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ABSTRACT. Let X be a Banach space and let A1, . . . , Ad be the generators
of strongly continuous groups. We prove that under suitable assumptions
(roughly speaking if all the multi-commutators of A1, . . . , Ad of order r + 1 are
zero) every linear combination of the multi-commutators is closable on its nat-
ural domain and the closure generates a strongly continuous group. Moreover

the sum of the squares of A1, . . . , Ad is closable and the closure of −
d
∑

k=1
A2

k

generates a holomorphic semigroup. Finally, as an application of our theorem
we obtain the Kolmogorov operator and the Grushin operator.
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1. INTRODUCTION

Let A and B be generators of strongly continuous semigroups in a Banach
space X . If A and B commute, i.e., their resolvents commute, then it is well
known (see p. 64 of [7]) that the sum A + B : D(A) ∩ D(B) → X is closable and
the closure generates a strongly continuous semigroup. Other results regarding
commuting operators which do not necessarily generate a strongly continuous
semigroup are in [4] and [13].

If A and B are (possibly non commuting) generators of strongly continuous
groups, then it is a natural problem to find sufficient conditions in order that the
closure of the Laplacian−(A2 + B2) with its natural domain generates an analytic
semigroup. Similar problems can be posed for more than two operators.

These problems are substantially open in a Banach space setting but there
are some results if X is finite dimensional or if the restrictions of the operators
to some dense subspace span a finite dimensional Lie algebra [15], [12], [11], [1].
Alternatively, let G be a Lie group with Lie algebra g and let a, b ∈ g be close
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to zero in g. Then the Campbell–Baker–Hausdorff formula states that there is a
unique c ∈ g such that

exp a exp b = exp c
where c = a + b + 1

2 [a, b] + 1
12 [a, [a, b]] − 1

12 [b, [a, b]] + · · · is a power series in
multi-commutators in a and b. Hence

exp(a + b) = exp a exp b exp
(
− 1

2 [a, b]
)

exp d

where d is a power series in (higher order) multi-commutators in a and b. It is
interesting to understand whether these results can be extended, under suitable
assumptions, to a Banach space setting when a and b are replaced by generators
of strongly continuous groups. Recently, using as starting point the Campbell–
Baker–Hausdorff formula, in [5] the following result for non commuting opera-
tors was proved.

THEOREM 1.1. Let A, B be generators of strongly continuous groups e−tA and
e−tB in a Banach space X . Suppose that there exists a dense subspace D of X with
D ⊂ D(AB) ∩ D(BA). Assume that for all λ, µ ∈ R with |λ|, |µ| sufficiently large one
has:

(i) (λI − A)−1D ⊂ D, (µI − B)−1D ⊂ D, and
(ii) [[A, B], (λI − A)−1]x = 0 = [[A, B], (µI − B)−1]x for all x ∈ D.

Then the operators A + B : D(A) ∩ D(B) → X and [A, B] : D(AB) ∩ D(BA) → X
are closable and their closures generate strongly continuous groups given by

et2[A,B] = etAetBe−tAe−tB, e−t2[A,B] = etBetAe−tBe−tA,(1.1)

et(A+B) = etAetBe−(t2/2)[A,B],

for all t ∈ R.

Condition (ii) states roughly that the commutators of order 3 in A and B
vanish. On a Lie group the Campbell–Baker–Hausdorff formula gives identities
similarly to (1.1) if the commutators of order 3 vanish. The main aim of this paper
is to generalize Theorem 1.1 to d generators of strongly continuous groups under
the assumption that roughly all the commutators of order r + 1 are zero, where
d, r ∈ N.

In order to state the main theorem of this paper we need some multi-index
notation. Let d ∈ N. Set

J+(d) =
∞⋃

n=1

{1, . . . , d}n and J+N (d) =
N⋃

n=1

{1, . . . , d}n

for all N ∈ N. If α = (k1, . . . , kn) ∈ J+(d) then we set |α| = n. Let A1, . . . , Ad be
(possibly unbounded) operators in a Banach space X . Set Aα = Ak1 · · · Akn , with
natural domain, if α = (k1, . . . , kn). Moreover, if A and B are two operators in X
we define the operator [A, B] in X by

D([A, B]) = D(AB) ∩ D(BA); [A, B]x = ABx − BAx for all x ∈ D([A, B]).
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Then we define the operator A[α] by

A[α] = [Ak1 , [Ak2 , . . . , [Akn−1 , Akn ], . . .]]

if α = (k1, . . . , kn) ∈ J+(d). Obviously A[α]x = 0 for all x ∈ D(A[α]) if kn−1 = kn,
but if Akn is unbounded then D(A[α]) 6= X . In the main theorem this would
give an unnecessary restriction on a domain D, which we would like to avoid.
Therefore, for all r ∈ N define

Zr = {(k1, . . . , kr) ∈ {1, . . . , d}r : kr−1 = kr}

and

∆r =
{

{(k1, . . . , kr) ∈ {1, . . . , d}r : k1 = · · · = kr} if r > 2,
∅ if r = 1.

Then ⋂
β∈J+r (d)\∆r

D(Aβ) ⊂ D(A[α])

for all α ∈ J+r (d)\Zr.
If A is the generator of a strongly continuous group S in X then the ex-

ponential growth bound of S is the infimum of all ω ∈ R for which there is an
M > 1 such that ‖St‖ 6 M eω|t| for all t ∈ R. The main theorem of this paper is
the following.

THEOREM 1.2. Let d, r ∈ N and D a dense subspace of a Banach space X . More-
over, let A1, . . . , Ad be generators of strongly continuous groups in X with exponentially
growth bounds ω1, . . . , ωd. Suppose for all k ∈ {1, . . . , d} there exist λk,0, λk,1 ∈ C with
Re λk,0 > ωk and Re λk,1 < −ωk such that

(1.2) D ⊂
⋂

α∈J+r (d)\∆r

D(Aα), (λI − Ak)−1D ⊂ D

and

(λI − Ak)−1 A[α]x = A[α](λI − Ak)−1x(1.3)

for all x ∈ D and α ∈ J+r (d)\Zr with |α| = r,

for all λ ∈ {λk,0, λk,1}.
Then for all α ∈ J+r (d)\Zr the operator A[α]|D is closable and the closure generates

a strongly continuous group on X . In fact, if F ⊂ J+r (d)\Zr and if cα ∈ R for all α ∈ F
then the operator ∑

α∈F
cα A[α], with its natural domain, is closable, the closure generates

a strongly continuous group on X and D is a core for its generator. Moreover, for all
n1, . . . , nd ∈ N the operator

(1.4)
d

∑
k=1

(−1)nk A2nk
k
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with domain
d⋂

k=1
D(A2nk

k ) is closable and the closure generates a strongly continuous

holomorphic semigroup on X . The space
⋂

α∈J+(d)
D(Aα) is a core. Finally, if d′ ∈

{1, . . . , d} and C = (ckl) is a real symmetric positive semi-definite matrix then the
operator

(1.5) −
d′

∑
k,l=1

ckl Ak Al +
d

∑
k=d′+1

Ak

with domain
d′⋂

k,l=1
D(Ak Al) ∩

d⋂
k=d′+1

D(Ak) is closable and the closure generates a

strongly continuous semigroup on X . The space
⋂

α∈J+(d)
D(Aα) is again a core.

Note that the assumptions of this theorem are expressed in terms of resol-
vents. It is still an open problem whether it is possible to express the assumptions
in terms of the groups generated by the Ak (see p. 195 of [12]).

The proof of this theorem uses the theory of Lie algebras and Lie groups.
If the domain D was invariant under the operators A1, . . . , Ad then we could
define a representation T of a suitable Lie algebra g in the Banach space X and
show that it is integrable, i.e., it lifts to a representation of the corresponding Lie
group G. Then the statements of Theorem 1.2 follow easily. Unfortunately it is
unclear whether D has some dense subspace D0 such that D0 is invariant under
the operators A1, . . . , Ad. Nevertheless, even if D is not invariant under the Ak
then one can still define the map T : g → L(X ). Rusinek [18] has given sufficient
conditions to ensure that T lifts to a representation of the Lie group G in the
Banach space X and we will prove that these conditions are satisfied.

Note that Theorem 1.2 extends Theorem 1.1 even if d = r = 2, since in The-
orem 1.2 the conditions (1.2) and (1.3) are required only for one large and for one
small λ, for each Ak, whilst in Theorem 1.1 the conditions (i) and (ii) are required
for all λ, µ ∈ R with |λ|, |µ| large. The proof of Theorem 1.2 consists of several
steps and one step is much easier if one assumes that the conditions (1.2) and (1.3)
are valid for all λ ∈ R with |λ| sufficiently large. In Section 2 we give a transpar-
ent proof of Theorem 1.2 under these additional assumptions. The general case
requires the same ideas and steps, but in addition one more technical lemma. This
will be proved in Section 3. It is then also possible to extend the Campbell–Baker–
Hausdorff formula in our setting for unbounded operators in a Banach space. In
the last section we write some explicit formulae for the groups generated by the
commutators and in particular for the case when r = 3. Moreover we give appli-
cations of Theorem 1.2. The Kolmogorov operator and the Grushin operators are
two examples where our theorem works well.

In this paper we follow the sign convention of the generators as in the book
of Robinson. Thus H is the generator of the semigroup t 7→ e−tH and if U is a
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representation of a Lie group G then dU(a) is the generator of the group t 7→
U(exp(−ta)) for all a ∈ g, the Lie algebra of G.

2. INTEGRABILITY OF A LIE ALGEBRA REPRESENTATION

As the first step, in this section we shall prove Theorem 1.2 if in addition
(1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1 and k ∈ {1, . . . , d}, where
ω = max{ω1, . . . , ωd}. In the third section, we shall give the full proof that, essen-
tially, uses the main ideas of this section but, since the assumptions are weaker, is
more technical.

The proof is inspired by the proof in the paper [17]. We first introduce the
nilpotent Lie algebra in d generators which is free of step r. Let a1, . . . , ad be a
basis of a real vector space V. Set

T∞ =
∞⊕

n=1

V⊗n and Tr =
r⊕

n=1

V⊗n.

If α = (k1, . . . , kn) ∈ J+(d) set aα = ak1 ⊗ · · · ⊗ akn ∈ T∞. Define the linear
function T : Tr → Lin(D,X ), the space of all linear operators from D into X ,
such that

T(aα) =
{

Aα|D if α ∈ J+r (d)\∆r ,
0 if α ∈ ∆r .

The space T∞ is a Lie algebra with Lie bracket

[t1, t2] = t1 ⊗ t2 − t2 ⊗ t1.

Let G be the Lie subalgebra of T∞ generated by a1, . . . , ad and let I be the ideal of
G spanned by {a[α] : α ∈ J+(d), |α| > r + 1}, where

a[α] = [ak1 , [ak2 , . . . , [akn−1 , akn ], . . .]]

if α = (k1, . . . , kn) ∈ J+(d). Define g = G/I = span{a[α] + I : α ∈ J+r (d)}. Then
g is the nilpotent Lie algebra in d generators which is free of step r. If cα ∈ R for all

α ∈ J+r (d) and ∑
α∈J+r (d)

cα a[α] ∈ I then ∑
α∈J+r (d)

cα a[α] = 0 and T
(

∑
α∈J+r (d)

cα a[α]

)
=

0. Hence there exists a unique linear map T̃ : g → Lin(D,X ) such that T̃(a[α] +
I) = T(a[α]) for all α ∈ J+r (d).

From now on we write ak for ak + I , T for T̃ and [ · , · ] for the Lie bracket
on g. Then T : g → Lin(D,X ) is linear and T(a[α]) = A[α]|D for all α ∈ J+r (d)\Zr.
Moreover, T(a[α]) = T(0) = 0 if α ∈ Zr. Set Rk(λ) = (λI − Ak)−1 for all k ∈
{1, . . . , d} and λ ∈ ρ(Ak).

LEMMA 2.1. Let k ∈ {1, . . . , d} and λ ∈ R with |λ| > ωk and suppose that (1.2)
and (1.3) are valid. Then

(2.1) T(a) Rk(λ)x = Rk(λ) T(a)x − Rk(λ) T([ak, a]) Rk(λ)x
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for all a ∈ g and x ∈ D.

Proof. It suffices to prove the lemma for a = a[α] for all α ∈ J+r (d)\Zr. If
|α| = r then [ak, a[α]] = 0 by the rank of g and (2.1) follows from the hypothesis
(1.3).

Alternatively, if α ∈ J+r−1(d) then the statement is trivial if α ∈ Zr−1, or if
α = (k), so we may assume that α 6∈ Zr−1 and α 6= (k). Then D ⊂ D(Ak A[α]) ∩
D(A[α]Ak). Since Rk(λ)D ⊂ D, one has Rk(λ)x ∈ D(Ak A[α])∩D(A[α]Ak). There-
fore

T(a[α]) Rk(λ)x − Rk(λ) T(a[α])x

= A[α] Rk(λ)x − Rk(λ) A[α]x

= Rk(λ)(λI − Ak)A[α] Rk(λ)x − Rk(λ) A[α](λI − Ak)Rk(λ)x

= −Rk(λ) [Ak, A[α]] Rk(λ)x = −Rk(λ) T([ak, a[α]]) Rk(λ)x

and the lemma follows.

COROLLARY 2.2. Let k ∈ {1, . . . , d} and λ ∈ R with |λ| > ωk and suppose that
(1.2) and (1.3) are valid. Then

(2.2) T(a) Rk(λ)mx = Rk(λ)m
r−1

∑
i=0

(−1)i
(

m − 1 + i
i

)
Rk(λ)i T((adak)ia)x

for all a ∈ g, m ∈ N and x ∈ D.

Proof. The proof is by induction on m. It follows by iteration of Lemma 2.1
that

T(a) Rk(λ)x

= Rk(λ)
r−1

∑
i=0

(−1)iRk(λ)i T((adak)ia)x + (−1)rRk(λ)r T((adak)ra)Rk(λ)x.

But (adak)ra = 0, so (2.2) is valid if m = 1. In fact, by nilpotency it follows that

(2.3) T(a) Rk(λ)mx = Rk(λ)m
∞

∑
i=0

(−1)i
(

m − 1 + i
i

)
Rk(λ)i T((adak)ia)x

for m = 1. Note that there is no convergence problem since there are only finitely
many terms nonzero. But

(2.4)
n

∑
i=0

(
m − 1 + i

i

)
=

(
m + n

n

)
for all m ∈ N and n ∈ N0. The identity (2.4) follows easily by a double induction.
Hence it follows by induction on m that (2.3) is valid for all m ∈ N.
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For all k ∈ {1, . . . , d}, m ∈ N and t ∈ R\{0} with |mt−1| > ω + 1 define the
operator W(k)

m (t) ∈ L(X ) by

W(k)
m (t) = (mt−1)mRk(mt−1)m.

Then W(k)
m (t)D ⊂ D if (1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1 and

k ∈ {1, . . . , d}. If U(k) is the strongly continuous group generated by −Ak, i.e.,
U(k)(t) = etAk , then lim

m→∞
W(k)

m (t)x = U(k)(t)x for all t ∈ R\{0} and x ∈ X by

Corollary III.5.5 of [7]. It follows from Corollary 2.2 that

(2.5) T(a) W(k)
m (t)x = W(k)

m (t)
r−1

∑
i=0

(−1)i
(

m − 1 + i
i

)
Rk(mt−1)i T((adak)ia)x

for all a ∈ g, m ∈ N, k ∈ {1, . . . , d}, t ∈ R\{0} and x ∈ D with m > (ω + 1)|t|
if (1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1 and k ∈ {1, . . . , d}.
We would like to take the limit m → ∞, but in general D is not invariant under
U(k)(t) and we do not yet know whether each T(a) is closable for every a ∈ g. If
r > 2 then it is even not clear whether the operator [A1, A2]|D is closable. We will
circumvent this problem proving that the operators T(a) are ‘jointly’ closable.
The next lemma handles all problems.

LEMMA 2.3. Suppose (1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1
and k ∈ {1, . . . , d}. Let x1, x2, . . . ∈ D be a sequence, x ∈ X and Φ : g → X a linear
function. Suppose lim

n→∞
xn = x and lim

n→∞
T(a)xn = Φ(a) for all a ∈ g. Then

lim
m→∞

W(k)
m (t)xm = U(k)(t)x(2.6)

lim
m→∞

T(a) W(k)
m (t)xm = U(k)(t) Φ(e−tadak a)(2.7)

for all a ∈ g, k ∈ {1, . . . , d} and t ∈ R\{0}.

Proof. Fix k ∈ {1, . . . , d} and t ∈ R\{0}. Then the Hille–Yosida theo-
rem implies that there exists an ω′ > 0 such that sup

m>ω′
‖W(k)

m (t)‖ < ∞. Since

lim
m→∞

W(k)
m (t)y = U(k)(t)y for all y ∈ X the limit (2.6) follows.

Next fix i ∈ {0, . . . , r − 1}. Then write

(−1)i
(

m − 1 + i
i

)
Rk(mt−1)i T((adak)ia)x

= m−i
(

m − 1 + i
i

)
(mt−1Rk(mt−1))i T((−tadak)ia)x



96 DAVIDE DI GIORGIO AND A.F.M. TER ELST

and note that lim
m→∞

m−i(m−1+i
i ) = (i!)−1. Since lim

|λ|→∞
λ Rk(λ)y = y for all y ∈ X

and sup
|λ|>ω′

‖λ Rk(λ)‖ < ∞ for some ω′ > 0 it follows that

lim
m→∞

(mt−1Rk(mt−1))i T((−tadak)ia)xm = Φ((−tadak)ia).

Hence

lim
m→∞

r−1

∑
i=0

(−1)i
(

m − 1 + i
i

)
Rk(mt−1)i T((adak)ia)xm =

r−1

∑
i=0

(i!)−1Φ((−tadak)ia)

= Φ(e−tadak a).(2.8)

Arguing as in the proof of (2.6) the limit (2.7) follows from (2.8) and (2.5).

The next lemma states that the operators T(a), with a ∈ g, are ‘jointly’ clos-
able. Recall that we still do not know that T(a) is closable for all a ∈ g.

LEMMA 2.4. Suppose (1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1
and k ∈ {1, . . . , d}. Let x1, x2, . . . ∈ D and for all a ∈ g let ya ∈ X . Suppose that
lim

n→∞
xn = 0 and lim

n→∞
T(a)xn = ya for all a ∈ g. Then ya = 0 for all a ∈ g.

Proof. Since T is linear we may assume that the map a 7→ ya is linear.
For all l ∈ {1, . . . , r} let P(l) be the following hypothesis:

If x1, x2, . . . ∈ D and Φ : g → X is linear such that lim
n→∞

xn = 0

and lim
n→∞

T(a)xn = Φ(a) for all a ∈ g, then Φ(a[α]) = 0 for all

α ∈ J+l (d).
Obviously the hypothesis P(1) is valid since T(ak) = Ak|D is closable for all

k ∈ {1, . . . , d}, because Ak is closed.
Let l ∈ {1, . . . , r − 1} and suppose that P(l) is valid. Let x1, x2, . . . ∈ D,

Φ : g → X linear and suppose that lim
n→∞

xn = 0 and lim
n→∞

T(a)xn = Φ(a) for all

a ∈ g. Let k ∈ {1, . . . , d} and α ∈ J+(d) with |α| = l. We shall prove that
Φ([ak, a[α]]) = 0. Let t > 0. Then W(k)

m (t)xm ∈ D for all m > (ω + 1)t and

lim
m→∞

W(k)
m (t)xm = 0 by Lemma 2.3. Moreover, by the same lemma,

lim
m→∞

T(a) W(k)
m (t)xm = U(k)(t) Φ(e−tadak a)

for all a ∈ g and the map a 7→ U(k)(t) Φ(e−tadak a) is linear. Hence by the in-
duction hypothesis applied to the sequence (W(k)

m (t)xm)m>(ω+1)t, it follows that
U(k)(t) Φ(e−tadak a[α]) = 0. Since U(k)(t) is invertible, one has Φ(e−tadak a[α]) = 0

for all t > 0. So
r−1
∑

i=0
(−t)i (i!)−1Φ((adak)ia[α]) = 0 for all t > 0. But the sum is a

polynomial in t. Therefore the linear term has to be zero. Thus Φ([ak, a[α]]) = 0
and the hypothesis P(l + 1) is valid.
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Because of the previous lemma the following makes sense if (1.2) and (1.3)
are valid for all λ ∈ R with |λ| > ω + 1. Let E be the vector space of all x ∈ X
such that there exist a sequence x1, x2, . . . ∈ D and for all a ∈ g a ya ∈ X such
that lim

n→∞
xn = x and lim

n→∞
T(a)xn = ya for all a ∈ g. Since the ya are unique by

Lemma 2.4 one can define for all a ∈ g the operator T̃(a) : E → X by T̃(a)x = ya.
Clearly E ⊂ D(Ak) for all k ∈ {1, . . . , d} since Ak is closed and T(ak) = Ak|D.

LEMMA 2.5. Suppose (1.2) and (1.3) are valid for all λ ∈ R with |λ| > ω + 1
and k ∈ {1, . . . , d}. Then the following statements hold:

(i) The space E is dense in X .
(ii) The map a 7→ T̃(a) is linear.

(iii) U(k)(t)E ⊂ E for all k ∈ {1, . . . , d} and t ∈ R.
(iv) If a ∈ g, k ∈ {1, . . . , d} and t ∈ R then

U(k)(t) T̃(a) U(k)(−t)x = T̃(etadak a)x

for all x ∈ E.

Proof. Obviously D ⊂ E and T̃(a)|D = T(a) for all a ∈ g. In particular, E
is dense in X . Statement (ii) is easy. Let x ∈ E. Then there are x1, x2, . . . ∈ D
such that lim

n→∞
xn = x and lim

n→∞
T(a)xn = T̃(a)x for all a ∈ g. Let k ∈ {1, . . . , d}

and t ∈ R\{0}. Then W(k)
m (t)xm ∈ D for all m > (ω + 1)|t|. Moreover, it fol-

lows from Lemma 2.3 that lim
m→∞

W(k)
m (t)xm = U(k)(t)x and lim

m→∞
T(a) W(k)

m (t)xm =

U(k)(t) T̃(e−tadak a)x for all a ∈ g. Hence U(k)(t)x ∈ E and T̃(a) U(k)(t)x =
U(k)(t) T̃(e−tadak a)x. This proves Statements (iii) and (iv).

Proof of Theorem 1.2 under restrictions. Suppose (1.2) and (1.3) are valid for all
λ ∈ R with |λ| > ω + 1 and k ∈ {1, . . . , d}.

Since E is dense in X , invariant under U(k) and E ⊂ D(Ak) it follows from
Corollary 3.1.7 of [2], that E is a core for Ak for all k ∈ {1, . . . , d}. Lemma 2.5
together with the one parameter groups U(k) generated by T̃(ak) and the fact that
a1, . . . , ad generate g are precisely the conditions of Theorem 2.1 in [18]. Hence if G
is the connected simply connected Lie group with Lie algebra g, then there exists
a strongly continuous representation U : G → L(X ) such that E ⊂ D(dU(a))
and dU(a)x = T̃(a)x for all a ∈ g and x ∈ E, where dU(a) is the infinitesimal
generator of the group t 7→ U(exp(−ta)). In particular, dU(a[α])|D = A[α]|D for
all α ∈ J+r (d)\Zr. We next show that E is invariant under U.

First let k ∈ {1, . . . , d}. Since E ⊂ D(dU(ak)) and Ak|D = dU(ak)|D it
follows from the definition of E that Ak|E = dU(ak)|E. So dU(ak) is a closed
extension of Ak|E. But E is a core for Ak. Hence Ak = Ak|E ⊂ dU(ak). Then
Ak = dU(ak) because a semigroup generator has no strict semigroup generator
extension.
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Let G0 = {g ∈ G : U(g)E ⊂ E}. Then G0 is a Lie subgroup of G. Let g0
be its Lie algebra. Then g0 is a subalgebra of g. Moreover, exp tak ∈ G0 for all
t ∈ R by Lemma 2.5 (iii). Therefore ak ∈ g0 for all k ∈ {1, . . . , d}. But a1, . . . , ad
generates g. So g0 = g and G0 = G.

Now let a ∈ g. Then E is a dense subspace of X , E ⊂ D(dU(a)) and E
is invariant under the group (U(exp ta))t∈R. Hence E is a core for dU(a). In
particular, T̃(a) is closable. By definition of E the space D is then a core for T̃(a)
and D is a core for dU(a). Thus T(a) is closable and the closure generates a
strongly continuous group for all a ∈ g.

Next let F ⊂ J+r (d)\Zr and for all α ∈ F let cα ∈ R. Set b = ∑
α∈F

cα a[α]

and B = ∑
α∈F

cα A[α], with its natural domain. We first show that B ⊂ dU(b).

Expanding the commutators it follows that there is a subset F̃ ⊂ J+r (d)\∆r and
for all β ∈ F̃ there is a c̃β ∈ R such that

D(B) =
⋂

β∈F̃

D(Aβ),

where Bx = ∑
β∈F̃

c̃β Aβx for all x ∈ D(B) and b = ∑
β∈F̃

c̃β aβ ∈ Tr. Let U∗ be the

dual representation of U in the dual space X ∗. Moreover, let X∞(U) and X ∗
∞(U∗)

denote the space of all C∞-vectors for U and U∗. Then dU(b)x = ∑
β∈F̃

c̃β Aβx for

all x ∈ X∞(U). So

dU∗(−b) f = dU(b)∗ f = ∑
β∈F̃

c̃β (Aβ)∗ f = ∑
β∈F̃

(−1)|β| c̃β (dU∗(a))β∗ f

for all f ∈ X ∗
∞(U∗), where β∗ = (kn, . . . , k1) if β = (k1, . . . , kn). Now let x ∈ D(B).

Then for all f ∈ X ∗
∞(U∗) one has

(dU∗(−b) f , x) = ∑
β∈F̃

(−1)|β| c̃β ((dU∗(a))β∗ f , x) = ∑
β∈F̃

c̃β ( f , Aβx) = ( f , Bx).

Since X ∗
∞(U∗) is a core for dU∗(−b) it follows that

x ∈ D((dU∗(−b))∗) = D(dU(b))

and dU(b)x = Bx. So B ⊂ dU(b). But X∞(U) is a core for dU(b). Therefore B is
closable and B = dU(b).

Next, the statement of Theorem 1.2 concerning the operator
d
∑

k=1
(−1)nk A2nk

k

follows from Theorem 1.1 and Example 4.4 of [9]. The space
⋂

α∈J+(d)
D(Aα) is

a core by the argument given in the proof of Lemma 2.4 in [8], or the proof of

Proposition II.8.1 in [6]. Finally, consider the operator H = −
d′

∑
k,l=1

ckl Ak Al +
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d
∑

k=d′+1
Ak. We may assume that there is a d′′ ∈ {1, . . . , d′} such that ckl = 1 if

k = l 6 d′′ and ckl = 0 otherwise. Then H = −
d′′

∑
k=1

A2
k +

d
∑

k=d′+1
Ak and the

statements follow from [10] or Theorem IV.4.5 of [16], applied to the operator

−
d′′

∑
k=1

dV(ak)2 + dV(a0), where a0 =
d
∑

k=d′+1
ak and V is the restriction of U to G1

with G1 is the connected simply connected subgroup of G with Lie algebra g1
and g1 the Lie subalgebra of g generated by a0, a1, . . . , ad′′ . The claims about the
domain and core follow again from the argument given in the proof of Lemma 2.4
in [8].

REMARK 2.6. The above proof of (the restricted version of) Theorem 1.2
shows that the statements on operators of the form (1.4) follow from [9]. In fact,
(1.4) is merely an example of the Lie group theory developed in [9]. In Theo-
rem 1.1 and Example 4.4 of [9] there are many more examples of weighted subco-
ercive operators which like (1.4) all pre-generate a holomorphic semigroup. We
refer the interested reader to [9].

In the course of the (restricted) proof of Theorem 1.2 we proved an integra-
bility result.

THEOREM 2.7. Assume the hypothesis of Theorem 1.2. Then there exists a unique
strongly continuous representation U of G in X such that D is a core for dU(ak) and
Ak|D = dU(ak)|D for all k ∈ {1, . . . , d}, where g is the nilpotent Lie algebra with
generators a1, . . . , ad which is free of step r and G is the connected simply connected Lie
group with Lie algebra g.

It follows that D is a core for dU(a) for all a ∈ g.

Proof. Everything has been proved, except the uniqueness. But if V is an-
other representation then

dU(ak) = dU(ak)|D = dV(ak)|D = dV(ak)

for all k ∈ {1, . . . , d}. Since a1, . . . , ad generate g it follows that U = V.

3. COMPLETE PROOF OF THEOREM 1.2

In this section we assume merely the hypothesis of Theorem 1.2 without
any additional assumptions. The key element in the proof in the previous section
is the existence of the operators W(k)

m (t) satisfying (2.6) and (2.7). By definition
W(k)

m (t) = (mt−1)mRk(mt−1)m whenever |mt−1| > ω + 1. The additional restric-
tions in Section 2 ensured immediately that W(k)

m (t)D ⊂ D and Corollary 2.2 gave
the bounds needed to prove (2.6) and (2.7).
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In fact, we need the following improvement of Lemma 2.3. As before, U(k)

denotes the strongly continuous group generated by −Ak, so U(k)(t) = etAk .

LEMMA 3.1. Assume the assumptions of Theorem 1.2. Then for all k ∈ {1, . . . , d},
t ∈ R\{0} and m ∈ N there exists a linear operator W (k)

m (t) : D → D such that

lim
m→∞

W (k)
m (t)xm = U(k)(t)x(3.1)

lim
m→∞

T(a)W (k)
m (t)xm = U(k)(t) Φ(e−tadak a)(3.2)

for every sequence x1, x2, . . . ∈ D, x ∈ X , linear Φ : g → X and a ∈ g such that
lim

n→∞
xn = x and lim

n→∞
T(b)xn = Φ(b) for all b ∈ g.

Proof of Theorem 1.2. If Lemma 3.1 has been proved, then Lemmas 2.4, 2.5
and the restricted proof of Theorem 1.2 in Section 2 extend line by line to the
general case.

Thus it remains to prove Lemma 3.1. The outline is as follows. If t > 0,
k ∈ {1, . . . , d} and m ∈ N is large then Rk(mt−1) in the definition of W(k)

m (t) is
defined, but one has no control over it. It is even not clear whether it leaves D
invariant. Only Rk(λk,0) behaves well enough by the assumptions (1.2) and (1.3).
In particular each polynomial in Rk(λk,0) leaves D invariant. But λ 7→ Rk(λ)
is analytic in a neighbourhood of λk,0 and for λ close to λk,0 one can approx-
imate Rk(λ) by a polynomial in Rk(λk,0). Similarly, for λ′ close to λ one can
approximate Rk(λ′) by a polynomial in Rk(λ), so by a polynomial in Rk(λk,0).
Continuing this way one can find an approximation of Rk(λ) by a polynomial in
Rk(λk,0) for all λ > Re λk,0. This then provides an approximation for W(k)

m (t) =
(mt−1)mRk(mt−1)m, which will be the new W (k)

m (t).
We build the approximate resolvent only for t > 0 using the λk,0. First,

in order to make the notation less heavy, we fix k ∈ {1, . . . , d}. Set λ0 = λk,0.
We suppose that λ0 ∈ R, since the complex case follows similarly. Denote R =
R(λ0, Ak) and R(λ) = R(λ, Ak) for all λ > ωk. Let ω̃ = 2−1(ωk + λ0). There
exists an M̃ > 1 such that ‖R(λ)‖ 6 M̃(λ − ω̃)−1 for all λ > λ0. Set M =
3M̃(λ0 − ω̃)−1. For n ∈ N set λn = λ0 + n M−1. Then

(3.3) ‖R(λn)‖ 6 M̃(λn −ω)−1 6 3−1M

for all n ∈ N0.
For all N1 ∈ N set

R̃N1(λ1) =
N1

∑
i=0

(−1)i M−i Ri+1
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and by induction, for all n ∈ N with n > 2 and all N1, . . . , Nn ∈ N set

R̃N1,...,Nn(λn) =
Nn

∑
i=0

(−1)i M−i R̃N1,...,Nn−1(λn−1)i+1.

Then R̃N1,...,Nn(λn) is a polynomial in R. So it leaves D invariant. If no confusion
is possible then we write R̃(λn) = R̃N1,...,Nn(λn). Moreover, we set R̃(λ0) = R. So

R̃(λ0) = R(λ0) and R̃(λn) =
Nn
∑

i=0
(−1)i M−i R̃(λn−1)i+1 for all n ∈ N.

The next lemma shows that R̃N1,...,Nn(λn) is an approximation of R(λn) if
N1, . . . , Nn are large enough.

LEMMA 3.2. If n ∈ N, N1, . . . , Nn ∈ N and
n−1
∑

j=1
3−Nj+n−2−j 6 6−1 then

‖R(λn)− R̃N1,...,Nn(λn)‖ 6
n

∑
j=1

3−Nj+n−1−j M.

Hence if
n
∑

j=1
3−Nj+n−1−j 6 6−1 then

‖R̃N1,...,Nn(λn)‖ 6 2−1M.

Proof. The proof is by induction. Since λn − λn−1 = M−1 < ‖R(λn−1)‖−1

by (3.3), it follows that

∥∥∥R(λn)−
N

∑
i=0

(−1)i M−i R(λn−1)i+1
∥∥∥ 6

∞

∑
i=N+1

M−i ‖R(λn−1)‖i+1

6
∞

∑
i=N+1

M−i (3−1M)i+1 6 3−N−1 M

for all n, N ∈ N. Therefore the lemma follows for n = 1 from (3.3).

Next let n ∈ N, N1, . . . , Nn ∈ N and suppose that
n−1
∑

j=1
3−Nj+n−2−j 6 6−1 and

n > 2. Then it follows from the induction hypothesis that

‖R(λn)− R̃N1,...,Nn(λn)‖

6
∥∥∥R(λn)−

Nn

∑
i=0

(−1)i M−i R(λn−1)i+1
∥∥∥

+
Nn

∑
i=0

M−i‖R(λn−1)i+1 − R̃N1,...,Nn−1(λn−1)i+1‖
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6 3−Nn−1M +
Nn

∑
i=0

M−i
i

∑
l=0

‖R(λn−1)‖l‖R(λn−1)− R̃N1,...,Nn−1(λn−1)‖

· ‖R̃N1,...,Nn−1(λn−1)‖i−l

6 3−Nn−1M +
Nn

∑
i=0

M−i
i

∑
l=0

(3−1M)l
n−1

∑
j=1

3−Nj+n−2−j M (2−1M)i−l

6 3−Nn−1M +
n−1

∑
j=1

3−Nj+n−2−j M
∞

∑
i=0

i

∑
l=0

3−l2−(i−l) =
n

∑
j=1

3−Nj+n−1−j M,

from which the lemma easily follows.

For all n ∈ N, N1, . . . , Nn ∈ N and j ∈ N0 define

Z(j)
N1,...,Nn

(λn)

= ∑
06n1,n26Nn
Nn<n1+n2

(−1)n1+n2+j M−(n1+n2)
(

n2 + j
j

)
R̃N1,...,Nn−1(λn−1)n1+n2+j+2.

If no confusion is possible then we write Z(j)(λn) = Z(j)
N1,...,Nn

(λn). In addition we

set Z(j)(λ0) = 0 for all j ∈ N0. Moreover, for all n ∈ N0, m ∈ N and a ∈ g define
the operator P(λn, a, m) : D → X such that

T(a) R̃(λn)mx

= R̃(λn)m
r−1

∑
i=0

(−1)i
(

m − 1 + i
i

)
R̃(λn)i T((adak)ia)x + P(λn, a, m)x(3.4)

for all x ∈ D. Note that P(λn, a, m) depends on N1, . . . , Nn. In addition one
deduces that P(λ0, a, m) = 0 by Corollary 2.2 applied to λ0.

The next lemma is a version of Lemma 2.1 for R̃(λn) with a remainder term.

LEMMA 3.3. If n ∈ N, N1, . . . , Nn ∈ N and a ∈ g then

(3.5) T(a) R̃(λn)x = R̃(λn) T(a)x − R̃(λn) T([ak, a]) R̃(λn)x + P(λn, a)x

for all x ∈ D, where

P(λn, a) =
r−2

∑
j=0

Z(j)(λn) T((adak)j+1a)

+
Nn

∑
n1=0

Nn

∑
n2=0

(−1)n1+n2 M−(n1+n2)R̃(λn−1)n1+1P(λn−1, [ak, a], n2 + 1)

+
Nn

∑
j=0

(−1)j M−jP(λn−1, a, j + 1).
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Proof. Using the definition of R̃(λn) and (3.4) one deduces that

T(a) R̃(λn)x =
Nn

∑
j=0

(−1)j M−jT(a) R̃(λn−1)j+1x

=
Nn

∑
j=0

(−1)j M−jR̃(λn−1)j+1
r−1

∑
i=0

(−1)i
(

j + i
i

)
R̃(λn−1)i T((adak)ia)x

+
Nn

∑
j=0

(−1)j M−jP(λn−1, a, j + 1).

But by (2.4) one establishes that
Nn

∑
j=0

(−1)j M−jR̃(λn−1)j+1
r−1

∑
i=0

(−1)i
(

j + i
i

)
R̃(λn−1)i T((adak)ia)x − R̃(λn) T(a)x

=
Nn

∑
j=0

r−1

∑
i=1

(−1)j M−jR̃(λn−1)j+1(−1)i
(

j + i
i

)
R̃(λn−1)iT((adak)ia)x

=
Nn

∑
j=0

r−2

∑
i=0

(−1)i+j+1M−j
(

j + i + 1
i + 1

)
R̃(λn−1)i+j+2 T((adak)i+1a)x

=
Nn

∑
j=0

r−2

∑
i=0

(−1)i+j+1M−j
j

∑
n2=0

(
n2 + i

i

)
R̃(λn−1)i+j+2 T((adak)i+1a)x

= ∑
06n1,n26Nn
n1+n26Nn

r−2

∑
i=0

(−1)n1+n2+i+1M−(n1+n2)
(

n2 + i
i

)
R̃(λn−1)n1+n2+i+2 T((adak)i+1a)x

for all x ∈ D. Alternatively, it follows again from (3.4) that

R̃(λn) T([ak, a]) R̃(λn)x

=
Nn

∑
n1=0

(−1)n1 M−n1 R̃(λn−1)n1+1 T([ak, a])
Nn

∑
n2=0

(−1)n2 M−n2 R̃(λn−1)n2+1x

=
Nn

∑
n1=0

Nn

∑
n2=0

r−2

∑
i=0

(−1)n1+n2+i M−(n1+n2)
(

n2 + i
i

)
R̃(λn−1)n1+n2+i+2T((adak)i+1a)x

+
Nn

∑
n1=0

Nn

∑
n2=0

(−1)n1+n2 M−(n1+n2)R̃(λn−1)n1+1P(λn−1, [ak, a], n2 + 1).

Then the lemma follows by addition.

LEMMA 3.4. For all n ∈ N0, N1, . . . , Nn ∈ N, m ∈ N and i ∈ {0, . . . , r − 1}
there exists an operator pi,m,n : X → X such that

P(λn, a, m)x =
r−1

∑
i=0

pi,m,n T((adak)ia)x
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for all x ∈ D and a ∈ g. Moreover, pi,m,n can be chosen such that it is a polynomial
in the R̃(λl) and Z(j)(λl) with j ∈ N0 and l ∈ {0, . . . , n}; the coefficients of pi,m,n are
independent of N1, . . . , Nn and each term contains at least one factor Z(j)(λl) for some
j ∈ N0 and l ∈ {0, . . . , n}.

Proof. For all n ∈ N0 and m ∈ N let H(n, m) be the following hypothesis:

For all N1, . . . , Nn ∈ N and i ∈ {0, . . . , r − 1} there exists an
operator pi,m,n : X → X such that

P(λn, a, m)x =
r−1

∑
i=0

pi,m,n T((adak)ia)x

for all x ∈ D and a ∈ g. Moreover, pi,m,n can be chosen such
that it is a polynomial in the R̃(λl) and Z(j)(λl) with j ∈ N0
and l ∈ {0, . . . , n}; the coefficients of pi,m,n are independent of
N1, . . . , Nn and each term contains at least one factor Z(j)(λl) for
some j ∈ N0 and l ∈ {0, . . . , n}.

If n = 0 and m ∈ N then clearly H(0, m) is valid since P(λ0, a, m) = 0 by
Corollary 2.2 applied to λ0. Let n ∈ N0 and suppose that H(n, m) is valid for all
m ∈ N. By iteration it follows from Lemma 3.3 that

T(a) R̃(λn+1) = R̃(λn+1)
r−1

∑
i=0

(−1)iR̃(λn+1)i T((adak)ia)x

+
r−1

∑
i=0

(−1)iR̃(λn+1)iP(λn+1, (adak)ia).(3.6)

Hence H(n + 1, 1) is valid by Lemma 3.3 and the induction hypothesis.
Now let m ∈ N and suppose that H(n + 1, m) is valid. Then it follows as in

the proof of Corollary 2.2 that

P(λn+1, a, m + 1)x = P(λn+1, a, m) R̃(λn+1)x

+ R̃(λn+1)m
r−1

∑
i=0

(−1)i
(

m − 1 + i
i

)
R̃(λn+1)i

◦
r−1

∑
j=0

(−1)j R̃(λn+1)j P(λn+1, (adak)i+ja)x

= P(λn+1, a, m) R̃(λn+1)x

+
r−1

∑
i=0

(−1)i
(

m + i
i

)
R̃(λn+1)m+i P(λn+1, (adak)ia)x.
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Using (3.4) one can rewrite the first term as

P(λn+1, a, m) R̃(λn+1)x =
r−1

∑
i=0

pi,m,n+1T((adak)ia) R̃(λn+1)x

=
r−1

∑
i,j=0

(−1)j pi,m,n+1 R̃(λn+1)j+1T((adak)i+ja)x

+
r−1

∑
i=0

pi,m,n+1P(λn+1, (adak)ia, 1)x.

Hence H(n + 1, m + 1) is valid. By induction the lemma follows.

LEMMA 3.5. If n ∈ N, N1, . . . , Nn−1 ∈ N and
n−1
∑

j=1
3−Nj+n−2−j < 6−1 then

lim
Nn→∞

‖Z(j)
N1,...,Nn

(λn)‖ = 0

for all j ∈ N0.

Proof. For all Nn ∈ N one has by Lemma 3.2

‖Z(j)
N1,...,Nn

(λn)‖ 6 ∑
06n1,n26Nn
Nn<n1+n2

M−(n1+n2)
(

n2 + j
j

)
(2−1M)n1+n2+j+2

6 (2−1M)j+2
∞

∑
n=Nn+1

(n + 1) (n + j)j 2−n

from which the lemma follows.

From now on fix t > 0. For all m ∈ N let

nm = min{n ∈ N : λn > mt−1}.

LEMMA 3.6. For all m ∈ N there exist N1, . . . , Nnm ∈ N such that:

sup
06j6m

λm
nm ‖R̃N1,...,Nnm

(λnm)j − R(λnm)j‖ 6 m−1(3.7)

sup
06i6r−1

λm
nm ‖pi,m,nm‖ 6 m−1(3.8)

where pi,m,n is as in Lemma 3.4.

Proof. This is a direct consequence of Lemmas 3.2, 3.4 and 3.5.

Before we can prove Lemma 3.1 we need one more theorem.

THEOREM 3.7. Let X be a Banach space, F : (0, ∞) → L(X) a function, D a
dense subspace of X , A : D → X a linear map and ω > 0. Suppose the following:

(i) There exists an M > 1 such that ‖F(ρ)k‖ 6 Meωkρ for all ρ > 0 and k ∈ N.
(ii) Ax = lim

ρ↓0
ρ−1(F(ρ)x − x) for all x ∈ D.
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(iii) There exists a λ ∈ C with Re λ > ω such that (λI − A)(D) is dense in X.
Then A is closable, the closure of −A generates a strongly continuous semigroup T
and for all t > 0, ρ1, ρ2, . . . > 0 and k1, k2, . . . ∈ N with lim

n
ρn = 0, kn ↑ ∞ and

lim
n

kn ρn = t one has

Ttx = lim
n→∞

F(ρn)kn x

for all x ∈ X .

Proof. See Corollaries III.5.3 and III.5.4 of [7].

Proof of Lemma 3.1. Recall that k ∈ {1, . . . , d} and t > 0 were fixed. For all
m ∈ N set

W (k)
m (t) = λm

nm R̃N1,...,Nnm
(λnm)m,

where N1, . . . , Nnm ∈ N are as in Lemma 3.6. (The value of, for example, N1 is
allowed to depend on m.) Define F : (0, ∞) → L(X ) by F(ρ) = ρ−1R(ρ−1) if
ρ−1 > ωk and F(ρ) = I if ρ−1 6 ωk. Then it follows from Theorem 3.7 that

lim
m→∞

F(λ−1
nm )my = U(k)(t)y

for all y ∈ X . In addition, sup
m

‖F(λ−1
nm )m‖ < ∞. Therefore lim

m→∞
F(λ−1

nm )mxm =

U(k)(t)x. Hence by (3.7) one deduces that lim
m→∞

W (k)
m (t)xm = U(k)(t)x.

Let α ∈ J+r (d). Then (3.2) follows for a = a[α] similarly to the proof in
Lemma 2.3. Although there is one more term in (3.4) it follows from (3.8) that the
additional item gives no contribution. Since {a[α] : α ∈ J+r (d)} spans g the limit
(3.2) is valid for all a ∈ g.

The proof of Theorem 1.2 is complete.

4. THE CAMPBELL–BAKER–HAUSDORFF FORMULA AND EXAMPLES

In this section we give a consequence of the existence of the strongly con-
tinuous representation U of the Lie group G in the Banach space X obtained in
Section 2. By Theorem 1.2 the closure of every commutator of order at most r gen-
erates a strongly continuous group and thanks to the representation U it is pos-
sible to find a formula for this group in terms of the strongly continuous groups
generated by A1, . . . , Ad. Since etT(a) = U(exp(ta)) for all a ∈ g and t ∈ R, it
suffices to find a formula for exp(ta) expressed in the exp(tak), and then apply
the representation U. We assume the assumptions of Theorem 1.2 and use the no-
tation of Section 2. Since g is nilpotent and G is connected and simply connected
the exponential map exp : g → G is a bijection by Theorem 1.2.1 of [3].

In the sequel we need an expression for multi-commutators. This expression
is given in Lemma 2.21 of [14], which we state here for convenience.
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LEMMA 4.1. If l ∈ N and b1, . . . , bl ∈ {a1, . . . , ad} then for all α ∈ J+(d) with
|α| > l there are cα ∈ R such that

(4.1) exp
(
tl [b1, [b2, . . . , [bl−1, bl ], . . .]] + ∑

l<|α|6r
t|α|cαa[α]

)
= Cl(t, b1, . . . , bl)

for all t ∈ R, where C1(t, b1) = exp(tb1) and by recursion

Cl(t, b1, . . . , bl) = exp(tb1) Cl−1(t, b2, . . . , bl) exp(−tb1) (Cl−1(t, b2, . . . , bl))−1.

Proof. See Lemma 2.21 of [14]. Note that a[α] = 0 if |α| > r.

By Lemma 4.1 we obtain the following result if l = r.

PROPOSITION 4.2. If b1, . . . , br ∈ {a1, . . . , ad} then

exp(tr[b1, [b2, . . . , [br−1, br], . . .]]) = Cr(t, b1, . . . , br)

for all t ∈ R.

Now consider a multi-commutator a = [b1, [b2, . . . , [br−2, br−1], . . .]] of order
r − 1. Then by Lemma 4.1 we have

exp(tr−1[b1, [b2, . . . , [br−2, br−1], . . .]] + trRr) = Cr−1(t, b1, . . . , br−1)

for all t ∈ R, where Rr is a linear combination of commutators of order r. Multi-
plying by exp(−trRr) on the right and using that a and Rr commute one deduces
from the Campbell–Baker–Hausdorff formula that

exp(tr−1[b1, [b2, . . . , [br−2, br−1], . . .]]) = Cr−1(t, b1, . . . , br−1) exp(−trRr).

This gives an explicit formula for exp(tr−1a) expressed in the exp(tak) whenever a
is a multi-commutator of order r − 1. Using the Campbell–Baker–Hausdorff for-
mula once again one can find an explicit formula for exp(tr−1a) whenever a is
a linear combination of multi-commutators of order r − 1. Continuing this way,
starting with (4.1) and using the Campbell–Baker–Hausdorff formula repeatedly,
it is possible to find an explicit formula for exp

(
∑

|α|>j
t|α|cαa[α]

)
expressed in the

exp(tak) whenever the cα are constant. This is by downward induction on j.
Since g is nilpotent one needs to apply the Campbell–Baker–Hausdorff formula
only a finite number of times. Nevertheless, the final explicit formulae get very
long if r is large. We write down an explicit formula only for the case r = 3, since
the formulae for r ∈ {1, 2} are well known.
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PROPOSITION 4.3. Let d ∈ N, t ∈ R, r = 3 and b1, b2, b3 ∈ {a1, . . . , ad}. Then

exp(t3[b1, [b2, b3]]) = exp(tb1) exp(tb2) exp(tb3) exp(−tb2) exp(−tb3)
· exp(−tb1) exp(tb3) exp(tb2) exp(−tb3) exp(−tb2),

exp(t2[b1, b2]) = exp(tb1) exp(tb2) exp(−tb1) exp(−tb2)

· exp
(
− t3

2 [b1 + b2, [b1, b2]]
)

and

exp(t(b1 + b2)) = exp(tb1) exp(tb2) exp
(
− t3

12 ([b1, [b1, b2]]− [b2, [b1, b2]])
)

· exp
(
− t2

2 [b1, b2]
)

exp
( t3

4 [b1 + b2, [b1, b2]]
)
.

Proof. We only prove the last identity. By the Campbell–Baker–Hausdorff
formula and the assumption r = 3 one has

exp(tb1) exp(tb2) = exp
(
t(b1 + b2) + t2

2 [b1, b2] + t3

12 ([b1, [b1, b2]]− [b2, [b1, b2]])
)
.

Multiplying by exp
(
− t3

12 ([b1, [b1, b2]] − [b2, [b1, b2]])
)

on the right one deduces
that

exp
(
t(b1 + b2) + t2

2 [b1, b2]
)

= exp(tb1) exp(tb2) exp
(
− t3

12 ([b1, [b1, b2]]− [b2, [b1, b2]])
)
.

Now multiply by exp
(
− t2

2 [b1, b2]
)

on the right. Since it does not commute with
exp(t(b1 + b2)), one obtains

exp
(
t(b1 + b2)− t3

4 [b1 + b2, [b1, b2]]
)

= exp(tb1) exp(tb2) exp
(
− t3

12 ([b1, [b1, b2]]− [b2, [b1, b2]])
)

exp
(
− t2

2 [b1, b2]
)
.

Finally multiplying by exp
( t3

4 [b1 + b2, [b1, b2]]
)

we find the required formula for
exp(t(b1 + b2)).

EXAMPLE 4.4. Let m ∈ N. Let p ∈ (1, ∞) and set X = Lp(R2m) or set
X = C0(R2m). Let N ∈ {1, . . . , m} and n1, . . . , nN ∈ N0. Set D = S(R2m), the
Schwartz space. For all k ∈ {1, . . . , N} and ϕ ∈ D define Ak,AN+k : D → D by

Ak ϕ = ∂k ϕ and (AN+k ϕ)(x) = xnk
k (∂m+k ϕ)(x).

Then Ak and AN+k are closable and the closures Ak = Ak and AN+k = AN+k
generate strongly continuous groups on X . It is not hard to verify that the as-
sumptions of Theorem 1.2 are satisfied with d = 2N and r = max{n1, . . . , nN}.
Hence an arbitrary linear combination of (multi-)commutators of arbitrary order
is closable and the closure generates a strongly continuous group. Moreover, by
(1.4), the operator

−
N

∑
k=1

(∂2
k + x2nk

k ∂2
N+k)
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is closable on its natural domain and the closure generates an analytic semigroup.
If one chooses d′ = N and ckl = δkl then one deduces from (1.5) that the operator

−
N

∑
k=1

∂2
k +

N

∑
k=1

xnk
k ∂N+k

is closable on its natural domain and the closure generates a strongly continuous
semigroup. In particular, choosing N = m and n1 = · · · = nN = 1 one obtains the
so called Kolmogorov operator in R2m. Alternatively, if one chooses N = m = 1
and n1 = n then one obtain the operator

−∂2
1 − x2n

1 ∂2
2,

which is the Grushin operator.
Finally, choose N = m, n1 = · · · = nN = 0, and define B : D → D by

(Bϕ)(x) = ip(x) ϕ(x), where p is a polynomial. Then B is closable and the clo-
sure B = B generates a strongly continuous group on X . Moreover, the opera-
tors B, A1, . . . , A2m satisfy the assumptions of Theorem 1.2 with d = 2m + 1 and r
equal to the degree of the polynomial p. Hence all the conclusion of Theorem 1.2
are valid and in particular by (1.4) the closure of the operator

−
2m

∑
k=1

∂2
k + p2 I

is the generator of an analytic semigroup.
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