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ABSTRACT. This paper answers some questions involved in extending from
groups to groupoids the theory of actions and coactions on W∗-algebras. In
particular, we explain the connection between actions of a measured groupoid,
G, on a bundle of W∗-algebras, and Hopf actions of the Hopf algebroid L∞(G)
on the direct integral of the bundle of W∗-algebras. The Hopf algebroid struc-
ture on L∞(G) is determined by G and can be used to construct G up to a set
of measure zero.
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INTRODUCTION

In this introduction, we recall some material from [9]. We have chosen to
use left Haar measures rather than the right Haar measures of [9]. Because we use
measure theoretic tools, we impose a global separability hypothesis: with only a
few necessary exceptions, all Hilbert spaces are separable, all topological spaces
such as groups are second countable, all W∗-algebras have separable preduals,
and all measures are σ-finite. Unless it causes confusion, all identity mappings
are denoted by i. Operator algebra and groupoid terms and facts are explained
in the next section. The main issue that is new for measured groupoids relative
to locally compact groups is the fact that sets of measure 0 in the space of units of
a groupoid must be handled.

Let G be a locally compact group and let M be a von Neumann algebra on
a Hilbert space H. Let α be an action of G on M, i.e., a homomorphism from G to
Aut(M) such that s 7→ αs(x) is continuous from G to M for every x ∈ M, using
the weak operator topology on M. If we think of M as an abstract W∗-algebra, the
σ-weak topology can be used. For actions that are unitarily implemented, as ours
will be, the fact that several operator topologies agree on the group of unitaries
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simplifies the situation. The action α gives rise to a von Neumann algebra called
the crossed product of M by G and denoted by M ×α G.

One construction of M×α G begins with a convolution algebra of integrable
functions from G to M, and we use that approach later for groupoids, but the
first construction in [9] can be described as follows. Let L2(G;H) be the Hilbert
space of square integrable functions from G to H, relative to left Haar mea-
sure. For x ∈ M, define a bounded operator, πα(x) on the space L2(G;H) by
(πα(x)ξ)(s) = αs(x)(ξ(s)). Then πα is a normal, injective, ∗-homomorphism of
M into the von Neumann algebra of bounded operators on L2(G;H), which we
denote by L(L2(G;H)). There is also a unitary representation L of G on L2(G;H)
defined by (L(s)ξ)(t) = ξ(s−1t). The crossed product M ×α G is the von Neu-
mann algebra (πα(M) ∪ L(G))′′ in L(L2(G;H)). We may also regard M ×α G as
a von Neumann algebra on H ⊗ L2(G). If the representation L is integrated to
produce a representation of the convolution ∗-algebra L1(G), the possibility of
expressing M ×α G as the completion of a convolution algebra comes into view.

If G is abelian, and Ĝ is its dual, then there is a unitary representation V
of Ĝ on L2(G;H) defined by (V(p)ξ)(s) = p(s)ξ(s). It is easy to verify that
V(p)πα(x)V(p)∗ = πα(x) for x ∈ M, and that V(p)L(s)V(p)∗ = p(s)L(s) for
s ∈ G. Thus conjugating by V(p) gives an action of Ĝ on M ×α G. That action of
Ĝ, denoted by α̂ and called a coaction of G, is said to be dual to α. This situation
is completely symmetrical between G and Ĝ and their actions and coactions, but
only for abelian groups.

In reformulating the theory for nonabelian groups, Nakagami and Takesaki
used the fact that if G is a locally compact group, then L∞(G) has a Hopf algebra
structure ([15], Section 1; [9], Chapter I, Section 1; [2], Section 1.3). The comultipli-
cation on L∞(G) can be obtained by first observing that the natural isomorphism
of L2(G)⊗ L2(G) with L2(G×G) carries L∞(G)⊗ L∞(G) to L∞(G×G). Thus the
mapping, αG, defined by (αG f )(s, t) = f (st) for f ∈ L∞(G) and (s, t) ∈ G × G,
can be regarded as a mapping of L∞(G) into L∞(G) ⊗ L∞(G), and hence is a
candidate to be a comultiplication.

Associativity of multiplication in G is equivalent to a property of αG called
coassociativity, namely (αG ⊗ i) ◦ αG = (i⊗ αG) ◦ αG, which is represented picto-
rially by the following commutative diagram:

L∞(G)
αG−−−−→ L∞(G)⊗ L∞(G)

αG

y αG⊗i
y

L∞(G)⊗ L∞(G)
i⊗αG−−−−→ L∞(G)⊗ L∞(G)⊗ L∞(G)

.

Thus L∞(G) is a Hopf algebra, and the imbedding πα of M into L∞(G; M)
can be seen as an action of the Hopf algebra L∞(G) by recognizing that L∞(G; M)
is naturally isomorphic to M ⊗ L∞(G) and using the fact that α is a homomor-
phism. Such a mapping πα can actually be defined for any measurable mapping



ACTIONS OF GROUPOIDS ON W∗-ALGEBRAS 201

α of G into Aut(M). Then the homomorphism property of α is equivalent to the
equation (αG ⊗ i) ◦ πα = (i⊗ πα) ◦ πα which defines coassociativity. This equa-
tion is illustrated by the following commutative diagram:

M πα−−−−→ M ⊗ L∞(G)

πα

y πα⊗i
y

M ⊗ L∞(G) −−−−→
i⊗αG

M ⊗ L∞(G)⊗ L∞(G)

.

In Hopf algebra terms, πα and αG are actions of L∞(G) on M and L∞(G) respec-
tively.

It is easy to prove that πα is a Hopf action of L∞(G) on M, but to have a
one-one correspondence between actions of G on M and actions of L∞(G) on M
it is necessary to prove that every action of L∞(G) on a von Neumann algebra M
is of the form πα for a unique action α, as is done in Proposition 2.1 of Chapter 1
of [9].

1. PRELIMINARIES

In this section we establish notation and state a few known results in forms
convenient for this paper.

1.1. GROUPOIDS. Suppose that G is a groupoid with unit space X (or G0). We
denote the range and source maps by r, s : G → X, respectively. Let G2 de-
note the collection of composable/multipliable pairs, namely {(γ, γ′) ∈ G × G :
s(γ) = r(γ′)}, and write Gx for r−1(x) and Gx for s−1(x), if x ∈ X. Additional
information on groupoids can be found in [10], [11], [12] or [13].

A groupoid G is an analytic (a standard) Borel groupoid if G has an analytic
(a standard) Borel structure, X = G0 is a Borel set when regarded as a subset
of G, and r, s, the inverse map, and the multiplication map are Borel functions.
For G to be topological, we require that r, s, the inverse map, and multiplication
be continuous and that r, s be open. We also require that G be at least locally
Hausdorff.

Many groupoids that one encounters are topological, but Borel structure is
all that is used in this paper. If G is an analytic or standard Borel groupoid and
Y is a Borel set of units we can form the reduction to Y, namely G|Y = {γ ∈ G :
r(γ) ∈ Y, s(γ) ∈ Y}. Then G|Y is also a Borel groupoid of the same type as G.
For topological groupoids, Y must be chosen more carefully to obtain another
topological groupoid; it is always sufficient for Y to be open. In the presence
of a measure on X, G|Y is called an inessential reduction provided that Y has full
measure, i.e., its complement has measure 0.

If G is an analytic Borel groupoid, a compatible measure on G is one possess-
ing appropriate (quasi)invariance properties. Since σ-finite measures are always
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equivalent to finite measures, we describe what is needed first for a finite (Borel)
measure ν on G. We say that ν is quasisymmetric if it has the same null sets as its
image ν−1 under (·)−1. Translation quasiinvariance for ν must be stated in terms
of a decomposition of ν relative to r and ν̃ = r∗(ν). Write

ν =
∫

νxdν̃(x)

for such a decomposition. (For a discussion and a proof of existence and unique-
ness a.e. of decompositions of measures, see Lemma 4.4 of [1].) We will use the
Borel property of the family of measures {νx : x ∈ X}, namely, if f > 0 is Borel
on G, then x 7→

∫
f dνx is a Borel function on X. (Sometimes we regard νx as a

measure on G such that νx(G\r−1(x)) = 0 and sometimes (e.g., the next para-
graph) as a measure on Gx. There is a natural isomorphism between the two sets
of measures.)

For γ ∈ G, the mapping γ′ 7→ γγ′ translates Gs(γ) Borel isomorphically
onto Gr(γ) and carries νs(γ) to a measure that we denote by γνs(γ). If there exist a
decomposition of ν and a Borel set X0 of full measure in X such that if γ ∈ G|X0
then γνs(γ) ∼ νr(γ), we say that ν is left quasiinvariant. The measure ν is called
quasiinvariant if it is both quasisymmetric and left quasiinvariant. A pair (G, ν)
is a measured groupoid if G is an analytic groupoid and ν is a quasiinvariant Borel
measure on G. We allow ν to be σ-finite instead of finite, but can always choose
an equivalent finite measure if it is convenient.

Suppose that ν is quasiinvariant on G, and X0 is as above. Then there is
a Borel set of full measure, X1, contained in X0 such that (G|X1, ν|(G|X1)) is a
measured groupoid. To see this, set N0 = X\X0. For x ∈ X0, νx(r−1(N0)) = 0
because r−1(x) ∩ r−1(N0) = ∅. Also, the set s−1(N0) has measure 0, so it has
measure 0 for almost all νx. The set, X1, of x in X0 for which νx(s−1(N0)) = 0 is
invariant for G|X0 because X0 serves to verify that ν is left quasiinvariant. It is
also a Borel set because x 7→ νx is Borel. Hence, restricting all measures to G|X1
gives a measured groupoid in which γνs(γ) ∼ νr(γ) holds for every γ.

Since an inessential reduction preserves what is measure theoretically im-
portant, we may as well assume that the left quasiinvariance condition holds for
all γ.

According to Theorem 3.7 in [4], if (G, ν) is a measured groupoid then G has
a compatible left Haar system, denoted by {λx : x ∈ X}. This means that λx ∼ νx

for every x and γλs(γ) = λr(γ) for all γ. Note that a Haar system is also required
to have the Borel property. The associated right Haar system is denoted by {λx :
x ∈ X}, where λx is defined to be (λx)−1. On the other hand, given a left Haar
system, if µ is any finite or even σ-finite measure on X, we define a measure λµ

on G by

λµ =
∫
X

λx dµ(x),
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giving the decomposition of λµ by its definition. Then we say that µ is quasi-
invariant provided that λµ is quasisymmetric, which guarantees that λµ itself is
quasiinvariant.

In this case, we set ν = λµ. According to Theorem 3.8 of [4] the (Borel)
Radon-Nikodym derivative of ν relative to ν−1, denoted by ∆, can be taken al-
ways positive and automatically satisfies the homomorphism identity a.e. on G2,
as a function taking values in R∗

+. By Theorem 5.1 of [11], we may change ∆ on a
Borel set of measure 0 and pass to an inessential reduction to arrange that ∆ is a
homomorphism. This homomorphism is called the modular function of G relative
to µ, and sometimes denoted by ∆µ. It appears in the structure of a left Hilbert
algebra for G constructed in [5]. This all makes sense only in the presence of a
fixed Haar system and uses the measure ν1 defined next.

For the set G2 of composable pairs, there is a measure which we will call ν1
defined by∫

G2

f (γ1, γ2)dν1(γ1, γ2) =
∫
X

∫
Gx

∫
Gs(γ1)

f (γ1, γ2)dλs(γ1)(γ2)dλx(γ1)dµ(x).

We will also need the set G2
r,r = {(γ1, γ2) : r(γ1) = r(γ2)}. The appropriate

measure on this set will be denoted by ν2 and is defined by∫
G2

r,r

f (γ1, γ2)dν2(γ1, γ2) =
∫
X

∫
Gx

∫
Gr(γ1)

f (γ1, γ2)dλr(γ1)(γ2)dλx(γ1)dµ(x).

1.2. W∗-ALGEBRAS AND VON NEUMANN ALGEBRAS. While the title of the paper
is stated in terms of W∗-algebras, we work with their faithful representations as
von Neumann algebras. By definition, a W∗-algebra is isomorphic to a von Neu-
mann algebra. Later in this section, we recall why that von Neumann algebra can
be taken to be in standard form, in an essentially unique way. Thus we are able
to establish results for W∗-algebras by working with von Neumann algebras in
standard form.

Following [15], page 72, if H is a Hilbert space and N is a ∗-subalgebra of
L(H) equal to its own second commutant, we call the pair (N,H) a von Neumann
algebra. If A is a C∗-algebra that possesses a representation π on a Hilbert space
H such that (π(A),H) is a von Neumann algebra, we say that A is a W∗-algebra
([15], page 130). It is a theorem that a C∗-algebra A is a W∗-algebra if and only if
A is isometric to the dual space of some Banach space ([15], page 133). There can
be at most one such Banach space ([15], page 135). It is called the predual of A and
is denoted by A∗.

The main reason for requiring every W∗-algebra, N, to have a separable pre-
dual is that it is equivalent to requiring N to have a faithful representation on a
separable Hilbert space, so that direct integral theory works properly. The faith-
ful representation on a separable Hilbert space comes about as follows. Having
a separable predual implies that N is σ-finite and has a faithful normal state, ϕ
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([15], page 78). To say that a state or representation is normal means that it is
completely additive on orthogonal families of projections, or equivalently, pre-
serves least upper bounds of monotone nets of selfadjoint elements. A state on
N is normal if and only if it belongs to N∗. Denote the representation determined
by ϕ by πϕ and the Hilbert space by Hϕ. Then πϕ is also normal and the pair
(πϕ(N),Hϕ) has a modular conjugation Jϕ and a self-dual cone Pϕ contained in
Hϕ, completing the ingredients of a standard form ([16], page 151).

By page 152, Theorem IX.1.14 of [16], if (M1,H1, J1,P1) and (M2,H2, J2,P2)
are standard forms and π is an isomorphism of M1 onto M2 then there is exactly
one unitary U : H1 → H2 such that for x ∈ M1 π(x) = UxU∗, J2 = UJ1U∗, and
U(P1) = P2. This result is fundamental for our purposes. One important fact is
that every von Neumann algebra that has a cyclic and separating vector “is” in
standard form, i.e., the necessary J and P exist.

Direct integral decompositions of von Neumann algebras are used in this
paper, primarily in order to give explicit constructions of relative tensor products
and fiber products. For more information on direct integrals we refer to Section 4
of [1] and to Section IV.8 of [15]. We recall some of the essential structure and
facts.

The basic operation is the (direct integral) decomposition of a Hilbert space,
H, with respect to a normal representation of an algebra L∞(S, µ), where (S, µ) is
a standard (or possibly only analytic) Borel probability space.

The normality requirement makes sense for a representation of L∞(S, µ), be-
cause we take L∞(S, µ) to be a von Neumann algebra of multiplication operators
on L2(S, µ), as follows. For f ∈ L∞(S, µ) and ξ ∈ L2(S, µ), write m( f )ξ for the
equivalence class of the pointwise product of representatives of the two classes of
functions. The operator norm of m( f ) is equal to ‖ f ‖∞. It is a standard fact that
m(L∞(S, µ)) is a von Neumann algebra in L(L2(S, µ)), and is in fact equal to its
own commutant.

If H is a Hilbert space equipped with a normal representation of L∞(S, µ),
we call H an L∞(S, µ)-module, or more briefly an S-module. The direct integral
decomposition of H relative to L∞(S, µ) amounts to a structure theorem for S-
modules. In other words, there is a standard family of examples of S-modules,
and every S-module is isomorphic to exactly one of the examples.

After L2(S, µ) the simplest example of an S-module is a vector valued form
of L2(S, µ). If K is a Hilbert space, the space L2(S, µ;K) of K-valued square in-
tegrable Borel functions on S is a Hilbert space, H, on which L∞(S, µ) can act by
multiplication as before. This multiplication representation is a faithful normal
representation.

The general case is essentially a vector valued L2-space, but we must allow
different Hilbert spaces at different points of S, as it is done for a direct sum.
We bypass the general analysis of variable Hilbert spaces in favor of describing
examples, one in each isomorphism class.
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To produce the examples, begin with N∗ = N ∪ {0, ∞}, let S = {Sn : n ∈
N∗} be a Borel partition of S, and let {Kn : n ∈ N∗} be a collection of Hilbert
spaces such that dim(Kn) = n for all n. Write H̃ for

⋃
n∈N∗

(Sn ×Kn).

In a Borel sense, H̃ has a “local” product structure, so we refer to any space
constructed in the same way as H̃ as a Hilbert bundle over S. Starting with another
collection {K′

n : n ∈ N∗} clearly gives an isomorphic bundle. Also, starting
with any Borel partition of S into countably many subsets and any function on
the partition assigning a dimension to each element of the partition, it is easy to
produce a Hilbert bundle compatible with that information. Hence direct sums of
Hilbert bundles and tensor products of Hilbert bundles are again Hilbert bundles.

The function p assigning its first component to each element of H̃ is a Borel
quotient map. A Borel function f : S → H̃ for which p ◦ f = i is called a section
of H̃ over S.

There is an easy isomorphism between sections of H̃ over S and Borel func-
tions f from S to

⋃
n
Kn such that for every n, f |Sn takes values in Kn. From this

it is clear that the space L2(S, µ; H̃) of square integrable sections of H̃ is a Hilbert
space, isomorphic to the direct sum of the spaces L2(Sn, µ|Sn;Kn). As before,
there is a multiplication representation of L∞(S, µ) on L2(S, µ; H̃). That represen-
tation is faithful if and only if µ(S0) = 0.

The structure theorem for a general normal homomorphism, ϕ, of L∞(S, µ)
into L(H) [1], [15] asserts that ϕ is unitarily equivalent to a multiplication repre-
sentation on a space L2(S, µ; H̃) and that S0, S1, S2, . . . , S∞ are determined up to
measure 0 by ϕ. Hence we always assume that ϕ is a multiplication representa-
tion on a space L2(S, µ; H̃).

From a Hilbert bundle H̃ two other useful bundles can be constructed. The
first is

⋃
n
(Sn ×L(Kn)), which we denote by L(H̃). The second is

⋃
n
(Sn ×U (Kn)×

Sn), which we denote by U (H̃).
Write L∞(S, µ;L(H̃)) for the algebra of bounded Borel sections of L(H̃). If

A ∈ L∞(S, µ;L(H̃)), then “multiplication by” A gives a bounded operator, m(A):
if ξ ∈ L2(S, µ; H̃) then m(A)ξ is represented by the function in L2(S, µ; H̃) whose
value at each s ∈ S is A(s)(ξ(s)). The set {m(A) : A ∈ L∞(S, µ;L(H̃))} is the
commutant of L∞(S, µ), i.e., of m(L∞(S, µ)). An operator that can be obtained in
the form m(A) is called decomposable. The mapping m is a normal isomorphism
of L∞(S, µ;L(H̃)) into the bounded operators on L2(S, µ; H̃).

Subalgebras of L∞(S, µ;L(H̃)) are of interest to us, and each one is obtained
by restricting the operator valued functions to take values in a subbundle of
L(H̃). In this setting, a bundle of von Neumann algebras is a Borel subset, Ñ,
of some L(H̃) such that the fiber of Ñ over a point s ∈ Sn is a von Neumann
algebra on Kn. We write L∞(S, µ; Ñ) for the von Neumann algebra of operators,
m(A), on L2(S, µ; H̃) obtained from bounded sections, A, of Ñ.
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The set U (H̃) is an analytic Borel space and can be given the structure of a
Borel groupoid. The unit space is S and the projections r and s map a triple onto
its first and third components. The product is defined by

(s1, U1, s2)(s2, U2, s3) = (s1, U1U2, s3),

while the units are of the form (s, i, s) and the inverse of (s1, U, s2) is (s2, U−1, s1).
If a von Neumann algebra N on an S-module is contained in the commu-

tant of m(L∞(S, µ)), to decompose N with respect to ϕ(L∞(S, µ)) is to express it in
the form L∞(S, µ; Ñ). This can be done in essentially one way, so we may pass
freely between bundles of von Neumann algebras and von Neumann algebras
that commute with L∞(S, µ) ([15], Section V.8).

One result we need about such decompositions concerns quotients of the
space S. Suppose that T is an analytic Borel space and that p : S → T is a quotient
map. Decompose µ relative to p: set µ̃ = p∗(µ) and get the decomposition µ =∫

µtdµ̃(t). Lemma 4.5 of [1] says that the Hilbert spaces H̃p
t = L2(S, µt; H̃) form

a bundle over T as do the algebras Ñp
t = L∞(S, µt; Ñ), and that L∞(T, µ̃; Ñp)

is naturally isomorphic to L∞(S, µ; Ñ). These bundles are first found in another
form, but are isomorphic to special ones as described above. This result could be
abbreviated by saying direct integrals can be computed in stages.

We will use specific information about decompositions of von Neumann
algebras in standard form. The hypotheses are the von Neumann equivalent of
a W∗-algebra having a separable predual and taking the representation obtained
from a faithful normal state. The only part of this theorem not already proved
in Section IV.8, Theorem 8.21, of [15] is the assertion about cyclic and separating
vectors. That fact can be proved easily using the selection lemma techniques in
Section IV.8 of [15].

THEOREM 1.1. Suppose that (N,H) is a von Neumann algebra that has a cyclic
and separating vector, ξ0. Suppose that S is a standard Borel space and µ is a σ-finite
Borel measure on S. If L∞(S, µ) has a normal imbedding into the commutant of N, then
(N,H) has a direct integral decomposition over S, i.e., there is an isomorphism

(N,H) ' (L∞(S, µ; Ñ), L2(S, µ; H̃)).

If ξ0 is represented in L2(S, µ; H̃) by a section ξ̃0 of H̃, then for almost every s ∈ S the
vector ξ̃0(s) is cyclic and separating for Ñs.

1.3. RELATIVE TENSOR PRODUCTS AND FIBER PRODUCTS. For an action α of a
group G on a W∗-algebra M, the corresponding action of the Hopf von Neumann
algebra L∞(G) is an embedding πα of M into the von Neumann algebra tensor
product M ⊗ L∞(G) that has the coassociative property. For groupoids a relative
tensor product over L∞(X, µ) is the proper analog.

The notion of tensor product relative to L∞(S, µ) was defined by Sauvageot,
for example in [14]. The ingredients begin with two S-modules H1 and H2 with
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representations ϕ1 and ϕ2, respectively. For i = 1, 2, let Ni be a von Neumann al-
gebra onHi that is contained in the commutant of ϕi(L∞(S, µ)). Sauvageot shows
how to express the relative tensor product N1 ⊗S N2 by way of direct integral de-
compositions, in our context ([14], Section 1.1). To do this, take a decomposition
of each Ni in the form L∞(S, µ; Ñi), with Ñi a subbundle of L(H̃i), and the fiber
of Ñi at the point s denoted by (Ñi)s. Form the bundle Ñ1 ⊗ Ñ2, whose fiber at s
is (Ñ1)s ⊗ (Ñ2)s, a von Neumann algebra on (H̃1)s ⊗ (H̃2)s. Denote the Hilbert
bundle whose fiber is (H̃1)s ⊗ (H̃2)s by H̃1 ⊗ H̃2. Then

N1 ⊗S N2 ' L∞(S, µ; Ñ1 ⊗ Ñ2),

which is a von Neumann algebra on L2(S, µ; H̃1 ⊗ H̃2).
If M̃ is a bundle of W∗-algebras over X, then let L∞(X, M̃) denote the al-

gebra of bounded, operator valued Borel functions m such that if x ∈ X then
m(x) ∈ M̃x, i.e., the direct integral of the bundle. The technicalities can be treated
by passing to von Neumann algebras. Note that L∞(X, M̃) contains a copy of
L∞(X, µ) in its center, and every W∗-algebra containing a copy of L∞(X, µ) in its
center is of that form. A tensor product over L∞(X, µ) will be written as a tensor
product over X. The rationale for this is that L∞(X, µ) is the only von Neumann
algebra we associate with X.

The algebra L∞(G) is a central module over X in two ways: composing
elements of L∞(X, µ) with r and with s both embed L∞(X, µ) into L∞(G). We
denote these module structures by L∞(G)r and L∞(G)s. It will be convenient
for us to find other formulations of M ⊗X L∞(G)r and M ⊗X L∞(G)s. These are
special cases of the following lemma.

LEMMA 1.2. Suppose that Z and W are standard Borel spaces and that p : W →
Z is a surjection such that B ⊆ Z is a Borel set if and only if p−1(B) is Borel in W.
Suppose that µ and ν are Borel probability measures on Z and W such that p∗(ν) has the
same null sets as µ. Let ν =

∫
νz dµ(z) be a decomposition of ν over µ with respect to

p. Let H̃ be a Hilbert bundle over Z and let M̃ be a subbundle of the bundle whose fiber
at z is L(H̃z). If M = L∞(Z, µ; M̃) acts on H = L2(Z, µ; H̃), then the relative tensor
product M ⊗Z L∞(W, ν) is naturally isomorphic to L∞(W, ν; p∗(M̃)). In particular,
the algebra of sections of p∗(M̃) that are constant on p-fibers and L∞(W, ν), together
generate L∞(W, ν; p∗(M̃)).

Proof. It is proved in Section 1.1 of [14] that a relative tensor product of
Hilbert spaces, in our context, can be computed by expressing each factor as a di-
rect integral over the underlying space and taking the direct integral of the bun-
dle whose fibers are the tensor products of the fibers for the two factors. In the
present case, this means that H⊗Z L2(W, ν) is the space of L2 sections of the bun-
dle whose fiber at z is H̃z ⊗ L2(W, νz). The latter tensor product is naturally iso-
morphic to the vector valued L2-space, L2(W, νz; H̃z). That unitary isomorphism
carries M̃z ⊗ L∞(νz) to L∞(W, νz; M̃z), the direct integral of a constant bundle.
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The direct integral of the vector valued Hilbert spaces is naturally isomorphic to
L2(W, ν; p∗(H̃)). Finally, the unitary operators establishing the Hilbert space iso-
morphisms provide the desired isomorphisms between algebras of operators.

In addition to relative tensor products, we will use the fiber products of von
Neumann algebras over L∞(X, µ). For more information on fiber products see
[14], [17]. We include the following definition for completeness.

DEFINITION 1.3. Let M1 and M2 be two von Neumann algebras over H1
and H2 respectively. Suppose that M1 and M2 both contain copies of L∞(X, µ) as
a von Neumann subalgebra. Then the fiber product M1 ∗ M2 of M1 and M2 over
L∞(X, µ) is defined to be the commutant of LM1(H1) ⊗X LM2(H2) in L(H1 ⊗
H2).

The latter relative tensor product exists because each of the factor algebras
is in the commutant of an image of L∞(X, µ).

1.4. FELL BUNDLES AND ACTIONS. The notion of Fell bundle over a Borel
groupoid G in the C∗-algebra case is defined in [6]. An analogous definition for
the W∗-algebra case is given in [3]. We use the following definition:

DEFINITION 1.4. A C∗ Fell bundle over an analytic Borel groupoid G is a
Borel bundle E of Banach spaces with projection p : E → G and associated set

E2 = {(e1, e2) ∈ E× E : (p(e1), p(e2)) ∈ G2}

along with the following conditions:
(i) There is a Borel map from E2 to E called the multiplication map which satis-

fies:
(a) p(e1e2) = p(e1)p(e2) for all (e1, e2) ∈ E2;
(b) the induced map, Eγ1 × Eγ2 → Eγ1γ2 , is bilinear for every pair

(γ1, γ2) ∈ G2;
(c) (e1e2)e3 = e1(e2e3) whenever the multiplication is defined;
(d) ‖e1e2‖ 6 ‖e1‖‖e2‖ for all (e1, e2) ∈ E2.

(ii) There is a Borel map from E to E denoted by e 7→ e∗ called the involution
map which satisfies:

(a) p(e∗) = p(e)−1 for all e ∈ E;
(b) the induced map, Eγ → Eγ−1 , is conjugate linear for all γ ∈ G;
(c) e∗∗ = e for all e ∈ E;

(iii) With the above two maps, these additional conditions are satisfied:
(a) (e1e2)∗ = e∗2e∗1 for all (e1, e2) ∈ E2;
(b) ‖e∗e‖ = ‖e‖2 for all e ∈ E;
(c) e∗e > 0 for all e ∈ E.

If, in addition, each Eγ has a predual (Eγ)∗, then we call the bundle a W∗

Fell bundle.
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We define the notion of action of the groupoid G on the bundle M̃ as in
[17], where he also uses the notion of functor, or homomorphism, into the iso-
morphism groupoid of M̃.

DEFINITION 1.5. An action α of G on M̃ is a Borel homomorphism of G into
the isomorphism groupoid of the bundle M̃. That is, α is a Borel map such that:

(i) ∀γ ∈ G, αγ : M̃s(γ) → M̃r(γ) is a ∗-isomorphism;
(ii) ∀(γ1, γ2) ∈ G2, αγ1γ2 = αγ1 ◦ αγ2 ;

(iii) ∀x ∈ X, αix : M̃x → M̃x is the identity map.

We use the following three W∗ Fell bundles in this paper. For each of these,
it is straightforward to check that the properties of a W∗ Fell bundle are satisfied.

(i) Let M̃ be a decomposition of a W∗-algebra, M, over X into fibers Mx which
are W∗-algebras. Then {(x, m) : m ∈ M̃x} is a W∗ Fell bundle over the diagonal
groupoid on X where p is the projection onto the first coordinate, multiplication
is defined by (x, m1)(x, m2) = (x, m1m2), and involution is defined by (x, m)∗ =
(x, m∗).

(ii) With an action α we can view the pull-back bundle over G, defined by
r∗(M̃) = {(γ, m) : m ∈ M̃r(γ)}, as a W∗ Fell bundle as follows: The map p :
r∗(M̃) → G is the projection onto the first coordinate. Multiplication is defined by

(γ1, m1)(γ2, m2) = (γ1γ2, m1αγ1(m2))

and involution is defined by (γ, m)∗ = (γ−1, αγ−1(m∗)).

(iii) Let p∗1(r∗(M̃)) = {((γ1, γ2), m) : m ∈ M̃r(γ1)}. For this bundle, we define
multiplication by

((γ, γ1), m)((γγ1, γ2), m1) = ((γ, γ1γ2), mm1)

and involution by ((γ, γ1), m)∗ = ((γγ1, γ−1
1 ), m∗).

Instead of always writing elements of a W∗ Fell bundle as ordered pairs,
we occasionally suppress the first coordinate when the meaning is understood.
Likewise, when we talk about sections of a bundle, we will usually write them as
elements of ∏

s∈S
M̃s as long as this causes no confusion.

In [6], Kumjian constructs the associated C∗-algebra for a Fell bundle over
an r-discrete groupoid, beginning with a convolution algebra of functions. If M̃
is a Fell bundle of W∗-algebras over a measured groupoid, we construct a con-
volution algebra of sections of M̃ whose completion is the W∗-algebra associated
to the bundle. For the W∗ Fell bundle constructed from an action, the associated
W∗-algebra is the crossed product algebra.

We start by defining a norm for sections of M̃ that mimics the I norm of [5]
for scalar functions. Hahn begins with functions in L1(G, ν), so we begin with the
analog of that.
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DEFINITION 1.6. If f is a Borel section of r∗(M̃) such that γ 7→ ‖ f (γ)‖ is
integrable, then let f ∗(γ) = ∆(γ)−1αγ( f (γ−1)∗), and define

‖ f ‖I,r = sup
x∈X

∫
Gx

‖ f (γ)‖M̃x
dλx(γ),

and

‖ f ∗‖I,r = sup
x∈X

∫
Gx

‖ f ∗(γ)‖M̃x
dλx(γ).

Finally, set

‖ f ‖I = max{‖ f ‖I,r, ‖ f ∗‖I,r}.

On pages 37–38 of [5], Hahn proved that ‖ · ‖I for scalar valued functions
was indeed a norm satisfying various useful inequalities. We denote the space of
scalar function f such that ‖ f ‖I < ∞ by LI(G, λ, µ). A minor variation of Hahn’s
proof shows that the above defines a norm for sections as well. We follow the
reasoning of Yamanouchi, as summarized below.

From the unitary implementability result for isomorphisms of von Neu-
mann algebras in standard form, there is always an associated Borel homomor-
phism u of G into the unitary groupoid U (H̃) such that for γ ∈ G and a ∈ M̃s(γ),
we have αγ(a) = uγau∗γ. This unitary representation is essential for the construc-
tion of the crossed product algebra. In [17], there was a different definition, but
Yamanouchi proves in Lemma 4.2 that it gives the same result as the convolution
construction we use here. The process takes place in a W∗ Fell bundle.

Let S(r∗(M̃)) denote the set of Borel sections of the bundle r∗(M̃) that are
integrable and finite in the I-norm. Then S(r∗(M̃)) is a vector space under point-
wise addition and scalar multiplication, and ‖ · ‖I is a norm on S(r∗(M̃)). The
elements of S(r∗(M̃)) operate on the space L2(G, ν; r∗(H̃)) of L2 sections for the
associated Hilbert bundle r∗(H̃) by a convolution modified by α, defined as fol-
lows. For ξ, η ∈ L2(G, ν; r∗(H̃)) and f ∈ S(r∗(M̃)), the integral∫ ∫

〈 f (γ1)uγ(ξ(γ−1
1 γ)), η(γ)〉dλr(γ)(γ1)dν(γ)

converges absolutely and has absolute value at most ‖ f ‖I‖ξ‖2‖η‖2, using the
results on pages 37–44 of [5]. We write ϕα( f ) for the operator defined by the
Hermitian form whose value is the above integral. Then ‖ϕα( f )‖ 6 ‖ f ‖I .

We can further equip S(r∗(M̃)) with a ∗-algebra structure by defining invo-
lution as above and by defining convolution so that

ϕα( f )ϕα(g) = ϕα( f ∗ g).

Defining f ∗ g by the formula

( f ∗ g)(γ) =
∫

f (γ1)αγ(g(γ−1
1 γ)) dλr(γ)(γ1),
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it is possible to verify, by substituting into the integral formula, that for ξ, η ∈
L2(G, ν; r∗(H̃)),

〈ϕα( f )ϕα(g)ξ, η〉 = (ϕα( f ∗ g)ξ, η),

as desired.

THEOREM 1.7. Defining convolution and involution as above on the subspace
S(r∗(M̃)) makes it a ∗-subalgebra of L(L2(G, ν; r∗(H̃))).

Proof. The remainder of the proof is a straightforward modification of argu-
ments found in pages 41–42 of [5], pages 41–42 of [10], or pages 48–49 of [13]. See
also pages 36–38 of [17].

DEFINITION 1.8. The weak closure of the ∗-algebra S(r∗(M̃)) will be called
the crossed product of M̃ by G with respect to α and will be denoted by M̃ ×α G.

2. COMULTIPLICATION AND COACTIONS

Before defining a comultiplication on R(G) for groupoids, we discuss the
comultiplication on R(G) for locally compact groups. Nakagami and Takesaki
define the comultiplication, δG, in terms of the unitary operator WG defined by
(WGξ)(s, t) = ξ(s, ts) for ξ ∈ L2(G × G) ∼= L2(G) ⊗ L2(G) and s, t ∈ G. They
define δG mapping from R(G) into L(L2(G × G)) by

δG(x) = W∗
G(x ⊗ 1)WG.

We wish to have a formula for δG in the groupoid case that does not involve
direct reference to a unitary operator and that uses the left regular representation
instead of the right regular representation. We will use π to denote both the left
regular representation on G and, in its integrated form, the left regular represen-
tation on L1(G). The use should be clear based on the context.

For f ∈ L1(G) a calculation shows that the corresponding formula for δG
using the left regular representation is

δG(π( f ))(h)(s, t) =
∫

f (r)h(rs, rs)dr.

Using the tensor product π ⊗ π, we can write the above integral as

δG(π( f ))(h)(s, t) =
∫

f (r)(π ⊗ π)(r)h(s, t)dr.

We will denote this integral by (π ⊗ π)( f )h(s, t) which gives δG(π( f )) = (π ⊗
π)( f ).

We now consider the case where G is a measured groupoid. Recall that the
left regular representation for G is defined on the Hilbert Bundle H̃ whose fibers
are L2(λx). For γ ∈ G we define π(γ) : L2(Gs(γ)) → L2(Gr(γ)) by

π(γ)(h)(γ1) = h(γ−1γ1).
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Combining Lemma 1.1 from [13] and Theorem 3.4 in [5], we have that the repre-
sentation π integrates to give a representation π of LI(G, λ, µ) on L2(X, µ; H̃). For
f ∈ LI(G, λ, µ), and ξ ∈ L2(X, H̃), the integrated representation is shown to be

π( f )ξ(x) =
∫

Gx

f (γ)π(γ)(ξ(s(γ)))∆−1/2(γ)dλx(γ).

DEFINITION 2.1. For f ∈ LI(G) and ξ ∈ L2(G2
r,r, ν2) we define δG by

(δG(π( f ))ξ)(γ1, γ2) =
∫

f (γ)ξ(γ−1γ1, γ−1γ2)∆−1/2(γ)dλr(γ1)(γ).

Extend δG to all of R(G) by using the standard continuity arguments.

THEOREM 2.2. The map δG as defined above is a normal ∗-isomorphism of R(G)
into R(G) ∗ R(G) satisfying

(δG ∗ i) ◦ δG = (i ∗ δG) ◦ δG .

We now define a coaction in general and a coaction dual to a given action.

DEFINITION 2.3. Suppose N is a von Neumann algebra and that N contains
L∞(X, µ) as a von Neumann subalgebra. A coaction of G on N is a normal ∗-
isomorphism δ from N into N ∗ R(G) such that

(δ ∗ i) ◦ δ = (i ∗ δG) ◦ δ.

Note that δG as defined above is a coaction.

DEFINITION 2.4. Given an action α of G on the bundle M̃ and the associated
unitary representation u on H̃, we define α̂ on M̃×α G as follows. For f ∈ LI(G),
let α̂( f ) be the bounded operator determined by the Hermitian form whose value
on L2 sections ξ and η of H̃ is equal to∫ ∫

〈αγ( f (γ−1))uγ(ξ(γ−1γ1, γ−1γ2)), η(γ1, γ2)〉dλr(γ1)(γ)dν2(γ1, γ2).

REMARK 2.5. Although Yamanouchi [17] defines α̂ in terms of unitary maps,
his Lemma 4.4 gives an equivalent formulation which is essentially our definition
above.

THEOREM 2.6. α̂ as defined above is a coaction.

Proof. See pages 42–46 of [17].

3. THE W∗-ALGEBRA FORMULATION

Suppose M is a W∗-algebra which is a central module over X and let M̃
be the associated bundle. Let L∞(X, M̃), L∞(G, r∗(M̃)), and L∞(G2, p∗1(r∗(M̃)))
denote the appropriate algebras of bounded Borel sections. We will denote sec-
tions in the three algebras respectively by m, m1, and m2, and we will also use the
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same notation for the spaces of equivalence classes of bounded Borel sections. By
Lemma 1.2, L∞(G, r∗(M̃)) is generated by M ◦ r = { f ◦ r : f ∈ L∞(X, M̃)} as a
module over L∞(G).

Notice that for groups this is the same situation that Nakagami and Take-
saki consider in [9]. If G is a group, then X is a singleton, and M̃ has only one
fiber M, so L∞(X, M̃) = M, L∞(G, r∗(M̃)) = L∞(G, M) ∼= M ⊗ L∞(G) and
L∞(G2, p∗1(r∗(M̃))) = L∞(G×G, M) ∼= M⊗ L∞(G)⊗ L∞(G). The mappings that
appear in the definition of an action of the Hopf algebra L∞(G) on a W∗-algebra
M become more complicated for a groupoid.

First we define the following maps on sections of various bundles, and then
we analyse them to see how much like the group case they are. The maps are the
analogs of the mappings i⊗ αG, π, and π ⊗ i used in [9].

DEFINITION 3.1.
(i) Let α2

G : L∞(G, r∗(M̃)) → L∞(G2, p∗1(r∗(M̃))) be defined by

α2
G(m1)(γ1, γ2) = m1(γ1γ2).

(ii) Let π1
α : L∞(X, M̃) → L∞(G, r∗(M̃)) be defined by

π1
α(m)(γ) = αγ(m(s(γ))).

(iii) Let π2
α : L∞(G, r∗(M̃)) → L∞(G2, p∗1(r∗(M̃))) be defined by

π2
α(m1)(γ1, γ2) = αγ1(m1(γ2)).

To verify that α2
G, π1

α and π2
α are the proper analogs of i⊗ αG, πα and πα ⊗ i,

we must identify the analogs of their domains in the groupoid setting.
The mapping αG is defined on L∞(G) in both cases, and for i ⊗ αG the do-

main is M ⊗ L∞(G), but i ⊗ αG does not really depend on the first factor in the
tensor product. The analog of M⊗ L∞(G) for the groupoid case is L∞(G, r∗(M̃)),
which is also a relative tensor product of M and L∞(G) over L∞(X, µ). Notice
that the definition of α2

G likewise does not depend on the particular values of the
section it is mapping.

It is clear that π1
α is defined in the same way as πα, including the fact that it

takes values in the analog of M ⊗ L∞(G), so it remains to see that π2
α is a good

analog of πα ⊗ i. The domain of πα ⊗ i is M ⊗ L∞(G), and its definition ignores
the second factor in the tensor product, so it is determined by its values on M⊗C
together with the fact that it is a normal homomorphism on the tensor product
algebra. The analog of M ⊗ C is M ◦ r and π2

α is a normal homomorphism on
L∞(G, r∗(M̃)). To see how π2

α is determined by π1
α begin with a section m ∈

L∞(X; M̃) and compute π2
α(m ◦ r). Its value at a pair (γ1, γ2) ∈ G2 is

αγ1(m(r(γ1γ2))) = αγ1(m(r(γ1))) = π1
α(m)(p1(γ1, γ2)).

This suggests embedding L∞(G, r∗(M̃)) into L∞(G2, p∗1(r∗(M̃))) by composing
with p1, as we embedded M into L∞(G, r∗(M̃)) by composing with r. Both of
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these correspond to the embeddings into tensor products that appear in the group
case. Then we have π2

α(m ◦ r) = π1
α(m) ◦ p1, so π2

α is indeed simply a promotion
of π1

α to a map on L∞(G, r∗(M̃)).
By the definition of action, we know that αγ1 ◦ αγ2 = αγ1γ2 . This combined

with the fact that s(γ1γ2) = s(γ2) is enough to prove the following theorem.

THEOREM 3.2. With the above maps, we have the following commutative diagram:

L∞(X, M̃)
π1

α−−−−→ L∞(G, r∗(M̃))

π1
α

y yπ2
α

L∞(G, r∗(M̃))
α2

G−−−−→ L∞(G2, p∗1(r∗(M̃)))

.

EXAMPLE 3.3. We now consider one specific map which expresses the mul-
tiplication of the groupoid. Define Tγ : L∞(Gs(γ), λs(γ)) → L∞(Gr(γ), λr(γ)) by

(Tγ f )(γ1) = f (γ1γ).

Then T is an action on the bundle M̃ over X whose fibers are L∞(Gx, λx) and we
can define maps π1

G and π2
G as above to get

π2
G ◦ π1

G = α2
G ◦ π1

G.

In particular, for m ∈ L∞(X, M̃) we have

(π2
G ◦ π1

G)(m)(γ, γ1, γ2) = m((γγ1)γ2)

and
(α2

G ◦ π1
G)(m)(γ, γ1, γ2) = m(γ(γ1γ2))

which expresses associativity of multiplication.

We have shown that given a bundle and an action, we can define maps π1
α

and π2
α that satisfy the appropriate commutative diagram, thereby defining an

action of the Hopf algebroid L∞(G). (The map α2
G is defined whether there is an

α given or not.) We now prove the converse: Given appropriate maps that satisfy
the correct commutative diagram, we have an action of the groupoid. To do this,
however, involves some work with null sets and some more observations about
actions.

Suppose first that α is an action of G as defined above on M̃. For an element
m1 of L∞(G, r∗(M̃)) and γ ∈ G, we define

τα(m1)(γ) = αγ(m1(γ−1)).

Then τα is an automorphism of the von Neumann algebra L∞(G, r∗(M̃)) that has
period 2 since αγ ◦ αγ−1 is the identity automorphism of M̃r(γ). The fact that α is
multiplicative appears in the commutative diagram satisfied by the maps α2

G, π1
α

and π2
α.
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For groups, it is easy to express all of this in terms of one map π, and Nak-
agami and Takesaki prove that such a map always is associated with an action.
For groupoids, it is easier to include something about inverses in the von Neu-
mann algebra formulation of the action. Note that the inverses are found in τα

while the multiplicative properties are found in π1
α.

We now look at the relationship between τα and π1
α. Suppose that we are

given τα, a section m ∈ L∞(X, M̃), and γ ∈ G. If we define φ(m)(γ) = m(r(γ)),
then this definition is independent of α and we have that

π1
α(m)(γ) = αγ(m(s(γ))) = τα(φ(m))(γ).

Next, we show that every triple of mappings τ, π1, π2 with the same behav-
ior as τα, π1

α and π2
α must come from an action α of an inessential reduction of G.

Since changing α on a set of measure 0 does not change τα, this is the best possible
result.

THEOREM 3.4. Let (G, ν) be a measured groupoid, and let M be a von Neumann
algebra in standard form on a Hilbert space H. Suppose that M is a central X-module
and let

(M,H) = (L∞(X; M̃), L2(X, µ; H̃))
be a direct integral decomposition of the pair. Suppose that

π1 : M → L∞(G, r∗(M̃))

and
π2 : L∞(G, r∗(M̃)) → L∞(G2, p∗1(r∗(M̃)))

are normal embeddings such that the following diagram is commutative:

L∞(X, M̃) π1
−−−−→ L∞(G, r∗(M̃))

π1

y yπ2

L∞(G, r∗(M̃))
αG−−−−→ L∞(G2, p∗1(r∗(M̃)))

.

Suppose also that there is an automorphism τ of period 2 of L∞(G, r∗(M̃)) so that for
m ∈ M, π1(m) = τ(φ(m)), and for f ∈ L∞(G) ⊆ L∞(G, r∗(M̃)), τ( f )(γ) =
f (γ−1). Finally, suppose that for m ∈ M, π2(m ◦ r) = π1(m) ◦ p1. Then there is
an essentially unique action α of an inessential reduction of G on M̃ such that τ = τα,
π1 = π1

α, and π2 = π2
α.

Proof. First notice that τ = τα implies that α is determined a.e. so the exis-
tence is the only substantial part of the proof. Let Z2 act on G, on the right, by
having the non-identity element take γ to γ−1 and let F = G×Z2 be the groupoid
obtained from that action of Z2.

The pair (L∞(G; r∗(M̃)), L2(G; r∗(H̃))) is in standard form because (M,H)
is in standard form. Hence the automorphism τ is implemented by an essentially
unique unitary operator, U, on L2(G; r∗(H̃)). Since τ2 = i, U2 = i. Thus U
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generates a unitary representation of the cyclic group of order 2, Z2 = Z/2Z, by
n 7→ Un. The formula for τ( f ) implies that the multiplication representation of
L∞(G) on L2(G; r∗(H̃)) is a system of imprimitivity for the representation U. By
the Imprimitivity Theorem for non-transitive group actions ([11], Theorem 10.10),
U is induced by a unitary cocycle on some inessential reduction of F. Since Z2 is
finite, the reduction can be taken to be reduction to an invariant subset G0 of
G. In other words, after another inessential reduction, there is a Borel cocycle
L : G0 × Z2 → U (r∗(H̃)) and a multiplicative Borel cocycle ρ : G0 × Z2 → R+

such that for an element ξ ∈ L2(G; r∗(H̃)) we have

U(ξ)(γ) = ρ(γ, 1)L(γ, 1)(ξ(γ−1)).

In particular, L(γ, 1) is unitary from r∗(H̃)γ−1 to r∗(H̃)γ. Since U2 = i, L(γ−1, 1)
is almost always the inverse of L(γ, 1). Hence we can use L to define αγ for almost
all γ by the formula

αγ(a) = L(γ, 1)aL(γ−1, 1)

for a ∈ r∗(M̃)γ−1 . If L(γ−1, 1) = L(γ, 1)−1, then αγ is an isomorphism of r∗(M̃)γ−1

onto r∗(M̃)γ and αγ−1 is its inverse. Thus α is defined a.e. Since U implements τ

and has the given formula in terms of L, it follows that τ = τα. Since π1 = τ ◦ φ

and π1
α = τα ◦ φ, it follows that π1 = π1

α, and hence that π2 = π2
α. Thus the

commutative diagram for π1 and π2 ensures that αγ1γ2 = αγ1 ◦ αγ2 a.e. By The-
orem 5.1 of [11], we can modify α on a Borel set of measure 0 and then find an
inessential reduction G|X0 so that α is a homomorphism on G|X0.

It is natural to ask whether it is necessary to have the automorphism τ in
order to recover α. Notice that the proof given here relies on the unitary imple-
mentation of isomorphisms of von Neumann algebras in standard form. Thus
any proof that does not use a τ will require a different tool.
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