ∈ σl(T) \ σle(T).

The following observation allows us to factorize point evaluations in points
belonging to the essential spectrum σe(T).

LEMMA 2.2. Let λ1, . . . , λr ∈ D be arbitrary points, r ∈ N. Then there exists a
constant c > 0 (depending on λ1, . . . , λr and the representation Φ) with the following
property:

Let c1, . . . , cr > 0 be non-negative real numbers such that
r
∑

j=1
cj 6 1. Suppose that,

for some p ∈ {0, . . . , n}, there exists an orthonormal system (xj)j=1,...,r in Λp(n, H)ª
r∨

j=1
ran δp−1(λj − T). Then the vector

x =
r

∑
j=1

√
cjxj ∈ Λp(n, H) = H(n

p)

satisfies the estimate
∥∥∥x⊗(n

p)
x−

r
∑

j=1
cjEλj

∥∥∥ 6 c
r
∑

j=1
‖δp(λj − T)xj‖.

Proof. For abbreviation, we set N = (n
p). Starting with an arbitrary f ∈

H∞(D), ‖ f ‖∞,D 6 1, we consider the expression

(
x⊗N x−

r

∑
j=1

cjEλj

)
( f ) =

r

∑
j=1

√
cj〈Φ(N)( f )xj, x〉 −

r

∑
j=1

√
cj〈 f (λj)xj, x〉

=
r

∑
j=1

√
cj〈Φ(N)( f − f (λj))xj, x〉.

For each 1 6 j 6 r, there exists an n-tuple gj = (gj
1, . . . , gj

n) ∈ H∞(D)n of func-

tions with norm ‖gj
i‖∞,D 6 γ, for 1 6 i 6 n, 1 6 j 6 r, solving the division
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problem

f − f (λj) =
n

∑
i=1

(λ
j
i − zi)gj

i

(see Proposition 2.1.6 (c) in [4] and note that the constant γ > 0 does not depend
on f but may depend on λ1, . . . , λr). Applying the functional calculus Φ(N) to
this equation and making use of Lemma 2.1, we obtain the identity

Φ(N)( f − f (λj)) =
n

∑
i=1

(λ
j
i − T(N)

i )Φ(N)(gj
i)

= δp−1(λj − T)δp(Φ(gj)) + δp+1(Φ(gj))δp(λj − T)

for j = 1, . . . , r. In view of the orthogonality relation x⊥
r∨

j=1
ran δp−1(λj − T)

we deduce that the following estimate holds uniformly for f in the unit ball of
H∞(D):

∣∣∣
(

x⊗N x−
r

∑
j=1

cjEλj

)
( f )

∣∣∣ =
∣∣∣

r

∑
j=1

√
cj〈δp+1(Φ(gj))δp(λj − T)xj, x〉

∣∣∣

6 C‖Φ‖γ
r

∑
j=1
‖δp(λj − T)xj‖.

This observation completes the proof.

As a canonical application (cf. Albrecht and Chevreau [1] and Eschmeier
[5]) one obtains the following factorization results.

COROLLARY 2.3. (i) For each λ ∈ σe(T) ∩ D, there exists an orthonormal se-

quence (xk) in Λ(n, H) = HN , N = 2n, satisfying xk ⊗N xk
k→∞−→ Eλ.

(ii) If λ1, . . . , λr ∈ σle(T) ∩ D, then, for any choice of non-negative real numbers

c1, . . . , cr > 0 with
r
∑

j=1
cj 6 1, there exists an orthogonal sequence (xk) of vectors in the

unit ball of H such that xk ⊗ xk
k→∞−→

r
∑

j=1
cjEλj .

(iii) The assertion of part (ii) remains true after replacing σle(T) by σre(T).

Proof. A point λ ∈ D belongs to σe(T) if and only if there exists an index
p ∈ {0, . . . , n} and an orthonormal sequence (xk) in Λp(n, H) ª ran δp−1(λ −
T) ⊂ Λ(n, H) satisfying δp(λ− T)xk

k→∞−→ 0. Applying the previous lemma, we
conclude that (i) holds.

Using the remarks concerning the left essential spectrum σle(T) to be found
in the preceding section, one easily checks that, for λ1, . . . , λr ∈ σle(T) ∩ D, there
is an orthonormal family

(xj
k)

16j6r
k>1 in H such that δ0(λj − T)xj

k
k→∞−→ 0 for each j = 1, . . . , r.
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Once again by the previous lemma, the vectors xk =
r
∑

j=1

√cjx
j
k, k > 1, have all the

desired properties.
Part (iii) follows by a standard duality argument: Given λ1, . . . , λr ∈ σre(T)

∩D, we apply part (ii) to obtain an orthogonal sequence (xk) of vectors in the

unit ball of H such that xk ⊗∗ xk
k→∞−→

r
∑

j=1
cjEλ∗j . To conclude the proof, it suffices

to check the elementary identity
∥∥∥x ⊗ x −

r
∑

j=1
cjEλj

∥∥∥ =
∥∥∥x ⊗∗ x −

r
∑

j=1
cjEλ∗j

∥∥∥ for

every x ∈ H.

As we just have seen, it is possible to factorize convex combinations of point
evaluations over the left and the right essential spectrum. The following lemma
allows us to treat the Fredholm part of the Harte spectrum.

LEMMA 2.4. Suppose that λ1, . . . , λr ∈ D are pairwise distinct and satisfy either
λ1, . . . , λr ∈ σl(T) \ σle(T) or λ1, . . . , λr ∈ σr(T) \ σre(T). Then, for any choice of

non-negative real numbers c1, . . . , cr > 0 with
r
∑

j=1
cj 6 1, there exist vectors x, y ∈ H

such that ‖x‖, ‖y‖ 6 1 and x⊗ y =
r
∑

j=1
cjEλj .

Proof. A duality argument (cf. the proof of Corollary 2.3) reduces the as-
sertion to the case where λ1, . . . , λr ∈ (σl(T) \ σle(T)) ∩ D. In this situation, we
find an (automatically linearly independent) system (y1, . . . , yr) of joint eigen-

vectors 0 6= yj ∈
n⋂

i=1
ker(λ

j
i − Ti). Of course we are allowed to assume that

c =
r
∑

j=1
cj > 0. By a result of Zenger (Proposition 2.6.20 in [10]), there exist a

vector x ∈ H, ‖x‖ = 1, as well as complex numbers µ1, . . . , µr ∈ C such that

y =
r
∑

j=1
µjyj satisfies ‖y‖ = 1, and 〈µjyj, x〉 = cj/c, j = 1, . . . , r. To complete

the proof, fix f ∈ H∞(D) and choose gj
i ∈ H∞(D), 1 6 i 6 n, 1 6 j 6 r, with

f − f (λj) =
n
∑

i=1
(λ

j
i − zi)gj

i to obtain

(cy⊗ x)( f )−
r

∑
j=1

cj f (λj) =
r

∑
j=1

µjc〈Φ( f − f (λj))yj, x〉

=
r

∑
j=1

µjc
〈 n

∑
i=1

Φ(gj
i)(λ

j
i − Ti)yj, x

〉
= 0.

In connection with Corollary 2.3 this implies the possibility to factorize ab-
solute convex combinations of point evaluations over the Harte spectrum.
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COROLLARY 2.5. Suppose that λ1, . . . , λr ∈ σH(T) ∩ D are pairwise distinct.

Then, given any complex numbers c1, . . . , cr ∈ C with
r
∑

j=1
|cj| 6 1, there exist sequences

(xk)k>1, (yk)k>1 in H16 satisfying ‖xk‖, ‖yk‖ 6 4, k > 1, and xk⊗16 yk
k→∞−→

r
∑

j=1
cjEλj .

Proof. We first restrict ourselves to the case of convex combinations, that is,
we assume that c1, . . . , cr > 0 are non-negative real numbers.

We write cλj = cj and Λ = {λj : j = 1, . . . , r} ⊂ σl(T) ∪ σr(T), and decom-
pose a given convex combination

L =
r

∑
j=1

cλjEλj =
4

∑
i=1

Li with Li = ∑
λ∈Ji

cλEλ for i = 1, . . . , 4,

where J1 ⊂ Λ ∩ σle(T), J2 ⊂ Λ ∩ (σl(T) \ σle(T)), J3 ⊂ Λ ∩ σre(T) and J4 ⊂
Λ ∩ (σr(T) \ σre(T)) are chosen to be pairwise disjoint sets with J1 ∪ · · · ∪ J4 =
Λ. Corollary 2.3 and the preceding lemma guarantee the existence of sequences

(xi
k)k>0, (yi

k)k>0, i = 1, . . . , 4, in the closed unit ball of H such that xi
k ⊗ yi

k
k→∞−→ Li,

i = 1, . . . , 4. Setting xk = (x1
k , x2

k , x3
k , x4

k) ∈ H4 and yk = (y1
k , y2

k , y3
k , y4

k) ∈ H4,
k > 1, we obtain sequences in the closed ball of radius 2 centered at the origin in
H4 satisfying xk ⊗4 yk → L.

Finally, if L is actually an absolute convex combination, then a decomposi-
tion into real and imaginary parts and the corresponding positive and negative
parts yields the desired sequences in H16.

3. INTERIOR POINTS OF THE FREDHOLM SPECTRUM

Let K ⊂ Cn be a compact set and let λ ∈ K be an arbitrary point in K. In
what follows, a subset ω ⊂ K will be said to be an analytically deformed disc
inside K with center λ, if there exist a Stein open zero neighborhood V ⊂ Cn and
a biholomorphic mapping h : V → h(V) ⊂ Cn such that

h(V) ⊃ K, h(0) = λ, and ω = h({0} × Dε(0)) ⊂ K for some ε > 0.

Here {0} stands for {(0, . . . , 0)} ⊂ Cn−1 and Dε(0) = {z ∈ C : |z| < ε} denotes a
planar open disc with radius ε centered at the origin.

If T ∈ L(H)n is a commuting n-tuple of operators, then we define

σ0(T) =
{

λ ∈ σ(T) :
There exists an analytically deformed disc ω inside

σ(T) with center λ such that ω ⊂ σ(T) \ σe(T)

}
.

Note that, for trivial reasons, the inclusion

Int(σ(T) \ σe(T)) ⊂ σ0(T)

holds. Moreover, if ω = h({0} × Dε(0)) is an analytically deformed disc inside
σ(T) with center λ ∈ σ(T) and ω ⊂ σ(T) \ σe(T), then obviously the set ω∗ =
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h∗({0} × Dε(0)) ⊂ σ(T∗) \ σe(T∗) is an analytically deformed disc inside σ(T∗)
with center λ∗. Therefore we have

σ0(T∗) = σ0(T)∗.

The definition of σ0(T) is motivated by the following observation.

LEMMA 3.1. Let T ∈ L(H)n be a commuting n-tuple and suppose that, for some
ε > 0, the inclusion {0} × Dε(0) ⊂ σ(T) \ σe(T) holds. Then there exists an integer
p ∈ {0, . . . , n} such that dim Hp( fk(T), H) < ∞, k ∈ N, and

lim
k→∞

dim Hp( fk(T), H) = ∞,

where fk : Cn → Cn is defined by fk(z) = (z1, . . . , zn−1, zk
n) for each k ∈ N.

Proof. Choose a decreasing sequence (rj)j>1 in (0, ε) such that rj ↓ 0. For
abbreviation, we set wk,j = (0, . . . , 0, rk

j ) with k, j ∈ N. For every choice of k, j ∈ N,
the equation

fk(z) = wk,j

has exactly k distinct solutions in Cn, namely

z(m)
k,j =

(
0, . . . , 0, rj exp

(
2πi

m− 1
k

))
∈ {0} × Dε(0) m = 1, . . . , k.

Therefore we have f−1
k ({wk,j}) ⊂ σ(T) \ σe(T), implying

wk,j ∈ σ( fk(T)) \ σe( fk(T)) for all k, j ∈ N
by the spectral mapping theorems for the Taylor and the essential Taylor spec-
trum. Similarly, 0 ∈ σ( fk(T)) \ σe( fk(T)), for k ∈ N, and hence the dimension
dim Hp( fk(T), H) is finite, 0 6 p 6 n.

Since, by definition, we have wk,j
j→∞−→ 0 for any fixed k ∈ N, and since the

dimension of the cohomology groups of the Koszul complex is upper-semiconti-
nuous (Proposition 9.4.5 in [9]), we can choose a strictly increasing sequence
(j(k))k>1 of integers such that the corresponding sequence ωk = wk,j(k), k > 1,
fulfills the estimate

dim Hp( fk(T), H) = dim Hp(− fk(T), H) > dim Hp(ωk − fk(T), H)

whenever 0 6 p 6 n. Using the pre-images ζ
(m)
k = z(m)

k,j(k), m = 1, . . . , k, of ωk

under fk, one has the identification

Hp(ωk − fk(T), H) =
k⊕

m=1

Hp(ζ
(m)
k − T, H) where 0 6 p 6 n

(see the proof of Theorem 10.3.13 in [9]). For k ∈ N and 0 6 p 6 n, consider the
sets

Nk = {ζ(m)
k : m = 1, . . . , k} and Np

k = {z ∈ Nk : dim Hp(z− T, H) > 1},
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and observe that Nk ⊂ σ(T) is the union Nk =
n⋃

p=0
Np

k . Since, for each k ∈ N,

the set N(n+1)k has exactly (n + 1)k elements, there exists a sequence (pk)k>1 in
{0, . . . , n} satisfying ]Npk

(n+1)k > k. Since (pk)k>1 hits at least one p ∈ {0, . . . , n}
infinitely many times, we can find a strictly increasing sequence (kj) in N satisfy-
ing pkj

= p, j ∈ N. Writing κ(j) = (n + 1)kj we deduce the estimate

∞ > dim Hp( fκ(j)(T), H) > dim Hp(ωκ(j) − fκ(j)(T), H)

= dim
κ(j)⊕

m=1

Hp(ζ
(m)
κ(j) − T, H) > ]Np

κ(j).

Because of ]Np
κ(j) > k j > j, j ∈ N, the proof is complete.

Replacing T by the n-tuple induced by T on the cohomology groups of
fk(T), one is lead exactly to the situation described in the next lemma. Given
an arbitrary subset K ∈ Cn, we write O(K) to denote the set of all holomorphic
functions f : U → C defined on an open neighborhood U of K in Cn.

LEMMA 3.2. Let Z be a Hilbert space of dimension d = dim(Z) < ∞ and let
S ∈ L(Z)n be an n-tuple of the form S = (0, . . . , 0, N), where N ∈ L(Z) is a nilpotent
operator. Then we have σ(S) = {0} and there exists an orthonormal basis (x1, . . . , xd)
of Z such that

〈 f (S)xi, xi〉 = f (0) for each f ∈ O({0}), 1 6 i 6 d.

Proof. By the projection property of the Taylor spectrum, we have σ(S) =
{0}. For later use we remark that the continuous algebra homomorphism

O({0})→ L(Z), f 7→ τN( f (0, . . . , 0, ·)),

where τN denotes the holomorphic functional calculus of N, coincides with the
holomorphic functional calculus of S (use Lemma 5.1.1 (b) of [9]).

If l ∈ N denotes the smallest natural number with Nl = 0, then we have the
orthogonal direct sum decomposition

Z = ker Nl =
l⊕

j=1

(ker N j ª ker N j−1)

containing no zero summands. We intend to show that, whenever 1 6 j 6 l and
x ∈ ker N j ª ker N j−1 satisfies ‖x‖ = 1, then x solves the equation

〈 f (S)x, x〉 = f (0) for every f ∈ O({0}).

This clearly suffices to finish the proof. To realize this claim, suppose that we are
given an ε > 0 and a function f ∈ O(Dε(0)n). Then define g = f (0, . . . , 0, •) ∈
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O(Dε(0)) and let

q(z) = f (0) +
j−1

∑
m=1

amzm for z ∈ Dε(0)

be the Taylor polynomial of order (j − 1) of g at the origin. Since g − q has a
zero of order > j at the origin, there exists a function h ∈ O(Dε(0)) satisfying
g(z) = q(z) + zjh(z), z ∈ Dε(0). Applying the holomorphic functional calculus
leads to the formula

f (S) = g(N) = f (0) +
j−1

∑
m=1

amNm + h(N)N j

which implies that f (S)x− f (0)x ∈ ker(N j−1) and hence completes the proof.

LEMMA 3.3. Let H be a separable Hilbert space and let A ⊂ H be a subset which,
for each natural number k > 1, contains an orthonormal system S ⊂ A of length ]S = k.
Then A contains a weak zero sequence of unit vectors.

Proof. Choose an arbitrary dense sequence (zn)n>1 in the closed unit sphere
of H. Our aim is to construct a sequence (e(j))j of unit vectors in A satisfying

|〈e(j), zi〉| 6 1√
j

for all i, j ∈ Nwith i 6 j.

The latter relation clearly implies that (e(j))j tends to zero weakly.
Fix j > 1. To obtain e(j), we first choose an orthonormal system (e1, . . . , ej2)

in H. Since we have
j2

∑
k=1
|〈ek, zi〉|2 6 1 for every i ∈ N, each of the sets Ni =

{k : |〈ek, zi〉| > 1/
√

j} satisfies ]Ni < j. Hence there exists an element k ∈
{1, . . . , j2} \

j⋃
i=1

Ni. The vector e(j) = ek then clearly has the desired properties.

Let Ψ : O(σ(T)) → L(H) denote the holomorphic functional calculus of T,
and let Z = M ª N be a Ψ-semi-invariant subspace. Writing P ∈ L(M) for the
orthogonal projection of M onto Z, it is not hard to show that the induced map
P̂ : M/N → Z is a topological isomorphism making the diagram

Z
TZ−−−−→ Z

P̂

x
xP̂

M/N
(T|M)/N−−−−−→ M/N

commutative. Here, as usual, TZ = (PT1|Z, . . . , PTn|Z) ∈ L(Z)n, denotes the
compression of T onto Z.

Now suppose that the spectral inclusion σ(TZ) ⊂ σ(T) holds and that
U ⊂ Cn is a Stein open neighborhood of σ(T). Then the uniqueness property
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of Taylor’s holomorphic functional calculus (see Lemma 5.1.1 (b) in [9]) guaran-
tees that ΨZ|O(U) coincides with the holomorphic functional calculus of TZ re-
stricted to O(U); here ΨZ( f ) = P f (T)|Z, f ∈ O(σ(T)) denotes the compression
of Ψ onto Z.

After these preliminaries we are able to prove the following factorization
result.

THEOREM 3.4. Let T ∈ L(H)n be a commuting n-tuple of continuous linear op-
erators on a separable complex Hilbert space. Given λ ∈ σ0(T), there exists a weak zero
sequence (xk) of unit vectors in HN , N = 2n such that, for every Stein open neighbor-
hood U ⊂ Cn of σ(T), we have

〈 f (T(N))xk, xk〉 = f (λ) for all f ∈ O(U), k ∈ N.

Proof. The proof is divided into two steps.
(1) Instead of λ ∈ σ0(T) we first make the stronger requirement that λ = 0

and {0} × Dε(0) ⊂ σ(T) \ σe(T). According to Lemma 3.1 and Lemma 3.3 it
suffices to check that, for each k ∈ N, the set

A =

{
x ∈ HN :

〈 f (T(N))x, x〉 = f (0) whenever f ∈ O(U) and
U ⊂ Cn is a Stein open neighborhood of σ(T)

}

contains an orthonormal system of length dk = dim Hp( fk(T), H), where p ∈
{0, . . . , n} and fk : Cn → Cn are defined as in the statement of Lemma 3.1.

To check this, fix k ∈ N and set F = fk(T) = (T1, . . . , Tn−1, Tk
n) ∈ L(H)n.

Since the components of T(N) commute with δj(F), j = 0, . . . , n, and since the
holomorphic functional calculus preserves intertwining relations, the finite di-
mensional space

Z = ker δp(F)ª ran δp−1(F) ⊂ Λ(n, H) = HN

is semi-invariant for the holomorphic functional calculus of T. (Note that the
mapping δp−1(F) : Λp−1(n, H) → ker δp(F) has finite codimensional and hence
closed range, since by hypothesis 0 ∈ σ(T) \ σe(T).) If PZ ∈ L(ker δp(F)) denotes
the orthogonal projection onto Z, then, modulo the topological identification

Hp(F, H) = ker δp(F)/ran δp−1(F)
P̂Z−→ Z,

the n-tuple induced by T on the cohomology group Hp(F, H) coincides with the
compression S ∈ L(Z)n of T(N) onto Z. Since F = (T1, . . . , Tn−1, Tk

n) induces the
zero tuple on Hp(F, H), the components of S satisfy S1 = · · · = Sn−1 = 0 = Sk

n.
Fix an orthonormal basis B of Z as in the statement of Lemma 3.2. Then, for
any Stein open neighborhood U ⊃ σ(T) ⊃ {0} = σ(S) and any f ∈ O(U), the
remarks preceding the theorem imply

〈 f (T(N))x, x〉 = 〈 f (S)x, x〉 = f (0) for every x ∈ B.

Hence A contains an orthonormal system of length dk, as was to be shown.
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(2) Given λ ∈ σ0(T), we fix a corresponding biholomorphic map h : V →
h(V) ⊂ Cn (V ⊂ Cn Stein open neighborhood of the origin) such that h(V) ⊃
σ(T), h(0) = λ and h({0} × Dε(0)) ⊂ σ(T) \ σe(T) for some ε > 0.

The n-tuple W = h−1(T) then satisfies

σ(W) \ σe(W) = h−1(σ(T) \ σe(T)) ⊃ {0} × Dε(0).

By part (1) of the proof, there exists a weak zero sequence (xk) of unit vectors in
HN such that

〈g(W(N))xk, xk〉 = g(0)

holds whenever Ũ is a Stein open neighborhood of σ(W) and g ∈ O(Ũ). Now
suppose that U ⊃ σ(T) is a Stein open set in Cn. Then we may take Ũ =
h−1(h(V) ∩U) ⊃ σ(W) to deduce that, for any f ∈ O(U), the desired identity

〈 f (T(N))xk, xk〉 = 〈 f ◦ h(W(N))xk, xk〉 = f ◦ h(0) = f (λ)

holds.

Note that up to now we did not make use of the weak∗ continuous H∞(D)-
functional calculus Φ : H∞(D)→ L(H) for T. But since Φ necessarily extends the
holomorphic functional calculus of T (see Lemma 2.3.4 in [4]), we finally obtain:

COROLLARY 3.5. Let T ∈ L(H)n be a commuting n-tuple possessing a weak∗
continuous functional calculus Φ : H∞(D) → L(H) over a relatively compact strictly
pseudoconvex open subset D b X of a Stein submanifold X ⊂ Cn. Then, for each
λ ∈ σ0(T) ∩ D, there exists a weak zero sequence (xk) of unit vectors in HN , N = 2n,
satisfying xk ⊗N xk = Eλ, k ∈ N.

4. REFLEXIVITY AND INVARIANT SUBSPACES

In the present section we demonstrate how the factorization technique es-
tablished above can be applied to attack the invariant-subspace and the reflexiv-
ity problem for special classes of von Neumann n-tuples over D.

Recall that a representation Φ : H∞(D)→ L(H) is of type C0· if it is sequen-
tially weak∗-SOT continuous, whereas we call Φ of type C·0 if the dual represen-
tation Φ∗ satisfies the C0·-condition. If Φ belongs both to the class C0· and the
class C·0, then Φ is said to be a C00-representation.

Let Φ : H∞(D) → L(H) be a weak∗ continuous representation. If, for each
sequence (Lk)k>1 in Q(D), there exist vectors x ∈ H and yk ∈ H, k > 1, such that

Lk = x⊗ yk k > 1,

then Φ is said to possess the factorization property (A1,ℵ0). If, in this case, Φ = ΦT
for a von Neumann n-tuple T of classA over D, then T is called to be of classA1,ℵ0 .

Given a real number θ > 0 we write L(θ) = LΦ(θ) to denote the set of all
elements L ∈ Q(D) with the following property: For each ε > 0 and any choice
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of vectors a1, . . . , as, b1, . . . , bs ∈ H (s ∈ N arbitrary), there exist vectors x, y ∈ H
satisfying:

(i) ‖x‖ 6 1, ‖y‖ 6 1;
(ii) ‖L− x⊗ y‖ < θ + ε;

(iii) ‖x⊗ bi‖ < ε, ‖ai ⊗ y‖ < ε, i = 1, . . . , s.
It is well known (see Lemma 1.1 in [7]) that the sets L(θ) ⊂ Q(D), θ > 0,

are norm-closed and absolutely convex. If there are real numbers γ > θ > 0 such
that the inclusion

{L ∈ Q(D) : ‖L‖ 6 γ} ⊂ L(θ)
holds, then we say that Φ has property (∆θ,γ).

Using results of Bercovici, Foiaş and Pearcy one can show that if Φ has prop-
erty (∆0,1), then the operator algebra Φ(H∞(D)) is super-reflexive (cf. Remark 2.5
of [7], and Proposition 0.1 of [1]). Moreover, in the case of a C00-representation
Φ, the validity of property (∆θ,γ), where γ > θ > 0 are fixed numbers, implies
that Φ has property (∆0,1) (see Lemma 2.2 in [7]). If Φ is even a contractive C00-
representation and Φ(N) satisfies property (∆θ,γ) for some numbers γ > θ > 0,
then Φ has property (∆0,1) (see Proposition 2.3 of [7]).

The reader should recall the following fact which is quite useful in the above
context (see Lemma 1.1 in [5]).

LEMMA 4.1. Let Φ : H∞(D)→ L(H) be a weak∗ continuous representation and
let (xk) be a weak zero sequence in H. If Φ is of class C0·, then, for any vector z ∈ H, we

have z⊗ xk
k→ 0. If Φ is of class C·0, then, for any vector z ∈ H, the analogous relation

xk ⊗ z k→ 0 holds.

The factorization results obtained in the preceding section allow us to for-
mulate a concrete richness condition on the spectrum of C00-representations im-
plying reflexivity. At least in the strictly pseudoconvex case, the following theo-
rem is an improvement of Albrecht and Chevreau ([1], Theorem 2.1).

THEOREM 4.2. Let T ∈ L(H)n be a von Neumann n-tuple of class C00 over D. If
σe(T) ∪ σ0(T) is dominating in D, then ΦT has property (∆0,1).

Proof. Set N = 2n and observe that, by Lemma 4.1 and the factorization
results stated as Corollary 2.3 (i) and Corollary 3.5, the inclusion

{Eλ : λ ∈ (σe(T) ∪ σ0(T)) ∩ D} ⊂ LΦ
(N)
T (0)

holds. Since the right-hand side is norm-closed and absolutely convex, we may
use the richness condition on the spectrum to deduce that Φ

(N)
T has property

(∆0,1). By the remarks preceding Lemma 4.1, this suffices to prove the theo-
rem.

Our next aim is to characterize the class A1,ℵ0 by means of a spectral condi-
tion in the spirit of Eschmeier ([8], Corollary 3.7 (viii)).
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PROPOSITION 4.3. Given a von Neumann n-tuple T ∈ L(H)n of class A over D,
the following assertions are equivalent:

(i) ΦT has property (A1,ℵ0);
(ii) there is a ΦT-semi-invariant subspace Z ⊂ H such that the compression TZ of

T onto Z is a von Neumann n-tuple of class A over D which is of type C·0 and has
dominating Harte spectrum σH(TZ) in D.

If one of these conditions is satisfied, then the dual operator algebra ΦT(H∞(D))
is super-reflexive.

Proof. That (i) implies (ii) is a consequence of Lemma 4.3.10 and Corol-
lary 4.4.3 (g) in [4]. Now suppose that (ii) holds. According to Corollary 5.2.6
and Corollary 4.4.3 in [4], it suffices to check that, for some N > 1, the n-tuple
T(N)

Z has the ρ-almost factorization property for some ρ > 0. We thus have to
show that, for a suitable choice of N ∈ N and ρ > 0, the factorization problem

‖L− x⊗
T(N)

Z
y‖ < ε and ‖x‖, ‖y‖ 6 ρ‖L‖1/2

is solvable for every choice of L ∈ Q(D) and ε > 0. Corollary 2.5 asserts that each
functional belonging to the absolutely convex hull

Γ({Eµ : µ ∈ σH(TZ) ∩ D})

can ρ-almost be factorized via Φ
(16)
TZ

with ρ = 8. The richness condition imposed
on the Harte spectrum σH(TZ) allows us to finish the proof of the equivalence
assertion. The super-reflexivity statement follows from Corollary 4.4.3 in [4].

Note that for the above proof to work it is essential that we are able to fac-
torize absolute convex combinations of point evaluations over the Harte spectrum.
To make the spectra σe(T) and σ0(T) accessible to the Scott Brown technique, we
use another approximation device.

Let θ > 0 be a real number. We write E r
θ (T) for the set of all elements

L ∈ Q(D) for which there exist sequences (xk), (yk) in H satisfying the following
requirements:

(i) ‖xk‖ 6 1, ‖yk‖ 6 1, k > 1;
(ii) lim

k→∞
‖L− xk ⊗ yk‖ 6 θ;

(iii) xk ⊗ z k→ 0 for each z ∈ H.

As pointed out in Remark 3.1 of [3], one can achieve that in addition the
sequence (yk) converges to zero weakly in H.

Given real numbers 0 6 θ < γ 6 1, we say that T has property Er
θ,γ if the

inclusion
{L ∈ Q(D) : ‖L‖ 6 γ} ⊂ Γ(E r

θ (T))

holds, where Γ(· · · ) denotes the closed absolutely convex hull. Corollary 4.4.3 in
[4] asserts that if, for some von Neumann n-tuple T of class A over D and N ∈ N,
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the n-tuple T(N) satisfies the condition Er
θ,γ for some 0 6 θ < γ 6 1, then T is of

class A1,ℵ0 and ΦT(H∞(D)) is super-reflexive.

PROPOSITION 4.4. Let T ∈ L(H)n be a von Neumann n-tuple of class A over
D. Suppose that T is of type C·0 and that σe(T) ∪ σ0(T) is dominating in D. Then T
satisfies property A1,ℵ0 and the dual operator algebra ΦT(H∞(D)) is super-reflexive.

Proof. Set N = 2n. Applying Lemma 4.1 and the factorization results ob-
tained in the previous section (Corollary 2.3 (i) and Corollary 3.5) we deduce that
the inclusion

{Eλ : λ ∈ (σe(T) ∪ σ0(T)) ∩ D} ⊂ E r
0(T(N))

holds. Forming the absolutely convex hull on both sides we infer that T(N) has
property Er

0,1. Now, a look at the above-mentioned Corollary 4.4.3 in [4] com-
pletes the proof.

As a consequence of the above reflexivity statement, we are able to extend
an invariant-subspace result for commuting n-tuples with normal boundary di-
lations due to Eschmeier (cf. Theorem 3.3 in [6]).

THEOREM 4.5. Let T ∈ L(H)n be a von Neumann n-tuple over D possessing
a ∂D-unitary dilation. If σH(T) ∪ σe(T) ∪ σ0(T) is dominating in D, then T has a
non-trivial invariant subspace.

Proof. If there exists an element λ ∈ σH(T) \ σe(T), then one of the spaces
n⋂

i=1
ker(λi − Ti) or

n
∑

i=1
(λi − Ti)H is a non-trivial hyperinvariant subspace for T.

Without loss of generality, we therefore may assume that σe(T) ∪ σ0(T) is dom-
inating in D. If T is neither of type C0· nor of type C·0, then T has a non-trivial
invariant subspace by Theorem 3.1.1 in [4]. By a simple duality argument, we
may restrict ourselves to the C·0 case. But then an application of the preceding
proposition suffices to finish the proof.

The formulation of the above theorem becomes particularly simple in the
case of commuting pairs of operators.

LEMMA 4.6. For each commuting pair T = (T1, T2) ∈ L(H)2, the identity

σ(T) = σH(T) ∪ σe(T) ∪ Int(σ(T) \ σe(T)) = σH(T) ∪ σe(T) ∪ σ0(T)

holds.

Proof. Suppose that λ ∈ σ(T) \ σH(T). Since in this case, the exterior coho-
mology groups of λ − T are trivial in this case, this implies H1(λ − T, H) 6= 0.
But then either λ ∈ σe(T) or dim H1(λ− T, H) is finite. In the latter case, λ− T is

a Fredholm pair and ind(λ− T) =
2
∑

i=0
(−1)i dim Hi(λ− T, H) = −dim H1(λ−

T, H) < 0, implying that the whole component ofC2 \ σe(T) containing λ belongs
to σ(T) \ σe(T), and hence λ ∈ Int(σ(T) \ σe(T)) ⊂ σ0(T).
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As an immediate consequence we obtain an invariant-subspace result based
on a richness condition on the whole Taylor spectrum.

COROLLARY 4.7. Let D b X be a relatively compact strictly pseudoconvex open
subset of a Stein submanifold X ⊂ C2 and let T ∈ L(H)2 be a von Neumann pair over
D possessing a ∂D-unitary dilation. If the Taylor spectrum σ(T) is dominating in D,
then T possesses a non-trivial invariant subspace.

In particular, each spherical contraction of length 2 with spherical dilation
and dominating Taylor spectrum in the open Euclidean unit ball B2 has a non-
trivial invariant subspace. However, the question whether an analogous result
holds for spherical contractions of length n > 3 still remains open.
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