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ABSTRACT. We obtain bounds on the spectrum of the non-self-adjoint Ander-
son operator in one dimension by using higher order numerical ranges and
are able to determine the spectrum completely in many cases. We also de-
velop further some previously existing methods that allow us to prove that
certain curves and regions are contained in the spectrum and provide numer-
ical examples that suggest that these curves contained in the infinite volume
spectrum have a strong bearing over the finite volume cases.
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1. INTRODUCTION

The non-self-adjoint Anderson Model has been the subject of various recent
papers. It originated in [15] motivated by the study of superconductivity and
has also been used to model the growth of the growth of bacteria in an inho-
mogeneous environment, [16], [17], [23], but its purely mathematical properties
have in turn been the study of many other rigorous papers. In [7] Davies con-
sidered the same operator acting on l2(Z) and found that in this case the spec-
trum is very different to that obtained in the previously cited papers. The reason
for this is the high instability of spectral properties of non-self-adjoint operators;
in other words, if λ is an element of the spectrum of the infinite volume non-
self-adjoint Anderson operator it need not be close to the spectrum in the finite
volume model.

In another series of papers, [11], [12], [13], Goldsheid and Khoruzhenko
have studied in great detail the operator defined on a finite interval with periodic
boundary conditions and have proved results about the spectrum in the limit
as the length of the interval increases; they have also shown that the spectrum
converges (almost surely) to certain curves.
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A different approach is followed by Trefethen, Contedini and Embree. In
[27] random bidiagonal matrices are investigated and the authors present results
that fully characterize the spectra and pseudospectra, as well as the numerical
range, of finite (and infinite) random bidiagonal matrices. In [3] and [4] non-self-
adjoint Anderson-type models are studied in great detail and rigorous results on
the connection between finite and infinite volume cases are obtained.

We will however follow the approach taken by Davies. In [7] and [8] Davies
found that the spectrum of the non-self-adjoint Anderson operator is a bounded
set in C and made considerable progress in determining the spectrum precisely.
However, several questions remained open and our goal in this paper is to present
methods using higher order numerical ranges that enable us to determine the
spectrum of the operator more precisely. In Section 3 we study the D model of
the operator (as defined by Davies in [9]) and obtain significantly tighter bounds
for the spectrum and in many cases we are able to determine it completely as
shown by Theorems 3.11 and 3.20. Theorems of this type cannot be found in the
papers by Davies, and in fact, except for the bidiagonal case mentioned above
and studied in [27] there are no other known examples in which the spectrum is
fully determined. Subsection 3.3 is devoted to the study of a particular instance
of the Anderson operator in which the strength of the methods developed in this
paper and in [8] and [9] can be appreciated fully.

We also include two examples in which we have computed numerically
the spectrum of finite operators with periodic boundary conditions. It is known
that the spectra of the finite volume operators are contained in the spectra of the
infinite volume operator and for completeness we include this result as Proposi-
tion 2.5 in Section 2. The results we have obtained (see Figures 6 and 9) show a
high degree of correspondence between the infinite and finite volume spectra.

Let H be a bounded linear operator defined on a Hilbert space H. We recall
that the numerical range of H is the set

Num(H) = {〈H f , f 〉 : f ∈ H, ‖ f ‖ = 1}
and

Spec(H) ⊆ conv(Spec(H)) ⊆ Num(H)
where conv denotes the closed convex hull. We also recall that if H is a normal
operator then conv(Spec(H)) = Num(H).

In [7] and [8] Davies made use of these properties to obtain bounds on the
spectrum of the non-self-adjoint Anderson operator. One of the goals of this pa-
per is to improve these bounds by generalizing the concept of numerical range to
higher order numerical ranges, although it is important to note that this has no
direct connections to any of the generalized ranges that Gustafson and Kao list in
[14] or to the concept developed by other authors in [19] and [20].

In this paper we present the definition of this concept and some useful prop-
erties of the second order numerical range that will enable us to proceed with our
goal. In [9] Davies gives a more detailed account of the subject and proves further
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properties of higher order numerical ranges, which are, however, more difficult
to compute.

Let p(z) be any polynomial defined on C. We know that

p(Spec(H)) = Spec(p(H)) ⊆ Num(p(H))

and hence,

(1.1) Spec(H) ⊆ {z : p(z) ∈ Num(p(H))}.

Let
Num(p, H) := {z : p(z) ∈ Num(p(H))}.

We define the n-th order numerical range of H to be

Numn(H) :=
⋂

deg(p)6n

Num(p, H)

for any n ∈ N, and set

Num∞(H) :=
⋂
n

Numn(H) :=
⋂
p

Num(p, H).

We note that in [24] Nevanlinna defined the n-th polynomial numerical hull
of H by

Hulln(H) =
⋂

deg(p)6n

Hull(p, H)

where Hull(p, H) := {z : |p(z)| 6 ‖p(H)‖} and conjectured that Hulln(H) is in
fact equal to the n-th order numerical range of H. This result is not obvious and
was proved recently by Burke and Greenbaum in [5].

However, for our purposes in this paper we will concentrate on Num2(H).
In [9] Davies proves the following result whose significance will be evident in
Theorem 3.5.

THEOREM 1.1. The complement of Num2(H) is the union of a family of hyper-
bolic regions and half-planes. If z /∈ Num2(H) then

Sz = {θ ∈ [0, 2π) : (z + eiθ [0, ∞)) ∩ Spec(H) = ∅}

contains an interval of length at least π
2 or two disjoint intervals whose combined length

is at least π
2 . On the other hand if z is in the complement of the unbounded component of

C \ Spec(H) then Sz = ∅.

2. THE GENERAL SETTING

In this paper we consider the Anderson operator as an operator acting on
l2(Z) and hence limit the context of the following results to this setting. How-
ever, it is worthwhile to note that these concepts can be, and have been (see [8]),
defined in a much more general context.
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DEFINITION 2.1. Let M1, M2, M3 be compact subsets of R and let H be an
operator defined on l2(Z) such that

H(x, y) = 0 if |x− y| > 1,

H(x, x) ∈ M1, H(x, x + 1) ∈ M2, H(x, x− 1) ∈ M3.

We say that H is (Z, M1, M2, M3) pseudo-ergodic if for every ε > 0, every finite
subset F ⊂ Z and every Wr : F −→ Mr, where r = 1, 2, 3, there exists γ ∈ Z such
that

|H(γ + x, γ + x)−W1(x)| < ε,

|H(γ + x, γ + x + 1)−W2(x)| < ε,

|H(γ + x, γ + x− 1)−W3(x)| < ε,

for all x ∈ F. If M2 and M3 consist solely of one point we will say that H is
(Z, M1)-pseudo-ergodic .

THEOREM 2.2. Let H be a (Z, M1, M2, M3) pseudo-ergodic operator. If K is an
operator on l2(Z) such that

K(x, y) = 0 if |x− y| > 1,

K(x, x) ∈ M1, K(x, x + 1) = m2 ∈ M2, K(x, x− 1) = m3 ∈ M3,

then Spec(K) ⊆ Spec(H).

Proof. The proof follows that of Theorem 1 in [8].

COROLLARY 2.3. Let K0 denote the particular instance of the operator K obtained
when K(x, x) ≡ 0. Then Spec(K0) is the ellipse given by

{(m2 + m3) cos θ + i(m2 −m3) sin θ : 0 6 θ 6 2π}
and

Spec(K0) + M1 ⊆ Spec(K) ⊆ Spec(H),

and hence, as m2 and m3 vary in the definition of K, it follows that⋃
m2∈M2,m3∈M3

Spec(K0) + M1 ⊆
⋃

m2∈M2,m3∈M3

Spec(K) ⊆ Spec(H).

Next we have the following theorem whose proof we omit as it is standard
perturbation theory.

THEOREM 2.4. Let H be a (Z, M1, M2, M3) pseudo-ergodic operator and let cr ∈
R (1 6 r 6 3) be fixed. Let dr ∈ R be non-negative and such that

Mr ⊆ B(cr, dr) = {x ∈ R : |x− cr| 6 dr}
for all r. Let Hc be the constant coefficient operator defined by

Hc(x, y) = 0 if |x− y| > 1,

Hc(x, x) = c1, Hc(x, x + 1) = c2, Hc(x, x− 1) = c3,
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and let V be an operator on l2(Z) such that H = Hc + V where

‖V‖ 6 d1 + d2 + d3.

Then,

(2.1) Spec(H) ⊆ Spec(Hc) + B(0, d1 + d2 + d3).

REMARK. It is clear that dr is minimized by taking cr to be the midpoint of
Mr and this produces the smallest ball in the above result. On the other hand,
since Spec(Hc) is an ellipse determined by c1, c2 and c3 the best result follows
from taking the intersection of the right-hand side in (2.1) over all cr contained in
the interval

[
min

m
{m ∈ Mr, r = 1, 2, 3}, max

m
{m ∈ Mr, r = 1, 2, 3}

]
.

Finally we include the following proposition for completeness. It is impor-
tant in light of the finite examples we include in Section 3.

PROPOSITION 2.5. Let A be an n× n matrix such that

Ai,j =


α if i = j− 1 or if i = n, j = 1,
β if i = j + 1 or of i = 1, j = n,
vi if i = j,
0 otherwise ,

where vi is contained in a compact set M ⊂ R for all i. Let B be the infinite matrix
obtained by extending A periodically to Z and let C denote a (Z, M, {α}, {β}) pseudo-
ergodic operator. The following inclusions are true:

Spec(A) ⊆ Spec(B) ⊆ Spec(C).

Proof. The first inclusion can be obtained using Bloch wave analysis and is
proved by Davies in [9]. The second inclusion follows from Theorem 1 of [8].

3. MAIN RESULTS

In this section we consider the one-dimensional non-self-adjoint Anderson
operator given by

(3.1) H fn = ±β fn−1 + vn fn + α fn+1

acting on l2(Z) where 0 < β < α. The potential V given by V fn = vn fn satis-
fies the conditions given in Definition 2.1 so that H is a (Z, M) pseudo-ergodic
operator where M is a real compact set. That is,

H(x, y) = 0 if |x− y| > 1 and H(x, x) ∈ M

and for every ε > 0, every finite subset F ⊂ Z and W : F −→ M, there exists
γ ∈ Z such that

|H(γ + x, γ + x)−W(x)| < ε
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for all x ∈ F.
The Anderson Model usually considered in the literature (see for example

[6]) involves potentials in which the values vn at each point are independent and
identically distributed according to a probability law with compact support. A
random operator is pseudo-ergodic with probability 1 and this enables us to work
within the pseudo-ergodicity framework with no mention of probability. Thus,
the results we obtain are true in an absolute sense for the operator H which is
pseudo-ergodic by definition and hence almost surely random.

We will divide the study of this operator into two different cases, namely

(3.2) H fn = β fn−1 + vn fn + α fn+1

and

(3.3) H fn = −β fn−1 + vn fn + α fn+1.

Goldsheid and Khoruzhenko in [11] and [12] have shown that in the finite case
great differences arise when studying the spectrum of the operator given by (3.2)
and the operator given by (3.3). We will show that in the infinite case the same
methods can be used to study these two cases but the results obtained when αβ >
0 or when αβ < 0 are genuinely distinct. We will follow Davies and first look at
the case given by (3.2).

3.1. THE CASE H fn = β fn−1 + vn fn + α fn+1. Without loss of generality we can
assume β < α and after multiplying H by a suitable constant we can also assume
that α− β = 1. We will thus suppose this to be true throughout this section.

We rewrite H in the following forms

(3.4) H = A + iB = (C + V) + iB = H0 + V

where

A fn = a fn−1 + vn fn + a fn+1, B fn = b fn−1 − b fn+1,

C fn = a fn−1 + a fn+1, V fn = vn fn,

with a = 1
2 (α + β) and b = i

2 . Clearly A, B, C and V are self-adjoint, ‖B‖ = 1, V
is diagonal and H0 is normal with spectrum

Spec(H0) = {αeiθ + βe−iθ : θ ∈ [0, 2π]},

in other words, Spec(H0) coincides with the ellipse given parametrically by

((α + β) cos θ, sin θ) for 0 6 θ 6 2π.

In [8] Davies has shown that

(3.5) Spec(H0) + M ⊆ Spec(H) ⊆ conv(Spec(H0)) + conv(M)

and when more information on the nature of the set M is available we have the
following results also due to Davies which we include here for completeness.
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THEOREM 3.1. If M = [−γ, γ] and γ > α + β , then

Spec(H) = Spec(H0) + [−γ, γ].

Furthermore, 0 ∈ Spec(H) ⇐⇒ γ > α− β = 1.

THEOREM 3.2. If M = {±γ} and γ > α + β then

conv(Spec(H0) + γ) ∪ conv(Spec(H0)− γ)

⊆ Spec(H) ⊆ conv(Spec(H0)) + [−γ, γ]

and

Spec(H) ⊆ B(γ, α + β) ∪ B(−γ, α + β).

COROLLARY 3.3. If M = {±γ} then 0 ∈ Spec(H) if and only if

1 6 γ 6 α + β.

Our first objective is to determine whether similar conditions can be ob-
tained for other points on the imaginary axis to be contained in Spec(H). We
will begin by considering the case when M consists solely of two points, that is,
vn = ±γ for all n. It thus follows that ‖V‖ = γ.

From the definition of H and (3.5) above, we know that

Spec(H) ⊂ {z = x + iy ∈ C : |y| 6 1}.

LEMMA 3.4. The following identity holds:

B2 +
1

4a2 C2 = I.

Proof. Let L denote the left-shift operator and R the right-shift operator, then
B = i

2 (L− R) and C = a(L + R) and the proof follows.

In order to proceed with the spectral analysis of H we will look at H2, and
in particular at the numerical range of this operator for we know that the set
{z : z2 ∈ Num(H2)} contains Spec(H) by (1.1).

THEOREM 3.5. If η(γ) = −1 + 1
4a2+1 γ2, then Re(H2) > η(γ)I and hence,

Num(H2) ⊆ {z : Re(z) > η(γ)}.

Proof. From Lemma 3.4 it follows that Re(H2) equals

A2 − B2 = (V + C)2 −
(

I − 1
4a2 C2

)
= −I +

( 2a√
4a2 + 1

V +
√

4a2 + 1
2a

C
)2

+
(

1− 4a2

4a2 + 1

)
V2

> −I +
(

1− 4a2

4a2 + 1

)
V2 = −I +

1
4a2 + 1

V2.
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Thus, as |vn| = γ for all n,

A2 − B2 >
(
− 1 +

1
4a2 + 1

γ2
)

I = η(γ)I.

It now follows that if x2 − y2 < η(γ) then z 6∈ Spec(H), and we have the
following result in terms of the spectrum of H.

COROLLARY 3.6. The spectrum of H satisfies

Spec(H) ⊆ {z ∈ C : |y| 6 1} \ {z ∈ C : x2 − y2 < η(γ)}.

The set of complex numbers z ∈ C such that x2 − y2 = η(γ) lie on a hy-
perbola which opens about the real axis or the imaginary axis depending on the
sign of η(γ). If η(γ) is negative then the hyperbola opens about the imaginary

axis and has vertices at ±i
√

1− 1
4a2+1 γ2. If η(γ) is positive the hyperbola opens

to the left and to the right and has vertices at ±
√
−1 + 1

4a2+1 γ2.
The latter case (together with Corollary 3.6) implies that Spec(H) lies in the

band {z ∈ C : |y| 6 1} but away from the origin, and the former implies that
while the spectrum is still contained in {z ∈ C : |y| 6 1} there exist neighbour-
hoods of ±i that do not lie in the spectrum as the vertices of the hyperbola lie
symmetrically about the origin on the imaginary axis between −i and i.

Now, for any real number s such that −γ < s < γ define a new potential Ṽ
by setting ṽn = vn − s; that is, consider the operator H̃ = H − sI which we write
as H̃ = Ã + iB̃ = C̃ + Ṽ + iB̃ where Ã = A− sI, B̃ = B and C̃ = C.

It follows trivially from the definition of spectrum that

(3.6) −i 6∈ Spec(H̃) ⇔ −i + s 6∈ Spec(H)

and hence we obtain an analogous result to that of Corollary 3.6 for each operator
H− sI. Namely, a hyperbola centered at the point s which determines a region in
the complex plane in which the spectrum of the operator is contained.

If we consider the case when η(γ) is negative, we can extend this result as
follows:

THEOREM 3.7. Let |vn| = γ > 0 for all n as above. If in addition γ <
√

4a2 + 1,
then Spec(H) does not intersect the set{

z ∈ C :
1

4a2 + 1
γ 6 x 6 γ and

√
1− (x− γ)2

(2a)2 6 |y| 6 1

}
∪

{
z ∈ C : −γ 6 x 6− 1

4a2 + 1
γ and

√
1− (x + γ)2

(2a)2 6 |y|6 1

}
.

Proof. We note that if |vn| > γ > 0 then |ṽn| > γ − |s| > 0 and hence,
reproducing the proof of Theorem 3.5 for the operator H̃ and in light of (3.6) it
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follows that

Spec(H) ⊆ {z ∈ C : |y| 6 1} \ {z ∈ C : (x− s)2 − y2 < η(γ− |s|)}

where η(γ− |s|) = −1 + 1
4a2+1 (γ− |s|)2.

The family of inequalities (x − s)2 − y2 < η(γ − |s|) describes regions in
the complex plane delimited by the hyperbolae (x − s)2 − y2 = η(γ − |s|). We
will assume that 0 < s < γ as the case when −γ < s < 0 is symmetric and thus
consider only (x− s)2 − y2 = η(γ− s).

Let F(x, y, s) = (x− s)2 − y2 + 1− 1
4a2+1 (γ− s)2. Solving

F(x, y, s) = 0,(3.7)

∂F
∂s

= 0,(3.8)

gives us the envelope of the family of hyperbolae just described and this will in
turn be the curve required in the statement of the theorem. Then

∂F
∂s

= −2(x− s) +
2

4a2 + 1
(γ− s).

Setting this equal to 0 yields s = 1
4a2 ((4a2 + 1)x − γ) and substituting this into

(3.7) gives[ 1
4a2 γ− 1

4a2 x
]2
− y2 + 1− 1

4a2 + 1

[4a2 + 1
4a2 γ− 4a2 + 1

4a2 x
]2

= 0

or equivalently,

(3.9)
(x− γ)
(2a)2

2

+ y2 = 1

and the case −γ < s < 0 yields the curve

(x + γ)
(2a)2

2

+ y2 = 1.

However the restrictions on s, namely, 0 < s < γ in the first case and −γ < s < 0
in the second, imply that only a certain part of each of the ellipses is actually
obtained as the envelope. In the case of (3.9) the restrictions on s imply that
x varies between 1

4a2+1 γ and γ and these values, together with those obtained
symmetrically in the second case (−γ 6 x 6 − 1

4a2+1 γ), render the sets in the
statement of the theorem.

REMARK. The ellipse defined by (3.9) coincides with that defined by (x−γ)2

(α+β)2

+y2 = 1, that is with the set Spec(H0) + γ and this simple observation allows us
to note that the previous theorem improves upon the results of Davies we have
cited from [8]; and in fact, we have the following corollaries.
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COROLLARY 3.8. If in addition to the hypotheses of Theorem 3.7, we have γ < 2a,
then Spec(H) is contained in the set{

z ∈ C : 0 6 |x| 6 1
4a2 + 1

γ and |y| 6
√

x2 + 1− 1
4a2 + 1

γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x|6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

Proof. The inclusion follows immediately by combining Theorem 3.7 and
Corollary 3.6.

Now, if 2a 6 γ <
√

4a2 + 1 we can improve the result of Theorem 3.2 as
follows:

COROLLARY 3.9. If in addition to the hypotheses of Theorem 3.7, we have 2a 6
γ <

√
4a2 + 1, then Spec(H) is contained in the set{

z ∈ C : γ− 2a 6 |x| 6 1
4a2 + 1

γ and |y| 6
√

x2 + 1− 1
4a2 + 1

γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

Proof. The result follows from Theorems 3.2, 3.7 and Corollary 3.6.

Figures 1, 2 and 3 show the results of Corollaries 3.8 and 3.9 graphically. In
each case the spectrum of H is contained in the union of the two ellipses and the
small area between the ellipses and the hyperbola. There are three qualitatively
different cases for γ <

√
4a2 + 1, namely γ < 2a, γ = 2a and γ > 2a and they are

shown in order.

−3 −2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

FIGURE 1. γ = 1.15 < 1.65 = 2a.

We now turn to the case when η(γ) > 0. Following the same approach as
when η(γ) is negative, we can improve upon the result of Davies in [8] which we
have cited here as Theorem 3.2 as the restriction γ > 2a is not stronger than the
restriction η(γ) > 0.
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FIGURE 2. γ = 1.65 = 2a.
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FIGURE 3. γ = 1.85 > 1.65 = 2a.

The case η(γ) = 0, that is, γ =
√

4a2 + 1, represents a critical case for the
hyperbola described by the equation x2 − y2 = η(γ): it becomes two straight
lines through the origin, y = ±x. However, this does not create a significantly
different case in our treatment here. Nevertheless, there exists another critical
value for γ, namely γ = 4a2+1

2a , that does play an important role as shown in our
next results.

THEOREM 3.10. Let |vn| = γ > 0 for all n and
√

4a2 + 1 6 γ 6 4a2+1
2a then

Spec(H) is contained in{
z ∈ C : γ− 2a 6 |x| 6 1

4a2 + 1
γ and |y| 6

√
x2 + 1− 1

4a2 + 1
γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

Proof. For −γ < s < γ we know that

(3.10) Spec(H) ⊆ {z ∈ C : |y| 6 1} \ {z ∈ C : (x− s)2 − y2 < η(γ− |s|)}

where η(γ− |s|) = −1 + 1
4a2+1 (γ− |s|)2. We will again assume that s lies between

0 and γ and consider only (x− s)2 − y2 = η(γ− s).
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Let F(x, y, s) = (x− s)2 − y2 + 1− 1
4a2+1 (γ− s)2. Solving

F(x, y, s) = 0 =
∂F
∂s

gives the envelope of the family of hyperbolae which can be written parametri-
cally as

x(s) =
1

4a2 + 1
(γ + 4a2s), y(s) = ± 1

4a2 + 1

√
(4a2 + 1)2 − 4a2(γ− s)2

where the condition
√

4a2 + 1 6 γ 6 4a2+1
2a ensures that y(s) is well defined.

Eliminating s from these equations gives

(x− γ)
(2a)2

2

+ y2 = 1

and the case −γ < s < 0 yields the curve

(x + γ)
(2a)2

2

+ y2 = 1.

Combining these equations together with the restriction on γ implies that

Spec(H) ∩
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a

}
⊆
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.(3.11)

Now, in light of Theorem 3.2 this inclusion together with (3.10) renders the set in
the statement of the theorem.

Let us now turn to the case when γ > 4a2+1
2a where we are able to completely

determine the spectrum of H.

THEOREM 3.11. If γ > 4a2+1
2a and |vn| = γ > 0 for all n, then

Spec(H) = conv(Spec(H0) + γ) ∪ conv(Spec(H0)− γ).

Proof. As we have already noted, the ellipse that defines Spec(H0) + γ coin-

cides with that described by (x−γ)2

(2a)2 + y2 = 1 so in order to prove the statement of
the theorem we will proceed in the same manner as before. Consider the family
of hyperbolae F(x, y, s) = (x− s)2 − y2 + 1− 1

4a2+1 (γ− s)2. We note that if we let
0 < s < γ then the parametric equations of the envelope given by

x(s) =
1

4a2 + 1
(γ + 4a2s), y(s) = ± 1

4a2 + 1

√
(4a2 + 1)2 − 4a2(γ− s)2

are not well defined, however, this which would appear to be a problem is the
reason behind the strength of our result in this case.
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The function y(s) is well defined for γ− 4a2+1
2a 6 s 6 γ and for this range of

s, x(s) ranges from 1
4a2+1

(
γ + 4a2

(
γ− 4a2+1

2a

))
= γ− 2a to γ, thus obtaining the

entire left half of the ellipse as the envelope for the family F. This, together with
the symmetry of the problem, implies that

Spec(H) ⊆ conv(Spec(H0) + γ) ∪ conv(Spec(H0)− γ).

The other inclusion is precisely the result proved in Theorem 3.2.

Let us now consider more general potentials in the definition of H. So far we
have dealt with the case when vn = ±γ ∈ R+ and we will look now at the case
when the potential takes values in an interval (as done in Theorem 3.1) or a more
general compact set contained in R. It is important to note that the values vn at
each point will continue to be independent and identically distributed according
to a probability law with compact support M ⊂ R.

We derive the following simple result from Theorem 3.1.

COROLLARY 3.12. If M = [−γ, γ], then [−γ, γ] + i and [−γ, γ] − i are con-
tained in Spec(H).

Proof. This is proved by Theorem 3.1.

Now, if M is an arbitrary compact set, we have the following result.

THEOREM 3.13. Let M be any compact set in R. Then

m± i ∈ Spec(H) if and only if m ∈ M.

Furthermore, if M has any gaps of length > 4a then the spectrum of H is disconnected.

Proof. If m ∈ M then the ellipse given by m + (α + β) cos θ + i sin θ for θ ∈
[0, 2π] is contained in Spec(H) by equation (3.5), and hence it follows that the
points m + i and m− i (obtained when θ = π

2 and 3π
2 respectively) are contained

in the spectrum of H.
On the other hand, if m ± i ∈ Spec(H), then equation (3.5) implies that

m ∈ conv(M). We will assume that M ⊂ conv(M) as otherwise the result follows
from a translation argument and Corollary 3.12. If we suppose that m 6∈ M then
following the arguments used in Corollary 3.6 we can determine a hyperbolic
region which contains the points m± i and which cannot lie in Spec(H).

Finally, to prove the last statement of the theorem we note that Theorem 2.4
implies that

Spec(H) ⊆
⋃

m∈M
B(m, 2a).

COROLLARY 3.14. Let M be any compact set in R and let k be the number of gaps
in M bigger than 4a; then Spec(H) has at least k + 1 components.

Proof. The proof follows from the last statement of Theorem 3.13.
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3.2. THE CASE H fn = −β fn−1 + vn fn + α fn+1. In this subsection we will again
assume that 0 < β < α and we will suppose that H has been scaled by a suitable
constant so that α + β = 1. We rewrite H as before as

H = A + iB = (C + V) + iB = H0 + V

where

A fn = a fn−1 + vn fn + a fn+1, B fn = b fn−1 − b fn+1,

C fn = a fn−1 + a fn+1, V fn = vn fn,

with a = 1
2 (α− β) and b = i

2 . It is clear that the identities stated for the analogous
operators at the start of Subsection 3.1 hold in this case as well and the following
inclusion is satisfied:

Spec(H) ⊆ {z = x + iy ∈ C : |y| 6 1}.

Many of the results obtained in Subsection 3.1 do not depend on taking −β or β
as coefficient of fn−1 in the definition of H. In fact, we have the following results,
due to Davies [8], whose proofs we omit as this change in coefficients bears no
relation to the arguments of the proof. We consider the case when M consists
solely of two points: vn = ±γ for all n. Then

(3.12) Spec(H0) = {(α− β) cos θ + i sin θ : θ ∈ [0, 2π]}.

We also have that

Spec(H0) + {±γ} ⊆ Spec(H) ⊆ conv(Spec(H0)) + [−γ, γ],(3.13)

Spec(H) ⊆ B(γ, 1) ∪ B(−γ, 1).(3.14)

Furthermore, if |γ| > 1 then

conv(Spec(H0) + γ) ∪ conv(Spec(H0)− γ)(3.15)

⊆ Spec(H) ⊆ conv(Spec(H0)) + [−γ, γ].

Now, following the same procedure as in Theorem 3.5 and Corollary 3.6 we
have the following result.

THEOREM 3.15. The spectrum of H satisfies

Spec(H) ⊆ {z ∈ C : |y| 6 1} \
{

z ∈ C : x2 − y2 < −1 +
1

4a2 + 1
γ2
}

.

Proof. The proof is identical to the proofs of the results cited above.

In a similar fashion we also have the following results (see Subsection 3.1
for the proofs).
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THEOREM 3.16. Let γ <
√

4a2 + 1. It follows that Spec(H) does not intersect
the set{

z ∈ C :
1

4a2 + 1
γ 6 x 6 γ and

√
1− (x− γ)2

(2a)2 6 |y| 6 1

}

∪
{

z ∈ C : −γ 6 x 6 − 1
4a2 + 1

γ and

√
1− (x + γ)2

(2a)2 6 |y| 6 1

}
.

COROLLARY 3.17. If γ < 2a then Spec(H) is contained in the set{
z ∈ C : 0 6 |x| 6 1

4a2 + 1
γ and |y| 6

√
x2 + 1− 1

4a2 + 1
γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

COROLLARY 3.18. If 2a 6 γ <
√

4a2 + 1 then Spec(H) is contained in the set{
z ∈ C : γ− 2a 6 |x| 6 1

4a2 + 1
γ and |y| 6

√
x2 + 1− 1

4a2 + 1
γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

THEOREM 3.19. If
√

4a2 + 1 6 γ 6 4a2+1
2a then Spec(H) is contained in{

z ∈ C : γ− 2a 6 |x| 6 1
4a2 + 1

γ and |y| 6
√

x2 + 1− 1
4a2 + 1

γ2

}

∪
{

z ∈ C :
1

4a2 + 1
γ < |x| 6 γ + 2a and |y| 6

√
1− (x− γ)2

(2a)2

}
.

And finally we have the following result which completely determines the
spectrum of H for a range of values of γ.

THEOREM 3.20. If γ > 4a2+1
2a then

Spec(H) = conv(Spec(H0) + γ) ∪ conv(Spec(H0)− γ).

These results, which are also true in the case when H is given by (3.2), allow
us to see the similarities between the operators studied in Subsection 3.1 and the
present section. However, the following results show us that there is an intrinsic
difference between these operators. The theorems we present below do not pro-
vide any information in the case of (3.2) when studying outer bounds for Spec(H)
but are of great importance here.
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We follow a method introduced by Davies in [7] and extended in [8]. It al-
lows us to make a more precise determination of the spectrum of H by looking at
certain sets that can be proved to be contained in Spec(H). We need the following
definitions:

Let f ∈ l2(Z) with ‖ f ‖ = 1. We define

var( f ) = 〈Q2 f , f 〉 − 〈Q f , f 〉2

where Q is given by Q f (x) = x f (x). We say that λ ∈ σloc(H) (the localized
spectrum of H) if there exist k and a sequence fn ∈ l2(Z) such that ‖ fn‖ = 1 for
all n, var( fn) 6 k for all n and lim

n→∞
‖H fn − λ fn‖ = 0.

Now, given any finite sequence u = (u0, . . . , un−1) of γ’s and −γ’s, let Wu
be the periodic potential such that Wu,m = ur if m = r mod n. Then, if f ∈ l2(Z)
and wm = ( fm−1, fm) the eigenvalue problem given by

(3.16) −β fm−1 + Wu,m fm + α fm+1 = λ fm

may be written as
wm+1 = wm Am

where

Am =

(
0 β

α
1 1

α (λ−Wu,m)

)
.

Hence, wm = w0 A0 A1 · · · Am−1 and in general, for any r ∈ Z

wn(r+1) = wnr A0 A1 · · · An−1.

Now, let B = A0 A1 · · · An−1, it follows that det B =
(
− β

α

)n, that is det B < 1.
The following result is mainly due to Davies. A different eigenvalue equa-

tion is considered in [8], however the proof works exactly as written out and we
thus omit it here.

THEOREM 3.21. Let En denote the set
{

eiθ +
(
− β

α

)ne−iθ : θ ∈ [0, 2π]
}

and

Eu = {λ : tr(A0 A1 · · · An−1) ∈ En}.

Then Eu is closed and bounded and Eu ⊆ Spec(H).

We can now state the following two results which are also due to Davies
and which will be of great importance in our analysis of Spec(H). See [8] for
the proofs; we note that given our assumption that α > β the proofs need no
amendment to work for the results as stated below. (The case α < β can be
proved analogously as having det B > 1 would simply interchange the roles of
the exponentially increasing/decreasing arguments used in the proof).

LEMMA 3.22. Let u = (u0, . . . , un−1) be a vector in {±γ}n. Then

Iu := {λ : tr(A0 A1 · · · An−1)∈ int(En)}, Ou := {λ : tr(A0 A1 · · · An−1)∈ ext(En)}

and Eu are disjoint sets and cover the complex plane.
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THEOREM 3.23. Let n, p ∈ N. If u ∈ {±γ}n and u′ ∈ {±γ}p then Iu ∩Ou′ ⊆
σloc(H).

Let us consider first the case n = 1 in Theorem 3.21. There are only two
possibilities for u, namely, u = ±γ. It is straightforward to see that we obtain no
new information from this case, that is, the results yielded by considering n = 1
simply state that

Eγ ∪ E−γ ⊆ Spec(H)

which is an equivalent statement to that made by the first inclusion in equation
(3.13).

The case n = 2 however, is much more interesting and it will allow us to
study the case n = 2, p = 1 in Theorem 3.23.

THEOREM 3.24. If u = (γ,−γ), then Eu consists of the curves described by the
roots of the polynomial (in λ) given by

λ2 − γ2 + 2αβ− α2eiθ − β2e−iθ = 0,

as θ varies between 0 and 2π.
Moreover, if γ < 1 then the roots describe a single simple closed symmetric curve,

whereas if γ > 1 then two simple closed symmetric curves are obtained. If γ = 1 the
roots of the polynomial vary along two symmetric loops that intersect at the origin.

Proof. Let u = (γ,−γ) and let B = A0 A1. Then

B =

(
0 β

α
1 1

α (λ− γ)

)(
0 β

α
1 1

α (λ + γ)

)
=

(
β
α

β
α2 (λ + γ)

1
α (λ− γ) λ2−γ2+αβ

α2

)
,

and hence, det B = β2

α2 and trB = λ2−γ2+2αβ
α2 .

Now, E2 =
{

eiθ +
( β

α

)2e−iθ : θ ∈ [0, 2π]
}

and

E(γ,−γ) =
{

λ :
λ2 − γ2 + 2αβ

α2 ∈ E2
}

.

That is, E(γ,−γ) is the set of λ ∈ C such that

(3.17) λ2 − γ2 + 2αβ = α2eiθ + β2e−iθ

for θ ∈ [0, 2π]. This last equation can be solved explicitly for λ and it is quite
simple to see that there are three qualitatively different cases, namely γ < 1,
γ = 1 and γ > 1. Let us consider first the case when γ < 1. If θ = 0 then
equation (3.17) becomes λ2 − γ2 + 2αβ− α2 − β2 = 0, and hence, λ is real. As θ

grows then λ takes complex values until θ = π when λ = ±
√
−1 + γ2 which lies

on the imaginary axis; and we note that this value coincides with the intersection
of the balls given in equation (3.14), that is B(γ, 1) and B(−γ, 1). As θ varies
between π and 2π a symmetric curve is obtained and hence a single closed curve
is obtained.
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If γ = 1 there is a crucial difference with the case described above: at the
point when θ = π, λ = ±

√
−1 + γ2 = 0 and hence the curve described by the

roots in this case consists of two loops that are not disjoint but that intersect solely
at the origin. Finally, if γ > 1 the value of λ when θ = π is real and nonzero and
hence as the roots vary they do so along two distinct (but symmetric) loops.

If we take u = (γ,−γ) and u′ = (γ) in Theorem 3.23, then Iu is the interior
of the curves of Theorem 3.24 and Ou′ is the exterior of the union of two ellipses.
By Theorems 3.21 and 3.23, the curve(s) Eu and the regions Iu ∩Ou′ are contained
in Spec(H). The three examples in Figure 4 show the new regions that have been
proved to be contained in Spec(H) by Theorem 3.23 (case n = 2, p = 1).

REMARK. This result greatly contrasts with the results that would be ob-
tained from this theorem in Subsection 3.1 where the curve obtained for the case
n = 2 never lies outside the curves obtained for the case n = 1 and thus has been
omitted from our study as it cannot be used to determine whether any portion of
the spectrum lies outside the curves obtained for the case n = 1.

We know from our previous results (namely, equation (3.14)) that 0 can only
be in the spectrum of H if γ 6 1, but we can now conclude the following:

COROLLARY 3.25. If α− β 6 γ 6 1 then 0 ∈ Spec(H).

And in fact, using the results used in [8] to obtain Corollary 15 there, it
follows that

COROLLARY 3.26. 0 ∈ Spec(H) ⇐⇒ α− β 6 γ 6 1.

The following two theorems give the polynomials whose roots determine
the desired curves in the cases n = 3 and n = 4 of Theorem 3.21. However, their
study becomes quite complicated and it is perhaps only practical to study these
cases numerically.

THEOREM 3.27. Let u1 = (γ, γ,−γ) and u2 = (−γ,−γ, γ). Then Eu1 and Eu2

are the curves traced out by the roots of the polynomials

λ3 − γλ2 + [3αβ− γ2]λ− αβγ + γ3 − α3eiθ − β3e−iθ = 0,

λ3 + γλ2 + [3αβ− γ2]λ + αβγ− γ3 − α3eiθ − β3e−iθ = 0,

respectively, as θ varies over [0, 2π].

Proof. The proof follows from considering the matrices defined by u1 and
u2 using Theorem 3.21. Namely,

B =

(
0 β

α
1 1

α (λ− γ)

)(
0 β

α
1 1

α (λ− γ)

)(
0 β

α
1 1

α (λ + γ)

)
,

B′ =

(
0 β

α
1 1

α (λ + γ)

)(
0 β

α
1 1

α (λ + γ)

)(
0 β

α
1 1

α (λ− γ)

)
.
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FIGURE 4. In these cases α = 3
5 , β = 2

5 and γ takes values 0.8, 1
and 1.4 respectively.

THEOREM 3.28. Let θ ∈ [0, 2π]. The roots of the following equations are con-
tained in Spec(H):

λ4 + [4αβ− 2γ2]λ2 + γ4 + 2α2β2 − α4eiθ − β4eiθ = 0,

λ4 − 2γλ3 + 4αβλ2 + [2γ3 − 4αβγ]λ− γ4 + 2α2β2 − α4eiθ − β4eiθ = 0,

λ4 + 2γλ3 + 4αβλ2 + [4αβγ− 2γ3]λ− γ4 + 2α2β2 − α4eiθ − β4eiθ = 0.
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Proof. The proof follows by considering the three vectors given by u1 =
(γ, γ,−γ,−γ), u2 = (γ, γ, γ,−γ) and u3 = (−γ,−γ,−γ, γ).

We note that the first equation in the statement of Theorem 3.28 above can
be solved explicitly and we thus have the following corollary.

COROLLARY 3.29. The curves described by

±
√

γ2 − 2αβ±
√

4α2β2 − 2γ2 + α4eiθ + β4e−iθ

as θ varies in [0, 2π] lie in Spec(H).

REMARK. Theorem 3.23 establishes that the regions determined by the in-
tersection of the exterior of any one of the curves determined by the previous
two theorems with the interior of another such curve is contained in the spec-
trum of H.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

n = 2 

n = 1 

FIGURE 5. The curves shown in bold are contained in Spec(H)
and are obtained from cases n = 1 to 4 of Theorem 3.21. The
curves obtained from the cases n = 1 and n = 2 are shown ex-
plicitly and the remaining curves belong to the cases n = 3, 4.
For this particular example α = 3

5 , β = 2
5 , γ = 4

5 . Theorem 3.23
tells us that the region that lies outside any of these curves and
inside another is also contained in Spec(H).

Figure 5 shows an example of these curves and the regions they determine
for the case α = 3

5 , β = 2
5 , γ = 4

5 .
Figure 6 contains the same graphical information as Figure 5 but it also

shows the eigenvalues obtained for 100 finite 100× 100 matrices which we know
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−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

FIGURE 6. This figure shows the same curves as Figure 5 to-
gether with the eigenvalues from the finite matrix with periodic
boundary conditions.

are contained in the spectrum of H. The high coincidence between these points
and the curves obtained is clear.

3.3. A SPECIAL CASE. In this subsection we will consider the particular case of
the operator H when α = β, namely

(3.18) H fn = −1
2

fn−1 + vn fn +
1
2

fn+1.

We will again commence by considering the case when vn = ±γ ∈ R \ {0} for all
n. Keeping the same notation as before we have

Spec(H0) =
{1

2
eiθ − 1

2
e−iθ : θ ∈ [0, 2π]

}
= {i sin(θ) : θ ∈ [0, 2π]},

that is, Spec(H0) is the interval [−i, i]. Hence, it follows from (3.5) that

(3.19) [−i, i]± γ ⊆ Spec(H) ⊆ {z ∈ C : |x| 6 γ and |y| 6 1}.

We again rewrite H as A + iB and in this case a = 0 and b = i
2 , hence, it is

immediate that ‖A‖ = γ and ‖B‖ = 1, and in fact we have the following identity
for B2:

(3.20) B2 = I − 1
4
(L + R)2

where L and R continue to denote the left and right shift operators.
We now follow the method described in the previous sections using the

second order numerical range to obtain more information about Spec(H).
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THEOREM 3.30. Re(H2) > (−1 + γ2)I and hence, the spectrum of H is con-
tained in the set {z : Re(z2) > −1 + γ2}.

Proof. See Theorem 3.5.

COROLLARY 3.31. The spectrum of H satisfies

Spec(H) ⊆ {z ∈ C : |x| 6 γ and |y| 6 1} \ {z ∈ C : x2 − y2 < −1 + γ2}.

The shape of the hyperbola x2 − y2 = −1 + γ2 clearly depends on the value
of γ. For γ < 1 the hyperbola opens about the imaginary axis and has vertices at
±i
√

1− γ2, if γ = 1 it degenerates into two orthogonal lines through the origin
and if γ > 1 the hyperbola opens to the left and to the right and has vertices at
±
√

γ2 − 1. It is worth noting that regardless of the value of γ the hyperbola inter-
sects the intervals [−i, i]− γ and [−i, i] + γ at the points (−γ,±i) and (γ,±i) re-
spectively, and we have thus obtained outer bounds for Spec(H). Figure 7 shows
three specific examples (γ = 0.75, γ = 1 and γ = 1.5) of these 3 qualitatively
different cases together with the results that Theorem 3.33 will provide.

We note that in this case working out the envelope of the family of hyper-
bolae given by

(3.21) F(x, y, s) = (x− s)2 − y2 + 1− (γ− s)2

is not a useful technique as the envelope consists solely of four points, (±γ,±i).
We thus turn to the method of periodic potentials introduced in the last sec-

tion. It is important to note that the added symmetry of our operator in this case
makes many of the calculations much more accessible and many detailed results
can be obtained, however it is precisely the added symmetry of the problem that
causes the simple closed curves which appeared in the previous section as solu-
tions to the polynomials to collapse into arcs and hence stops us from being able
to apply Theorem 3.23 to the operator defined in (3.18).

We have

Am =
(

0 1
1 2(λ−Wu,m)

)
and if f ∈ l2(Z) and wm = ( fm−1, fm) the equation

−1
2

fm−1 + Wu,m fm +
1
2

fm+1 = λ fm

may be rewritten as
wm+1 = wm Am

as before. It is easy to see that det A0 A1 · · · An−1 = (−1)n and Theorem 3.21 may
be rewritten as the following result.

THEOREM 3.32. Let En = {eiθ + (−1)ne−iθ : θ ∈ [0, 2π]}, and let

Eu = {λ : tr(A0 A1 · · · An−1) ∈ En}.

Then Eu is closed and bounded and Eu ⊆ Spec(H).
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The case n = 1 coincides with the first inclusion of (3.19). The case n = 2
however, produces new information. In fact, we have the following theorem.

THEOREM 3.33. The spectrum of H satisfies one of the following inclusions de-
pending on the value of γ:

[−γ, γ] ∪
[
− i
√

1− γ2, i
√

1− γ2
]
⊆ Spec(H) if γ < 1,(3.22)

[−γ, γ] ⊆ Spec(H) if γ = 1,(3.23) [
− γ,−

√
γ2 − 1

]
∪
[√

γ2 − 1, γ
]
⊆ Spec(H) if γ > 1.(3.24)

Figure 7 shows particular examples of each of these three cases together with
information obtained from Corollary 3.31 .

Proof. Let u = (γ,−γ). It is worthwhile to note that the cases (γ, γ) and
(−γ,−γ) produce the same results as the case n = 1 for obvious reasons and will
hence not be considered here. Let B = A0 A1. We have that

B =
(

0 1
1 2(λ− γ)

)(
0 1
1 2(λ + γ)

)
=
(

1 2(λ + γ)
2(λ− γ) 1 + 4(λ2 − γ2)

)
,

and hence, det B = 1 and trB = 2 + 4(λ2 − γ2).
Now, E2 = {eiθ + e−iθ : θ ∈ [0, 2π]} and

E(γ,−γ) = {λ : 2 + 4(λ2 − γ2) ∈ E2}.

That is, E(γ,−γ) is the set of λ ∈ C such that

2 + 4(λ2 − γ2) = eiθ + e−iθ

for θ ∈ [0, 2π], which can be simplified and written as

(3.25) λ2 =
1
2
(cos θ − 1) + γ2.

This last equation can be solved explicitly and it is quite simple to see that
there are three different cases, namely γ < 1, γ = 1 and γ > 1.

If γ < 1, then 0 < γ2 < 1 as γ is positive, and

−1 < λ2 =
1
2
(cos θ − 1) + γ2 < 1.

Now, as θ varies in the interval [0, 2π] we obtain the following results: If θ = 0
then λ = ±γ, and as θ begins to increase 1

2 (cos θ − 1) + γ2 remains positive and
hence, λ2 has two real roots. When θ = arccos(1− 2γ2) (which is well defined as
−1 < (1− 2γ2) < 1), λ = 0 and for arccos(1− 2γ2) < θ < π, λ2 has two purely
imaginary roots whose moduli increase as θ continues to increase. If θ = π then
λ = ±i

√
1− γ2 and as θ varies from π to 2π the same roots are obtained in

reverse order. We observe that the roots obtained when θ = π coincide with the
vertices of the hyperbola obtained in Theorem 3.30.
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FIGURE 7. For each value of γ (0.75, 1 and 1.5 respectively),
Spec(H) is contained in the regions pointed to by arrows and
contains the bold lines.

Summarizing these results, we have that

[−γ, γ] ∪
[
− i
√

1− γ2, i
√

1− γ2
]
⊆ Spec(H) if γ < 1

and hence, equation (3.22) in the statement of the theorem is satisfied.
If γ = 1 then 0 6 λ2 = 1

2 (cos θ − 1) + γ2 6 1, as θ varies in [0, 2π] the roots
fill up the real axis between −1 and 1. That is,

[−γ, γ] ⊆ Spec(H) if γ = 1 .
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And finally, to prove equation (3.24), consider γ > 1. It follows that

0 < −1 + γ2 6 λ2 =
1
2
(cos θ − 1) + γ2 6 γ2.

Hence, as θ varies the roots oscillate between
√
−1 + γ2 and γ and the symmetric

negative interval:[
− γ,−

√
γ2 − 1

]
∪
[√

γ2 − 1, γ
]
⊆ Spec(H) if γ > 1 .

And hence the result follows as required.

The case n = 3 of Theorem 3.32 produces polynomials of degree 3 (as the
cases n = 1, 2 produced polynomials of degree 1 and 2 respectively) so an in
depth analysis of the roots of the polynomial in general can be a very complicated
task, however the added symmetry of our operator in this case (α = β = 1

2 ) makes
the analysis somewhat simpler than it would be in more general cases, and in fact
we have the following result.

THEOREM 3.34. The set of complex roots of the following two equations obtained
as θ varies in the interval [0, 2π], are contained in Spec(H):

4λ3 − 4γλ2 + (3− 4γ2)λ + 4γ3 − γ = i sin θ(3.26)

4λ3 + 4γλ2 + (3− 4γ2)λ− 4γ3 + γ = i sin θ.(3.27)

Moreover, this set is made up of six arcs whose end points are obtained when θ = π
2 and

θ = 3π
2 .

Proof. The proof follows as before by considering u1 = (γ, γ,−γ) and u2 =
(−γ,−γ, γ).

The case n = 4 will be the last case we look at in detail. For n > 5 The-
orem 3.32 is obviously still valid but it is perhaps only feasible to carry out the
analysis numerically as one encounters several polynomials of degree n > 5.
However we will make some general remarks about the type of information that
can be expected in all cases and what can be said about the spectrum of H in each
case.

THEOREM 3.35. The roots of the following three equations, obtained as θ varies in
[0, 2π], are contained in Spec(H):

8λ4 + (8− 16γ2)λ2 + 8γ4 + 1 = cos θ,(3.28)

8λ4 − 16γλ3 + 8λ2 + (16γ3 − 8γ)λ− 8γ4 + 1 = cos θ,(3.29)

8λ4 + 16γλ3 + 8λ2 + (8γ− 16γ3)λ− 8γ4 + 1 = cos θ.(3.30)

Furthermore, the solutions to these equations lie on simple arcs and in fact the solutions
to equation (3.28) lie on two parabola arcs for γ > 1

2 , and on two parabola arcs and the
imaginary axis for γ < 1

2 .
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Proof. Three cases need to be considered:

u1 = (γ, γ,−γ,−γ), u2 = (γ, γ, γ,−γ), u3 = (−γ,−γ,−γ, γ).

Let u1 = (γ, γ,−γ,−γ) and let B = A0 A1 A2 A3. Then

B =
(

0 1
1 2(λ− γ)

)(
0 1
1 2(λ− γ)

)(
0 1
1 2(λ + γ)

)(
0 1
1 2(λ + γ)

)
=
(

4λ2 + 1− 4γ2 8λ3 + 8γλ2 + (4− 8γ2)λ− 8γ3

8λ3 − 8γλ2 + (4− 8γ2)λ + 8γ3 16λ4 + (12− 32γ2)λ2 + 16γ4 + 4γ2 + 1

)
and hence, E4 = {eiθ + e−iθ : θ ∈ [0, 2π]}.

It follows that E(γ,γ,−γ,−γ) is the set of complex λ such that

16λ4 + 16λ2 − 32γ2λ2 + 16γ4 + 2 = 2 cos θ

and hence (3.28) is obtained. This equation can be solved explicitly for λ2 and
hence for λ obtaining the following in terms of θ:

λ = ±1
2

√
−2 + 4γ2 +

√
2− 16γ2 + 2 cos θ ,

λ = ±1
2

√
−2 + 4γ2 −

√
2− 16γ2 + 2 cos θ .

If γ = 1
2 then as θ varies the roots of the above equations lie on two parabola

arcs. Namely, the parabolic segment with vertex 1
2 i (point obtained when θ = 0)

and with end points 1
2

√
−1 + 2i and − 1

2

√
−1− 2i (obtained when θ = π), and

the symmetric arc reflected on the real axis.
If γ > 1

2 the roots of these equations determine two parabolas as well but
only a portion of these arcs is contained in the spectrum of H; the sections that lie
away from the imaginary axis and whose end points are obtained when θ = 0 and

θ = π. More precisely, the segments contained between 1
2

√
−2+4γ2 +

√
4− 16γ2

and 1
2

√
−2 + 4γ2 +

√
−16γ2 in the first quadrant, and in the second quadrant be-

tween − 1
2

√
−2+4γ2 −

√
4−16γ2 and − 1

2

√
−2 + 4γ2 −

√
−16γ2, together

with the symmetric segments obtained by reflection on the real axis.
Finally, for γ < 1

2 the roots of equation (3.28) not only lie on parabola arcs
as mentioned above but along the imaginary axis. When θ = 0, both

±1
2

√
−2 + 4γ2 +

√
4− 16γ2 and ± 1

2

√
−2 + 4γ2 −

√
4− 16γ2

are purely imaginary and these values determine the extreme points of the inter-
val on the imaginary axis on which the roots of equation (3.28) lie. As θ grows
the roots continue to move along the imaginary axis until they reach the vertices
of the parabolic segments described in the previous two cases and then, when
θ = π the end points of these segments are obtained. As θ then varies from π to
2π the same path is described in inverse order.
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Equations (3.29) and (3.30) can be obtained analogously by considering u2 =
(−γ,−γ,−γ, γ) and u3 = (γ, γ, γ,−γ) respectively.

Thus u2 is associated with the matrix B′ whose entries are given as follows:

B′11 = 4λ2 − 8γλ + 4γ2 + 1,

B′12 = 8λ3 − 8γλ2 + (4− 8γ2)λ + 8γ3,

B′21 = 8λ3 − 24γλ2 + (4 + 24γ2)λ− 8γ3 − 4γ,

B′22 = 16λ4 − 32γλ3 + 12λ2 + (32γ3 − 8γ)λ− 16γ4 − 4γ2 + 1,

and thus, det B′ = 1 and trB′ is given by

16λ4 − 32γλ3 + 16λ2 + (32γ3 − 16γ)λ− 16γ4 + 2.

This in turn implies that E(γ,γ,γ,−γ) is the set of λ ∈ C such that

8λ4 − 16γλ3 + 8λ2 + (16γ3 − 8γ)λ− 8γ4 + 1 = cos θ

and similarly E(−γ,−γ,−γ,γ) is the set of λ such that

8λ4 + 16γλ3 + 8λ2 + (8γ− 16γ3)λ− 8γ4 + 1 = cos θ.

These equations are more complicated to work with than equation (3.28) but it is
still possible to analyze them to some extent. The value γ = 1√

2
is a critical point

as qualitatively different results are obtained if γ > 1√
2

or if γ < 1√
2
.

If γ = 1√
2

the set of roots of equations (3.29) and (3.30) contain the interval
[−γ,−γ] together with four additional arcs, one in each quadrant. We will de-
scribe the curve in the first quadrant here and then appeal to the symmetry of the
problem to obtain the remaining three. Its end points are obtained when θ = 0
and θ = π. The curve starts at the point γ +

√
2

2 i and moves ‘upwards’ towards
the hyperbola described by x2 − y2 = −1 + γ2 but without actually reaching it.

If γ > 1√
2

, each of the curves in the four quadrants remains the same, how-
ever the roots along the real axis no longer cover the entire interval between −γ
and γ, in other words, a gap occurs around the origin. However, the analysis of
this gap is not crucial to our problem as the case n = 2 of Theorem 3.32 deter-
mines exactly what portion of the coordinate axes is contained in the spectrum of
H.

If γ < 1√
2

the roots move along the curves described in the case when γ =
1√
2

but also along two other curves. These curves share their end points (which lie
on the imaginary axis and on the parabola described in the analysis of equation
(3.28)) and form a loop around the origin.

Figure 8 shows the information obtained from all cases studied thus far (n =
1 to 4) in the particular instance when γ = 0.9. We note that all the curves that
have been obtained from Theorem 3.32 in this manner are not closed curves. This
follows from the intrinsic symmetry of the operator we are considering. In each
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FIGURE 8. The thick curves shown are contained in Spec(H),
they are obtained from cases n = 1 to 4 of Theorem 3.32 in the
case when γ = 0.9
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FIGURE 9. Eigenvalues of a hundred 100 × 100 finite matrices
with periodic boundary conditions when γ = 0.9.

case a polynomial of degree n is obtained and this is set equal to either i sin θ
or cos θ depending on whether the degree of the polynomial is odd or even and
hence closed curves will not be obtained as inverse images of a segment under a
polynomial mapping. The proof is straightforward. (See [1] for instance.) This is
important in retrospect when we consider the information that was obtained in
the previous section when this operator symmetry was not present.

Finally, Figure 9 shows the eigenvalues obtained numerically for the finite
case when γ = 0.9. In fact, it is data obtained from 100 runs of calculating the
eigenvalues of 100× 100 matrices with periodic boundary conditions. The high
degree of correspondence between this data and that shown in Figure 8 is clear.
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It is known that the eigenvalues are contained in the spectrum of the infinite vol-
ume operator and our example reveals a high degree of correspondence between
these finite volume spectra and the curves we have studied.

Acknowledgements. I acknowledge many valuable conversations with E.B. Davies
and thank him for his numerous comments and ideas. I also acknowledge the financial
support of Conacyt for this work and wish to thank an anonymous referee for helpful
suggestions.

REFERENCES

[1] L.V. AHLFORS, Complex Analysis, McGraw-Hill Inc., New York 1979.

[2] R. BEALS, Topics in Operator Theory, University of Chicago Press, Chicago 1971.

[3] A. BÖTTCHER, M. EMBREE, V.I. SOKOLOV, Infinite Toeplitz and Laurent matrices
with localized impurities, Linear Algebra Appl. 343/344(2002), 101–118.

[4] A. BÖTTCHER, M. EMBREE, V.I. SOKOLOV, The spectra of large Toeplitz band matri-
ces with a randomly perturbed entry, Math. Comp. 72(2003), 1329–1348.

[5] J. BURKE, A. GREENBAUM, Some equivalent characterizations of the polynomial nu-
merical hull of degree k, preprint, 2004.

[6] H.L. CYCON, R.G. FROESE, W. KIRSCH, B. SIMON, Schrödinger Operators, Springer-
Verlag, New York 1987.

[7] E.B. DAVIES, Spectral properties of random non-self-adjoint matrices and operators,
Proc. Roy. Soc. London Ser. A 457(2001), 191–206.

[8] E.B. DAVIES, Spectral theory of pseudo-ergodic operators, Comm. Math. Phys.
216(2001), 687–704.

[9] E.B. DAVIES Spectral bounds using higher order numerical ranges, LMS J. Comput.
Math. 8(2005), 17–45.

[10] E.B. DAVIES, B. SIMON, L1 properties of intrinsic Schrödinger operators, J. Funct.
Anal. 65(1986), 126–146.

[11] I.Y. GOLDSHEID, B.A. KHORUZHENKO, Distribution of eigenvalues in non-hermitian
Anderson Model, Phys. Rev. Lett. 80(1998), 2897–2901.

[12] I.Y. GOLDSHEID, B.A. KHORUZHENKO, Eigenvalue curves of asymmetric tridiagonal
random matrices, Electron. J. Probab. 5(2000), 1–28.

[13] I.Y. GOLDSHEID, B.A. KHORUZHENKO, Regular spacings of complex eigenvalues in
the one-dimensional non-hermitian Anderson Model, Comm. Math. Phys. 238(2003),
505–524.

[14] K.E. GUSTAFSON, D.K.M. RAO, Numerical Range. The Field of Values of Linear Operators
and Matrices, Springer-Verlag, New York 1997.

[15] N. HATANO, D.R. NELSON, Localization transitions in non-hermitian quantum me-
chanics, Phys. Rev. Lett. 77(1996), 570–573.



88 CARMEN MARTINEZ

[16] N. HATANO, D.R. NELSON, Vortex pinning and non-hermitian quantum mechanics,
Phys. Rev. B 56(1997), 8651–8673.

[17] N. HATANO, D.R. NELSON, Non-hermitian localization and eigenfunctions, Phys.
Rev. B 58(1998), 8384–8390.

[18] P. LANCASTER, The Theory of Matrices, Academic Press, New York 1969.

[19] H. LANGER, C. TRETTER, Spectral decomposition of some non-self-adjoint block op-
erator matrices, J. Operator Theory 39(1998), 339–359.

[20] H. LANGER, A. MARKUS, V. MATSAEV, C. TRETTER, A new concept for block opera-
tor matrices: the quadratical numerical range, Linear Algebra Appl. 330(2001), 89–112.

[21] E.H. LOCKWOOD, A Book of Curves, Cambridge Univ. Press, Cambridge 1961.

[22] C. MARTINEZ, Spectral properties of tridiagonal operators, Ph.D. Dissertation, King’s
College London, London 2005.

[23] D.R. NELSON, N.M. SHNERB, Non-hermitian localization and population biology,
Phys. Rev. E 58(1998), 1383–1403.

[24] O. NEVANLINNA, Convergence of Iterations for Linear Equations, Birkhäuser, Basel 1993.

[25] J.M. ORTEGA, Matrix Theory, Plenum Press, New York 1987.

[26] M.H. STONE, Linear Transformations in Hilbert Space and their Applications to Analysis,
Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, R.I. 1932.

[27] L.N. TREFETHEN, M. CONTEDINI, M. EMBREE, Spectra, pseudospectra and localiza-
tion for random bidiagonal matrices, Comm. Pure Appl. Math. 54(2001), 595–623.

CARMEN MARTINEZ, DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIEN-
CIAS, U.N.A.M., MEXICO CITY, 04510, MEXICO

E-mail address: cmai@lya.fciencias.unam.mx

Received September 14, 2004; revised February 24, 2005.


