HYPONORMAL TOEPLITZ OPERATORS WITH RATIONAL SYMBOLS

IN SUNG HWANG and WOO YOUNG LEE

Communicated by Nikolai K. Nikolski

ABSTRACT. In this paper we consider the self-commutators of Toeplitz operators T_{φ} with rational symbols φ using the classical Hermite-Fejér interpolation problem. Our main theorem is as follows. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product of degree d and $a, b \in \mathcal{H}(\theta) := H^2 \ominus \theta H^2$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $[T^*_{\varphi}, T_{\varphi}]$, and $[T^*_{\varphi}, T_{\varphi}]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}$:

 $[T_{\varphi}^*, T_{\varphi}] = A(a)^* W M(\varphi) W^* A(a) \oplus 0_{\infty},$

where $A(a) := P_{\mathcal{H}(\theta)} M_a |_{\mathcal{H}(\theta)} (M_a \text{ is the multiplication operator with symbol} a)$, W is the unitary operator from \mathbb{C}^d onto $\mathcal{H}(\theta)$ defined by $W := (\phi_1, \dots, \phi_d)$ ($\{\phi_j\}$ is an orthonormal basis for $\mathcal{H}(\theta)$), and $M(\varphi)$ is a matrix associated with the classical Hermite-Fejér interpolation problem. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $[T^*_{\varphi}, T_{\varphi}]$ is given by rank $[T^*_{\varphi}, T_{\varphi}] = \operatorname{rank} M(\varphi)$.

KEYWORDS: Toeplitz operators, hyponormal, classical Hermite-Fejér interpolation.

MSC (2000): 47B20, 47B35.

1. INTRODUCTION

For φ in $L^{\infty}(\mathbb{T})$ of the unit circle $\mathbb{T} = \partial \mathbb{D}$, the *Toeplitz operator with symbol* φ is the operator T_{φ} on the Hardy space $H^2(\mathbb{T})$ of the unit circle given by

$$T_{\varphi}f := P(\varphi f) \quad (f \in H^2(\mathbb{T})),$$

where *P* denotes the orthogonal projection which maps $L^2(\mathbb{T})$ onto $H^2(\mathbb{T})$. A bounded linear operator *A* is called *hyponormal* if its self-commutator $[A^*, A] := A^*A - AA^*$ is positive (semidefinite). Normal Toeplitz operators were characterized by a property of their symbols in the early 1960's by A. Brown and P. Halmos [3] and 25 years passed before the exact nature of the relationship between

the symbol $\varphi \in L^{\infty}$ and the positivity of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ was understood (via Cowen's theorem [4]). We shall employ an equivalent variant of Cowen's theorem [4], that was first proposed by Nakazi and Takahashi [13].

COWEN'S THEOREM. For $\varphi \in L^{\infty}$, write

$$\mathcal{E}(\varphi) := \{k \in H^{\infty} : \|k\|_{\infty} \leq 1 \text{ and } \varphi - k\overline{\varphi} \in H^{\infty}\}.$$

Then T_{φ} *is hyponormal if and only if* $\mathcal{E}(\varphi)$ *is nonempty.*

Cowen's theorem is to recast the operator-theoretic problem of hyponormality for Toeplitz operators into the problem of finding a solution with specified properties to a certain functional equation involving the operator's symbol. This approach has been put to use in the works [5], [6], [8], [9], [10], [11], [13], [16] to study Toeplitz operators on $H^2(\mathbb{T})$. Particular attention has been paid to Toeplitz operators with polynomial symbols. In particular, K. Zhu [16] has applied Cowen's criterion and Schur's algorithm [15] to the Schur function Φ_N to obtain an abstract characterization of those polynomial symbols that correspond to hyponormal Toeplitz operators.

On the other hand, a function $\varphi \in L^{\infty}$ is said to be of *bounded type* (or in the Nevanlinna class) if there are functions ψ_1, ψ_2 in $H^{\infty}(\mathbb{D})$ such that

$$\varphi(z) = \frac{\psi_1(z)}{\psi_2(z)}$$

for almost all z in \mathbb{T} . Evidently, rational functions in L^{∞} are of bounded type. In this paper we present an explicit description of the self-commutators of Toeplitz operators with bounded type symbols associated with a finite Blaschke product (or equivalently, rational symbols).

2. PRELIMINARIES AND AUXILIARY LEMMAS

Let *J* be the unitary operator on L^2 defined by

$$J(f)(z) = \overline{z}f(\overline{z}).$$

For $\varphi \in L^{\infty}$, the operator on H^2 defined by

$$H_{\varphi}f = J(I-P)(\varphi f)$$

is called the *Hankel operator* H_{φ} with symbol φ . If we define the function \tilde{v} by $\tilde{v}(z) := \overline{v(\overline{z})}$, then H_{φ} can be viewed as the operator on H^2 defined by

$$\langle zuv, \overline{arphi}
angle = \langle H_{arphi} u, \widetilde{v}
angle \quad ext{for all } v \in H^{\infty}.$$

The following is a basic connection between Hankel and Toeplitz operators ([14]):

$$T_{\varphi\psi} - T_{\varphi}T_{\psi} = H^*_{\overline{\varphi}}H_{\psi} \ (\varphi, \psi \in L^{\infty}) \quad \text{and} \quad H_{\varphi}T_h = H_{\varphi h} = T^*_{\widetilde{h}}H_{\varphi} \ (h \in H^{\infty}).$$

From this we can see that if $k \in \mathcal{E}(\varphi)$ then

$$[T^*_{\varphi}, T_{\varphi}] = H^*_{\overline{\varphi}} H_{\overline{\varphi}} - H^*_{\varphi} H_{\varphi} = H^*_{\overline{\varphi}} H_{\overline{\varphi}} - H^*_{k \overline{\varphi}} H_{k \overline{\varphi}} = H^*_{\overline{\varphi}} (1 - T_{\widetilde{k}} T^*_{\widetilde{k}}) H_{\overline{\varphi}}.$$

If θ is an inner function, the degree of θ , denoted by deg(θ), is defined as *n* if θ is a finite Blaschke product of the form

$$\theta(z) = e^{i\xi} \prod_{j=1}^{n} \frac{z - \beta_j}{1 - \overline{\beta}_j z} \quad (|\beta_j| < 1 \text{ for } j = 1, \dots, n),$$

otherwise the degree of θ is infinite. For an inner function θ , write

$$\mathcal{H}(\theta) := H^2 \ominus \theta H^2.$$

Note that ker $H_{\overline{\theta}} = \theta H^2$ and ran $H_{\overline{\theta}}^* = \mathcal{H}(\theta)$. It was shown ([1], Lemma 6) that if T_{φ} is hyponormal and φ is not in H^{∞} then

 φ is of bounded type $\iff \overline{\varphi}$ is of bounded type.

In [1], it was also shown that

 φ is of bounded type $\iff \ker H_{\varphi} \neq \{0\} \iff \varphi = \overline{\theta}b$,

where θ is an inner function and $b \in H^{\infty}$ satisfies that the inner parts of b and θ are coprime. So we have

$$\ker H_{\overline{\theta}h} = \theta H^2 \quad \text{and} \quad \operatorname{cl} \operatorname{ran} H_{\overline{\theta}h} = \mathcal{H}(\widetilde{\theta}).$$

On the other hand, when we study the hyponormality of Toeplitz operators T_{φ} with symbols φ , we may assume that $\varphi(0) = 0$ because the hyponormality of an operator is invariant under translation by scalars. Thus if $\varphi = \overline{g} + f \in L^{\infty}$ $(f, g \in H^2)$, then we will assume that f(0) = g(0) = 0 throughout the paper. Therefore we can see (cf. [10], [9]) that if $\varphi = \overline{g} + f \in L^{\infty}$ $(f, g \in H^2)$ is of bounded type and T_{φ} is hyponormal then we can write

$$f = \theta_1 \theta_2 \overline{a}$$
 and $g = \theta_1 b$

for some inner functions θ_1 and θ_2 , where $a \in \mathcal{H}(\theta_1 \theta_2)$ and $b \in \mathcal{H}(\theta_1)$.

To prove the main result we need several auxiliary lemmas. The first lemma gives a way to compute the rank of a product of two Hankel operators.

LEMMA 2.1. (Axler-Chang-Sarason Theorem [2]) For $\varphi, \psi \in L^{\infty}$,

$$\operatorname{rank}(H_{\varphi}^{*}H_{\psi}) = \min\{\operatorname{rank}(H_{\varphi}), \operatorname{rank}(H_{\psi})\}.$$

The following result is a characterization of hyponormal Toeplitz operators whose self-commutator is of finite rank.

LEMMA 2.2. (Nakazi-Takahashi Theorem [13]) A Toeplitz operator T_{φ} is hyponormal and $[T_{\varphi}^*, T_{\varphi}]$ is a finite rank operator if and only if there exists a finite Blaschke product k in $\mathcal{E}(\varphi)$. In this case, we can choose k such that deg $(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}]$.

For a subspace \mathcal{M} of H^2 , let $P_{\mathcal{M}}$ be the orthogonal projection onto \mathcal{M} . Then we have:

LEMMA 2.3. If
$$f = \theta_1 \theta_2 \overline{a}$$
 for $a \in \mathcal{H}(\theta_1 \theta_2)$ then
 $\overline{\theta}_2 P_{\theta_2 H^2}(f) = P(\theta_1 \overline{a}) = \theta_1 \overline{P_{\mathcal{H}(\theta_1)}(a)} + c$ for some constant c .

Proof. Let $g \in H^2$ be arbitrary. Then

$$\langle \overline{\theta}_2 P_{\theta_2 H^2}(f), g \rangle = \langle P_{\theta_2 H^2}(\theta_1 \theta_2 \overline{a}), \theta_2 g \rangle = \langle \theta_1 \theta_2 \overline{a}, \theta_2 g \rangle = \langle P(\theta_1 \overline{a}), g \rangle$$

Therefore we have that $P(\theta_1 \overline{a}) = \overline{\theta}_2 P_{\theta_2 H^2}(f)$. For the second equality, let $a_1 := P_{\mathcal{H}(\theta_1)}(a)$ and $a_2 := a - a_1$. Then we have

$$P(\theta_1\overline{a}) = P(\theta_1\overline{a}_1) + P(\theta_1\overline{a}_2) = \theta_1\overline{a}_1 + P(\theta_1\overline{a}_2).$$

But since $\mathcal{H}(\theta_1\theta_2) = \mathcal{H}(\theta_1) \oplus \theta_1 \mathcal{H}(\theta_2)$ for inner functions θ_1 and θ_2 , it follows that $a_2 \in \theta_1 \mathcal{H}(\theta_2)$. Therefore we can conclude that $P(\theta_1 \overline{a}_2) \in P(\overline{\mathcal{H}(\theta_2)}) \in \mathbb{C}$. This completes the proof.

LEMMA 2.4. Let $\varphi = \overline{g} + f \in L^{\infty}$. If $f = \theta_1 \theta_2 \overline{a}$ and $g = \theta_1 \overline{b}$ for $a \in \mathcal{H}(\theta_1 \theta_2)$ and $b \in \mathcal{H}(\theta_1)$, then $\theta_1 \mathcal{H}(\theta_2) \subseteq ran[T^*_{\varphi}, T_{\varphi}] \subseteq \mathcal{H}(\theta_1 \theta_2)$.

Proof. Observe that

$$[T^*_{\varphi}, T_{\varphi}] = H^*_{\overline{f}} H_{\overline{f}} - H^*_{\overline{g}} H_{\overline{g}} = H^*_{\overline{\theta_1 \theta_2 a}} H_{\overline{\theta_1 \theta_2 a}} - H^*_{\overline{\theta_1 b}} H_{\overline{\theta_1 b}}.$$

Since $\operatorname{cl}\operatorname{ran}(H^*_{\overline{\theta_1}\theta_2 a}H_{\overline{\theta_1}\theta_2 a}) = \operatorname{cl}\operatorname{ran}H^*_{\overline{\theta_1}\theta_2 a} = \mathcal{H}(\theta_1\theta_2) \text{ and } \operatorname{cl}\operatorname{ran}(H^*_{\overline{\theta}_1 b}H_{\overline{\theta}_1 b}) = \mathcal{H}(\theta_1),$ we can see that $\theta_1\mathcal{H}(\theta_2) \subseteq \operatorname{ran}[T^*_{\varphi},T_{\varphi}] \subseteq \mathcal{H}(\theta_1\theta_2).$

LEMMA 2.5. Let $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are in H^2 . If φ is of bounded type and T_{φ} is hyponormal then

 $\operatorname{rank} [T_{\omega}^*, T_{\varphi}] = \min \{ \operatorname{deg}(k) : k \text{ is an inner function in } \mathcal{E}(\varphi) \}.$

Proof. If φ is of bounded type such that T_{φ} is hyponormal then $\mathcal{E}(\varphi)$ contains at least an inner function (see [12]). If $\mathcal{E}(\varphi)$ has no finite Blaschke product then by Lemma 2.2 we have that for all k in $\mathcal{E}(\varphi)$, rank $[T_{\varphi}^*, T_{\varphi}] = \infty = \deg(k)$. If instead $\mathcal{E}(\varphi)$ has a finite Blaschke product then it suffices to show that there exists an inner function k in $\mathcal{E}(\varphi)$ such that rank $(H_{\overline{k}}) \leq \operatorname{rank}(H_{\overline{f}})$. We assume to the contrary that rank $(H_{\overline{f}}) < \operatorname{rank}(H_{\overline{k}})$ for all inner functions k in $\mathcal{E}(\varphi)$. Since k is an inner function we have that

$$[T^*_{\varphi}, T_{\varphi}] = H^*_{\overline{f}}H_{\overline{f}} - H^*_{\overline{g}}H_{\overline{g}} = H^*_{\overline{f}}H_{\overline{f}} - H^*_{k\overline{f}}H_{k\overline{f}} = H^*_{\overline{f}}H_{\overline{k}}H^*_{\overline{k}}H_{\overline{f}}.$$

By Lemma 2.1 we see that

 $\operatorname{rank}\left[T_{\varphi}^{*},T_{\varphi}\right]=\operatorname{rank}\left(H_{\overline{f}}^{*}H_{\overline{k}}\right)=\min\left\{\operatorname{rank}\left(H_{\overline{f}}\right),\operatorname{rank}\left(H_{\overline{k}}\right)\right\}.$

But since rank $(H_{\overline{f}}) < \deg(k)$, it follows that rank $[T_{\varphi}^*, T_{\varphi}] < \deg(k)$, which contradicts Lemma 2.2. This completes the proof.

The following lemma is a slight extension of Corollary 3.5 in [9], in which the rank of the self-commutator is finite.

LEMMA 2.6. Let $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are in H^2 . Assume that $f = \theta_1 \theta_2 \overline{a}$ and $g = \theta_1 \overline{b}$

for $a \in \mathcal{H}(\theta_1 \theta_2)$ and $b \in \mathcal{H}(\theta_1)$. Let $\psi := \theta_1 \overline{P_{\mathcal{H}(\theta_1)}(a)} + \overline{g}$. Then T_{φ} is hyponormal if and only if T_{ψ} is. Moreover, in the cases where T_{φ} is hyponormal,

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{deg}\left(\theta_{2}\right) + \operatorname{rank}\left[T_{\psi}^{*}, T_{\psi}\right].$$

Proof. The first assertion follows at once from Corollary 3.5 of [9] together with Lemma 2.3.

For the rank formula, note that $\mathcal{E}(\varphi) = \{k_1\theta_2 : k_1 \in \mathcal{E}(\psi)\}$. Therefore by Lemma 2.5 we have that rank $[T_{\varphi}^*, T_{\varphi}] = \deg(\theta_2) + \operatorname{rank}[T_{\psi}^*, T_{\psi}]$.

3. MAIN RESULTS

In view of Lemma 2.6, when we study the hyponormality of Toeplitz operators with bounded type symbols φ , we may assume that the symbol $\varphi = \overline{g} + f \in L^{\infty}$ is of the form

(3.1)
$$f = \theta \overline{a}$$
 and $g = \theta b$,

where θ is an inner function and $a, b \in \mathcal{H}(\theta)$ such that the inner parts of a, b and θ are coprime.

On the other hand, if $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are rational functions then we can show that φ can be written in the form (3.1) with a finite Blaschke product θ . C. Gu [8] showed that if $\varphi = \overline{g} + f \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. By comparison, using the classical Hermite-Fejér interpolation problem, we will give an explicit description of the self-commutator $[T^*_{\varphi}, T_{\varphi}]$.

To begin with, let θ be a finite Blaschke product of degree *d*. We can write

(3.2)
$$\theta = e^{i\xi} \prod_{k=1}^{n} (\widetilde{B}_k)^{m_k} \quad (\text{where } \widetilde{B}_k := \frac{z - \alpha_k}{1 - \overline{\alpha}_k z})$$

So $d = \sum_{k=1}^{n} m_k$. For our purpose, rewrite θ as in the form $\theta = e^{i\xi} \prod_{j=1}^{d} B_j$, where

$$B_j := \widetilde{B}_k$$
 if $\sum_{l=0}^{k-1} m_l < j \leqslant \sum_{l=0}^k m_l$

and, for notational convenience, $m_0 := 0$. For example, the first Blaschke product \tilde{B}_1 is repeated m_1 times and so on. Let

(3.3)
$$\phi_j := \frac{q_j}{1 - \overline{\alpha}_j z} B_{j-1} B_{j-2} \cdots B_1 \quad (1 \leq j \leq d),$$

where $\phi_1 := q_1(1 - \overline{\alpha}_1 z)^{-1}$ and $q_j := (1 - |\alpha_j|^2)^{1/2}$. It is well known that $\{\phi_j\}_1^d$ is an orthonormal basis for $\mathcal{H}(\theta)$ (cf. Theorem X.1.5 of [7]).

Let $\varphi = \overline{g} + f \in L^{\infty}$, where $g = \theta \overline{b}$ and $f = \theta \overline{a}$ for $a, b \in \mathcal{H}(\theta)$ and write

$$\mathcal{C}(\varphi) := \{k \in H^{\infty} : \varphi - k\overline{\varphi} \in H^{\infty}\}$$

Then *k* is in $C(\varphi)$ if and only if $\overline{\theta}b - k\overline{\theta}a \in H^2$, or equivalently,

$$(3.4) b - ka \in \theta H^2.$$

Note that $\theta^{(n)}(\alpha_i) = 0$ for all $0 \le n < m_i$. Thus the condition (3.4) is equivalent to the following equation: for all $1 \le i \le n$,

1

$$(3.5) \qquad \begin{pmatrix} k_{i,0} \\ k_{i,1} \\ k_{i,2} \\ \vdots \\ k_{i,m_i-2} \\ k_{i,m_i-1} \end{pmatrix} = \begin{pmatrix} a_{i,0} & 0 & 0 & 0 & \cdots & 0 \\ a_{i,1} & a_{i,0} & 0 & 0 & \cdots & 0 \\ a_{i,2} & a_{i,1} & a_{i,0} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ a_{i,m_i-2} & a_{i,m_i-3} & \ddots & \ddots & a_{i,0} & 0 \\ a_{i,m_i-1} & a_{i,m_i-2} & \dots & a_{i,2} & a_{i,1} & a_{i,0} \end{pmatrix}^{-1} \begin{pmatrix} b_{i,0} \\ b_{i,1} \\ b_{i,2} \\ \vdots \\ b_{i,m_i-2} \\ b_{i,m_i-1} \end{pmatrix},$$

where

$$k_{i,j} := \frac{k^{(j)}(\alpha_i)}{j!}, \quad a_{i,j} := \frac{a^{(j)}(\alpha_i)}{j!} \text{ and } b_{i,j} := \frac{b^{(j)}(\alpha_i)}{j!}$$

Thus *k* is in $C(\varphi)$ if and only if *k* is a function in H^{∞} for which

(3.6)
$$\frac{k^{(j)}(\alpha_i)}{j!} = k_{i,j} \quad (1 \leq i \leq n, \ 0 \leq j < m_i),$$

where the $k_{i,j}$ are determined by the equation (3.5). If in addition $||k||_{\infty} \leq 1$ is required then this is exactly the classical Hermite-Fejér interpolation problem.

To construct a polynomial k(z) = p(z) satisfying (3.6), let $p_i(z)$ be the polynomial of order $d - m_i$ defined by

$$p_i(z) := \prod_{k=1, k \neq i}^n \left(\frac{z - \alpha_k}{\alpha_i - \alpha_k}\right)^{m_k}.$$

Also consider the polynomial p(z) of degree d - 1 defined by (3.7)

$$p(z) := \sum_{i=1}^{n} (k'_{i,0} + k'_{i,1}(z - \alpha_i) + k'_{i,2}(z - \alpha_i)^2 + \dots + k'_{i,m_i-1}(z - \alpha_i)^{m_i-1}) p_i(z),$$

where the $k'_{i,i}$ are obtained by the following equations:

$$k'_{i,j} = k_{ij} - \sum_{k=0}^{j-1} \frac{k'_{i,k} \, p_i^{(j-k)}(\alpha_i)}{(j-k)!} \quad (1 \le i \le n; \, 0 \le j < m_i)$$

and

$$k_{i,0}' = k_{i,0} \quad (1 \le i \le n)$$

Then p(z) satisfies (3.6) (see [7]). But p(z) may not be contractive.

On the other hand, if ψ is a function in H^{∞} , let $A(\psi)$ be the operator on $\mathcal{H}(\theta)$ defined by

$$A(\psi) := P_{\mathcal{H}(\theta)} M_{\psi} \mid_{\mathcal{H}(\theta)},$$

where M_{ψ} is the multiplication operator with symbol ψ . Now let W be the unitary operator from \mathbb{C}^d onto $\mathcal{H}(\theta)$ defined by

$$W:=(\phi_1,\phi_2,\ldots,\phi_d),$$

where the ϕ_i are the functions in (3.3).

We then have:

LEMMA 3.1. ([7], Theorems X.1.5 and X.5.6) Let θ be the Blaschke product in (3.2) and let $\{\phi_i\}_1^d$ be the orthonormal basis for $\mathcal{H}(\theta)$ in (3.3). Then

$$A(z) = P_{\mathcal{H}(\theta)} M_z \mid_{\mathcal{H}(\theta)}$$

is unitarily equivalent to the lower triangular matrix M on \mathbb{C}^d defined by

$$\begin{pmatrix} \alpha_1 & 0 & 0 & 0 & \cdots & 0\\ q_1 q_2 & \alpha_2 & 0 & 0 & \cdots & 0\\ -q_1 \overline{\alpha}_1 q_3 & q_2 q_3 & \alpha_3 & 0 & \cdots & 0\\ q_1 \overline{\alpha}_2 \overline{\alpha}_3 q_4 & -q_2 \overline{\alpha}_3 q_4 & q_3 q_4 & \alpha_4 & \cdots & 0\\ -q_1 \overline{\alpha}_2 \overline{\alpha}_3 \overline{\alpha}_4 q_5 & q_2 \overline{\alpha}_3 \overline{\alpha}_4 q_5 & -q_3 \overline{\alpha}_4 q_5 & q_4 q_5 & \ddots & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & 0\\ (-1)^d q_1 \Big(\prod_{j=2}^{d-1} \overline{\alpha}_j \Big) q_d & (-1)^{d-1} q_2 \Big(\prod_{j=3}^{d-1} \overline{\alpha}_j \Big) q_d & \cdots & \cdots & q_{d-1} q_d & \alpha_d \end{pmatrix}$$

Moreover, if p is a polynomial defined in (3.7) then A(p)W = Wp(M).

Our main theorem now follows:

THEOREM 3.2. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Then $\mathcal{H}(\theta)$ is a reducing subspace of $[T_{\varphi}^*, T_{\varphi}]$, and $[T_{\varphi}^*, T_{\varphi}]$ has the following representation relative to the direct sum $\mathcal{H}(\theta) \oplus \mathcal{H}(\theta)^{\perp}$:

$$[T_{\varphi}^*, T_{\varphi}] = A(a)^* W M(\varphi) W^* A(a) \oplus 0_{\infty}$$

where A(a) is invertible and $M(\varphi) := I_{\mathcal{H}(\theta)} - p(M)^* p(M)$. Hence, in particular, T_{φ} is hyponormal if and only if $M(\varphi)$ is positive. Moreover the rank of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ is given by

$$\operatorname{rank}[T_{\varphi}^*, T_{\varphi}] = \operatorname{rank} M(\varphi).$$

Proof. From the proof of Lemma 2.4 we can see that ran $[T_{\varphi}^*, T_{\varphi}] \subseteq \mathcal{H}(\theta)$. Therefore $\mathcal{H}(\theta)$ is a reducing subspace of $[T_{\varphi}^*, T_{\varphi}]$.

Towards the equality (3.8), let u and v be in $\mathcal{H}(\theta)$. Suppose k = p is a polynomial in (3.7). Since ker $H_{\overline{\theta}} = \theta H^2$, we have that $H_{\overline{\theta}k}u = H_{\overline{\theta}}(P_{\mathcal{H}(\theta)}(ku))$.

Note that $H^*_{\overline{\theta}}H_{\overline{\theta}}$ is the projection onto $\mathcal{H}(\theta)$. Thus we have that

Thus by Lemma 3.1 we have that

(3.9)
$$H_{\overline{\theta}\widetilde{k}}H_{\overline{\theta}k}|_{\mathcal{H}(\theta)} = A(k)^*A(k) = Wk(M)^*k(M)W^*.$$

Hence by (3.9) we get

$$(H_{\overline{\theta}}^*H_{\overline{\theta}} - H_{\overline{\theta}k}^*H_{\overline{\theta}k})|_{\mathcal{H}(\theta)} = W(I_{\mathcal{H}(\theta)} - k(M)^*k(M))W^*$$

Since *k* satisfies the equality (3.5) and hence $\varphi - k\overline{\varphi} \in H^{\infty}$, it follows that

$$\begin{split} [T_{\varphi}^*, T_{\varphi}]|_{\mathcal{H}(\theta)} &= (H_{\overline{f}}^* H_{\overline{f}} - H_{\overline{g}}^* H_{\overline{g}})|_{\mathcal{H}(\theta)} \\ &= (H_{\overline{f}}^* H_{\overline{f}} - H_{k\overline{f}}^* H_{k\overline{f}})|_{\mathcal{H}(\theta)} \\ &= (H_{\overline{\theta}a}^* H_{\overline{\theta}a} - H_{k\overline{\theta}a}^* H_{k\overline{\theta}a})|_{\mathcal{H}(\theta)} \\ &= T_a^* (H_{\overline{\theta}}^* H_{\overline{\theta}} - H_{\overline{\theta}k}^* H_{\overline{\theta}k}) T_a|_{\mathcal{H}(\theta)} \\ &= A(a)^* W(I_{\mathcal{H}(\theta)} - p(M)^* p(M)) W^* A(a) \\ &= A(a)^* WM(\varphi) W^* A(a), \end{split}$$

which gives (3.8).

For the invertibility of A(a), suppose $A(a)^* f = 0$ for some $f \in \mathcal{H}(\theta)$. Then $P_{\mathcal{H}(\theta)}(\overline{a}f) = 0$ and hence

$$\overline{a}f = \theta g$$
 for some $g \in H^2$,

or equivalently, $\overline{a}\overline{\theta}f = g$. Note that $\overline{\theta}f \in H^{2^{\perp}}$ and hence $\overline{a}\overline{\theta}f \in H^{2^{\perp}} \cap H^2 = \{0\}$. Thus we have f = 0, which implies that $A(a)^*$ is 1-1. Since A(a) is a finite dimensional operator, A(a) is invertible. This completes the proof.

EXAMPLE 3.3. C. Gu [8] showed that if $\varphi = f + \overline{g} \in L^{\infty}$, where f and g are rational functions then the problem determining the hyponormality of T_{φ} is exactly the tangential Hermite-Fejér interpolation problem. In fact we can show that this problem is equivalent to our problem. However our solution has an advantage which gives an explicit description of the self-commutator $[T_{\varphi}^*, T_{\varphi}]$ even though this method is not simpler than the method of [8]. To see this consider the function $\varphi = \overline{g} + f$, where

$$f(z) := 3\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + 2\frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{13}{6} \quad \text{and} \quad g(z) := \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{5}{6}.$$

Thus if
$$\theta := \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z}$$
 then
$$a := 3\frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + 2\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{13}{6}\frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z}$$

and

$$b := \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z} + \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} + \frac{5}{6} \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z} \cdot \frac{z - \frac{1}{3}}{1 - \frac{1}{3}z}$$

are in $\mathcal{H}(\theta)$, and $f = \theta \overline{a}$ and $g = \theta \overline{b}$. So a straightforward calculation shows that p(z) satisfying (3.7) is given by $p(z) = -z + \frac{5}{6}$ and $M = \begin{pmatrix} \frac{1}{2} & 0\\ \frac{\sqrt{6}}{3} & \frac{1}{3} \end{pmatrix}$. Thus we have that

$$M(\varphi) := I - p(M)^* p(M) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} \frac{7}{9} & -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} & \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{2}{9} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{3}{4} \end{pmatrix}.$$

Since $\phi_1 = \frac{\sqrt{3}}{2} \frac{1}{1 - \frac{1}{2}z}$ and $\phi_2 = \frac{2\sqrt{2}}{3} \frac{1}{1 - \frac{1}{3}z} \cdot \frac{z - \frac{1}{2}}{1 - \frac{1}{2}z}$ form a basis for $\mathcal{H}(\theta)$, we have that

$$\begin{split} [T_{\varphi}^*, T_{\varphi}] &= A(a)^* W M_{\varphi} W^* A(a) \oplus 0_{\infty} \\ &= \begin{pmatrix} \frac{3}{5} & 2\sqrt{6} \\ 0 & -\frac{2}{5} \end{pmatrix} \begin{pmatrix} \frac{2}{9} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{3}{4} \end{pmatrix} \begin{pmatrix} \frac{3}{5} & 0 \\ 2\sqrt{6} & -\frac{2}{5} \end{pmatrix} \oplus 0_{\infty} \\ &= \begin{pmatrix} \frac{512}{25} & -\frac{16\sqrt{6}}{25} \\ -\frac{16\sqrt{6}}{25} & \frac{3}{25} \end{pmatrix} \oplus 0_{\infty}. \end{split}$$

By comparison, the tangential Hermite-Fejér matrix induced by φ is given by (using the notations in [8])

$$A^* \Gamma A - B^* \Gamma B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 24 & 24 \\ 0 & 24 & 24 \end{pmatrix}.$$

COROLLARY 3.4. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. If T_{φ} is hyponormal and rank $[T_{\varphi}^*, T_{\varphi}] < \deg(\theta)$ then $\mathcal{E}(\varphi)$ has exactly one element.

Proof. Suppose rank($[T_{\varphi}^*, T_{\varphi}]$) < deg(θ). By Theorem 3.2 we have that

$$\operatorname{rank}\left(I_{\mathcal{H}(\theta)} - p(M)^* p(M)\right) < \operatorname{deg}\left(\theta\right).$$

Therefore the norm of p(M) should be one. By an argument of p. 302 in [7], there exists a unique solution k to (3.6) such that $||k||_{\infty} \leq 1$ if and only if ||p(M)|| = 1, $\mathcal{E}(\varphi)$ has exactly one element.

THEOREM 3.5. Let $\varphi = \overline{g} + f \in L^{\infty}$ and let $f = \theta \overline{a}$ and $g = \theta \overline{b}$, where θ is a finite Blaschke product and $a, b \in \mathcal{H}(\theta)$. Let θ_1 be a factor of θ and let

$$\varphi_{ heta_1} := \overline{ heta}_1 P_{\mathcal{H}(heta_1)}(b) + heta_1 \overline{P_{\mathcal{H}(heta_1)}}(a).$$

If T_{φ} is hyponormal then $T_{\varphi_{\theta_1}}$ is. Moreover, in the cases where T_{φ} is hyponormal, the rank of $[T_{\varphi_{\theta_1}}^*, T_{\varphi_{\theta_1}}]$ is given by

$$\operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right] = \begin{cases} \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] < \operatorname{deg}\left(\theta_{1}\right), \\ \operatorname{deg}\left(\theta_{1}\right) & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \ge \operatorname{deg}\left(\theta_{1}\right). \end{cases}$$

Proof. Let $a_1 := P_{\mathcal{H}(\theta_1)}(a)$, $b_1 := P_{\mathcal{H}(\theta_1)}(b)$, $a_2 := a - a_1$ and $b_2 := b - b_1$. If T_{φ} is hyponormal then by Cowen's theorem there exists a function $k \in H^{\infty}$ with $||k||_{\infty} \leq 1$ for which

$$\overline{\theta}b - k\overline{\theta}a = h$$
 for some $h \in H^2$,

or equivalently,

$$\overline{\theta}(b_1 + b_2 - k(a_1 + a_2)) = h \iff \overline{\theta}(b_1 - ka_1) - \overline{\theta}(b_2 - ka_2) = h$$
$$\iff \overline{\theta}_1(b_1 - ka_1) - \overline{\theta}_1(b_2 - ka_2) = \theta_2 h,$$

where $\theta := \theta_1 \theta_2$. Since b_1 and b_2 are orthogonal and $b_1 \in \mathcal{H}(\theta_1)$, it follows that $b_2 \in \theta_1 H^2$. Thus $\overline{\theta}_1 b_2 \in H^2$. Similarly, we have that $\overline{\theta}_1 a_2 \in H^2$. Therefore we have that

$$\overline{\theta}_1(b_1-ka_1)=\overline{\theta}_1(b_2-ka_2)+\theta_2h\in H^2$$
,

or

$$\overline{\theta}_1 P_{\mathcal{H}(\theta_1)}(b) - k\overline{\theta}_1 P_{\mathcal{H}(\theta_1)}(a) \in H^2.$$

Therefore by Cowen's theorem $T_{\varphi_{\theta_1}}$ is hyponormal.

For the rank formula, suppose that rank $[T_{\varphi}^*, T_{\varphi}] < \deg(\theta_1)$. By the Nakazi-Takahashi theorem, there exists a finite Blaschke product $k \in H^{\infty}$ such that $\deg(k) = \operatorname{rank}[T_{\varphi}^*, T_{\varphi}] < \deg(\theta_1)$. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}(\varphi_{\theta_1})$ it follows $k \in \mathcal{E}(\varphi_{\theta_1})$. By Lemma 2.5 and Corollary 3.4 we have that

$$\operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] = \operatorname{deg}(k) = \operatorname{rank}\left[T_{\varphi_{\theta_{1}}}^{*}, T_{\varphi_{\theta_{1}}}\right].$$

For the other case we will show that if rank $[T^*_{\varphi_{\theta_1}}, T_{\varphi_{\theta_1}}] < \deg(\theta_1)$ then rank $[T^*_{\varphi}, T_{\varphi}] < \deg(\theta_1)$. To prove this suppose rank $[T^*_{\varphi_{\theta_1}}, T_{\varphi_{\theta_1}}] < \deg(\theta_1)$. By Corollary 3.4, $\mathcal{E}(\varphi_{\theta_1})$ has exactly one element. Since $\mathcal{E}(\varphi) \subseteq \mathcal{E}(\varphi_{\theta_1})$, $\mathcal{E}(\varphi)$ also consists of one element and hence by Lemma 2.5 we have that

$$\operatorname{rank} \left[T_{\varphi}^*, T_{\varphi}\right] = \operatorname{rank} \left[T_{\varphi_{\theta_1}}^*, T_{\varphi_{\theta_1}}\right] < \operatorname{deg}(\theta_1).$$

This completes the proof.

COROLLARY 3.6. Suppose φ is a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-N}^{N} a_n z^n$, where a_{-N} and a_N are nonzero. Let $\varphi_j := T_{\overline{z}^j} \varphi + \overline{T_{\overline{z}^j} \overline{\varphi}}$. If T_{φ} is hyponormal then T_{φ_j} is hyponormal for each j = 0, 1, 2, ..., N. In the cases where T_{φ} is hyponormal we have

$$\operatorname{rank}\left[T_{\varphi_{j}}^{*}, T_{\varphi_{j}}\right] = \begin{cases} N-j & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] \geqslant N-j, \\ \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] & \text{if } \operatorname{rank}\left[T_{\varphi}^{*}, T_{\varphi}\right] < N-j. \end{cases}$$

Proof. This follows at once from Theorem 3.5.

Acknowledgements. The authors are grateful to the referee for several helpful suggestions. The first author was supported in part by Korea Research Foundation Grant (KRF-2004-003-C00014). The second author was supported in part by a grant (R14-2003-006-01000-0) from the Korea Research Foundation.

REFERENCES

- M.B. ABRAHAMSE, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43(1976), 597–604.
- [2] S. AXLER, S.-Y.A. CHANG, D. SARASON, Products of Toeplitz operators, *Integral Equations Operator Theory* 1(1978), 285–309.
- [3] A. BROWN, P.R. HALMOS, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213(1963/64), 89–102.
- [4] C. COWEN, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103(1988), 809–812.
- [5] R.E. CURTO, W.Y. LEE, Joint hyponormality of Toeplitz pairs, *Mem. Amer. Math. Soc.* 150(2001), no. 712.
- [6] D.R. FARENICK, W.Y. LEE, Hyponormality and spectra of Toeplitz operators, *Trans. Amer. Math. Soc.* 348(1996), 4153–4174.
- [7] C. FOIAŞ, A. FRAZHO, *The Commutant Lifting Approach to Interpolation Problems*, Oper. Theory Adv. Appl., vol. 44, Birkhäuser, Basel 1990.
- [8] C. GU, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124(1994), 135–148.
- [9] C. GU, On a class of jointly hyponormal Toeplitz operators, *Trans. Amer. Math. Soc.* 354(2002), 3275–3298.
- [10] C. GU, J.E. SHAPIRO, Kernels of Hankel operators and hyponormality of Toeplitz operators, *Math. Ann.* **319**(2001), 553–572.
- [11] I.S. HWANG, W.Y. LEE, Hyponormality of trigonometric Toeplitz operators, *Trans. Amer. Math. Soc.* 354(2002), 2461–2474.
- [12] W.Y. LEE, Cowen sets for Toeplitz operators with finite rank self-commutators, J. Operator Theory 54(2005), 261–267.

- [13] T. NAKAZI, K. TAKAHASHI, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, *Trans. Amer. Math. Soc.* **338**(1993), 753–769.
- [14] N.K. NIKOLSKII, Treatise on the Shift Operator, Springer, New York 1986.
- [15] I. SCHUR, Über Potenzreihen die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147(1917), 205–232.
- [16] K. ZHU, Hyponormal Toeplitz operators with polynomial symbols, *Integral Equations Operator Theory* **21**(1995), 376–381.

IN SUNG HWANG, DEPARTMENT OF MATHEMATICS, INSTITUTE OF BASIC SCI-ENCES, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA *E-mail address*: ihwang@skku.edu

WOO YOUNG LEE, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNI-VERSITY, SEOUL 151-742, KOREA

E-mail address: wylee@math.snu.ac.kr

Received September 10, 2004.