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ABSTRACT. An AF C∗-algebra has a natural filtration as an increasing se-
quence of finite dimensional C∗-algebras. We show that it is possible to con-
struct a Dirac operator which relates to this filtration in a natural way and
which will induce a metric for the weak*-topology on the state space of the
algebra. It turns out that for AF C∗-algebras, there is no limit to the growth of
the eigenvalues of such a Dirac operator. We have obtained a kind of an in-
verse to this result, by showing that a phenomenon like this can only occur for
AF C∗-algebras. The results are then applied to a study of the classical Cantor
set.
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1. INTRODUCTION

Alain Connes has extended the notion of a compact metric space to the non
commutative setting of C∗-algebras and unbounded operators on Hilbert spaces,
[5], [6]. For a compact, spin, Riemannian manifoldM, Connes has shown that the
geodesic distance can be expressed in terms of an unbounded Fredholm module
over the C∗-algebra C(M), such that the distance between two points p, q in M
is obtained via the Dirac operator D by the formula

d(p, q) = sup{|a(p)− a(q) | : a ∈ C(M), ‖[D, a]‖ 6 1}.

For a commutative unital C∗-algebra C(X), the compact space X embeds
naturally into the set of regular Borel probability measures on the space X. By
Riesz’ representation theorem the latter space is the weak*-compact subset of the
dual of C(X), named the state space of the algebra. For the case X = M, the
notion d(p, q) can then be extended to states on C(M) right away, using the same
formula, and in this way it is possible to obtain a metric for the weak*-topology
on the state space of C(M). This construction does not rely on the commutativity
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of the algebra C(M) but on the C∗-algebra structure of C(M) and the existence
of an operator like D, named a Dirac operator. Given a C∗-algebra A, the natural
question is then which properties an operator D should have in order to deserve
such a name? According to Connes, a candidate for a Dirac operator must as a
minimum have properties which he has defined in the terms unbounded Fredholm
module and spectral triple.

DEFINITION 1.1. Let A be a unital C∗-algebra. An unbounded Fredholm mod-
ule (H, D) over A is:

(i) a Hilbert space H which is a left A-module, that is, a Hilbert space H and
a ∗-representation of A on H;

(ii) an unbounded, selfadjoint operator D on H such that the set

{a ∈ A : [D, a] is densely defined and extends to a bounded operator on H}

is norm dense in A;
(iii) (I + D2)−1 is a compact operator.

The triple (A, H, D) with the above description is called a spectral triple.

Condition (iii) is quite often strengthened in the way that D is said to be
finitely summable or p-summable, [5], [6], if for some p > 0

trace((I + D2)−p/2) < ∞.

Given a spectral triple (A, H, D), one can then introduce a pseudo-metric
on the state space S(A) of A by the formula

∀ϕ, ψ ∈ S(A) : d(ϕ, ψ) = sup{|ϕ(a)− ψ(a)| : a ∈ A, ‖[D, a]‖ 6 1}.

We use the term pseudo-metric because it is not clear that d(ϕ, ψ) < ∞ for all
pairs, but the other axioms of a metric are fulfilled.

Marc A. Rieffel has studied several aspects of this extension of the concept
of a compact metric space to the framework of C∗-algebras, and he has obtained
a lot of results [19], [20], [21], [22], [23]. Among the questions he has dealt with,
we have been most attracted by the one which asks whether a spectral triple will
induce a metric for the weak*-topology on the state space. If the metric topology
coincides with the weak*-topology on the state space, then the metric topology
should give the state space a finite diameter, since the state space is compact
for the weak*-topology. A nice characterization of when the metric is bounded
on the state space and furthermore when it induces the weak*-topology on this
space was given by Rieffel, [19], and Pavlović, [17]. This characterization reads:

THEOREM 1.2. Let (H, D) be an unbounded Fredholm module over a unital C∗-
algebra A, and let the pseudo-metric d on S(A) be defined by the formula:

d(ϕ, ψ) = sup{|ϕ(a)− ψ(a)| : a ∈ A, ‖[D, a]‖ 6 1}

for ϕ, ψ ∈ S(A). Then:
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(i) d is a bounded metric on S(A) if and only if

{a ∈ A : ‖[D, a]‖ 6 1}
has a bounded image in the quotient space A/C1, equipped with the quotient norm.

(ii) The metric topology coincides with the weak*-topology if and only if the set

{a ∈ A : ‖[D, a]‖ 6 1}
has a precompact image in the quotient space A/C1, equipped with the quotient norm.

We will recall some classical results, which serve as motivation for the def-
initions given in the non commutative case. The compact manifold T, i.e. the
unit circle, has a canonical differential operator and is also a compact group. This
group is the dual of the integers and the integers has a canonical length func-
tion, which, via the Fourier transform, has close relations to the differentiation
operator on the circle. While respecting all these classical structures, Connes con-
sidered in [5] a discrete group G endowed with a length function ` : G → R+.
In analogy with the situation for C(T), or the 2π-periodic functions on R where
1
i

d
dt eint = neint, Connes then defined a Dirac operator D on `2(G) by (Dξ)(g) =

`(g)ξ(g) and he proved, that if the length function ` is a proper length function, i.e.
`−1([0, c]) is finite for each c ∈ R+, then (`2(G), D) is an unbounded Fredholm
module for C∗r (G). It is a remarkable result of [5], that only amenable discrete
groups can have a p-summable Fredholm module. This result is extended by
Voiculescu in [24], Sections 4 and 5. The common features of these results are that
certain boundedness properties of a spectral triple (A, H, D) imply that A has a
faithful trace state which extends to an A invariant state on B(H). This in turn
implies ([4]) that the representation of A on H must be hyperfinite, and in case of
a reduced group C∗-algebra of a discrete group, it therefore follows that the group
must be amenable. In particular these results tell that for certain spectral triples
(A, H, D) involving a non nuclear C∗-algebras it is not possible to perturb D very
much without destroying the properties of a spectral triple. It is one of the main
insights in the present investigation that for some of the spectral triples (A, H, D)
one can construct for an approximately finite dimensional C∗-algebras there is an
abundance of possible perturbations of D which will still give a spectral triple.

In [5], [6], [24], [16] and many more places the concept filtration of a C∗-
algebra plays an important role in the investigation of spectral triples. The reason
is of course that the filtration quite often induces a natural candidate for a spectral
triple. The present authors were inspired by this and then wanted to see what
this line of investigation can yield for approximately finite dimensional, or AF,
C∗-algebras.

An AF C∗-algebra A has a natural filtration since A, by definition, is the
norm closure of an increasing sequence (An)n∈N0 of finite dimensional C∗-alge-
bras. These algebras were studied first by Bratteli, [2]. In this paper we will only
consider unital AF C∗-algebras which have a faithful state, and we will therefore
always assume that A0 = CIA. Based on the GNS-representation coming from
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a faithful state and the given increasing sequence of subalgebras, we show that
it is possible to construct an unbounded Fredholm module over this C∗-algebra
in much the same way as it was done by Connes for discrete groups. To verify
the agreement between the induced metric topology and the weak*-topology on
the state space we follow ideas of the same type as was used in the group C∗-
algebra case, [1], [5], [6], [16], [21]. This means that we try to obtain estimates
of the norm of an element a by careful estimation of the norm of some parts of
the commutator [D, a]. The whole point in these computations is to show that
there exists a D such that the set D = {a ∈ A : ‖[D, a]‖ 6 1 } is so big that it
separates the states of A and so small that it has precompact image in A/CI. It
is not difficult to see that such a Dirac operator must exist, and further that there
is a lot of freedom in the choice of the eigenvalues for such a D. Especially for
the Dirac operators obtained, it turns out that a certain minimal growth in the
eigenvalues is needed in order to get the right properties, but once this level is
attained, it is possible to increase the numerical values of eigenvalues arbitrarily,
without destroying the topological properties of the spectral triple. This implies
that for any p > 0 it is possible to construct a p-summable Fredholm module, so
it is not possible to assign a dimension other than 0 to a unital AF C∗-algebra via
spectral triples.

As mentioned above this is very much in contrast to results by Connes and
Voiculescu [5], [24]. On the other hand it was suggested to us by Connes that the
possibility to increase the numerical values of the eigenvalues of a Dirac operator
can only happen for AF C∗-algebras. We have included a theorem which confirms
that conjecture if the eigenspaces of the Dirac operator is fixed.

In the special case of a UHF C∗-algebra, the Bratteli diagram is easy to an-
alyze and the unique trace state is faithful, so it is quite easy to give a natural
description of a spectral triple with the right properties.

Another special type of AF C∗-algebras are the commutative ones. The ap-
proximately finite dimensionality implies here, that such an algebra consists of
the continuous complex functions on a totally disconnected compact space. It is
well known that the algebra of continuous functions on the standard Cantor sub-
set of the unit interval is an approximately finite dimensional C∗-algebra, so we
have tried to see what the spectral triples could look like in this case. We are not
the first ones who try to apply the non commutative tools on this commutative
algebra. We have had the opportunity to see some notes by Connes [7], where he
constructs a spectral triple for the algebra of continuous functions on the Cantor
set. His construction is different from ours and very accurate in its reflection of
the geometrical properties of the usual Cantor set which is obtained by successive
cuttings of open intervals from the unit interval. In particular Connes spectral
triple makes it possible to recover the metric inherited from R exactly and he can
find the differentiation operator too. Our emphasis is to see how a general con-
struction which works for any AF C∗-algebra will work in this special case. This
has the effect that the module we propose is quite different from the one Connes
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has constructed. We try, later, shortly to describe the major difference between the
2 types of modules. Our spectral triple will not give exact geometric data for the
middle third Cantor set, but it will in this case induce a metric equivalent to the
one coming from the standard embedding of the Cantor set in R. On the other
hand we can see that there are several other possible choices of spectral triples
and we have found a “natural” family (Dγ)γ∈]0,1[ of Dirac operators, which all act
on the Hilbert space coming from the standard representation of the Cantor alge-
bra. It turns out that for any γ in ]0, 1[ the corresponding Dirac operator will yield
a metric on the Cantor set, such that this compact metric space, say Cγ, will have
Hausdorff dimension log 2

− log γ . Having this, we searched the literature for a unified
representation theory for Cantor sets of any positive dimension. We have not
found a general theory, but we found some examples [9], [15]. These examples
have only a small connection to our spectral triples, so we have constructed a fam-
ily of compact subsets of `1(N, R) which serves our purpose. Each of these spaces
is bi-Lipschitz equivalent to a generalized Cantor set in some space Re. Following a
suggestion by Marc Rieffel we have computed an upper bound for the Gromov–
Hausdorff distance between two such compact metric spaces Cγ and Cµ. Finally
this investigation showed us how to construct a compact metric space which for
any γ ∈]0, 1[ contains a subset which is bi-Lipschitz equivalent to Cγ.

A full matrix algebra Mn(C) is a special UHF C∗-algebra and it has a very
special compact metric on the state space, namely the one induced by the norm.
We show that for Mn(C) acting on itself with respect to the trace state and the
Dirac operator given by transposition on Mn(C), we get a spectral triple such
that the norm distance on the state space is the metric induced by the Fredholm
module.

Some more investigations into this construction show that it is possible to
extend the properties of the transposition operator to the setting of a general C∗-
algebra A. Having this, it turns out that the metric induced by the norm on S(A)
can always be obtained via a Dirac operator which is a selfadjoint unitary.

2. AF C∗-ALGEBRAS

We consider now the case of AF C∗-algebras. Let A be a unital AF C∗-
algebra, such that A is the norm closure of an increasing sequence (An)n∈N0 of
finite dimensional C∗-algebras. As mentioned above we will always stick to the
case of a unital C∗-algebraA and assume thatA0 = CIA. This restriction is not re-
ally serious since we may always add a unit to a non unital AF C∗-algebra and in
this way we get a unital AF C∗-algebra for which we can construct spectral triples.
It is not difficult to see that such a spectral triple will also be a spectral triple for
the original non unital algebra. Further we mention that an AF C∗-algebra always
has a faithful state and we will fix such a faithful state in the arguments to come.
Usually such a state is denoted τ. For a natural number k we will let Mk denote
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the algebra of complex k× k matrices. Then for n > 1 each An is isomorphic to a
sum of full matrix algebras Mm1 ⊕ · · · ⊕Mmk and it embeds into An+1 such that
the unit of A always is the unit of each algebra in the sequence. The GNS Hilbert
space H of A is just the completion of the prehilbert space A equipped with the
inner product (a, b) = τ(b∗a), and the GNS representation π is just given by left
multiplication. In order to avoid the writing of too many π′s we will assume that
A is a subalgebra of B(H) and that ξ is a unit vector in H which is separating and
cyclic for A and further has the property that the vector state ωξ equals τ. Since
ξ is separating, the mapping η : A → H given by η(a) = aξ induces, for each n in
N, a bijective linear homeomorphism of the algebra An onto a finite dimensional
subspace, say Hn of H. The corresponding growing sequence of orthogonal pro-
jections from H onto Hn is denoted (Pn). The basic idea in the construction of a
Dirac operator is, to let it have its eigenspaces equal to the sequence of differences
Hn 	 Hn−1. We do therefore define a sequence (Fn)n∈N of pairwise orthogonal fi-
nite dimensional subspaces of H by F0 = H0 and Fn = Hn 	 Hn−1 for n > 1. The
corresponding sequence of pairwise orthogonal projections is denoted (Qn)n∈N,
so Q0 = P0 and Qn = Pn − Pn−1 for n > 1. We will, in the following theorem,
show that it is possible to find a sequence of positive reals (αn)n∈N0 such that the
operator D given by

D =
∞

∑
n=1

αnQn

can serve as Dirac operator for a reasonable spectral triple. Remark that α0 is not
needed in the description above so we will therefore fix α0 = 0. In particular
this means that Dξ = 0. Based on all this notation we can now formulate the
main result of this section which in combination with Theorem 1.2 shows that
the metric induced by D on the state space of A will be a metric for the weak*-
topology on the state space.

THEOREM 2.1. Let A be an infinite dimensional unital AF C∗-algebra acting on
a Hilbert space H and let ξ be a separating and cyclic, unit vector for A.

(i) There exists a sequence of real numbers (αn)n∈N0 such that α0 = 0 and with the

notation introduced above, the unbounded selfadjoint operator D =
∞
∑

n=1
αnQn on H has

the property that the set

D = {a = a∗ ∈ A : ‖ [D, a] ‖ 6 1}

separates the states and has a precompact image in the quotient space A/C1, equipped
with the quotient norm. Further the metric which D induces on the state space generates
the weak*-topology.

(ii) Given any p > 0 it is possible to choose the sequence (αn)n∈N0 , such that the
Fredholm module is p-summable.

Proof. We remind the reader of the fact that the algebras An are finite di-
mensional and as such, they are all complemented subspaces of A. In the special
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case where ξ is a trace vector it is well known how to construct a completely pos-
itive projection of A onto An, [3]. In the general case with ξ just separating and
cyclic, the method can be mimicked and we can define a continuous projection,
say πn of A onto An by

∀ a ∈ A : πn(a) := η−1(Pnη(a)).

This definition has one fundamental consequence upon which we shall build our
arguments, namely, that when we consider both the operator algebra structure
and the Hilbert space structure on A simultaneously we get

∀a ∈ A : πn(a)ξ = Pnaξ.

In order to prove that the set D has the properties stated we start by study-
ing the domain of definition for the unbounded derivation δ(a) = [D, a]. Hence
we think that a sequence (αn)n∈N0 with α0 = 0 is given and we will show that
for any n ∈ N and any a ∈ An the commutator [D, a] is densely defined and
bounded. This shows that the union of multiples of D given as

⋃
n∈N

nD is dense

in the selfadjoint part of A and consequently must separate the states on A. So
let us fix an n in N, a selfadjoint a in An and let m in N be chosen such that m > n.
Since aAm ⊂ Am and aAm−1 ⊂ Am−1 we find that both of the projections Pm and
Pm−1 commute with a and consequently a commutes with Qm = Pm − Pm−1. This
means that for the closure of the commutator [D, a] we get

∀n ∈ N, ∀a ∈ An : closure( [D, a] ) =
n

∑
i=1

αi[Qi, a].

Since the sum above is finite, some positive multiple of a must be in D. It is
important to notice that this is true for any sequence (αn), and the statement that
D separates the states will be independent of the actual size of the eigenvalues αn.

The main ingredient of our construction is that we show that there exists a
sequence of positive reals (cn)n∈N which only depends on the sequence (An) and
the vector ξ such that for any a ∈ D, where now D depends on the actual values
of αn, we have

∀n ∈ N0, ∀a ∈ D : ‖πn+1(a)− πn(a)‖ 6
cn+1

αn+1
.

When this relation is established it follows easily that we can get very nice
convergence estimates by choosing the eigenvalues αn sufficiently big.

We will now describe how the sequence (cn)n∈N is obtained. For any n ∈ N0
the seminorms a → ‖πn+1(a) − πn(a)‖A and a → ‖Qn+1aξ‖H are equivalent,
since Qn+1 is of finite dimension and ξ is a separating vector. Consequently there
exists a positive real cn+1 > 1 such that

∀n ∈ N0, ∀a ∈ A : ‖πn+1(a)− πn(a)‖ 6 cn+1‖Qn+1aξ‖.

We will now again suppose that a sequence (αn) is given such that α0 = 0,
fix an arbitrary n ∈ N0 and an a in D, then since Dξ = 0 we get a series of
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estimates

1 > ‖[D, a]‖ > ‖Qn+1[D, a]Q0‖ = ‖αn+1Qn+1aξ‖ >
|αn+1|
cn+1

‖πn+1(a)− πn(a)‖.

In conclusion for any n ∈ N0 and any a ∈ D we have

‖πn+1(a)− πn(a)‖ 6
cn+1

|αn+1|
.

We will now make the choice of the elements in the sequence (αn)n∈N0 such
that the sequence of fractions

( cn+1
|αn+1|

)
n∈N0

is summable. Let us then consider
an absolutely convergent series ∑

N
βn of positive reals and for n ∈ N we define

αn = β−1
n cn, then ∀a ∈ D, ∀n ∈ N, ∀k ∈ N

‖πn+k(a)− πn(a)‖ 6
k

∑
j=1

‖π(n+j)(a)− πn+j−1(a)‖ 6
∞

∑
j=1

cn+j

αn+j
=

∞

∑
j=1

βn+j.

From this inequality we first deduce that the sequence (πn(a))n∈N is a Cauchy se-
quence in A and hence convergent. Let b denote the limit point for this sequence,
then

bξ = lim πn(a)ξ = lim Pnaξ = aξ,

and since ξ is separating b = a and we get from above ∀a ∈ D, ∀n ∈ N : ‖a −
πn(a)‖ 6

∞
∑

j=1
βn+j. For n = 0 the inequality above gives

∀a ∈ D : ‖a−ωξ(a)I‖ = ‖a− π0(a)‖ 6
∞

∑
j=1

β j < ∞.

In particular this shows that for any a in D, the norm of a + CI in the quotient
space is at most ∑ βk, so D/CI is bounded.

The inequality also yields the precompactness of D/CI right away. Let ε >
0 be given and let n in N be chosen such that ∑

j>n
β j+1 < ε

2 , then

∀a ∈ D : ‖a− πn(a)‖ 6
ε

2
and ‖πn(a)−ωξ(a)I‖ 6 ∑ β j.

Since An is finite dimensional, a closed ball in this space of radius ∑ βk is norm
compact and can be covered by finite number of balls of radius ε

2 . This shows
that the set

{a−ωξ(a)I : a ∈ D}
can be covered by a finite number of balls of radius ε and hence this set is pre-
compact in A and consequently D/CI is precompact in A/CI.

Let p > 0 be given. With respect to the p-summability of the above Fred-
holm module we may assume that the sequence of algebras satisfies An+1 6= An.
If this was not so, then Qn+1 = 0 and the repetition of An would not have any
impact on the Dirac operator. We will therefore assume that for all n in N0 we
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have dimAn+1 > dimAn. Since A0 is one dimensional we get then the rough
estimates

∀n ∈ N0 : dimAn > n + 1 and dimAn+1 > dimAn.

For the given p we define t = max{ 2, 3
p }, then for βn = (dimAn)−t we

have ∑ βn < ∞ since

∞

∑
n=1

βn 6
∞

∑
n=1

(dimAn)−2 6
∞

∑
n=1

(n + 1)−2 6 1.

The p-summability follows in the same way since we know for all n we have
cn > 1:

tr((I + D2)−(p/2)) = 1 +
∞

∑
n=1

(1 + (dimAn)2tc2
n)−(p/2)(dimAn − dimAn−1)

6 1 +
∞

∑
n=1

(dimAn)1−pt 6 1 +
∞

∑
n=1

(n + 1)−2 6 2.

REMARK 2.2. It may, in the first place, seem plausible that the construction
given just above should be applicable in a wider setting than just the one of AF
C∗-algebras. We have, of course, tried to follow such a path, and realized that, at
least for us, it is not easy to get much further along this road. Suppose for a mo-
ment that the elements in the filtration (An) are no longer algebras but just finite
dimensional subspaces such that AnAm ⊂ Am+n, then the spaces Hm = Amξ can
not be expected to be invariant for operators a inAn when n 6 m. In this case, the
boundedness of the commutator [D, a], for a ∈ An can not be established easily
unless the sequence (αn)n∈N0 is the very special one given as αn = n. To real-
ize that it is, in general, not possible just to increase the eigenvalues arbitrarily
we refer, again, to Connes’ [5] and Voiculescu’s results [24]. In particular they
show that the reduced group C∗-algebra of a non amenable discrete group can
not have a finitely summable Fredholm module. On the other hand for AF C∗-
algebras there is no upper limit to the growth of the eigenvalues of |D|. This
is not only remarkable when compared to the just mentioned results of Connes
and Voiculescu, but also quite opposite to classical results for commutative C∗-
algebras associated to compact smooth manifolds. In the commutative world
an AF C∗-algebra is the continuous functions on a totally disconnected compact
space and the present general C∗-algebraic result fits well with this fact. Yet an-
other aspect is discussed in [24], namely the possibility of having a slow growth
of the dimensions dimAn of the elements in the filtration. We have not been able
to obtain results for spectral triples related to a filtration with slow growth, but it
seems likely that such an assumption might have non commutative geometrical
consequences.

In a presentation of Theorem 2.1 to an audience containing A. Connes, he
suggested that this freedom in the choice of unbounded Fredholm modules might
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be a characteristic property for AF C∗-algebras. We have tried to prove this con-
jecture, but in vain for this sort of generality. On the other hand we have found
a more restrictive property, which of course always holds for an AF C∗-algebra,
and we can show that algebras which have this property must be AF C∗-algebras.

Our difficulty in proving a general result lies in the problems involved in
comparing Dirac-operators connected to different representations and/or with
different spectral projections. If we fix the representation, and the spectral pro-
jections of D and further impose an extra condition on some dense subset of the
algebra, then we can obtain a result of the type conjectured by Connes.

THEOREM 2.3. Let A be a C∗-algebra acting on a Hilbert space H, ξ be a separat-
ing unit vector for A and (Qn)n∈N0 a sequence of pairwise orthogonal finite-dimensional
projections with sum I such that Q0ξ = ξ. For any sequence of real numbers (λn)n∈N0
such that |λn| → ∞ for n → ∞ the symbol D(λn) shall denote the closed selfadjoint
operator which formally can be written as ∑ λnQn. The common domain of definition,
span

( ⋃
QnH

)
for all the operators D(λn) is denoted D0.

If A contains a dense subset S such that for any s in S and any D(λn) the commu-
tator [D(λn), s] is defined and bounded on D0 then A is an AF C∗-algebra.

Proof. The sequence (Qn)n∈N0 induces a matrix description of the operators
on H so we will define Hn = Qn H and for an operator x in B(H) we will write
x = (xij) such that xij is an operator in B(Hj, Hi) given by xij = Qix|Hj. For any
bounded operator x and any sequence (λn) we can then formally describe the
commutator [D(λn), x] by

∀i, j ∈ N0 : [D(λn), x]ij = (λi − λj)xij.

This may be nothing but a formal infinite matrix, but if we know that the
commutator is defined and bounded on D0 then the closure of the commutator
will be a bounded operator whose matrix is the one just described.

Given the assumptions on the elements in S we may then work on the ma-
trix representations of their commutators with various D(λn)’s without worrying
about the domain of definition for the commutators. Our first aim is to prove that
for elements in S all, but finitely many, of the matrix entries outside the main di-
agonal vanish. Let us then assume that there is an element s in S which has infin-
itely many non zero matrix entries outside the main diagonal, and let (sik jk )k∈N be
an infinite sequence of non vanishing entries such that for all k, ik 6= jk. Without
loss of generality we may assume that the sequence (nk)k∈N of natural numbers
given by n0 = 0 and nk := max{ik, jk} for k > 1 is strictly increasing. We will
then inductively over k ∈ N define a sequence (λn)n∈N0 , which will yield the
contradiction, by first defining n0 := 0, λ0 := 0 and then for k a natural number:

λn = λnk−1 if nk−1 < n < nk,

λnk = λnk−1 + k +
k

‖sik jk‖
.
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For this sequence (λn) and for k in N we want to estimate the norm of the
matrix entry [D(λn), s]ik jk = (λik − λjk )sik jk . Since ik 6= jk the norm will satisfy
‖[D(λn), s]ik jk‖ > k, so [D(λn), s] is not bounded on D0 and any element s in S has
only finitely many non zero entries outside the main diagonal in its matrix (sij).
In particular this means that for each s in S there exists a natural number ns such
that for any natural number n > ns the projection Qn will commute with s. In
order to get our skeleton of finite dimensional C∗-subalgebras ofAwe then define
an increasing sequence of finite dimensional projections (Pn)n∈N0 in B(H) by

∀n ∈ N0 : Pn :=
n

∑
i=0

Qi.

For each n ∈ N0 we can then define an increasing sequence of unital C∗-
subalgebras An of A by

An := { a ∈ A : ∀k > n, [Pk, a] = 0 }.

Since each s in the set S eventually commutes with the elements in the sequence
(Qn), the same is true for the sequence (Pn) and we get that

∀s ∈ S , ∃ns ∈ N0 : s ∈ Ans .

In particular S is contained in the union of the algebras An, so this union is dense
in A and we only have to prove that each An is finite dimensional. Let us then
fix a natural number n. By the definition of An we get a ∗-homomorphism ρn :
An → B(Pn H) by ρn(a) := Pna|PnH = a|PnH, so in order to prove that An is
finite dimensional it suffices to prove that ρn is faithful on An. Suppose now that
a in An satisfies ρn(a) = 0, then since the separating vector ξ is in PnH we get
0 = ρn(a)ξ = aξ and a = 0.

3. UHF C∗-ALGEBRAS

A UHF C∗-algebra is a special sort of AF C∗-algebra where at each stage
the algebra An is a full matrix algebra. In this section we will then consider a
UHF C∗-algebra A which is the norm closure of an increasing sequence of finite
dimensional full matrix algebras (An)n∈N0 such that A0 = CIA. Since each An is
a full matrix algebra there is an increasing sequence of natural numbers (mn)n∈N
such that An is isomorphic to the full matrix algebra Mmn . The assumption that
the unit of A is the unit in all the algebras An implies that there must be natural
numbers dn such that

∀n ∈ N : An = An−1 ⊗Mdn .

In order to avoid trivial complications we will, as in the previous section, assume
that the sequence (mn)n∈N is strictly increasing, i.e. all dn > 2. Based on this we
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then have d1 = m1, mn = d1, . . . , dn and

An−1 = Md1 ⊗ · · · ⊗Mdn−1 ⊗CIMdn
⊂Md1 ⊗ · · · ⊗Mdn = An.

Going back to the notation from the section on AF C∗-algebras we can now
determine the space denotedQn which is determined via the unique trace state by

∀n ∈ N : Qn := {πn(a)− πn−1(a) : a ∈ A}.

Since a full matrix algebra only has one trace state, the normalized trace, it follows
that the UHF C∗-algebra A also only has one trace state, the restriction of which
to An+1 is the tensor product of the trace states from each of the factors in the
tensor product decomposition of An+1. Based on this, it is for n in N0 possible
to describe Qn+1 in terms of tensor products. Let M◦

dn+1
denote the elements in

Mdn+1 of trace zero, then the product description of the trace state shows that

∀n ∈ N0 : Qn+1 = {πn+1(a)− πn(a) : a ∈ A} = Md1 ⊗ · · · ⊗Mdn ⊗M
◦
dn+1

.

In the proof of Theorem 2.1 we introduced the constants cn+1. In the present
case of a UHF algebra we can compute the numbers cn+1 exactly. Going back to
the previous section we find that cn+1 is the maximal ratio between the operator-
norm and the 2-norm, with respect to the trace state, for elements inQn+1. It is not
difficult to see that this maximum will be attained for an operator which is a rank
one operator in An+1 provided that Qn+1 contains a rank one operator. In order
to see, that this is so, one can consider an operator f in An+1 which is a product
f = e1 ⊗ · · · ⊗ en+1 where each ej is a matrix unit in Mdj

and trace(en+1) = 0.
Such an operator f must belong to Qn+1 and be a rank one operator in An+1.
Then for this f we get

cn+1 =
‖ f ‖
‖ f ‖2

=
1

(mn+1)−(1/2)
=

√
mn+1.

We will now go back to the start Section 2 and take the notation introduced
there and apply it to the present situation. Having the concrete values of the
elements in the sequence (cn)n∈N we can then modify the proof of Theorem 2.1 in
accordance with the extra notation introduced just above, such that we can obtain
the following result.

THEOREM 3.1. LetA be a UHF C∗-algebra with an increasing sequence (An)n∈N0
of full matrix algebras such that A0 = CIA and the union of the sequence is dense in A.
With the notation introduced we have:

(i) For an absolutely convergent series ∑ βn of non zero reals, the selfadjoint Dirac
operator given by

D =
∞

∑
n=1

(βn)−1√mnQn

will induce a metric on the state space for the weak*-topology. This Fredholm module is
4-summable.
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(ii) Given a positive p < 2 for s > 2
p > 1, the operator D given as

D =
∞

∑
n=1

(mn)sQn

will induce a metric on the state space for the weak*-topology. This Fredholm module is
p-summable.

Proof. The first statement, in (i), is a direct consequence of Theorem 2.1. For
the second statement one just has to remark that dim(Qn H) 6 dim(An) = m2

n.
We can now do the estimation which will show the 4-summability:

tr((I + D2)−(4/2)) 6 1 +
∞

∑
n=1

|βn|4m−2
n dim(Qn H) 6 1 +

∞

∑
n=1

|βn|4 < ∞.

The p-summability works by a similar sequence of estimates, one just has
to remember that the assumption An 6= An+1 implies that mn+1 > 2mn, so
mn > 2n. As above we have that the multiplicities of the eigenvalues are given
by (dimAn − dimAn−1) which is dominated by (mn)2, so we get

tr((I + D2)−(p/2)) 6 1 +
∞

∑
n=1

(mn)(2−ps) 6 1 +
∞

∑
n=1

(2(2−ps))n < ∞.

4. UNBOUNDED FREDHOLM MODULES FOR THE CANTOR SET

The usual Cantor set is a subset of the unit interval in R which is obtained
by successive cuttings of 2n−1 open sub-intervals of length ( 1

3 )n. This space can
also be considered as the compact topological space ΠZ2 which is an infinite
product of the compact two element group {0, 1}. When viewed as an infinite
product space it is quite easy to see that it can equipped with several inequivalent
metrics, and it turns out that the Hausdorff dimension for these metric spaces can
attain any value in the interval ]0, ∞[. When we want to emphasize that we are
considering the classical Cantor set we will call it the middle third Cantor set
and denote it C1/3, the Hausdorff dimension of this space is log 2

log 3 . To give the
reader, who may not be familiar with other representations of the Cantor set,
an idea of how to construct such a set, we just mention that for a positive real
number γ ∈]0, 1

2 [ it is possible to construct a homeomorphic copy of the middle
third Cantor set inside the unit interval by successive cuttings of 2n−1 intervals
of length (1− 2γ)γn−1. This space is denoted Cγ and its Hausdorff dimension is

log 2
− log γ .

For a C∗-algebraist it is well known that the algebra of continuous func-
tions on the Cantor set is an AF C∗-algebra, but the C∗-algebra carries only the
topological information, so all the geometry which comes from a particular met-
ric on the space has to be obtained from other sources. The non commutative
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geometry as developed by Connes offers the tools to describe geometric data for
C∗-algebras in general, and Connes has tried to see how his theory can be applied
to the Cantor set C1/3. This is done to some extent in the book [6] (IV 3.ε), and in
an unpublished note [7] we have had access to. In the note Connes constructs an
unbounded Fredholm module over the algebra C(C1/3) which carries the exact
geometrical structure of the compact subset C1/3 of R.

We can not get so much information from the spectral triples we associate
to AF C∗-algebras. It seems as the spectral triples we study for AF C∗-algebras
can reflect the structures which are invariant under bi-Lipschitz mappings, and
not much more. What we do in this section is to take the results from Section 2
and use the extra structure to see what we can get for the Cantor C∗-algebra.
This means that the representation of the algebra will be a fixed standard rep-
resentation and the eigenspaces of the Dirac operator will be determined by the
increasing sequence of finite dimensional subalgebras. The spectral triples we
can obtain this way are quite different from the one Connes constructs in [6], [7],
so we will just shortly describe the major difference between Connes’ module
over C(C1/3) and the one we get from Section 2.

In his book [6], (IV 3.ε) Connes describes a Fredholm module over a general
Cantor set which is a subset of the interval [0, 1]. In the note [7] Connes concen-
trates on the middle third Cantor set and constructs a spectral triple for the con-
tinuous functions on this set. The module is an infinite sum of one dimensional
modules which are associated with the points in the unit interval which are either
0, 1 or an end point of some cut-out-interval. The Dirac operator has eigenvalues
which reflects the distance between points which are either end points of a cut
out interval or endpoints of an interval which is left back after a certain number
of cuts has been made. This coding contains a surprising lot of the geometrical
data for the space C1/3. In this construction, the module H is a Hilbert space,
which is an infinite sum of one dimensional modules over C(C1/3). In particular
H has an orthonormal basis of vectors, all of which are joint eigenvectors for all
the elements in C(C1/3). In a language which makes sense for non commutative
C∗-algebras too, one can say that Connes’ module is a subrepresentation of the
reduced atomic representation of C(C).

The module, we have proposed as part of a spectral triple for a general AF
C∗-algebras with a faithful state, yields for C(C1/3) a module which has no non
trivial common eigenvectors but instead a separating and cyclic trace vector.

The special thing, for the C∗-algebra consisting of the continuous functions
on the Cantor set, is that it has a concrete description, and this makes it possible
to perform detailed analysis. From Section 2 we know that there is a lot of free-
dom in the choice of the eigenvalues for the Dirac operator. This suggests that it
would be interesting to see if it is possible to describe the geometrical significance
of some of the possible choices of the eigenvalues. We show below that for any
real γ such that 0 < γ < 1 we can use the sequence (γ−n+1)n∈N as a sequence
of eigenvalues, such that the corresponding metric on the state space generates
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the weak*-topology. Having this it seems natural to look for geometrical conse-
quences of this result and it turns out that if one equips the usual Cantor set with
the metric induced by a Dirac operator with the sequence (γ−n+1)n∈N as eigen-
values, then this compact metric space will be of Hausdorff dimension log 2

− log γ .
We have found a concrete realization of these fractals as a continuous family of
subsets of `1(N, R) and as subsets or Re for e ∈ N and e >

log 2
− log γ . All of this is of

course based on the description of the topological representation of the Cantor set
as the compact Abelian group ΠZ2. According to this description of the Cantor
set we would like to mention that the discrete Abelian group which is the dual of
this infinite product group is the infinite sum group which we denote

⊕
Z2, and

the continuous functions on the Cantor set is just the group C∗-algebra for this
discrete group. If one now equips this group with the length function given by

∀g = (gn)n∈N ∈
⊕

Z2 : `(g) :=

{
max{n : gn = 1} if g 6= 0,
0 if g = 0,

then the spectral triple as constructed by Connes for the reduced C∗-algebra of
a discrete group is, except for the size of the eigenvalues, exactly the one we get
from the AF-construction.

Before we state the theorem we would like to set up the frame, inside which
we will work. First we will let A denote the C∗-algebra C(ΠZ2, C) and for n in
N we will let en : ΠZ2 → Z2 denote the coordinate mapping en((xi)) = xn. Then
en is a selfadjoint projection in A and we will define a sequence of symmetries
or self adjoint unitaries (sn)n∈N0 in A by s0 = I and for n > 0, sn = 2en − I.
The sequence of finite dimensional subalgebras (An)n∈N0 is then defined such
that An is the least selfadjoint complex algebra containing the set {s0, s1, . . . , sn}.
Then An is isomorphic to C2n

, the continuous functions on 2n points. The union
of these algebras is denoted A∞ and is a selfadjoint unital subalgebra of C(ΠZ2)
which clearly separates the points in ΠZ2, so by Stone–Weierstrass’ Theorem A∞
is dense in A and A is a unital AF C∗-algebra. In order to apply Theorem 2.1
we have to fix a faithful state, or here a Borel probability measure on ΠZ2 with
support equal to ΠZ2. The natural choice is the measure which is determined in
such a way that the coordinate functions are treated symmetrically. This means
that the state, say τ is defined on A∞ by

τ(I) = 1 and τ(ei1 ei2 · · · eim) = 2−|{i1,i2,...,im}|.

Then τ is extended to all of A by continuity and we will let the corresponding
regular Borel probability measure on ΠZ2 be denoted by µ. It should be noted
that the symmetry sn corresponds to the generator of the n′th summand in

⊕
Z2

and that this identification can be pursued to an isomorphism which shows that
the GNS-representation of A on L2(A, τ) is nothing but the left regular represen-
tation of C∗

r
( ⊕

Z2
)
.
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We can now formulate our theorem on Dirac operators for the Cantor set
using this notation and the definitions used in the set up for Theorem 2.1.

THEOREM 4.1. Let A denote the AF C∗-algebra C(ΠZ2), A0 = CIA, and for
n ∈ N, An the subalgebra of A generated by the n first coordinate functions.

(i) If (αn)n∈N0 is a sequence of real numbers such that

α0 = 0 and
∞

∑
n=1

sup{|αn − αi|−1 : 0 6 i 6 n− 1} < ∞,

then the Dirac operator D given by

D =
∞

∑
n=1

αnQn

will generate a metric for the weak*-topology on the state space of C(ΠZ2) and in partic-
ular a metric denoted d(αn) for the compact space ΠZ2.

(ii) In the special case where there exists a real γ such that 0 < γ < 1 and for
n ∈ N, αn = γ−n+1 the conditions under (i) are fulfilled and the module will be p-
summable for p >

log 2
− log γ and not for p = log 2

− log γ . The metric induced by D on ΠZ2 will
in this case be denoted dγ and it will satisfy the following inequalities:

∀x 6= y ∈ ΠZ2 let m(x, y) = min{n ∈ N : x(n) 6= y(n)}, then

2γm(x,y)−1 6 dγ(x, y) 6 2
γm(x,y)−1

(1− γ)2 .

Proof. In the proof of Theorem 2.1 the important step is to get an estimate of
‖πn+1(a)−πn(a)‖ for an a ∈ A such that the norm of the commutator of [D, a] is
at most 1. Since the present situation is much easier to deal with than the general
one, we can get some rather exact estimates of this type. So assume that we have
an operator a in D, which means that ‖[D, a]‖ 6 1. We start by examining the
expression ‖πn(a)− πn−1(a)‖ in more details. First we remark that the algebra
An is represented faithfully on the subspace Hn, which is invariant for An, so
we have ‖πn(a)− πn−1(a)‖ = ‖(πn(a)− πn−1(a))Pn‖. Moreover Pn−1(πn(a)−
πn−1(a))Pn−1 = 0 since

∀b, c ∈ An−1 : (πn(a)bξ, cξ) = (Pnaξ, cb∗ξ) = (Pn−1aξ, cb∗ξ) = (πn−1(a)bξ, cξ).

A closer examination also shows, as we shall see, that for this particular alge-
bra also Qn(πn(a) − πn−1(a))Qn = 0. This last statement, follows from the
facts that the space Fn = Qn H equals An−1snξ and then for any a in A we
have πn(a) − πn−1(a) ∈ An−1sn. Since s2

n = I and A is commutative we get
(πn(a)− πn−1(a))Qn H ⊂ Pn−1H. This all means that

Pn(πn(a)−πn−1(a))Pn = Pn−1(πn(a)−πn−1(a))Qn + Qn(πn(a)−πn−1(a))Pn−1.

For operators x in A which satisfy the relation

x = Pn−1xQn + QnxPn−1
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we have ‖x‖ = max{‖Pn−1xQn‖, ‖QnxPn−1‖}; this follows from the C∗-relation
‖x∗x‖ = ‖x‖2. We can therefore obtain

‖πn(a)− πn−1(a)‖
= ‖(πn(a)− πn−1(a))Pn‖
= max{‖Pn−1(πn(a)− πn−1(a))Qn‖, ‖Qn(πn(a)− πn−1(a))Pn−1‖}.

We are now going to relate the expression

max{‖Pn−1(πn(a)− πn−1(a))Qn‖, ‖Qn(πn(a)− πn−1(a))Pn−1‖}

to the commutator [D, a] and its norm. Since D commutes with the projections Pn
and any operator in An commutes with all the Qm for m > n we get

∀a ∈ D : Pn[D, a]Pn = [D, πn(a)]Pn = Pn[D, πn(a)] = [D, πn(a)].

Based on this we get for an a in D and an n in N

Pn−1[D, a]Qn = (DPn−1 − αnPn−1)aQn = (DPn−1 − αnPn−1)πn(a)Qn

= (DPn−1 − αnPn−1)(πn(a)− πn−1(a))Qn

and similarly

Qn[D, a]Pn−1 = Qna(αnPn−1 − DPn−1) = Qnπn(a)(αnPn−1 − DPn−1)

= Qn(πn(a)− πn−1(a))(αnPn−1 − DPn−1).

The assumptions made on the sequence (αn)n∈N0 say that the series ∑
n∈N

βn

of positive reals defined by βn = max{|αn − αi|−1 : 0 6 i 6 n− 1} is summable.
When examining the expression (αnPn−1 − DPn−1) one finds that the properties
of the sequence (αn) implies that this operator is invertible on Pn−1H with an in-
verse, say Bn, on this space such that ‖Bn‖ = βn. We can now make estimates
of max{‖Pn−1(πn(a) − πn−1(a))Qn‖, ‖Qn(πn(a) − πn−1(a))Pn−1‖} by combin-
ing the previous computations. Since it all depends on a max operation we may
just as well assume that ‖πn(a)− πn−1(a)‖ = ‖Pn−1(πn(a)− πn−1(a))Qn‖ so

‖πn(a)− πn−1(a)‖ = ‖Pn−1(πn(a)− πn−1(a))Qn‖
= ‖Bn(DPn−1 − αnPn−1)(πn(a)− πn−1(a))Qn‖
= ‖BnPn−1[D, πn(a)− πn−1(a)]Qn‖(4.1)

= ‖BnPn−1[D, a]Qn‖ 6 ‖Bn‖‖[D, a]‖ 6 βn.

Now the arguments run as in the proof of Theorem 2.1 and we get that the
metric generated by the operator D induces a metric for the weak*-topology on
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the state space. For later use we remark that

∀a ∈ D : ‖a− τ(a)I‖ = ‖a− π0(a)‖ 6
∞

∑
i=1

βi;(4.2)

∀a ∈ D, ∀n ∈ N : ‖a− πn(a)‖ 6
∞

∑
i=n+1

βi.(4.3)

We will now turn to the proof of item (ii), so we will assume that for some
γ ∈]0, 1[ we have the eigenvalues of D given by α0 = 0 and for n ∈ N : αn =
γ−n+1. In this setting the numbers βn are given by

βn = (γ−n+1 − γ−n+2)−1 =
γn−1

1− γ
, and ∑ βn = (1− γ)−2.

Having this we can for any positive real s compute the trace tr(D−s), where as
usual we disregard the kernel of the selfadjoint positive operator D. The way the
algebras An are defined shows that for n > 1 we have An = An−1 ⊕ (An−1sn),
hence dimQn H = dimAn−1sn = dimAn−1 = 2n−1 and we may compute the trace,

(4.4) tr(D−s) = lim
k→∞

k

∑
n=1

γ(n−1)s2n−1 = lim
k→∞

1− (2γs)k

(1− 2γs)

and it follows that this module is summable if and only if s >
log 2
− log γ .

In order to determine the restriction to ΠZ2, of the metric which D induces
on the set of regular Borel probability measures, we first remark that for each
n ∈ N we have πn(sn)− πn−1(sn) = sn, so from the computations done under
item (i) we have

[D, sn] = Pn−1[D, sn]Qn + Qn[D, sn]Pn−1

= (DPn−1 − γ−n+1Pn−1)snQn −Qnsn(DPn−1 − γ−n+1Pn−1).

Since this expression again is of the form QnxPn−1 + Pn−1xQn the norm is
the maximum of the norms of the summands. On the other hand, and as de-
scribed above, snQn is a partial isometry with range projection Pn−1 and sup-
port projection Qn. Hence each of the summands above have norm equal to
‖DPn−1 − γ−n+1Pn−1‖ = |γ−n+1 − 0| = γ−n+1 and we have got

(4.5) ∀n ∈ N : ‖[D, sn]‖ = γ−n+1,

which means that

(4.6) ∀n ∈ N : γn−1sn ∈ D.

We will now determine the quantitative consequence of (4.6) for the metric dγ.
For x 6= y ∈ ΠZ2 we recall that m(x, y) is the least natural number for which
the coordinates satisfy x(n) 6= y(n). Let then χx and χy denote the states on A



SPECTRAL TRIPLES AND CANTOR SETS 35

or probability measures on ΠZ2 which are the point evaluations at x and y. We
then get

(4.7) dγ(x, y) > |χx(γm(x,y)−1sm(x,y))− χy(γm(x,y)−1sm(x,y))| = 2γm(x,y)−1.

In order to obtain an inequality in the opposite direction we have to return
to the series of inequalities (4.3). Given x 6= y in ΠZ2, an ε > 0 and an a in D such
that |χx(a)− χy(a)| > dγ(x, y)− ε, then we get for n ∈ N0 and n < m(x, y) that
χx(πn(a)) = χy(πn(a)), so by (4.3)

dγ(x, y) 6 |χx(a)− χy(a)|+ ε

= |χx(a− π(m(x,y)−1)(a))− χy(a− π(m(x,y)−1)(a))|+ ε

6 2‖a− π(m(x,y)−1)(a)‖+ ε (then by (4.3) and βi =
γi−1

1− γ
)(4.8)

6 2
∞

∑
i=m(x,y)

γi−1

1− γ
+ ε = 2

γm(x,y)−1

(1− γ)2 + ε.

We can then conclude that

(4.9) ∀x, y ∈ ΠZ2 : 2γm(x,y)−1 6 dγ(x, y) 6 2
γm(x,y)−1

(1− γ)2 .

The natural question raised by Theorem 4.1, is whether there exist “natural”
geometrical representations of the Cantor sets corresponding to all the values of
γ ∈]0, 1[. At a first sight it is not even clear what the question means, but for the
type of metric spaces we consider the relevant equivalence concept seems to be
that of bi-Lipschitz. We will recall this concept [8] in the definition below.

DEFINITION 4.2. Let (S, µ) and (T, ν) denote two metric spaces and F : S →
T a map. The map F is said to be bi-Lipschitz if it is bijective and there exist strictly
positive constants k, K such that

∀x, y ∈ S : kµ(x, y) 6 ν(F(x), F(y)) 6 Kµ(x, y).

If S = T and the identity mapping on S is bi-Lipschitz then we say that µ and ν
are equivalent metrics on S.

Having this definition we will first remark that it is quite clear from the last
inequalities in the Theorem 4.1 that for a pair of different values of γ the corre-
sponding metrics are inequivalent. A closer look at the mentioned inequalities
makes it apparent that for a given γ ∈]0, 1[ there may be a representative for the
metrics in the equivalence class containing dγ which may look more attractive
than the rest. The metric which we have chosen to like the most is given by

DEFINITION 4.3. Let ΠZ2 denote the Cantor set. For any γ ∈]0, 1[ we let δγ

denote the metric on ΠZ2 given by

∀x, y ∈ ΠZ2 : δγ(x, y) =
∞

∑
n=1

|x(n)− y(n)|γn−1(1− γ).
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We will now compute the bounds for the equivalence between δγ and dγ.

PROPOSITION 4.4. For any γ ∈]0, 1[ and any x, y ∈ ΠZ2 we have:

(i) γ(m(x,y)−1)(1− γ) 6 δγ(x, y) 6 γ(m(x,y)−1).
(ii) 2δγ(x, y) 6 dγ(x, y) 6 2

(1−γ)3 δγ(x, y).
(iii) For any two different values of γ the corresponding metrics are inequivalent.

Proof. The sum formula for geometric series yields (i) right away.
For (ii) we see that a combination of (i) with the results of Theorem 4.1 (ii)

yields the equivalence as stated. The very same reference shows that different γ’s
give inequivalent metrics.

5. CONTINUOUS FAMILIES OF CANTOR SETS OF DIFFERENT DIMENSIONS

Based on the construction of the metric δγ on the Cantor set, it is possible
to construct an isometric embedding of the metric space (ΠZ2, δγ) onto a compact
subset of the Banach space `1(N, R) of absolutely summable sequences of real
numbers. It is quite easy to compute the dimension of this space as log 2

− log γ , but it
was less obvious to us that for the natural number d defined as

d =
⌊ log 2
− log γ

⌋
+ 1,

it is possible to construct a bi-Lipschitz map of (ΠZ2, δγ) onto a compact subset
of Rd equipped with the usual metric. If 0 < γ < 1

2 , the image is the usual Cantor
set Cγ, defined above, which is obtained by cutting intervals of the unit interval,
such that at step n we cut out 2n−1 intervals each of length (1− 2γ)γn−1. If d > 1
then the image is a product in Rd of d copies of the Cantor set Cγd where the

cutting length in the n’th step is (1− 2γd)γd(n−1).
We will now define the embedding of (ΠZ2, δγ) into `1(N, R).

DEFINITION 5.1. Let γ ∈]0, 1[; then fγ : (ΠZ2, δγ) → `1(N, R) is defined by

∀x ∈ ΠZ2, ∀n ∈ N : fγ(x)(n) := γn−1(1− γ)x(n).

The image in `1 of the metric set (ΠZ2, δγ) by fγ is denoted Cγ.

PROPOSITION 5.2. For any γ ∈]0, 1[ the map fγ is an isometry of (ΠZ2, δγ) onto
(Cγ, ‖ · ‖1).

Proof. We have:

∀x, y ∈ ΠZ2 : ‖ fγ(x)− fγ(y)‖1 =
∞

∑
n=1

|x(n)− y(n)|γn−1(1− γ) = δγ(x, y).

REMARK 5.3. We have chosen to let the embedding take place in the space
`1(N, R) because of the isometric embedding. On the other hand, as sets, we have
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`1(N, R) ⊂ `p(N, R) ⊂ `∞(N, R) for any p ∈]1, ∞[, so it might be reasonable to
look at the other embeddings too. It turns out that the metrics coming from the
other norms are all equivalent on the set Cγ. An elementary computation shows
these equivalences:

∀x, y ∈ ΠZ2, ∀p > 1 : γ(m(x,y)−1)(1− γ) = ‖ fγ(x)− fγ(y)‖∞ 6 ‖ fγ(x)− fγ(y)‖p

6 ‖ fγ(x)− fγ(y)‖1 6 γ(m(x,y)−1).

The Hausdorff dimension of the metric spaces Cγ can be computed in the
same way as it is done for the usual Cantor set contained in the unit interval. We
will base our computations on the one K. Falconer offers in [8] on the pages 31–32.
We will use the same notation as Falconer, so H s(Cγ) denotes the s dimensional
Hausdorff measure of Cγ. The Hausdorff dimension, say t, is characterized by the
fact that H s(Cγ) = 0, if s > t and the value is infinite if s < t. Let us then fix a γ ∈
]0, 1[ and define t := log 2

− log γ . We will then show that the t dimensional Hausdorff
measure of Cγ is a strictly positive real number, so the Hausdorff dimension of Cγ

is log 2
− log γ .

In order to ease the translation of the proof from [8] we will give a short
description of the standard intervals in Cγ and describe some of their properties
in a lemma. For n ∈ N we will let Sn denote all the points in ΠZ2 whose co-
ordinates are all zero from coordinate number n + 1 and onwards, or formally

Sn =
n⊕

i=1
Z2 ⊂ ΠZ2. The union of the sets Sn is denoted S . It seems to be conve-

nient to introduce the projection mappings πn : ΠZ2 → Sn which for an x ∈ ΠZ2
replaces all the coordinates of x from the number n + 1 and onwards by 0. For an
s in S and an n in N we then define the standard interval V(s, n) by

∀s ∈ S ∀n ∈ N : V(s, n) =

{
∅ if s /∈ Sn,
{x ∈ ΠZ2 : πn(x) = s} if s ∈ Sn.

This description of V(s, n) works independently of the chosen γ, but in the
following lemma, where we list some properties of the standard intervals, we also
state some properties which relate to the present metric, so we will now consider
the intervals as subsets of Cγ.

LEMMA 5.4. The standard intervals V(s, n) of Cγ have the following properties:
(i) ∀n ∈ N there are exactly 2n nonempty standard intervals of the form V(s, n), and

they are indexed by the points in Sn by {V(s, n) : s ∈ Sn}. Further the sets are pairwise
disjoint and their union equals ΠZ2.

(ii) The 2n sets {V(s, n) : s ∈ Sn} are open and closed and each one has diameter
equal to γn in Cγ.

(iii) For any subset U of Cγ of diameter |U| < (1− γ) there exists a standard interval
V(s, n) which contains U and such that its diameter satisfies |V(s, n)| 6 |U|

1−γ .
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(iv) For t = log 2
− log γ , for any n, m ∈ N and for any s0 in Sn

2−n = |V(s0, n)|t = ∑
s∈{x∈Sm+n : πn(x)=s0}

|V(s, n + m)|t.

Proof. The content of (i) follows from the fact that Sn has exactly 2n points.
With respect to (ii) the topological content is obvious since the coordinate map-
pings map into a two-point space. The diameter estimate follows from the in-
equality below:

∀n ∈ N, ∀s ∈ Sn, ∀x, y ∈ V(s, n) : δγ(x, y) =
∞

∑
i=n+1

|xi − yi|γi−1(1− γ) 6 γn.

It is evident that for any x in V(s, n) there is a y in V(s, n) such that δγ(x, y) = γn,
so the maximum distance is not only attained, but it can be attained from any
point in the set ! The result of (iii) is not so obvious and demands some more
computations. Let then U be given such that |U| < 1− γ. We will fix a point u in
U, then for any x in U we have

|U| > δγ(u, x) =
∞

∑
i=m(u,x)

|ui − xi|γi−1(1− γ) > γ(m(u,x)−1)(1− γ).

This shows that

∀x ∈ U : m(u, x)− 1 >
⌈

log
( |U|

1− γ

) 1
log γ

⌉
.

Hence for

n =
⌈

log
( |U|

1− γ

) 1
log γ

⌉
and s = πn(u) : U ⊂ V(s, n)

and since the diameter of V(s, n) = γn we get that

|V(s, n)| = γ

⌈
log

( |U|
1−γ

)
1

log γ

⌉
6 γ

log
( |U|

1−γ

)
1

log γ =
|U|

1− γ
,

so (iii) follows. With respect to (iv) we remark that t is defined such that γt = 1
2 .

In order to prove (iv) it is by the induction principle enough to consider the case
where m = 1. So let n in N and s in Sn be given then |V(s, n)|t = (γn)t = 2−n.
Each such interval is divided into two intervals V(s0, n + 1) and V(s1, n + 1) at
the level n + 1, and by the computations just performed we have

|V(s0, n + 1)|t + |V(s1, n + 1)|t = 2−n−1 + 2−n−1 = 2−n = |V(s, n)|t.
The result on the Hausdorff dimension for Cγ can now be proved, and it

is done in much the same way as Falconer in [8] computes the Hausdorff mea-
sure for the usual Cantor set C1/3. We will also use the notation from [8] in the
following theorem.

PROPOSITION 5.5. For any γ in ]0, 1[, and for t = log 2
− log γ the t-dimensional

Hausdorff measure H t(Cγ) of Cγ satisfies (1− γ)t 6 H t(Cγ) 6 1.
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Proof. With respect to the upper estimate, we take an n in N and consider
the collection of intervals {V(s, n) : s ∈ Sn}. This constitutes a covering of Cγ

by 2n sets of diameter γn. By Lemma 5.4 (iv) or by the definition of t, we have
∑

s∈Sn

|V(s, n)|t = 1, so H t(Cγ) 6 1.

The inequality the other way is determined after a couple of reduction steps.
As Falconer mentions one can without loss of generality restrict the attention to
covering families (Ui), where each set Ui is an open set. Since Cγ is compact this
means, in turn, that we can restrict to finite families (Ui). Let then 0 < δ < 1− γ
and a finite δ-cover (Ui) be given. For each i we can then by Lemma 5.4 (iii) find a
natural number ni and an si in Sni such that Ui ⊂ V(si, ni) and (1−γ)|V(si, ni)| 6
|Ui|. Further since there are only finitely many ni we can define m = max{(ni)}
and by Lemma 5.4 (iv) we can start estimating:

∑ |Ui|t > (1− γ)t ∑ |V(si, ni)|t = (1− γ)t ∑
i

∑
s∈Sm and πni (s)=si

|V(s, m)|t

> (1− γ)t ∑
s∈Sm

|V(s, m)|t = (1− γ)t,

so H t(Cγ) > (1− γ)t.

For each γ in ]0, 1[ we will find a suitable natural number eγ such that we
can embed Cγ into Reγ via a bi-Lipschitz mapping. Such an embedding preserves
the dimension.

THEOREM 5.6. Let γ be in ]0, 1[, eγ :=
⌊ log 2
− log γ

⌋
+ 1 and let Fγ : Cγ → Reγ be

defined via its i’th coordinate function, Fi
γ, as

∀i ∈ {1, . . . , eγ}, ∀x ∈ ΠZ2 : Fi
γ(x) =

∞

∑
p=1

x(i + (p− 1)eγ)(γeγ)p−1(1− γeγ).

Then Fγ is a bi-Lipschitz continuous mapping of Cγ onto its image as subset of Reγ .
If γ < 1

2 then eγ = 1 and the image is the usual γ-Cantor subset of the unit
interval, Cγ. If γ > 1

2 then the image is the product of eγ copies of the one dimensional
Cγeγ -Cantor subset of the unit interval.

Proof. It is obvious that Fγ is continuous, but the bi-Lipschitz property can
only be seen after a few computations, but before we start the computations we
mention that the symbol ‖z‖means the usual Euclidian norm in Reγ . Other norms
will be indicated by a subscript. The continuity and the Lipschitz property for Fγ

follow from the following inequalities:

∀x, y ∈ Cγ :‖Fγ(x)− Fγ(y)‖
6 ‖Fγ(x)− Fγ(y)‖1

6
eγ

∑
i=1

∞

∑
p=1

|x(i + (p− 1)eγ)− y(i + (p− 1)eγ)|(γeγ)p−1(1− γeγ)
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=
eγ

∑
i=1

∞

∑
p=1

γ1−i(1− γeγ)|x(i + (p− 1)eγ)− y(i + (p− 1)eγ)|γ(i+(p−1)eγ−1)

6
eγ

∑
i=1

∞

∑
p=1

γ(1−eγ)|x(i + (p− 1)eγ)− y(i + (p− 1)eγ)|γ(i+(p−1)eγ−1)

=
γ(1−eγ)

1− γ
δγ(x, y).

Before we start to prove that Fγ has a Lipschitz inverse we remind the reader
that the choice of eγ as consequence has, that γeγ < γlog 2/− log γ = 1

2 . Let us fix
a pair x, y in Cγ and let i in {1, . . . , eγ} be chosen such that i ≡ m(x, y) mod
eγ then we will first determine p such that i + (p − 1)eγ = m(x, y). Since i =

eγ is possible, it turns out that p =
⌈

m(x,y)
eγ

⌉
. We will base the estimates below

on the i’th coordinate function, still the same i. We will start the estimation on
|Fi

γ(x)− Fi
γ(y)|, by using the knowledge on p just obtained:

|Fi
γ(x)− Fi

γ(y)| =
∣∣∣ ∞

∑
q=p

(x(i + (q− 1)eγ)− y(i + (q− 1)eγ))(γeγ)(q−1)(1− γeγ)
∣∣∣

> (γeγ)(p−1)(1− γeγ)−
∞

∑
q=p+1

(γeγ)(q−1)(1− γeγ)

= (γeγ)(p−1)(1− γeγ)− (γeγ)p = (γeγ)(p−1)(1− 2γeγ)

= (γ(m(x,y)−i)(1− 2γeγ) > γm(x,y)(1− 2γeγ).

The estimates on Fγ can now be performed using Proposition 4.4:

‖Fγ(x)− Fγ(y)‖ > |Fi
γ(x)− Fi

γ(y)| > γm(x,y)(1− 2γeγ) > (1− 2γeγ)γδγ(x, y).

We have now proved that each map Fγ is bi-Lipschitz and we only have to
study the image Fγ(Cγ). We will stick to the case where γ = 1

3 and consider an x
in ΠZ2

Fγ(x) =
∞

∑
n=1

x(n)
(1

3

)n−1(
1− 1

3

)
=

∞

∑
n=1

x(n)2
(1

3

)n
.

Since x(n) is in the set {0, 1}we see that the image of Fγ is exactly the set of points
in the unit interval which in the base 3, can written using only digits from the set
{0, 2}. This is a well known characterization of the standard Cantor set, C1/3.

6. ON THE GROMOV–HAUSDORFF DISTANCE BETWEEN Cγ AND Cµ

Hausdorff has defined a metric on the closed subsets of a compact metric
space and in this way obtained a new compact metric space. In the book [11]
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M. Gromov extends this idea and defines a distance between any pair of com-
pact metric spaces. This metric on compact metric spaces is denoted the Gromov–
Hausdorff distance. In order to provide a frame, inside which it makes sense to
speak about convergence of a family of non commutative compact metric spaces,
Marc A. Rieffel has studied many aspects of the Gromov–Hausdorff distance be-
tween non commutative compact metric spaces, and published a memoir in the
series of the American Mathematical Society on these matters [23]. After the first
presentation of our application of the C∗-algebraic approach to the Cantor set,
Marc A. Rieffel asked us, if we could compute the Gromov–Hausdorff distance
between the different metric spaces Cγ obtained from the Cantor set. We can not
answer this question completely but below we can give an upper bound on the
distance between two such spaces Cγ and Cµ. The estimate is based on the iso-
metric embedding of each Cγ in `1(N) as constructed in the previous subsection.

In order to make this computation we first recall the definition of the Haus-
dorff distance between closed subsets of a metric space and then the definition of
the Gromov–Hausdorff distance between metric spaces.

DEFINITION 6.1. Let X and Y be closed subsets of a compact metric space
(Z, d) then the Hausdorff distance between X and Y is given by

distd
H(X, Y)

= inf{r > 0 : ∀x ∈ X, ∃y ∈ Y, d(x, y) 6 r and ∀y ∈ Y, ∃x ∈ X, d(y, x) 6 r}.

For compact metric spaces (X, dx) and (Y, dy) let X∪̇Y denote the disjoint
union of the sets and let M(dx, dy) denote the set of all metrics on this space such
that the restriction of any of these metrics to each of the subsets X and Y agrees
with the given metric on that space. The Gromov–Hausdorff distance between X
and Y is then given by

distGH((X, dx), (Y, dy)) = inf{distd
H(X, Y) : d ∈ M(dx, dy) }.

PROPOSITION 6.2. Let 0 < µ < γ < 1 then

distGH(Cγ, Cµ) 6 2
γ− µ

1− γ
.

Proof. The spaces Cγ are all subsets of `1(N), but they are not disjoint inside
this metric space since for instance 0 belongs to all of them. This deficiency can
easily be repaired by considering the normed space E = R× `1(N, R) which is
equipped with the norm ‖(t, x)‖ := max{|t|, ‖x‖1} and by the construction of
isometric copies Dγ of Cγ in E. This is done by defining

Dγ := {(γ, (xnγn−1(1− γ))n∈N) ∈ E : xn ∈ {0, 1} }.

We first remark that since µ < γ we must have γn−1(1 − γ) 6 µn−1(1 −
µ) for at least n = 1 and we define m as the largest natural number such that
the inequality above is satisfied. Then γn−1(1 − γ) > µn−1(1 − µ) for n > m.
We can now make an estimate of the Hausdorff distance between Dµ and Dγ.
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Let u = (µ, (xnµn−1(1− µ))n∈N) be a point in Dµ then for v = (γ, (xnγn−1(1−
γ))n∈N) in Dγ, with the same sequence (xn) we can perform the estimates ‖u−

v‖E = max
{

γ− µ,
∞
∑

n=1
xn|γn−1(1− γ)− µn−1(1− µ)|

}
. Since xn ∈ {0, 1} and m

is chosen as it is we can get the following upper estimate for the sum just above:
∞

∑
n=1

xn|γn−1(1− γ)− µn−1(1− µ)|

6
m

∑
n=1

(µn−1(1− µ)− γn−1(1− γ)) +
∞

∑
n=m+1

(γn−1(1− γ)− µn−1(1− µ))

= 2(γm − µm)

and finally we get ‖u− v‖E 6 max{γ− µ, 2(γm − µm)}.
By definition of m we have γm−1(1− γ) 6 µm−1(1− µ) so

γm−1 6 µm−1 1− µ

1− γ
and

γm − µm 6
γµm−1(1− µ)− µm(1− γ)

1− γ
=

µm−1(γ− µ)
1− γ

6
γ− µ

1− γ
.

If instead of starting with a point u ∈ Dµ we had started with a point v ∈ Dγ

we could have chosen u ∈ Dµ and made exactly the same computations as above.
This symmetry in the choice of u and v shows we that the Hausdorff distance
betweenDµ and Dγ is at most 2 γ−µ

1−γ , so the Gromov–Hausdorff distance between
Cµ and Cγ is at most this number too.

7. A COMPACT METRIC SPACE WHICH CONTAINS CANTOR SETS OF ANY DIMENSION

The title for this subsection indicates its content. By the simple definition
Eγ := (1 − γ)Cγ we define a compact subset of `1(N, R) which is bi-Lipschitz
equivalent to Cγ. The closure of the union of all these spaces, denoted E , is a
compact space, which contains Cantor sets of any dimension. In order to state
the result a bit more precise we define e1 to be the unit vector in `1(N, R) which
is the first basis vector, i.e. the coordinates of e1 are given by e1(n) = δ1n. Further

we define a subset F of `1(N, R) by F =
{

x ∈ `1(N, R) : 0 6 x(n) 6 4
(n+1)2

}
.

The set F is a compact subset of `1(N, R) since for elements in F we will have the
following uniform estimates of the norm of the tails of the elements

∀x ∈ F , ∀k ∈ N :
∞

∑
n=k

|x(n)| 6 4
k

.

THEOREM 7.1. The space E is a compact subset of F of infinite Hausdorff dimen-
sion. It contains closed Cantor sets of any positive Hausdorff dimension and it can be
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described as the union

E = e1 ∪
{ ⋃

γ∈]0,1[

(1− γ)Cγ

}
= closure

( ⋃
γ∈]0,1[

Eγ

)
.

Proof. In order to prove that E is contained in F we fix a γ in ]0, 1[ and look
at an element x in (1− γ)Cγ. For each n in N we have x(n) is in the two-point
set {0, (1− γ)2γn−1}, so we must investigate the function gn(t) := (1− t)2tn−1

on the unit interval in order to find an upper estimate for its maximum on this
interval. For n = 1 the maximal value of g1 is 1. For n > 1, elementary calculus
yields that gn has maximal value in the point n−1

n+1 and at this point

gn

(n− 1
n + 1

)
=

(n− 1
n + 1

)n−1(
1− n− 1

n + 1

)2
<

( 2
n + 1

)2
,

and E is contained in F .
In order to show that e1 belongs to E and that it is the only point which has

to be added to the union of the sets (1− γ)Cγ, when closing up, we first remark
that for any γ in ]0, 1[, the vector (1 − γ)2e1 belongs to (1 − γ)Cγ, so e1 must
belong to E . Suppose now that x is a point in E . Then there exist sequences (γi)
and (xi) such that for each i, 0 < γi < 1 , xi is in (1− γi)Cγi and (xi) converges
to x. The sequence (γi) is bounded so it has a convergent subsequence and we
may as well assume that the sequence (γi) is convergent with limit say ξ in [0, 1].
If ξ = 1 then x = 0, but 0 is in all the sets Cγ, so we may assume that ξ < 1. If
ξ = 0 then x = e1 and we have dealt with this case already. We can then assume
that 0 < ξ < 1. It is now quite elementary to check that for a coordinate, say x(n)
the convergence of (xi) to x implies that

∀n ∈ N : x(n) = 0 or x(n) = (1− ξ)2ξn−1.

This means that x is an element of (1− ξ)Cξ .

8. THE UNIFORM METRIC ON THE STATE SPACE

Let A be a unital C∗-algebra. In this section we are studying the metric on
the state space S(A) which is induced by the norm on the dual space A∗ of A.
For a finite dimensional C∗-algebras the norm topology and the weak*-topology
agree, so we looked for a spectral triple for the algebra Mn of complex n × n
matrices such that the metric induced on the state space would be that of the
norm. As we mentioned in the introduction we considered a standard spectral
triple given by A = Mn, H = L2(Mn, 1

n tr
)

and the operators in A acting on H
by left multiplication. The Dirac operator is then D = T the selfadjoint unitary
operator on H which consists of transposing a matrix. It turned out that one can
extend the idea behind the above spectral triple such that it is possible, for any
C∗-algebra A, to construct a representation π of A on a Hilbert space H such that
there exists a projection P ∈ B(H) which has the property that the norm distance
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on the state space is recovered exactly if this projection P plays the role of the
Dirac operator. This is the main result of this section. The proof is builded upon
the following lemmas. The first lemma is well known ([19]) and easy to prove.

LEMMA 8.1. Let A be a unital C∗-algebra then for any two states ϕ, ψ on A

‖ ϕ− ψ ‖ = sup
{
| (ϕ− ψ)(a) | : a = a∗ ∈ A and inf

α∈R
‖ a− αI ‖ 6 1

}
.

Further we state:

LEMMA 8.2. LetA be a unital C∗-algebra and let ρ denote a faithful representation
of A on a Hilbert space H. Let H1 denote the Hilbert space tensor product H1 = H⊗ H,
S the flip on H1 given by S(ξ ⊗ η) = η ⊗ ξ and P the projection P = I+S

2 . Then the
representation π of A on H1 given by the amplification π(a) = ρ(a)⊗ I satisfies:

∀a = a∗ ∈ A : inf
γ∈R

‖ a− γI ‖ = ‖ [P, π(a)] ‖.

Proof. We will first transform the commutator slightly in order to ease the
computations. For ∀γ ∈ R, ∀a = a∗ ∈ A we have:

‖[P, π(a)]‖ =
1
2
‖[S, π(a)]‖ =

1
2
‖S[S, π(a)]‖ =

1
2
‖π(a)− Sπ(a)S‖

=
1
2
‖ρ(a)⊗ I − I ⊗ ρ(a)‖ =

1
2
‖ρ(a− γI)⊗ I − I ⊗ ρ(a− γI)‖.

From this series of identities it follows immediately that ∀a = a∗ ∈ A, ∀γ ∈
R : ‖ a− γI ‖ > ‖ [P, π(a)] ‖. In order to show the inequality in the opposite
direction, for a certain γ, we use the series of identities again. Remark that by
spectral theory it follows that for a = a∗ ∈ A with spectrum contained in the

smallest possible interval [α, β] ⊆ R one has inf
γ∈R

‖ a− γI ‖ =
∥∥∥ a− α+β

2

∥∥∥ =

β−α
2 . Let ε > 0 and choose unit vectors ξ, η ∈ H such that (ρ(a)ξ, ξ) > β− ε and

(ρ(a)η, η) 6 α + ε. Then, ξ ⊗ η is a unit vector in H1 and

‖[P, π(a)]‖ =
1
2
‖ρ(a)⊗ I − I ⊗ ρ(a)‖ >

1
2
((ρ(a)⊗ I − I ⊗ ρ(a))ξ ⊗ η, ξ ⊗ η)

>
β− α

2
− ε = inf

γ∈R
‖ a− γI ‖ − ε.

We are now ready to give the main result of this section.

THEOREM 8.3. Let A be a C∗-algebra and ρ a faithful non-degenerate representa-
tion of A on a Hilbert space H. Then there exists a representation π of A on a Hilbert
space H1 which is an amplification of ρ, and a projection P in B(H1) such that for any
pair of states ϕ, ψ on A

‖ ϕ− ψ ‖ = sup{| (ϕ− ψ)(a) | : a = a∗ ∈ A and ‖[P, π(a)]‖ 6 1 }.

If H is separable and the commutant of ρ(A) is a properly infinite von Neumann algebra
then π = ρ is possible. If A = Mn and ρ is the standard representation of A on
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L2(Mn, 1
n tr

)
then π = ρ is possible and the projection P = 1

2 (I + T) where T is the
transposition on Mn can be used.

Proof. If A has no unit then we add a unit in order to obtain a unital C∗-
algebra Ã. It is well known that the state space of A embeds isometrically into
the state space of Ã. We can then deduce the result for the non-unital case from
the unital one by remarking that both of the expressions

| (ϕ− ψ)(a) | and ‖[P, π(a)]‖

are left unchanged if a is replaced by (a− αI).
Let us then assume that A is unital. Then, by Lemma 8.2 we can choose to

amplify ρ by the Hilbert dimension of H, but less might do just as well. It all de-
pends on the multiplicity of the representation ρ, or rather whether the commu-
tant of ρ(A) contains a subfactor isomorphic to B(H). In particular, this situation
occurs if H is separable and the commutant is properly infinite.

IfA = Mn and ρ is the “left regular representation” ofA on L2(Mn, tr), then
this Hilbert space is naturally identified with Cn ⊗Cn via the mapping

Mn(C) 3 a →
n

∑
i=1

n

∑
j=1

aijej ⊗ ei,

where the elements ei denote the elements of the standard basis for Cn. From
here it is easy to see that the flip on the Hilbert space tensor product is nothing
but the transposition operator on Mn. The Lemma 8.2 now applies directly for
π = ρ and the projection P = 1

2 (I + T), where T is the transposition operator on
Mn. In the arguments above we have used the trace rather than the trace-state as
stated in the formulation of the theorem, the reason being that the identification
of Mn with Cn ⊗Cn fits naturally with the trace.
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